JP2006014459A - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
JP2006014459A
JP2006014459A JP2004186733A JP2004186733A JP2006014459A JP 2006014459 A JP2006014459 A JP 2006014459A JP 2004186733 A JP2004186733 A JP 2004186733A JP 2004186733 A JP2004186733 A JP 2004186733A JP 2006014459 A JP2006014459 A JP 2006014459A
Authority
JP
Japan
Prior art keywords
rotor
winding
rotor winding
circuit
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004186733A
Other languages
English (en)
Other versions
JP3805345B2 (ja
Inventor
Shoji Haneda
正二 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Data Ex Techno Corp
Original Assignee
NTT Data Ex Techno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Data Ex Techno Corp filed Critical NTT Data Ex Techno Corp
Priority to JP2004186733A priority Critical patent/JP3805345B2/ja
Publication of JP2006014459A publication Critical patent/JP2006014459A/ja
Application granted granted Critical
Publication of JP3805345B2 publication Critical patent/JP3805345B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Brushless Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

【課題】入力である回転駆動力の大小にかかわらず系統周波数と同期した発電出力が得られる新規な同期型の発電装置を得ること。
【解決手段】回転子6の軸端に直交して固定される配置面11には2個の受光素子8,9が180度の位相差を有して配置される。受光素子8,9を含む切替回路12,13はそれぞれ回転子巻線4に並列に接続されている。複数の発光素子10は2個の受光素子8,9の配置面11と適宜間隔離れて対向する固定配置面14に略円形状に配置され、当該円周を2等分する両半円弧上の各発光素子群が180度の位相差を有して交互に一斉点灯と一斉消灯とを繰り返すように発光素子駆動部15により制御される。この非接触の切替手段によって、回転子6の回転速度が同期回転速度と一致するか異なるかに応じて、回転子巻線4に流れる電流の向きを一方向に設定するか切り替えるかの制御動作が行われる。
【選択図】 図1

Description

この発明は、水力発電や火力発電、風力発電等で用いられる発電装置に関し、特に同期型の発電装置に関するものである。
例えば、水力発電や火力発電の原理としては、水車やタービンの回転駆動力を交流発電機の回転子に伝え、この回転子の回転に基づき発電し、交流電力を出力するものである。この場合、発電機出力としての交流電力を得るためには、一定の周波数になること、定格を超えない電圧に調整されていること、さらには使用電力や送電線路の送電容量に応じた電流および位相が調整されること、等種々の調整制御が必要になる。このために例えば、発電機入力である水車やタービンの回転力を調整するため水量やガスの調整制御、すなわちガバナによる調整制御、原動機の羽根の角度調整等の種々の機械的調整や制御が必要になる。
一方、最近の趨勢として、小水力発電、風力発電などの小出力の発電装置(但し、風力発電は最近では大出力のものも出現している)も種々商品化されてきている。これは、自然環境下でのいわゆるクリーンなエネルギーを余すところなく電力に変えようとする動向に沿うものである。そして、これら小出力の発電装置にあってもガバナ等の装置や設備が必要となり保守点検も面倒となるが、さらにはこれらの発電装置では、回転駆動力を得るための風力等の強弱変化の影響をできるだけ少なくし、効率よくエネルギーを取得できるようにするには、前述の火力発電等と同等あるいはそれ以上に予め設置場所を厳密に選択するという必要も生ずる。
また、発電機である以上単独運転用のものを除き系統連系をする必要がある。この系統連系をする場合、発電機出力を系統電源周波数に同期させる必要がある。そのため、従来では、交流出力を一旦直流に変換してインバータによって系統交流電源に同期された交流を作成し、この交流を系統につなぐという方策を採っている。
特開2002−315396号公報
ところで、従来の同期発電機では、同期回転速度でなければ、系統に同期した発電が行えなかったので、同期回転速度維持のための装置や設備が必要となり、大型化を招来していた。また、従来の同期発電機では、回転子巻線を持つ場合には励磁が必要となり、また回転子巻線に代えて永久磁石を使用する場合には、磁力の吸引力で回転始動が悪くなるので、特に風力発電では、問題となっている。
また、風力発電等では、設置場所を厳密に選択してなるべく定常入力が得られるようにしているが、仮に、回転駆動力に大きな変化があったとしてもその変化の影響を少なくして恒常的に発電出力が得られる発電装置を得たいという要請がある。
さらに、風力発電においては、強風時に回転駆動力を発電装置から切り離すことなく、風力エネルギーを発電にできるだけ利用したいという要請もある。
また、従来の誘導発電機では、発電するためには、回転子の速度を同期速度超に維持する必要があり、しかも回転子の速度がその同期速度超に維持できたとしても、同期速度の20パーセント程度を超えると発電出力が低下するので、制御系の構成が複雑になるという問題があった。
加えて、従来の自励式発電機では、系統連系を実行している場合には、回転子の速度を同期速度超に維持する必要がある。そして、発電開始時では、例えば固定子巻線に間欠的に電圧を印加する、あるいは、回転子に巻線を施し初期励磁を行うなどいわゆる発電開始トリガが必要であったので、誘導発電機と同様に、制御系が複雑化していた。
この発明は、上記に鑑みてなされたものであり、回転子は巻線付きとして回転始動の容易化を図るとともに、その回転子巻線に相互誘導によって流れる電流の向きを系統周波数などの商用周波数と同一の周波数に基づき切り替えるようにすることにより、入力である回転駆動力の大小にかかわらず系統周波数と同期した発電出力が得られる新規な同期型の発電装置を得ることを目的とする。
