JP2006014650A - Transplanter - Google Patents

Transplanter Download PDF

Info

Publication number
JP2006014650A
JP2006014650A JP2004195283A JP2004195283A JP2006014650A JP 2006014650 A JP2006014650 A JP 2006014650A JP 2004195283 A JP2004195283 A JP 2004195283A JP 2004195283 A JP2004195283 A JP 2004195283A JP 2006014650 A JP2006014650 A JP 2006014650A
Authority
JP
Japan
Prior art keywords
planting
speed
power
seedling
transplanting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004195283A
Other languages
Japanese (ja)
Inventor
Takashi Funo
隆 布野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Agricultural Machinery Co Ltd
Original Assignee
Mitsubishi Agricultural Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Agricultural Machinery Co Ltd filed Critical Mitsubishi Agricultural Machinery Co Ltd
Priority to JP2004195283A priority Critical patent/JP2006014650A/en
Publication of JP2006014650A publication Critical patent/JP2006014650A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transplanting Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transplanter equipped with an irregularly speed-changing mechanism for transplanting, for irregularly speed-changing its transplanting power and suppressing the generation of the vibration caused by the change of torque of a transversely transmitted power to improve the stability of a transplanting part. <P>SOLUTION: This transplanter equipped with a seedling-loading stand 13 for loading the seedling, a transplanting mechanism 15 for raking the seedling from the seedling-loading stand 13 and transplanting it on a field, a transversal sending mechanism 50 for transversely sending the seedling-loading stand 13, a transplanting power transmission passage for transmitting the power to the transplanting mechanism 15, the irregularly speed-changing mechanism 38 installed at the planting power-transmitting passage and forming a change in the moving speed of the transplanting mechanism 15, and a transversely transmitted power transmission passage branched from the transplanting power transmission passage at a more downstream side than the irregularly speed-changing mechanism 38 and transmitting the power to the transversely transmitting mechanism 50 is provided by installing a transversal irregularly speed-changing mechanism 58 for negating the moving speed change caused by the irregularly speed-changing mechanism 38 for transplanting. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、植付機構の植付周期を変えることなく、一周期中の植付動作速度に変化を生じさせる不等速変換機構が設けられた移植機に関する。   The present invention relates to a transplanter provided with an inconstant speed conversion mechanism that changes a planting operation speed in one cycle without changing a planting cycle of the planting mechanism.

植付動力伝動経路に、偏心ギヤなどの不等速変換機構を設けることにより、植付機構の植付周期を変えることなく、一周期中の植付動作速度に変化を生じさせる移植機が知られている(例えば、特許文献1参照。)。通常、この種の移植機では、植付爪の土中動作速度及び苗掻取動作速度が速くなるように、植付動力を不等速変換している。これにより、植付爪による苗の引き摺りを防止できるだけでなく、植付爪の苗掻取り性能を向上させることが可能になる。
特開2002−238319号公報
A transplanting machine that changes the planting operation speed during one cycle without changing the planting cycle of the planting mechanism by providing an inconstant speed conversion mechanism such as an eccentric gear in the planting power transmission path is known. (For example, refer to Patent Document 1). Usually, in this type of transplanter, the planting power is converted at an unequal speed so that the planting claw operation speed in the soil and the seedling scraping operation speed are increased. This not only prevents the seedling from being dragged by the planting nails, but also improves the seedling scraping performance of the planting nails.
JP 2002-238319 A

ところで、この種の移植機は、苗載台を横送りする横送り機構を備え、この横送り機構を、植付動力伝動経路から分岐させた動力で動作させている。しかしながら、不等速変換機構の下流側で植付動力伝動経路を分岐させるものでは、横送り動力も不等速になるため、トルク変動による振動が発生し、植付部の安定性が低下するという問題がある。   By the way, this kind of transplanter is provided with a lateral feed mechanism that laterally feeds the seedling stage, and this lateral feed mechanism is operated with power branched from the planting power transmission path. However, in the case where the planting power transmission path is branched downstream of the inconstant speed conversion mechanism, the lateral feed power is also inconstant speed, so that vibration due to torque fluctuation occurs and the stability of the planting part decreases. There is a problem.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、苗を載置する苗載台と、該苗載台から苗を掻取って圃場に移植する植付機構と、前記苗載台を横送りする横送り機構と、前記植付機構に動力を伝動する植付動力伝動経路と、該植付動力伝動経路に設けられ、前記植付機構の動作速度に変化を生じさせる植付用不等速変換機構と、該植付用不等速変換機構よりも下流側で前記植付動力伝動経路から分岐され、前記横送り機構に動力を伝動する横送り動力伝動経路とを備える移植機において、前記横送り動力伝動経路に、前記植付用不等速変換機構による動作速度変化を打ち消す横送り用不等速変換機構を設けたことを特徴とする。このように構成すれば、植付用不等速変換機構を経由した不等速の動力を、等速の動力に変換して横送り機構に伝動することが可能になる。これにより、トルク変動による振動の発生を抑制し、植付部の安定性を高めることができる。
また、前記植付用不等速変換機構は、前記植付機構の苗掻取り速度が速くなるように植付動力を不等速変換し、前記横送り用不等速変換機構は、前記植付機構が苗を掻取るとき、前記苗載台の横送り動作速度が遅くなるように横送り動力を不等速変換することを特徴とする。このように構成すれば、植付機構の苗掻取移動量に対して、苗の横移動量が相対的に少なくなるので、苗の掻取り性能を向上させることができる。
The present invention has been created in order to solve these problems in view of the above circumstances, a seedling stage on which a seedling is placed, and a seedling from the seedling stage, which is scraped off to the field. A planting mechanism for transplanting, a lateral feed mechanism for laterally feeding the seedling platform, a planting power transmission path for transmitting power to the planting mechanism, and the planting power transmission path, A non-constant speed conversion mechanism for planting that causes a change in the operating speed of the plant, and a branching from the planting power transmission path downstream of the non-constant speed conversion mechanism for planting to transmit power to the lateral feed mechanism In the transplanter equipped with the transverse feed power transmission path, the transverse feed power transmission path is provided with a non-uniform speed conversion mechanism for transverse feed that cancels the change in operating speed due to the non-constant speed conversion mechanism for planting. And If comprised in this way, it will become possible to convert the inconstant speed motive power which passed through the inconstant speed conversion mechanism for planting into constant speed motive power, and to transmit to a lateral feed mechanism. Thereby, generation | occurrence | production of the vibration by torque fluctuation | variation can be suppressed and the stability of a planting part can be improved.
Further, the planting unequal speed conversion mechanism converts planting power at an unequal speed so that the seedling scraping speed of the planting mechanism increases, and the lateral feed unequal speed conversion mechanism When the attaching mechanism scrapes off the seedling, the lateral feed power is converted at an unequal speed so that the lateral feed operation speed of the seedling stage is slowed down. If comprised in this way, since the amount of lateral movement of a seedling will become relatively small with respect to the amount of seedling cleaning movement of a planting mechanism, the scraping performance of a seedling can be improved.