上述した目的を達成するため、この発明は、回転子巻線を有する回転子と固定子巻線を有する固定子とを備え、回転子の回転により固定子巻線から発電出力を得る発電装置において、前記固定子巻線に印加される電圧の単位時間あたりに進行する電気角と、前記回転子の回転により、当該回転子が有する磁極の単位時間あたりに進行する電気角との相対速度に応じ、前記回転子巻線に流れる電流を、一の方向または他の方向に切り替える非接触の切替手段を備えることを特徴とする。
この発明によれば、非接触の切替手段によって、回転子巻線に発生する磁極(N極またはS極)と固定子巻線の磁極(N極またはS極)とを電気角で90度に向かう位置から同極性に制御して同期発電を行うことができる。したがって、入力である回転駆動力の大小にかかわらず系統周波数と同期した発電出力が得られる新規な同期型の発電装置が得られる。この発電装置では、回転子は、永久磁石を装備しないので、回転始動時は無負荷の状態であり、回転始動が容易になる。
つぎの発明にかかる発電装置は、上記の発明において、前記非接触の切替手段は、前記固定子とともに静止して配置された適宜の形状の部材に略円形の円周上に複数配置され、発光動作は、円周を略2分割した2群に分かれ、該固定子巻線に印加される電圧位相に同期して、第1の群と第2の群が交互に一斉点灯と一斉消灯を継続して繰り返すよう制御される発光素子と、該回転子とともに回転可能な適宜の形状の部材に、前記回転子の軸に対し略同心円の円周上に略180度の物理角を隔てて、該発光素子の発光の照射を受けることが可能に対面し配置される2組の受光素子を含む切替回路とを備えることを特徴とする。
この発明によれば、固定子巻線の位相情報を回転子巻線の受光素子に伝達することができる。
つぎの発明にかかる発電装置は、上記の発明において、前記切替回路は、前記2組の受光素子の一方の受光素子がオン動作したとき導通状態になる第1のスイッチと前記第1のスイッチが導通状態のとき前記回転子巻線に一端から他端に向かう電流を流すようにする第1の一方向性素子とを含む第1回路と、他方の受光素子がオン動作したとき導通状態になる第2のスイッチと前記第2のスイッチが導通状態のとき前記回転子巻線に他端から一端に向かう電流を流すようにする第2の一方向性素子とを含む第2回路とを備えていることを特徴とする。
この発明によれば、回転子巻線に流れる電流の向きを切替制御することができる。
つぎの発明にかかる発電装置は、上記の発明において、前記第1回路と前記第2回路とは、それぞれ、前記回転子巻線の両端子間に接続されていることを特徴とする。
この発明によれば、回転子巻線に流れる電流の向きを切り替えることができる。
つぎの発明にかかる発電装置は、上記の発明において、前記第1回路と前記第2回路との直列回路が前記回転子巻線の両端子間に接続されていることを特徴とする。
この発明によれば、回転子巻線に流れる電流の向きを切り替えることができる。
つぎの発明にかかる発電装置は、上記の発明において、前記非接触の切替手段は、前記固定子とともに静止して配置された適宜の形状の部材に略円形の円周上に複数配置され、磁界発生動作は、円周を略2分割した2群に分かれ、該固定子巻線に印加される電圧位相に同期して、第1の群と第2の群が交互に一斉磁界発生と一斉磁界発生停止を継続して繰り返すよう制御される磁界発生手段と、該回転子とともに回転可能な適宜の形状の部材に、前記回転子の軸に対し略同心円の円周上に略180度の物理角を隔てて、該磁界発生手段の発生する磁界を受けることが可能に対面し配置される2組のホール素子を含む切替回路とを備えることを特徴とする。
この発明によれば、固定子巻線の位相情報を回転子巻線のホール素子に伝達することができる。
つぎの発明にかかる発電装置は、上記の発明において、前記切替回路は、前記2組のホール素子の一方のホール素子がオン動作したとき導通状態になる第1のスイッチと前記第1のスイッチが導通状態のとき前記回転子巻線に一端から他端に向かう電流を流すようにする第1の一方向性素子とを含む第1回路と、他方のホール素子がオン動作したとき導通状態になる第2のスイッチと前記第2のスイッチが導通状態のとき前記回転子巻線に他端から一端に向かう電流を流すようにする第2の一方向性素子とを含む第2回路とを備えていることを特徴とする。
この発明によれば、回転子巻線に流れる電流の向きを切替制御することができる。
つぎの発明にかかる発電装置は、上記の発明において、前記第1回路と前記第2回路とは、それぞれ前記回転子巻線の両端子間に接続されていることを特徴とする。
この発明によれば、回転子巻線に流れる電流の向きを切り替えることができる。
つぎの発明にかかる発電装置は、上記の発明において、前記第1回路と前記第2回路の直列回路が前記回転子巻線の両端子間に接続されていることを特徴とする。
この発明によれば、回転子巻線に流れる電流の向きを切り替えることができる。
つぎの発明にかかる発電装置は、上記の発明において、前記回転子巻線は、所定の電気角度だけ隔てて配置した第1の回転子巻線と第2の回転子巻線の一端同士を互いに接続して構成され、前記切替回路は、前記第1回路と前記第2回路とが、それぞれ、前記第1の回転子巻線の両端子間に接続されているとともに、前記第1回路と前記第2回路の一方がオン動作して当該第1の回転子巻線を導通状態に制御するとき、当該第1の回転子巻線と前記第2の回転子巻線とが閉回路を形成するように前記他端同士を電気的に接続し前記第2の回転子巻線に流れる電流を前記第1の回転子巻線に注入する構成を備えることを特徴とする。
この発明によれば、主励磁の回転子巻線である第1の回転子巻線に、第2の回転子巻線に流れる電流を第1の回転子巻線に流れる電流を増強するように注入することができるので、発電出力を高めることができる。
つぎの発明にかかる発電装置は、上記の発明において、前記回転子巻線は、所定の電気角度だけ隔てて配置した第1の回転子巻線、第2の回転子巻線および第3の回転子巻線の前記一端同士を互いに接続して構成され、前記切替回路は、前記第1回路と前記第2回路とが、それぞれ、前記第1の回転子巻線の両端子間に接続されているとともに、前記第1回路と前記第2回路の一方がオン動作して前記第1の回転子巻線を導通状態に制御するとき、当該第1の回転子巻線と前記第2および第3の回転子巻線とが閉回路を形成するように前記他端同士を電気的に接続し前記第2および第3の回転子巻線に流れる電流を前記第1の回転子巻線に注入する構成を備えることを特徴とする。
この発明によれば、主励磁の回転子巻線である第1の回転子巻線に、第2および第3の回転子巻線に流れる電流を第1の回転子巻線に流れる電流を増強するように注入することができるので、発電出力を高めることができる。
つぎの発明にかかる発電装置は、上記の発明において、前記所定の電気角は、略180度を、前記回転子が有する1極を構成する磁極片に配置される前記回転子巻線の数で除した商の数であることを特徴とする。
この発明によれば、注入に用いる回転子巻線の電気角位置を定めることができる。
この発明によれば、回転子巻線に相互誘導によって流れる電流の向きを系統周波数などの商用周波数と同一の周波数に基づき切り替えることができるので、回転始動が容易で、かつ入力である回転駆動力の大小にかかわらず系統周波数と同期した発電出力が得られるという効果を奏する。
以下に、図面を参照して、この発明にかかる発電装置の好適な実施の形態を詳細に説明する。
実施の形態1.
図1は、この発明の実施の形態1である発電装置の簡略構成を示す図である。ここで、図1では、風力発電装置への適用例が示されている。この発電装置は、単独運転の発電装置としても系統連系の発電装置としても機能させることができる。なお、図1では、発電装置の構成をわかりやすく説明するため多少の変形を加え、あるいは模式的な構成として表示している。例えば、実際の発電装置では、回転子6が磁極片22の内部に挿入される形で構成されるが、図1では、回転子6の概略構造を明確にするため磁極片22と重ならないように表示している。
図1において、50Hzまたは60Hzの系統電源に接続される界磁巻線1が巻回された固定子鉄心2を有する固定子3に対して、回転子巻線4が実装された回転子鉄心5を有する回転子6が風車7を駆動源として回転自在に配置されている。そして、回転子6の軸端に2組の受光素子(例えばホトトランジスタ)8、9が回転子6と一体的に回転可能に配置され、受光素子8、9の配置面と適宜間隔離れて並行する対向面に発光素子(例えば発光ダイオード)10の複数個が円状に固定配置されている。
具体的に説明する。固定子3では、固定子鉄心2のヨーク21の端は、磁極片22をそれぞれ有する2極の界磁極を構成するとしている。界磁極としては、2極の構成だけでなく2の倍数の極数とすることもできる。また、界磁巻線1は、三相交流電源にも接続することができるので、界磁極として3極もしくは3の倍数の極数に構成することもできることは言うまでもない。
なお、図1に示す固定子鉄心2の形状は、実際に即した形状ではなく、説明の都合上、固定子鉄心2のヨーク21の端を形成しているものとして示している。また、磁極片(界磁極)22は、回転子6に合わせた形状とし、ヨーク21は、磁極片22を連結して界磁巻線1が巻回された構造として簡略図示している。
回転子6の軸61に実装されている回転子巻線4は、軸61の周方向に等しい間隔で配置され軸61の軸線方向に直線状に形成されたスロット内にコイル辺41を挿入した複数のコイル(型巻コイルや直巻コイル)で構成されている。そして、回転子6の軸61端面には、配置面である板材(図示例では円板状)11が振動や遠心力に耐え得るように強固に取り付けられている。この板材11の面上には、受光素子8を有する切替回路12と受光素子9を有する切替回路13とが配置されている。回転子巻線4および切替回路12、13の構成と接続関係は、後述する図3−1,図3−2および図3−3に示すようになっている。
図2は、2組の受光素子と複数の発光素子との関係および複数の発光素子の配置態様を説明する図である。ここで、受光素子8と受光素子9の一方を受光素子Aと称し、他方を受光素子Bと称すれば、図2に示すように、受光素子Aと受光素子Bは、軸61を挟んで対称に配置されている。つまり、受光素子Aと受光素子Bは、板材11上に、略180度の位相差を有して同心円上を回転するように配置されている。
また、図2において、複数の発光素子10は、板材11の受光素子配置面と適宜間隔離されて対向する位置に固定的に配置された配置面である板材(図示例では円板状)14の対向面上に、円形状に適宜間隔を置いて配置されている。なお、図2では、発光素子10の複数個は、互いに隙間無く配置した場合を示したが、これに限定されないことは言うまでもない。ここで、以降、円周を略2等分する2つの半円弧において、一方の半円弧上に配置される所定数の発光素子10からなる一組を発光素子群Aと称し、他方の半円弧上に配置される所定数の発光素子10からなる一組を発光素子群Bと称することとする。
複数の発光素子10がそれぞれ接続される発光素子駆動部15は、発光素子群Aと発光素子群Bとを系統周波数(50Hzまたは60Hz)の正の半サイクルと負の半サイクルとで交互に一斉点灯と一斉消灯とを繰り返すように制御する回路を備えている。つまり、発光素子群Aと発光素子群Bは、一方が一斉点灯する半サイクルでは、他方が一斉消灯するように制御される。
次に、図3−1〜図3−4を参照して、基本構成部分について説明する。なお、図3−1は、図1に示す回転子巻線4の基本構成を説明する概念図である。図3−2は、図1に示す回転子巻線4の具体的構成例を説明する概念図である。図3−3は、図1に示す回転子巻線4を流れる電流の向きを切り替える機構を説明する原理図である。図3−4は、図3−3に示す受光素子を有する2つの切替回路12、13の具体例を示す回路図である。
図1に示す円筒型の回転子巻線4は、上述したように周方向に配置される多数のコイルで構成されるが、その周方向に配置される多数のコイルは、図3−1に示すように、電気角で180度離れた位置にあって巻き方向が互いに逆向きである単位巻線4aと単位巻線4bとで構成される。単位巻線4aと単位巻線4bは、単位巻線4aの巻き終わり端と単位巻線4bの巻き始め端とが接続され全体として単一のコイルを構成している。この構成によれば、単位巻線4aと単位巻線4bでは、互いに逆向きの電流が流れるので、例えば図3−1に示すように、単位巻線4aの巻き始め端4cから単位巻線4bの巻き終わり端4dに向かう電流を流すと、単位巻線4aがN極を形成し、単位巻線4bがS極を形成することになる。なお、ここでは、理解を容易にするため、上記のように構成される回転子巻線4の例えば巻き始め端の磁極を、以降、単に「回転子巻線4の磁極」ないしは「回転子6の磁極」という。
このように、回転子巻線4は、N極とS極を電気角で180度離れた位置に形成できるようになっている。図3−1では、理解を容易にするため2極の場合を示すが、同様の考えで多極構成にするのが一般的である。次に、図3−2を参照して2極の場合の具体的な構成例を説明する。
図3−2は、電気角0度での固定子3と回転子6の位置関係を示している。図3−2において、回転子6の表面には、磁極片62が一定間隔で設けられる。図示例では、固定子3の磁極幅内に磁極片62が5本並ぶ関係となっている。接続状態は示してないが、回転子巻線#1a,#2a,#3aは、それぞれ、図3−1に示した単位巻線4aに相当し、回転子巻線#1b,#2b,#3bは、それぞれ、図3−1に示した単位巻線4bに相当している。各一対の回転子巻線は、1本の磁極片62を間に挟んだ5本の磁極片62を跨いで配置されている。このように、各回転子巻線は重ねて配置されている。そして、回転子巻線#1a,#2a,#3aが9本の磁極片62を用いて配置される領域が例えばN極を形成する1極であり、回転子巻線#1b,#2b,#3bが9本の磁極片62を用いて配置される領域がS極を形成する1極である。回転子6の磁極は、一部が重複する形で形成される。なお、図3−2は一例であり、これに限定されないことは言うまでもない。