次に、本発明の実施形態を図面に基づいて説明する。図1〜図3において、1は乗用田植機の走行機体であって、該走行機体1は、機体前部に搭載されるエンジン2と、エンジン動力を入力するミッションケース3と、フロントアクスルケース4を介して取付けられる左右一対の前輪5と、リヤアクスルケース6を介して取付けられる左右一対の後輪7とを備える。エンジン動力は、ベルト式又は油圧式の無段変速機構8を介してミッションケース3に入力され、ここからフロントアクスルケース4、リヤアクスルケース6及び植付PTO軸9に伝動される。   Next, embodiments of the present invention will be described with reference to the drawings. 1 to 3, reference numeral 1 denotes a traveling machine body of a passenger rice transplanter. The traveling machine body 1 includes an engine 2 mounted on a front part of the machine body, a transmission case 3 for inputting engine power, and a front axle case 4. A pair of left and right front wheels 5 attached via a rear axle and a pair of left and right rear wheels 7 attached via a rear axle case 6. Engine power is input to the transmission case 3 via a belt-type or hydraulic-type continuously variable transmission mechanism 8, and is transmitted to the front axle case 4, the rear axle case 6 and the planted PTO shaft 9 from here.

走行機体1の後部には、昇降リンク機構10を介して植付作業部11が連結されている。植付作業部11は、昇降リンク機構10にローリング自在(左右揺動自在)に連結される作業部フレーム12と、該作業部フレーム12の上方に左右往復動自在に設けられる苗載台13と、上記作業部フレーム12から後方に延出する複数の植付伝動ケース14と、該植付伝動ケース14の後端部に設けられる植付機構15と、上記植付伝動ケース14の下方に上下揺動自在に設けられるフロート16とを備えて構成される。植付作業部11に伝動される植付PTO軸9の動力(以下、植付動力という。)は、各植付伝動ケース14に分配され、植付伝動ケース14内のチェン伝動機構(図示せず)を介して各植付機構15に伝動される。   A planting work part 11 is connected to the rear part of the traveling machine body 1 via a lifting link mechanism 10. The planting work part 11 includes a work part frame 12 connected to the lifting link mechanism 10 so as to be freely rollable (right and left swingable), and a seedling table 13 provided on the work part frame 12 so as to be capable of reciprocating left and right. A plurality of planting transmission cases 14 extending rearward from the working unit frame 12, a planting mechanism 15 provided at the rear end of the planting transmission case 14, and a vertical position below the planting transmission case 14 And a float 16 provided so as to be swingable. The power of the planting PTO shaft 9 (hereinafter referred to as planting power) transmitted to the planting work unit 11 is distributed to each planting transmission case 14 and a chain transmission mechanism (not shown) in the planting transmission case 14. )) To each planting mechanism 15.

植付機構15は、植付動力で回転する回転ケース17と、その両端部に設けられる一対の植付爪支持ケース18とを備えて構成される。植付爪支持ケース18は、先端部に備える植付爪19が所定の軌跡を描くように、回転ケース17内のギヤ列(図示せず)によって姿勢がコントロールされる。つまり、回転ケース17が回転すると、植付爪19が苗載台13の下端部から苗を掻取った後、前方に膨らむ円弧を描きながら土中の植付位置に達し、その後、直線的に上昇するという半月状の静止軌跡(走行停止時の爪先端運動軌跡)を描くように構成されている。これにより、回転ケース17が一回転する毎に二回の植付けが実行される。   The planting mechanism 15 includes a rotating case 17 that rotates with planting power, and a pair of planting claw support cases 18 provided at both ends thereof. The posture of the planting claw support case 18 is controlled by a gear train (not shown) in the rotating case 17 so that the planting claw 19 provided at the tip portion draws a predetermined locus. That is, when the rotating case 17 rotates, the planting claw 19 scrapes off the seedling from the lower end of the seedling stage 13 and then reaches the planting position in the soil while drawing an arc that swells forward, and then linearly It is configured to draw a semi-moon-like stationary trajectory of rising (nail tip motion trajectory when traveling is stopped). Thereby, planting is performed twice each time the rotating case 17 rotates once.

植付機構15の植付動作速度は、車速に連動しており、車速に対する相対的な植付動作速度を変速することによって、植付機構15の植付株間が調節される。また、植付機構15の植付爪軌跡は、標準株間を基準に設定されており、植付株間を広げるべく植付作動速度を遅くすると、機体進行に伴う植付爪19の前方移動量が土中で大きくなり、植え付けた苗が引き摺られてしまう。そのため、植付株間を広げる場合には、植付機構15の植付周期を変えることなく、一周期中の植付動作速度に変化を生じさせることにより、植付爪19の土中動作速度を速くし、苗の引き摺りを防止する必要がある。以下、そのための構成について説明する。   The planting operation speed of the planting mechanism 15 is linked to the vehicle speed, and the planting stock of the planting mechanism 15 is adjusted by changing the planting operation speed relative to the vehicle speed. In addition, the planting claw trajectory of the planting mechanism 15 is set with reference to the standard stock, and if the planting operation speed is slowed to widen the planting stock, the amount of forward movement of the planting claw 19 as the aircraft progresses is increased. It grows in the soil and the planted seedlings are dragged. Therefore, when expanding between planting stocks, by changing the planting operation speed in one cycle without changing the planting cycle of the planting mechanism 15, the soil operation speed of the planting claw 19 is increased. It is necessary to increase the speed and prevent the seedling from being dragged. Hereinafter, a configuration for that purpose will be described.