そして、この実施の形態1では、図3−3、図3−4に示すように、2つの切替回路12、13をそれぞれ回転子巻線4の両端子間に接続して回転子巻線4に流れる電流の向きを切り替え得るようにし、電気角で180度の位相差を持って形成される磁極の極性をN→S、S→Nと交換できるようにしている。以下切替回路12、13について説明する。
図3−3に示すように、切替回路12は、一方の受光素子8と、この受光素子8の受光出力有無に応じてオン・オフ動作を行うスイッチ(SW)31および電流方向を一方向に定めるダイオード32の直列回路とで構成される。同様に、切替回路13は、他方の受光素子9と、この受光素子9の受光出力有無に応じてオン・オフ動作を行うスイッチ(SW)33および電流方向を一方向に定めるダイオード34の直列回路とで構成される。なお、スイッチ(SW)31、33は、トランジスタやリレーにて構成されている。
図3−3において、回転子6が回転すると、回転子巻線4には、界磁巻線1が形成する磁極によって誘導電流が流れる。略180度の位相差を有して回転移動する受光素子8、9は、固定配置される発光素子群A、Bの投光を基本的には交互に受光する。その結果、切替回路12と回転子巻線4とによる閉回路と、切替回路13と回転子巻線4とによる閉回路とにおいて、基本的には交互に互いに逆向きに電流が流れるので、切替回路12,13は、回転子巻線4を流れる電流の向きを切り替える動作を行うことができる。
図3−4では、スイッチ(SW)31、33をトランジスタで構成した場合の切替回路12、13の具体例が示されている。すなわち、図3−4において、切替回路12は、受光素子8とトランジスタQ1とダイオードD1、D2とを備えている。受光素子8のベース電極は、発光素子群Aまたは発光素子群Bの投光を受ける。受光素子8のコレクタ電極は高電位(例えば所定値の直流電圧)に接続され、エミッタ電極はトランジスタQ1のベース電極に接続されている。トランジスタQ1のコレクタ電極はダイオードD1のカソードとダイオードD2のカソードとに接続されている。トランジスタQ1のエミッタ電極は回転子巻線4の一端に接続されている。ダイオードD2のアノードは回転子巻線4の他端に接続されている。なお、ダイオードD2は、図3−3に示したダイオード32に対応している。
同様に、切替回路13は、受光素子9とトランジスタQ2とダイオードD3、D4とを備えている。受光素子9のベース電極は、発光素子群Bまたは発光素子群Aの投光を受ける。受光素子9のエミッタ電極は低電位(例えば接地電位など)に接続され、コレクタ電極はトランジスタQ2のベース電極に接続されている。トランジスタQ2のコレクタ電極はダイオードD3のアノードとダイオードD4のアノードとに接続されている。トランジスタQ2のエミッタ電極はダイオードD3のカソードと回転子巻線4の一端に接続されている。ダイオードD4のカソードは回転子巻線4の他端に接続されている。なお、ダイオードD4は、図3−3に示したダイオード34に対応している。
図3−4に示す構成において、受光素子8がオン動作を行い、受光素子9がオフ動作を行っているときは、切替回路12では、トランジスタQ1はベース電位が高電位側に引き上げられるのでオン動作を行う。これによって、回転子巻線4の両端は、切替回路12を介して接続され、切替回路12を介した閉回路が形成される。一方、切替回路13では、トランジスタQ2はオン動作をしないので、回転子巻線4の両端は、切替回路13を介して接続されず、切替回路13を介した閉回路は形成されない。
したがって、受光素子8がオン動作を行い、受光素子9がオフ動作を行っているときに回転子巻線4を流れる電流の向きは、回転子巻線4の一端→回転子巻線4の他端→ダイオードD2→トランジスタQ1→回転子巻線4の一端と一巡する実線矢印の向きとなるようにすることができる。
逆に、受光素子8がオフ動作を行い、受光素子9がオン動作を行っているときは、切替回路13では、トランジスタQ2はベース電位が低電位側に引き込まれるのでオン動作を行う。これによって、回転子巻線4の両端は、切替回路13を介して接続され、切替回路13を介した閉回路が形成される。一方、切替回路12では、トランジスタQ1はオン動作をしないので、回転子巻線4の両端は、切替回路12を介して接続されず、切替回路12を介した閉回路は形成されない。
したがって、受光素子9がオン動作を行い、受光素子8がオフ動作を行っているときに回転子巻線4を流れる電流の向きは、上記とは逆向きとなり、回転子巻線4の他端→回転子巻線4の一端→トランジスタQ2→ダイオードD4→回転子巻線4の他端と一巡する破線矢印の向きとなるようにすることができる。
次に、図4〜図9を参照して、以上のように構成される発電装置の動作について説明する。図4〜図8は、回転子6の駆動力が種々に変化する場合の同期発電動作を説明するタイムチャートである。図9は、回転子6が同期速度とその前後の速度で回転している場合の回転子6の磁極と固定子3の磁極との関係を説明する図である。なお、固定子3の極数は、理解を容易にするため、例えば4極であるとしている。
(1)図4を参照して、回転子が停止している場合の動作について説明する。図4は、回転子6が停止状態にある場合を示す。図4において、発光素子群Aと発光素子群Bは、系統周波数(例えば50Hz)の各半サイクルにおいて、ゼロクロス点に同期して一斉に点灯または消灯することを開始する。そして、その半サイクルの期間内その点灯状態または消灯状態を維持することを交互に繰り返すように制御される。この関係は図5〜図8においても同様であり、正の半サイクルT1,T3,T5では、発光素子群Aが点灯状態、発光素子群Bが消灯状態となり、負の半サイクルT2,T4,T6では、発光素子群Bが点灯状態、発光素子群Aが消灯状態となるとしている。