図4〜図7に示すように、ミッションケース3は、入力軸20に入力された動力を、入力軸20に回転自在に支持される筒軸21と、該筒軸21に並列する中間伝動軸22と、該中間伝動軸22に並列する株間変速軸23と、該株間変速軸23に回転自在に支持される筒軸24と、該筒軸24に回転自在に支持される筒軸25とを経由して植付PTO軸9に伝動するように構成されている。   As shown in FIGS. 4 to 7, the transmission case 3 includes a cylindrical shaft 21 that is rotatably supported by the input shaft 20 for power input to the input shaft 20, and an intermediate transmission shaft that is parallel to the cylindrical shaft 21. 22, a stock transmission shaft 23 parallel to the intermediate transmission shaft 22, a cylindrical shaft 24 that is rotatably supported by the stock transmission shaft 23, and a cylindrical shaft 25 that is rotatably supported by the cylindrical shaft 24. It is comprised so that it may transmit to the planting PTO shaft 9 via.

入力軸20と筒軸21との間には、主クラッチ機構26が構成されており、その入り切り動作に応じて、走行動力及び植付動力が断続される。主クラッチ機構26の伝動下流側となる筒軸21には、走行動力を取り出すギヤ27と、植付動力を取り出すギヤ28とが一体的に設けられており、植付伝動ギヤ28は、常時噛合するギヤ29を介して、中間伝動軸22に植付動力を伝動している。   A main clutch mechanism 26 is configured between the input shaft 20 and the cylindrical shaft 21, and traveling power and planting power are intermittently connected according to the turning-on / off operation. A gear shaft 27 for extracting traveling power and a gear 28 for extracting planting power are integrally provided on the cylindrical shaft 21 on the transmission downstream side of the main clutch mechanism 26. The planting transmission gear 28 is always meshed. The planting power is transmitted to the intermediate transmission shaft 22 through the gear 29.

中間伝動軸22と株間変速軸23の伝動上流側端部との間には、第一株間変速機構30が構成されている。第一株間変速機構30は、中間伝動軸22に一体的に設けられる二枚のギヤ31、32と、株間変速軸23にスプライン嵌合される変速ギヤ33とを備えて構成される。変速ギヤ33は、三つのギヤ部33a、33b、33cを有し、各ギヤ部33a、33b、33cが二枚のギヤ31、32に対して選択的に噛み合うことにより、三段の株間変速を可能にする。   Between the intermediate transmission shaft 22 and the transmission upstream side end portion of the inter-shaft transmission shaft 23, a first inter-shaft transmission mechanism 30 is configured. The first stock transmission mechanism 30 includes two gears 31 and 32 provided integrally with the intermediate transmission shaft 22 and a transmission gear 33 that is spline-fitted to the stock transmission shaft 23. The transmission gear 33 has three gear portions 33a, 33b, and 33c, and each gear portion 33a, 33b, and 33c selectively meshes with the two gears 31 and 32, so that a three-stage stock shift can be performed. enable.

株間変速軸23の伝動下流側端部と筒軸24の伝動上流側端部との間には、トルクリミッタ34が構成されている。ここでトルクリミッタ34に伝動される植付動力は等速回転である。これにより、トルクリミッタ34の作動負荷が一定となり、安定したリミット動作が可能になる。   A torque limiter 34 is configured between the transmission downstream end of the inter-stock transmission shaft 23 and the transmission upstream end of the cylindrical shaft 24. Here, the planting power transmitted to the torque limiter 34 is constant speed rotation. As a result, the operating load of the torque limiter 34 becomes constant, and a stable limit operation is possible.

筒軸24の伝動下流側端部には、第二株間変速機構35を構成する変速ギヤ36がスプライン嵌合されている。この変速ギヤ36は、中間伝動軸22に回転自在に支持されるギヤ37に噛み合う位置と、側面の噛合歯36aが筒軸25の噛合歯25aに噛み合う位置とに変速操作される。変速ギヤ36の噛合歯36aが筒軸25の噛合歯25aに噛み合う状態では、筒軸24の回転が変速されることなく、筒軸25に伝動される一方、変速ギヤ36がギヤ37に噛み合う状態では、そのギヤ比によって植付動力が変速される。これにより、第二株間変速機構35による二段の変速と、第一株間変速機構30による三段の変速とを組み合せ、六段階の株間調整が可能になる。   A transmission gear 36 constituting a second inter-stock transmission mechanism 35 is splined to the transmission downstream end of the cylindrical shaft 24. The transmission gear 36 is speed-changed to a position where it engages with a gear 37 that is rotatably supported by the intermediate transmission shaft 22, and a position where the side meshing teeth 36 a mesh with the meshing teeth 25 a of the cylindrical shaft 25. In a state where the meshing teeth 36a of the transmission gear 36 are engaged with the meshing teeth 25a of the cylindrical shaft 25, the rotation of the cylindrical shaft 24 is transmitted to the cylindrical shaft 25 without being shifted, while the transmission gear 36 is engaged with the gear 37. Then, the planting power is changed according to the gear ratio. Thereby, a two-stage shift by the second inter-company transmission mechanism 35 and a three-stage transmission by the first inter-company transmission mechanism 30 are combined to enable six-stage inter-stock adjustment.