回転子6は停止状態にあるので、例えば図4に示すように、受光素子Aと受光素子Bはそれぞれ同一の発光素子群の投光を受ける。図4では、発光素子群Aが点灯状態である半サイクルT1,T3,T5の期間では、その投光を受光素子Aが受けてオン動作状態になり、受光素子Bは発光素子群Aの投光を受けずオフ動作状態になる。この場合には、図3−4において、例えば切替回路12がオン動作を行い、切替回路13はオフ動作を行うので、当該切替回路12に依る閉回路が形成される。また、発光素子群Bが点灯状態である半サイクルT2,T4,T6の期間では、その投光を受光素子Bが受けてオン動作状態になり、受光素子Aは発光素子群Bの投光を受けずオフ動作状態になる。この場合には、図3−3において、今度は切替回路13がオン動作を行い、切替回路12がオフ動作を行うので、当該切替回路13に依る閉回路が形成される。
回転子6は停止状態にあるが、界磁巻線1には、例えば50Hzの系統電圧が印加されているので、相互誘導によって回転子巻線4に電圧が誘起され、系統電圧と同一周波数、同一位相の電圧が発生し、回転子巻線4には電流が流れる。このとき、1サイクルの期間を見ると、上記のように、半サイクルT1の期間内では切替回路12に依る閉回路が形成され、次の半サイクルT2の期間内では切替回路13に依る閉回路が形成される。したがって、回転子巻線4に流れる電流の向きは、図3−3において、半サイクルT1の期間内では実線矢印の向きに制御され、次の半サイクルT2の期間内では逆向きの破線矢印の向きに強制的に切替制御される。回転子巻線4に実線矢印の向きに電流が流れるときにN極の磁界が発生するとすれば、回転子巻線4に破線矢印の向きに電流が流れるときはS極の磁界が発生する。このように、回転子巻線4に流れる電流の向きは、系統周波数の各半サイクルと同期して切り替わり、回転子6の磁極は、N極とS極が半サイクル毎に入れ替わることになる。ここで、回転子6が任意の電気角に初期設定されていても、固定子3の磁極と回転子6の上記した磁極との吸引・反発の作用によって、回転子6は電気角で0度の初期位置に落ち着くので、回転することなく停止状態を維持することができる。
(2)図5、図9(3)を参照して回転子が同期速度の1/2の速度で回転している場合の動作について説明する。なお、図5は、回転子6が同期速度の半分(図示例では25Hz)の速度で回転している場合での回転子磁極の発生過程を説明する図である。また、図9(3)は、回転子6が同期速度の1/2の速度で回転している場合の回転子磁極と固定子磁極との関係とを説明する図である。
回転子6が同期速度の1/2の速度で回転する場合、回転子6は、系統周波数(図5では50Hz)が2サイクル(2波長)変化する間に1回転する。この場合には、図5に示すように、受光素子Aと受光素子Bにおける発光素子群Aと発光素子群Bの投光を交互に受ける関係が、系統周波数のある1サイクル(1波長)の期間と次の1サイクル(1波長)の期間とで入れ替わることになる。
図5において、回転子6は、系統周波数の正の半サイクルT1の開始時から負の半サイクルT4の終了時までの期間内に1回転する。前1/2回転の期間(正の半サイクルT1と次の負の半サイクルT2の期間)では、受光素子Aは、前1/2回転の前半分期間(正の半サイクルT1の期間)においてオン動作状態となり、後半分期間(負の半サイクルT2の期間)においてオフ動作状態に切り替わる。一方、受光素子Bは、前1/2回転の前半分期間においてオフ動作状態となり、後半分期間においてオン動作状態に切り替わる。そして、後1/2回転の期間(次の正の半サイクルT3と次の負の半サイクルT4の期間)では、受光素子Aは、後1/2回転の前半分期間(正の半サイクルT3の期間)においてオフ動作状態を維持し、後半分期間(負の半サイクルT4の期間)においてオン動作状態に切り替わる。一方、受光素子Bは、後1/2回転の前半分期間においてオン動作状態を維持し、後半分期間においてオフ動作状態に切り替わる。以降、系統周波数の2サイクルに跨る各1回転の期間において、受光素子Aと受光素子Bは、同様の動作を繰り返す。
受光素子Aが投光を受けてオン動作を行うと、上記のように、例えば切替回路12がオン動作して閉回路が形成されるので、回転子巻線4には図3−4に示した例で言えば実線矢印の向きに電流が流れる。このとき、回転子巻線4が形成する磁極がN極であるとすれば、受光素子Bが投光を受けてオン動作を行うと、今度は切替回路13に依る閉回路を通して回転子巻線4には逆向き(図3−4に示した破線矢印の向き)の電流が流れるので、回転子巻線4が形成する磁極はN極からS極に切り替わる。したがって、図5に示す例では、回転子6が1回転する期間(正の半サイクルT1〜負の半サイクルT4の期間)における磁極は、前1/2回転の前半分期間(正の半サイクルT1の期間)では、切替回路12に依る閉回路によってN極となり、前1/2回転の後半分期間(負の半サイクルT2の期間)と後1/2回転の前半分期間(正の半サイクルT3の期間)では、切替回路13に依る閉回路によって連続してS極となり、後1/2回転の後半分期間(正の半サイクルT4の期間)では、切替回路12に依る閉回路によってN極となるように発生制御されることになる。
この場合の固定子3において、回転子6の磁極が相対電気角で90度に向かう所の磁極は、前1/2回転の期間(正の半サイクルT1と次の負の半サイクルT2の期間)では、第1磁極となり、後1/2回転の期間(次の正の半サイクルT3と次の負の半サイクルT4の期間)では、第2磁極となる。そして、次の1回転の前1/2回転の期間(正の半サイクルT5と次の負の半サイクルT6の期間)では、第3磁極となり、図示してないが、後1/2回転の期間(次の正の半サイクルT7と次の負の半サイクルT8の期間)では、第4磁極となる。
図9(3)を参照して、回転子巻線4の磁極と固定子3の相対電気角で90度に向かう所の磁極とが同極性になり、界磁巻線1から系統に同期した波形の発電出力が得られる動作過程の要部について説明する。図9(3)において、横軸は、回転子6の磁極が単位時間に進む距離である。この横軸には、図5に示す系統周波数の半サイクルT1の起点時刻に対応する時刻t0、次の半サイクルT2の起点時刻に対応する時刻t1、次の半サイクルT3の起点時刻に対応する時刻t2、次の半サイクルT4の起点時刻に対応する時刻t3、次の半サイクルT5の起点時刻に対応する時刻t4、次の半サイクルT6の起点時刻に対応する時刻t5が示されている。