ギヤ37には、植付用不等速変換機構38を構成する偏心ギヤ39が一体的に設けられている。この偏心ギヤ39は、筒軸25に一体的に設けられる偏心ギヤ40に常時噛合される。つまり、第二株間変速機構35のギヤ36、37同士を噛み合わせた場合には、筒軸24の動力が植付用不等速変換機構38を経由して筒軸25に伝動される。これにより、植付動力の等速・不等切換えができるだけでなく、第二株間変速機構35の変速ギヤ36を利用して等速・不等切換えを行うことが可能になる。しかも、植付用不等速変換機構38の伝動上流側に第一株間変速機構30及び第二株間変速機構35が配置されるので、これらの変速操作に伴って、不等速変換機構38の増速位置がずれてしまうような不都合も回避される。   The gear 37 is integrally provided with an eccentric gear 39 constituting a planting inconstant speed conversion mechanism 38. The eccentric gear 39 is always meshed with an eccentric gear 40 provided integrally with the cylindrical shaft 25. That is, when the gears 36 and 37 of the second inter-strain transmission mechanism 35 are engaged with each other, the power of the cylindrical shaft 24 is transmitted to the cylindrical shaft 25 via the planting inconstant speed conversion mechanism 38. This makes it possible not only to switch the planting power at a constant speed / unequal, but also to perform a constant speed / unequal switching using the transmission gear 36 of the second inter-stock transmission mechanism 35. In addition, since the first inter-strain transmission mechanism 30 and the second inter-strain transmission mechanism 35 are disposed on the transmission upstream side of the planting inconstant speed conversion mechanism 38, the speed change operation mechanism The inconvenience of shifting the acceleration position is also avoided.

筒軸25は、伝動下手側端部からベベルギヤB1、B2を介して植付PTO軸9に植付動力を伝動する。植付PTO軸9側のベベルギヤB2は、植付PTO軸9に回転自在に設けられ、植付クラッチ機構41を介して、植付PTO軸9に連結される。植付クラッチ機構41は、噛み合い位置が一箇所だけに限られた噛み合いクラッチであり、植付用不等速変換機構38の伝動下流側で植付動力を断続しても、植付用不等速変換機構38の増速位置にズレが生じることがない。   The cylindrical shaft 25 transmits planting power from the lower end of the transmission to the planting PTO shaft 9 via bevel gears B1 and B2. The bevel gear B <b> 2 on the planting PTO shaft 9 side is rotatably provided on the planting PTO shaft 9 and is connected to the planting PTO shaft 9 via a planting clutch mechanism 41. The planting clutch mechanism 41 is a meshing clutch in which the meshing position is limited to only one position. Even if the planting power is interrupted on the transmission downstream side of the planting unequal speed conversion mechanism 38, planting inequality There is no deviation in the speed increasing position of the speed conversion mechanism 38.

また、ミッションケース3は、第一株間変速機構30を変速操作するための第一シフタ軸42と、第二株間変速機構35を変速操作するための第二シフタ軸43とをスライド自在に支持している。第一シフタ軸42の内端部には、変速ギヤ33に係合するシフタフォーク44が設けられる一方、外端部には、第一株間変速レバー45が連繋されている。第一株間変速レバー45の操作位置は、第一デテント機構46によって規定されており、前述した三段の株間変速が可能になる。   Further, the transmission case 3 slidably supports a first shifter shaft 42 for shifting the first stock shift mechanism 30 and a second shifter shaft 43 for shifting the second stock shift mechanism 35. ing. A shifter fork 44 that engages with the transmission gear 33 is provided at the inner end of the first shifter shaft 42, and a first inter-strain shift lever 45 is linked to the outer end. The operating position of the first stock shift lever 45 is defined by the first detent mechanism 46, and the above-described three-stage stock shift is possible.

また、第二シフタ軸43の内端部には、変速ギヤ36に係合するシフタフォーク47が設けられる一方、外端部には、第二株間変速レバー48が連繋されている。第二株間変速レバー48の操作位置は、第二デテント機構49によって規定されており、前述した二段の株間変速が可能になる。そして、第二株間変速機構35においては、前述したように、株間変速と共に等速・不等速変換が行われるため、第二株間変速レバー48が、株間変速操作具と等速・不等速切換操作具に兼用されることになる。   A shifter fork 47 that engages with the transmission gear 36 is provided at the inner end of the second shifter shaft 43, and a second inter-group transmission lever 48 is linked to the outer end. The operation position of the second stock shift lever 48 is defined by the second detent mechanism 49, and the above-described two-step stock shift is possible. As described above, the second inter-shaft transmission mechanism 35 performs the constant speed / inconstant speed conversion together with the inter-shaft shift. This is also used as a switching operation tool.

上記のように第一株間変速機構30と第二株間変速機構35の組み合せによって調節可能な六段階の株間(K1〜K6)は、K1<K2<K3<K4<K5<K6であるとすると、第一株間変速レバー45及び第二株間変速レバーが下記の位置に操作されたとき現出される。
K1:第一株間変速レバー(小)、第二株間変速レバー(小)
K2:第一株間変速レバー(中)、第二株間変速レバー(小)
K3:第一株間変速レバー(大)、第二株間変速レバー(小)
K4:第一株間変速レバー(小)、第二株間変速レバー(大)
K5:第一株間変速レバー(中)、第二株間変速レバー(大)
K6:第一株間変速レバー(大)、第二株間変速レバー(大)
したがって、株間がK4〜K6のとき、植付動力が不等速となる。
As described above, assuming that K1 <K2 <K3 <K4 <K5 <K6, the six stages of stocks (K1 to K6) that can be adjusted by the combination of the first stock transmission mechanism 30 and the second stock transmission mechanism 35 are as follows. Appears when the first stock shift lever 45 and the second stock shift lever are operated to the following positions.
K1: 1st stock shift lever (small), 2nd stock shift lever (small)
K2: First stock shift lever (middle), second stock shift lever (small)
K3: Shift lever between the first stock (large), shift lever between the second stock (small)
K4: First stock shift lever (small), second stock shift lever (large)
K5: First stock shift lever (middle), second stock shift lever (large)
K6: First stock shift lever (large), second stock shift lever (large)
Therefore, when the strain is between K4 and K6, the planting power becomes unequal.

次に、苗載台13の横送り機構50について、図8〜図10を参照して説明する。これらの図に示すように、植付作業部11には、植付PTO軸9から植付動力を入力するドライブケース52が設けられている。ドライブケース52は、入力した植付動力を、ベベルギヤ機構52aによって減速(2:1)し、これを分配軸51に伝動する。分配軸51に伝動された植付動力は、植付伝動ケース14を介して植付機構15に伝動されると共に、横送りケース53を介して横送り機構50に伝動される。つまり、横送りケース53は、植付用不等速変換機構38よりも下流側で植付動力伝動経路から分岐され、横送り機構50に動力を伝動する横送り動力伝動経路を構成している。   Next, the lateral feed mechanism 50 of the seedling stage 13 will be described with reference to FIGS. As shown in these drawings, the planting work unit 11 is provided with a drive case 52 for inputting planting power from the planting PTO shaft 9. The drive case 52 decelerates the input planting power (2: 1) by the bevel gear mechanism 52 a and transmits it to the distribution shaft 51. The planting power transmitted to the distribution shaft 51 is transmitted to the planting mechanism 15 via the planting transmission case 14 and also transmitted to the lateral feed mechanism 50 via the lateral feed case 53. That is, the lateral feed case 53 is branched from the planting power transmission path on the downstream side of the planting inconstant speed conversion mechanism 38 and constitutes a lateral feed power transmission path for transmitting power to the lateral feed mechanism 50. .

横送り機構50は、左右方向を向いて軸支される横送り軸54と、該横送り軸54にスライド自在に外嵌されるガイドピース55とを備えて構成されている。横送り軸54は、外周に螺旋溝54a(右巻き螺旋溝と左巻き螺旋溝を両端で無端状に連続させたもの)を有するスクリュー軸であり、横送りケース53から伝動される横送り動力で一方向に回転される。ガイドピース55は、横送り軸54の螺旋溝54aに係合すると共に、苗載台13の背面に連結されている。苗載台13との連結により回転が規制されたガイドピース55は、横送り軸54の回転に応じて左右往復方向にスライドし、苗載台13を横送りさせる。   The lateral feed mechanism 50 includes a lateral feed shaft 54 that is pivotally supported in the left-right direction, and a guide piece 55 that is slidably fitted to the lateral feed shaft 54. The transverse feed shaft 54 is a screw shaft having a spiral groove 54 a (a right-handed spiral groove and a left-handed spiral groove continuously connected at both ends) on the outer periphery, and is a transverse feed power transmitted from the transverse feed case 53. Rotated in one direction. The guide piece 55 engages with the spiral groove 54 a of the lateral feed shaft 54 and is connected to the back surface of the seedling table 13. The guide piece 55, whose rotation is restricted by the connection with the seedling table 13, slides in the left-right reciprocating direction according to the rotation of the lateral feed shaft 54, and the seedling table 13 is laterally fed.

横送りケース53は、横送り軸54の一端側を軸支すると共に、入力軸56及び中間軸57の両端部を軸支している。入力軸56は、分配軸51から入力した動力を、横送り用不等速変換機構58を介して中間軸57へ伝動し、中間軸57は、入力軸56から伝動された動力を、横送り変速機構59を介して横送り軸54へ伝動する。横送り変速機構59は、中間軸57に回転自在に設けられる複数の駆動側変速ギヤ60〜63と、横送り軸54の一端側に一体的に設けられ、それぞれ駆動側変速ギヤ60〜63に噛み合う複数の従動側変速ギヤ64〜67と、駆動側変速ギヤ60〜63のいずれかを選択的に中間軸57に連結させるシフタ68と、シフタ68を操作する横送り変速操作軸69と、横送り変速操作軸69を各変速位置に保持するデテント機構70とを備えて構成されている。横送り変速機構59によって横送り動力を変速すると、植付機構15と横送り機構50の相対的な動作速度が変化し、植付機構15による苗掻取量(苗掻取り回数)が変更される。   The lateral feed case 53 pivotally supports one end side of the lateral feed shaft 54 and pivotally supports both ends of the input shaft 56 and the intermediate shaft 57. The input shaft 56 transmits the power input from the distribution shaft 51 to the intermediate shaft 57 via the lateral feed non-uniform speed conversion mechanism 58, and the intermediate shaft 57 transmits the power transmitted from the input shaft 56 to the lateral feed. It is transmitted to the lateral feed shaft 54 via the speed change mechanism 59. The lateral feed transmission mechanism 59 is provided integrally with a plurality of drive-side transmission gears 60 to 63 that are rotatably provided on the intermediate shaft 57 and one end side of the lateral feed shaft 54, and is respectively connected to the drive-side transmission gears 60 to 63. A plurality of meshing driven side transmission gears 64 to 67, a shifter 68 for selectively connecting any one of the drive side transmission gears 60 to 63 to the intermediate shaft 57, a lateral feed transmission operation shaft 69 for operating the shifter 68, And a detent mechanism 70 that holds the feed speed change operation shaft 69 at each speed change position. When the lateral feed power is shifted by the lateral feed speed change mechanism 59, the relative operating speed of the planting mechanism 15 and the lateral feed mechanism 50 changes, and the amount of seedling scraping (number of seedlings scraping) by the planting mechanism 15 is changed. The

横送り用不等速変換機構58は、一対の楕円ギヤ58aを用いて構成されており、横送り動力を不等速に変速する。図10の(A)に示すように、横送り用不等速変換機構58が発生させる増速域及び減速域は、植付用不等速変換機構38が発生させる増速域及び減速域と逆位相であり、植付動力が植付用不等速変換機構38によって不等速変換されている場合は、植付用不等速変換機構38による速度変化が横送り用不等速変換機構58によって打ち消され、等速の動力が横送り機構50に伝動される。   The lateral feed unequal speed conversion mechanism 58 is configured by using a pair of elliptical gears 58a, and shifts the lateral feed power to an unequal speed. As shown in FIG. 10A, the speed increasing region and the speed reducing region generated by the lateral feed unequal speed converting mechanism 58 are the speed increasing region and the speed reducing region generated by the planting unequal speed converting mechanism 38, respectively. When the planting power is converted to an inconstant speed by the planting unequal speed converting mechanism 38, the speed change by the planting unequal speed converting mechanism 38 is a lateral feed unequal speed converting mechanism. The power is canceled by 58 and the constant speed power is transmitted to the lateral feed mechanism 50.