固定子3の界磁巻線1には、系統電圧が印加されている。半サイクルT1の起点時刻に対応する当初の時刻t0では、第1磁極の極性はN極であり、第2磁極の極性はS極であり、第3磁極の極性はN極であるとする。そうすると、次の半サイクルT2の起点時刻に対応する時刻t1では、第1磁極の極性はN極からS極に変化し、第2磁極の極性はS極からN極に変化し、第3磁極の極性はN極からS極に変化する。次の半サイクルT3の起点時刻に対応する時刻t2では、第2磁極の極性はN極からS極に変化し、第3磁極の極性はS極からN極に変化する。次の半サイクルT4の起点時刻に対応する時刻t3では、第2磁極の極性はS極からN極に変化し、第3磁極の極性はN極からS極に変化する。そして、第3磁極の極性は、次の半サイクルT5の起点時刻に対応する時刻t4ではN極となり、次の半サイクルT6の起点時刻に対応する時刻t5ではS極となる。
これに対して、回転子6の極性は、半サイクルT1の起点時刻に対応する当初の時刻t0では図5に示したようにN極となるように制御できるので、固定子3の相対電気角で90度に向かう所の第1磁極と同極性の状態が得られる。回転子6は、図5に示したように、次の半サイクルT2の起点時刻に対応する時刻t1までは切替回路12に依る閉回路によってN極に制御された状態で進行しその時刻t1にて切替回路13に依る閉回路によってS極に切り替わるので、時刻t1でも回転子6の極性は第1磁極と同極性になる。回転子6は、図5に示したように、時刻t1にてS極に切替制御された後はそのS極に制御された状態で半サイクルT2の全期間と次の半サイクルT3の全期間とを進行するので、中間時刻である半サイクルT3の起点時刻に対応する時刻t2では、固定子3の相対電気角で次の90度に向かう所の第2磁極と同極性となる。そして、回転子6では、時刻t3にて切替回路12に依る閉回路によってN極に切り替わるので、時刻t3でも回転子6の極性は第2磁極と同極性になる。
同様に、回転子6は、時刻t3にてN極に切替制御された後はそのN極に制御された状態で半サイクルT4の全期間と次の半サイクルT5の全期間とを進行するので、中間時刻である半サイクルT5の起点時刻に対応する時刻t4では、固定子3の相対電気角で次の90度に向かう所の第3磁極と同極性となる。そして、回転子6では、時刻t5にて切替回路13に依る閉回路によってS極に切り替わるので、時刻t5でも回転子6の極性は第3磁極と同極性になる。つまり、回転子6が同期速度の1/2の速度で回転する場合でも系統に連系した同期発電を行っているのであり、界磁巻線1には、系統に同期した波形の発電出力が得られる。
(3)図6、図9(4)を参照して回転子6が同期速度の2/3の速度で回転している場合の動作について説明する。なお、図6は、回転子6が同期速度の2/3の速度で回転している場合での回転子磁極の発生過程を説明する図である。また、図9(4)は、回転子6が同期回転の2/3の速度で回転している場合の回転子磁極と固定子磁極との関係とを説明する図である。
回転子6が同期速度(図示例では50Hz)の2/3の速度(図示例では33.3Hz)で回転している場合には、回転子6は、系統周波数が3/2サイクル変化する間に1回転する。すなわち、図6において、回転子6は、正の半サイクルT1開始時点から次の正の半サイクルT3の終了時点までの期間内に1回転する。また、回転子6は、負の半サイクルT4の開始時点から次の負の半サイクルT6の終了時点までの期間内に1回転する。この場合には、図6に示すように、系統周波数のある1サイクルの期間内に、受光素子Aと受光素子Bが発光素子群Aと発光素子群Bの投光を交互に受ける場合と、受光素子Aと受光素子Bが一方の発光素子群の投光を交互に受ける場合とが起こる。
図6において、回転子6が1回転する正の半サイクルT1の開始時から次の正の半サイクルT3の終了時までの期間における前1/2回転の期間(正の半サイクルT1の全期間と次の負の半サイクルT2の前半分期間)では、受光素子Aは正の半サイクルT1の全期間においてオン動作状態となり、次の負の半サイクルT2の前半分期間においてオフ動作状態に切り替わる。一方、受光素子Bは、正の半サイクルT1の全期間においてオフ動作状態となり、次の負の半サイクルT2の前半分期間においてオン動作状態に切り替わる。そして、後1/2回転の期間(負の半サイクルT2の後半分期間と次の正の半サイクルT3の全期間)では、受光素子Aは、負の半サイクルT2の後半分期間においてオン動作状態に切り替わり、次の正の半サイクルT3の全期間においてオフ動作状態に切り替わる。一方、受光素子Bは、負の半サイクルT2の後半分期間においてオフ動作状態に切り替わり、次の正の半サイクルT3の全期間においてオン動作状態に切り替わる。
また、回転子6が次の1回転を行う期間(負の半サイクルT4の開始時から次の負の半サイクルT6の終了時までの期間)における前1/2回転の期間(負の半サイクルT4の全期間と次の正の半サイクルT5の前半分期間)では、受光素子Aは、負の半サイクルT4の全期間においてオフ動作状態となり、次の正の半サイクルT5の前半分期間においてオン動作状態に切り替わる。一方、受光素子Bは、負の半サイクルT4の全期間においてオン動作状態となり、次の正の半サイクルT5の前半分期間においてオフ動作状態に切り替わる。そして、後1/2回転の期間(正の半サイクルT5の後半分期間と次の負の半サイクルT6の全期間)では、受光素子Aは、正の半サイクルT5の後半分期間においてオフ動作状態に切り替わり、次の負の半サイクルT6の全期間においてオン動作状態に切り替わる。一方、受光素子Bは、正の半サイクルT5の後半分期間においてオン動作状態に切り替わり、次の負の半サイクルT6の全期間においてオフ動作状態に切り替わる。以降、系統周波数の3サイクルに跨る各2回転の期間において、受光素子Aと受光素子Bは、同様の動作を繰り返す。