次に、植付用不等速変換機構38及び横送り用不等速変換機構58の作用について、図10を参照して詳細に説明する。図10の(A)に示すように、植付用不等速変換機構38は、前述したように、偏心ギヤ39、40を用いて構成されており、植付動力の一回転中に、増速域と減速域を一回ずつ発生させる。その後、植付動力は、ベベルギヤ機構52aによって2:1に減速され、回転ケース17の一回転中に、増速域と減速域を二回ずつ発生させる。そして、二回の増速域は、植付爪19の苗掻取り位置及び苗植付位置に対応している。   Next, operations of the planting unequal speed conversion mechanism 38 and the lateral feed unequal speed conversion mechanism 58 will be described in detail with reference to FIG. As shown in FIG. 10A, the planting inconstant speed conversion mechanism 38 is configured using the eccentric gears 39 and 40 as described above, and increases during one rotation of planting power. Generate speed range and deceleration range once. Thereafter, the planting power is decelerated to 2: 1 by the bevel gear mechanism 52a, and the speed increasing region and the speed decreasing region are generated twice during one rotation of the rotating case 17. The two speed increasing regions correspond to the seedling scraping position and the seedling planting position of the planting claw 19.

一方、横送り用不等速変換機構58は、前述したように、楕円ギヤ58aを用いて構成されており、横送り動力の一回転中に、増速域と減速域を二回ずつ発生させる。横送り用不等速変換機構58は、ベベルギヤ機構52aの伝動下流側に設けられることから、増減速域を逆位相とすることにより、植付動力の速度変化を打ち消し、横送り機構50に等速動力を供給することが可能になる。   On the other hand, as described above, the transverse feed non-uniform speed conversion mechanism 58 is configured using the elliptical gear 58a, and generates a speed increasing area and a speed reducing area twice during one rotation of the lateral feed power. . Since the non-uniform speed conversion mechanism 58 for lateral feed is provided on the transmission downstream side of the bevel gear mechanism 52a, the speed change of the planting power is canceled out by setting the acceleration / deceleration area to the opposite phase, and so on. Fast power can be supplied.

図10の(B)は、株間がK4〜K6にセットされた状態を示している。この状態では、植付用不等速変換機構38によって植付動力が不等速変換されているが、横送り機構50に伝動される横送り動力は、横送り用不等速変換機構58によって逆変換され、等速となっている。これにより、横送り動力のトルク変動に起因する振動の発生を抑制し、植付作業部11の安定性を高めることができる。しかも、横送り用不等速変換機構58は、植付機構15が苗を掻取るとき、苗載台13の横送り動作速度が遅くなるように横送り動力を不等速変換するので、植付機構15の苗掻取移動量に対して、苗の横移動量が相対的に少なくなり、苗の掻取り性能が向上する。   (B) of FIG. 10 shows a state where the strain is set to K4 to K6. In this state, the planting power is converted at a non-uniform speed by the planting non-uniform speed conversion mechanism 38, but the lateral feed power transmitted to the horizontal feed mechanism 50 is converted by the horizontal feed non-uniform speed conversion mechanism 58. The reverse conversion is performed and the speed is constant. Thereby, generation | occurrence | production of the vibration resulting from the torque fluctuation of transverse feed power can be suppressed, and the stability of the planting operation part 11 can be improved. In addition, the lateral feed unequal speed conversion mechanism 58 converts the lateral feed power at an unequal speed so that the lateral feed operation speed of the seedling stage 13 is reduced when the planting mechanism 15 scrapes the seedling. The amount of lateral movement of the seedling is relatively small with respect to the amount of seedling scraping movement of the attaching mechanism 15, and the scraping performance of the seedling is improved.

図10の(C)は、株間がK1〜K3にセットされた状態を示している。この状態では、植付用不等速変換機構38による植付動力の不等速変換が行われないため、横送り機構50に伝動される横送り動力は、横送り用不等速変換機構58によって不等速に変換される。この場合には、トルク変動による振動の発生を抑制するという効果は得られないが、横送り用不等速変換機構58は、植付機構15が苗を掻取るとき、苗載台13の横送り動作速度が遅くなるように横送り動力を不等速変換するので、植付機構15の苗掻取移動量に対する苗の横移動量をさらに小さくし、苗の掻取り性能を一層向上させるという効果が得られる。   (C) of FIG. 10 shows a state in which the strain is set to K1 to K3. In this state, the planting power is not converted by the planting unequal speed conversion mechanism 38, so that the lateral feed power transmitted to the lateral feed mechanism 50 is the lateral feed unequal speed conversion mechanism 58. Is converted to unequal speed. In this case, the effect of suppressing the occurrence of vibrations due to torque fluctuations cannot be obtained, but the lateral feed non-uniform speed conversion mechanism 58 is arranged so that when the planting mechanism 15 scrapes off the seedling, Since the lateral feed power is converted at an infinite speed so that the feed operation speed becomes slow, the lateral movement amount of the seedling with respect to the seedling removal movement amount of the planting mechanism 15 is further reduced, and the scraping performance of the seedling is further improved. An effect is obtained.

図11に示すように、本実施形態の植付作業部11は、その左右傾斜を自動的に修正する水平制御機構71を備えている。水平制御機構71は、植付作業部11のローリング支軸72で左右揺動自在に支持され、左右一対のスプリング(図示せず)を介して植付作業部11を弾持する中間フレーム73と、該中間フレーム73と昇降リンク機構10との間に介設され、中間フレーム73を強制的に左右揺動させる強制傾斜機構74と、植付作業部11の左右傾斜を検出する傾斜センサ75とを備えて構成されており、傾斜センサ75の検出角が水平となるように、中間フレーム73の傾斜制御を行う。このように構成された植付作業部11では、トルク変動による振動が発生すると、水平制御の精度が低下し、植付精度の低下をまねくおそれがあるため、本発明を適用して振動を抑制することにより、植付精度が向上するという効果が得られる。   As shown in FIG. 11, the planting work part 11 of this embodiment is provided with the horizontal control mechanism 71 which corrects the right-and-left inclination automatically. The horizontal control mechanism 71 is supported by a rolling support shaft 72 of the planting work unit 11 so as to be able to swing left and right, and an intermediate frame 73 that holds the planting work unit 11 through a pair of left and right springs (not shown). A forcible tilt mechanism 74 that is interposed between the intermediate frame 73 and the lifting link mechanism 10 and forcibly swings the intermediate frame 73 left and right; and a tilt sensor 75 that detects the left and right tilt of the planting work unit 11. The tilt control of the intermediate frame 73 is performed so that the detection angle of the tilt sensor 75 is horizontal. In the planting work unit 11 configured as described above, if vibration due to torque fluctuation occurs, the accuracy of horizontal control is lowered, and there is a risk of lowering the planting accuracy. By doing, the effect that a planting precision improves is acquired.

叙述の如く構成された本実施形態の移植機は、苗を載置する苗載台13と、該苗載台13から苗を掻取って圃場に移植する植付機構15と、苗載台13を横送りする横送り機構50と、植付機構15に動力を伝動する植付動力伝動経路と、該植付動力伝動経路に設けられ、植付機構15の動作速度に変化を生じさせる植付用不等速変換機構38と、植付用不等速変換機構38よりも下流側で植付動力伝動経路から分岐され、横送り機構50に動力を伝動する横送り動力伝動経路とを備えるものであって、横送り動力伝動経路に、植付用不等速変換機構38による動作速度変化を打ち消す横送り用不等速変換機構58を設けたので、植付用不等速変換機構38を経由した不等速の動力を、等速の動力に変換して横送り機構50に伝動することが可能になる。これにより、トルク変動による振動の発生を抑制し、植付作業部11の安定性を高めることができる。   The transplanting machine according to the present embodiment configured as described above includes a seedling mounting base 13 for mounting seedlings, a planting mechanism 15 for scraping seedlings from the seedling mounting base 13 and transplanting them to a farm field, and a seedling mounting base 13. A horizontal feed mechanism 50 for laterally feeding, a planting power transmission path for transmitting power to the planting mechanism 15, and a planting provided in the planting power transmission path for causing a change in the operating speed of the planting mechanism 15 And a lateral feed power transmission path that branches off from the planting power transmission path downstream of the planting non-constant speed conversion mechanism 38 and transmits power to the lateral feed mechanism 50. In addition, since the lateral feed unequal speed conversion mechanism 58 for canceling the change in the operation speed by the planting unequal speed conversion mechanism 38 is provided in the lateral feed power transmission path, the planting unequal speed conversion mechanism 38 is provided with It is possible to convert the inconstant speed power that has passed through to constant speed power and transmit it to the lateral feed mechanism 50. It becomes ability. Thereby, generation | occurrence | production of the vibration by torque fluctuation can be suppressed and the stability of the planting operation part 11 can be improved.

また、植付用不等速変換機構38は、植付機構15の苗掻取り速度が速くなるように植付動力を不等速変換し、横送り用不等速変換機構58は、植付機構15が苗を掻取るとき、苗載台13の横送り動作速度が遅くなるように横送り動力を不等速変換するので、植付機構15の苗掻取移動量に対して、苗の横移動量が相対的に少なくし、苗の掻取り性能を向上させることができる。   Further, the planting unequal speed conversion mechanism 38 converts the planting power at an unequal speed so that the seedling scraping speed of the planting mechanism 15 is increased, and the lateral feed unequal speed conversion mechanism 58 is planted. When the mechanism 15 scrapes off the seedling, the lateral feed power is converted at a non-uniform speed so that the lateral feed operation speed of the seedling mount 13 becomes slow. The amount of lateral movement is relatively small, and the seedling scraping performance can be improved.

乗用田植機の側面図である。It is a side view of a riding rice transplanter. 同上平面図である。It is a top view same as the above. エンジン及びミッションケースを示す側面図である。It is a side view which shows an engine and a mission case. ミッションケースの展開図である。It is an expanded view of a mission case. 植付動力伝動系を示す展開図である。It is an expanded view which shows a planting power transmission system. 株間変速機構及び不等速変換機構を示す展開図である。It is an expanded view which shows an inter-stock transmission mechanism and an inconstant speed conversion mechanism. 第二株間変速機構の操作系を示す展開図である。It is an expanded view which shows the operation system of the 2nd stock transmission mechanism. 植付作業部の伝動構造を示す展開図である。It is an expanded view which shows the transmission structure of a planting operation part. 植付作業部の伝動構造を示す要部展開図である。It is a principal part expanded view which shows the transmission structure of a planting operation part. (A)〜(C)は、植付用不等速変換機構及び横送り用不等速変換機構の作用説明図である。(A)-(C) are operation | movement explanatory drawings of the inconstant speed conversion mechanism for planting, and the inconstant speed conversion mechanism for side feed. 水平制御機構の側面図である。It is a side view of a horizontal control mechanism.