したがって、図6に示す例では、回転子6が1回転する期間(正の半サイクルT1〜正の半サイクルT3の期間)における磁極は、正の半サイクルT1の全期間では切替回路12に依る閉回路によってN極となり、負の半サイクルT2の前半分期間では切替回路13に依る閉回路によってS極となり、負の半サイクルT2の後半分期間では切替回路12に依る閉回路によってN極となり、正の半サイクルT3の全期間では切替回路13に依る閉回路によってS極となる。また、回転子6が次の1回転を行う期間(負の半サイクルT4〜負の半サイクルT6の期間)では、負の半サイクルT4の全期間では切替回路13に依る閉回路によってS極となり、正の半サイクルT5の前半分期間では切替回路12に依る閉回路によってN極となり、正の半サイクルT5の後半分期間では切替回路13に依る閉回路によってS極となり、負の半サイクルT6の全期間では切替回路12に依る閉回路によってN極となるように発生制御されることになる。
この場合の固定子3において、回転子6の磁極が相対電気角で90度に向かう所の磁極は、回転子6の2回転に対し、1/2回転の期間(正の半サイクルT1の全期間と次の負の半サイクルT2の前半分期間)では、第1磁極となり、2/2回転の期間(負の半サイクルT2の後半分期間と次の正の半サイクルT3の全期間)では、第2磁極となり、3/2回転の期間(次の負の半サイクルT4の全期間と次の正の半サイクルT5の前半分期間)では、第3磁極となり、4/2回転の期間(正の半サイクルT5の後半分期間とその次の負の半サイクルT6の全期間)では、第4磁極となる。
図9(4)を参照して、回転子巻線4の磁極と固定子3の相対電気角で90度に向かう所の磁極とが同極性になり、界磁巻線1から系統に同期した波形の発電出力が得られる動作過程の要部について説明する。図9(4)において、横軸は、回転子6の磁極が単位時間に進む距離である。この横軸には、図6に示す系統周波数の半サイクルT1の起点時刻に対応する時刻t0、次の半サイクルT2の起点時刻に対応する時刻t1、その半サイクルT2の中間時刻に対応する時刻t1.5、次の半サイクルT3の起点時刻に対応する時刻t2、次の半サイクルT4の起点時刻に対応する時刻t3、次の半サイクルT5の起点時刻に対応する時刻t4、その半サイクルT5の中間時刻に対応する時刻t4.5が示されている。
固定子3の界磁巻線1には、系統電圧が印加されている。半サイクルT1の起点時刻に対応する当初の時刻t0では、第1磁極の極性はN極であり、第2磁極の極性はS極であり、第3磁極の極性はN極であり、第4磁極の極性はS極であるとする。そうすると、次の半サイクルT2の起点時刻に対応する時刻t1では、第1磁極の極性はN極からS極に変化し、第2磁極の極性はS極からN極に変化し、第3磁極の極性はN極からS極に変化し、第4磁極の極性はS極からN極に変化する。次の半サイクルT2の中間時刻に対応する時刻t1.5では、第2磁極の極性はN極を維持している。次の半サイクルT3の起点時刻に対応する時刻t2では、第2磁極の極性はN極からS極に変化し、第3磁極の極性はS極からN極に変化し、第4磁極の極性はN極からS極に変化する。そして、第3磁極の極性は、次の半サイクルT4の起点時刻に対応する時刻t3ではS極となり、次の半サイクルT5の起点時刻に対応する時刻t4ではN極となる。また第4磁極の極性は、次の半サイクルT4の起点時刻に対応する時刻t3ではN極となり、次の半サイクルT5の起点時刻に対応する時刻t4ではS極となり、次の半サイクルT5の中間時刻に対応する時刻t4.5ではそのS極を維持する。
これに対して、回転子6の極性は、半サイクルT1の起点時刻に対応する当初の時刻t0では図6に示したようにN極となるように制御できるので、固定子3の相対電気角で90度に向かう所の第1磁極と同極性の状態が得られる。回転子6は、図6に示したように、次の半サイクルT2の起点時刻に対応する時刻t1までは切替回路12に依る閉回路によってN極に制御された状態で進行しその時刻t1にて切替回路13に依る閉回路によってS極に切り替わるので、時刻t1でも回転子6の極性は第1磁極と同極性になる。回転子6は、時刻t1にてS極に切替制御された後はそのS極に制御された状態で半サイクルT2の中間時刻に対応する時刻t1.5まで進行し、その時刻t1.5にて切替回路12に依る閉回路によってN極に切り替えられる。したがって、その時刻t1.5での回転子6の極性は、回転子6の磁極が電気角で次の90度に向かう所の第2磁極の極性と同極性になる。
回転子6は、時刻t1.5にてN極に切替制御された後はそのN極に制御された状態で半サイクルT2の後半期間を進行し、半サイクルT3の起点時刻に対応する時刻t2にて切替回路13に依る閉回路によってS極に切り替わるので、時刻t2でも回転子6の極性は第2磁極と同極性になる。回転子6は、時刻t2にてS極に切替制御された後はそのSに制御された状態で半サイクルT3の全期間と次の半サイクルT4の全期間とを進行するので、中間時刻である半サイクルT4の起点時刻に対応する時刻t3での回転子6の極性は固定子3の相対電気角で次の90度に向かう所の第3磁極と同極性となる。そして、回転子6は、S極に制御された状態で半サイクルT4の終了時刻である半サイクルT5の起点時刻に対応する時刻t4まで進行すると、その時刻t4にて切替回路12に依る閉回路によってN極に切り替わるので、時刻t4での回転子6の極性も固定子3の第3磁極と同極性となる。回転子6は、時刻t4にてN極に切替制御された後はそのN極に制御された状態で半サイクルT5の前半期間を進行し、半サイクルT5の中間時刻に対応する時刻t4.5にて切替回路13に依る閉回路によってS極に切り替わるので、時刻t4.5での回転子6の極性は固定子3の相対電気角で次の90度に向かう所の第4磁極と同極性となる。つまり、回転子6が同期速度の2/3の速度で回転している場合でも系統に連系した同期発電を行っているのであり、界磁巻線1には、系統に同期した波形の発電出力が得られる。
(4)図7、図9(1)を参照して回転子が同期速度で回転している場合の動作について説明する。なお、図7は、回転子6が同期速度(図示例では50Hz)で回転している場合での回転子磁極の発生過程を説明する図である。また、図9(1)は、回転子6が同期回転で回転している場合の回転子磁極と固定子磁極との関係とを説明する図である。
回転子6が同期速度(図示例では50Hz)で回転している場合には、系統電圧位相の変化と回転子6の回転位相とが一致するので、発光素子群Aと発光素子群Bの交互投光を受光素子Aと受光素子Bのいずれか一方のみが受光し続けることになり、受光素子の切り替えが起こらないので、回転子巻線4の電流は、一方向に継続して流れる。図7では、受光素子Aが受光し続けるが示されている。この場合には、系統周波数の各半サイクルにおいて切替回路12に依る閉回路のみが形成されるので、回転子6の磁極は、常にN極となる。