符号の説明Explanation of symbols

1 走行機体
3 ミッションケース
11 植付作業部
13 苗載台
15 植付機構
38 植付用不等速変換機構
50 横送り機構
53 横送りケース
58 横送り用不等速変換機構
DESCRIPTION OF SYMBOLS 1 Traveling machine body 3 Mission case 11 Planting work part 13 Seedling stand 15 Planting mechanism 38 Planting inconstant speed conversion mechanism 50 Transverse feed mechanism 53 Transverse feed case 58 Transverse feed inconstant speed conversion mechanism

Claims (2)

苗を載置する苗載台と、該苗載台から苗を掻取って圃場に移植する植付機構と、前記苗載台を横送りする横送り機構と、前記植付機構に動力を伝動する植付動力伝動経路と、該植付動力伝動経路に設けられ、前記植付機構の動作速度に変化を生じさせる植付用不等速変換機構と、該植付用不等速変換機構よりも下流側で前記植付動力伝動経路から分岐され、前記横送り機構に動力を伝動する横送り動力伝動経路とを備える移植機において、前記横送り動力伝動経路に、前記植付用不等速変換機構による動作速度変化を打ち消す横送り用不等速変換機構を設けたことを特徴とする移植機。   A seedling stage for placing seedlings, a planting mechanism for scraping seedlings from the seedling stage and transplanting the seedlings to a field, a lateral feed mechanism for laterally feeding the seedling stage, and power transmission to the planting mechanism A planting power transmission path, a planting unequal speed conversion mechanism that is provided in the planting power transmission path and causes a change in the operating speed of the planting mechanism, and a planting unequal speed conversion mechanism In a transplanter including a transverse feed power transmission path that is branched from the planting power transmission path on the downstream side and transmits power to the transverse feed mechanism. A transplanter provided with a transverse feed non-uniform speed conversion mechanism for canceling a change in operation speed due to the conversion mechanism. 前記植付用不等速変換機構は、前記植付機構の苗掻取り速度が速くなるように植付動力を不等速変換し、前記横送り用不等速変換機構は、前記植付機構が苗を掻取るとき、前記苗載台の横送り動作速度が遅くなるように横送り動力を不等速変換することを特徴とする請求項1記載の移植機。   The planting unequal speed conversion mechanism converts planting power at an unequal speed so that a seedling scraping speed of the planting mechanism is increased, and the lateral feed unequal speed conversion mechanism is the planting mechanism. 2. The transplanter according to claim 1, wherein when the seedling is scraped off, the lateral feeding power is converted at an unequal speed so that the lateral feeding speed of the seedling stage is reduced.
JP2004195283A 2004-07-01 2004-07-01 Transplanter Pending JP2006014650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195283A JP2006014650A (en) 2004-07-01 2004-07-01 Transplanter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195283A JP2006014650A (en) 2004-07-01 2004-07-01 Transplanter

Publications (1)

Publication Number Publication Date
JP2006014650A true JP2006014650A (en) 2006-01-19

Family

ID=35789435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195283A Pending JP2006014650A (en) 2004-07-01 2004-07-01 Transplanter

Country Status (1)

Country Link
JP (1) JP2006014650A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650209U (en) * 1979-09-25 1981-05-02
JPS6128322U (en) * 1984-07-26 1986-02-20 ヤンマー農機株式会社 Spare seedling stand for rice transplanter
JPH0616U (en) * 1992-06-10 1994-01-11 ヤンマー農機株式会社 Rice transplanter equipped with a rotation type spare seedling stand
JPH06276821A (en) * 1993-03-30 1994-10-04 Iseki & Co Ltd Seedling supplying apparatus for riding-type transplanter
JPH07155027A (en) * 1993-12-10 1995-06-20 Yanmar Agricult Equip Co Ltd Gear mechanism for speed control of traverse feed of seedling carrier
JPH11157647A (en) * 1997-11-20 1999-06-15 Rhythm Watch Co Ltd Stopper for roller conveyor
JP2001258339A (en) * 2000-03-23 2001-09-25 Iseki & Co Ltd Seedling feeder of rice transplanter
JP2003102214A (en) * 2001-09-27 2003-04-08 Kubota Corp Rice transplanting machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650209U (en) * 1979-09-25 1981-05-02
JPS6128322U (en) * 1984-07-26 1986-02-20 ヤンマー農機株式会社 Spare seedling stand for rice transplanter
JPH0616U (en) * 1992-06-10 1994-01-11 ヤンマー農機株式会社 Rice transplanter equipped with a rotation type spare seedling stand
JPH06276821A (en) * 1993-03-30 1994-10-04 Iseki & Co Ltd Seedling supplying apparatus for riding-type transplanter
JPH07155027A (en) * 1993-12-10 1995-06-20 Yanmar Agricult Equip Co Ltd Gear mechanism for speed control of traverse feed of seedling carrier
JPH11157647A (en) * 1997-11-20 1999-06-15 Rhythm Watch Co Ltd Stopper for roller conveyor
JP2001258339A (en) * 2000-03-23 2001-09-25 Iseki & Co Ltd Seedling feeder of rice transplanter
JP2003102214A (en) * 2001-09-27 2003-04-08 Kubota Corp Rice transplanting machine

Similar Documents

Publication Publication Date Title
JP5814084B2 (en) Seedling transplanter
JP5628638B2 (en) Rice transplanter
JP4705464B2 (en) Transplanter
JP2014100127A (en) Seedling transplanter
JP2009072112A (en) Transplanter
JP6930699B2 (en) Rice transplanter
JP2006014650A (en) Transplanter
JP5650024B2 (en) Seedling transplanter
JP4271561B2 (en) Transplanter
JP2008263879A (en) Transplanter
JP4436063B2 (en) Transplanter
JP4022137B2 (en) Transplanter
JP2010057458A (en) Planter
JP4376154B2 (en) Transplanter
JP2003189712A (en) Transplanting machine
JP2016067207A (en) Transplanter
JP4274969B2 (en) Rice transplanter
JP4343609B2 (en) Transplanter
JP4263084B2 (en) Rice transplanter
KR102080358B1 (en) Transplanting machine
JP2021166557A (en) Rice transplanter
JP5860315B2 (en) Rice transplanter
JP2006149332A (en) Transplanter
JP2015039300A (en) Rice transplanter
KR101500131B1 (en) Continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Effective date: 20090904

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090917

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100513

A02 Decision of refusal

Effective date: 20100930

Free format text: JAPANESE INTERMEDIATE CODE: A02