図9(1)を参照して、回転子巻線4の磁極と固定子3の磁極とが同極性になり、界磁巻線1から系統に同期した波形の発電出力が得られる動作過程の要部について説明する。図9(1)において、横軸は、回転子6の磁極が単位時間に進む距離である。この横軸には、図7に示す系統周波数の半サイクルT1の起点時刻に対応する時刻t0、次の半サイクルT2の起点時刻に対応する時刻t1、次の半サイクルT3の起点時刻に対応する時刻t2、次の半サイクルT4の起点時刻に対応する時刻t3が示されている。
固定子3の界磁巻線1には、系統電圧が印加されている。半サイクルT1の起点時刻に対応する当初の時刻t0では、第1磁極の極性はN極であり、第2磁極の極性はS極であり、第3磁極の極性はN極であり、第4磁極の極性はS極であるとする。そうすると、次の半サイクルT2の起点時刻に対応する時刻t1では、第2磁極の極性は、S極からN極に変化し、第3磁極の極性は、N極からS極に変化し、第4磁極では、S極からN極に変化する。次の半サイクルT3の起点時刻に対応する時刻t2では、第3磁極の極性は、S極からN極に変化し、第4磁極では、N極からS極に変化する。そして、次の半サイクルT4の起点時刻に対応する時刻t3では、第4磁極の極性は、S極からN極に変化する。
これに対して、回転子6では、同期速度で回転している場合は、半サイクルT1の起点時刻に対応する当初の時刻t0と、次の半サイクルT2の起点時刻に対応する時刻t1と、次の半サイクルT3の起点時刻に対応する時刻t2と、次の半サイクルT4の起点時刻に対応する時刻t3との各時刻において、回転子6の極性は、切替回路12に依る閉回路によってN極に制御され続けるので、常に、固定子3の相対電気角で90度の方向に向かう所の第1磁極、第2磁極、第3磁極、第4磁極と同極性の関係になる。これによって、同期発電機として作用し、界磁巻線1には、系統に同期した波形の発電出力が得られる。
(5)図8、図9(2)を参照して回転子が同期速度を超えて回転している場合の動作について説明する。なお、図8は、回転子6が同期速度の2倍の速度で回転している場合での回転子磁極の発生過程を説明する図である。また、図9(2)は、回転子6が同期速度の2倍の速度で回転している場合の回転子磁極と固定子磁極との関係とを説明する図である。
回転子6が同期速度(図示例では50Hz)の2倍(図示例では100Hz)の速度で回転している場合には、系統周波数(図示例では50Hz)が1サイクル(1波長)変化する間に回転子6は2回転する。この場合は、図8に示すように、系統周波数の各半サイクルの期間内に、受光素子Aと受光素子Bは、発光素子群Aと発光素子群Bのいずれか一方の投光を交互に受けることになる。
図8において、回転子6が1回転する期間(正の半サイクルT1の全期間)では、受光素子Aは、前半分期間においてオン動作状態となり、後半分期間においてオフ動作状態に切り替わる。一方、受光素子Bは、前半分期間においてオフ動作状態となり、後半分期間においてオン動作状態に切り替わる。回転子6が次の1回転を行う期間(負の半サイクルT2の全期間)では、受光素子Aは、前半分期間においてオフ動作状態を維持し、後半分期間においてオン動作状態に切り替わる。一方、受光素子Bは、前半分期間においてオン動作状態を維持し、後半分期間においてオフ動作状態に切り替わる。以降、系統周波数の1サイクルに跨る各2回転の期間において、受光素子Aと受光素子Bは、同様の動作を繰り返す。
したがって、図8に示す例では、回転子6が2回転する期間(正の半サイクルT1〜負の半サイクルT2の期間)における磁極は、正の半サイクルT1の前半分期間では切替回路12に依る閉回路によってN極となり、正の半サイクルT1の後半分期間と負の半サイクルT2の前半分期間では切替回路13に依る閉回路によって継続してS極となり、負の半サイクルT2の後半分期間では切替回路12に依る閉回路によってN極となるように発生制御されることになる。そして、この場合の固定子3において対応する磁極は、正の半サイクルT1では前半分期間が第1磁極となり、後半分期間が第2磁極となる。また、次の負の半サイクルT2では前半分期間が第3磁極となり、後半分期間が第4磁極となる。各1サイクルにおいて同様の磁極関係となる。
この場合には、系統周波数の各半サイクルにおいては、一方の発光素子群の投光を受光素子Aと受光素子Bが切り替わって受けるので、切替回路12に依る閉回路と切替回路13に依る閉回路とが切り替わって形成される。つまり、系統周波数の各半サイクルにおいては、回転子巻線4を流れる電流の向きが切り替わる。しかし、1/4サイクルずらした位相で観察すると、その1/4サイクルずらした系統周波数の各半サイクルに相当する期間において、受光素子Aと受光素子Bの一方が発光素子群Aと発光素子群Bの一方の投光を受ける。この状態は、図4に示す回転子6が停止している場合の同期受光と同じである。また、その1/4サイクルずらした系統周波数の各半サイクルに相当する期間においては、切替回路12と切替回路13とのいずれか一方に依る閉回路が継続して形成されるので、回転子巻線4に流れる電流は、1/4サイクルの前後で合成され、切り替わることなく一方向に流れるように制御される。したがって、図9(2)に示すように、回転子巻線4の磁極と固定子3の90度の向かう所の磁極とが同極性になるので、界磁巻線1には、系統に同期した波形の発電出力が得られる。
図9(2)を参照して、回転子巻線4の磁極と固定子3の90度の向かう所の磁極とが同極性になり、界磁巻線1から系統に同期した波形の発電出力が得られる動作過程の要部について説明する。説明する。ここでは、図8に示す半サイクルT1、T2における状況を説明する。すなわち、図9(2)において、横軸は、回転子6の磁極が単位時間に進む距離である。この横軸には、図8に示す系統周波数の半サイクルT1の起点時刻に対応する時刻t0、その半サイクルT1の中間時刻に対応する時刻t1/2、次の半サイクルT2の起点時刻に対応する時刻t1、その半サイクルT2の中間時刻に対応する時刻t1.5が示されている。
固定子3の界磁巻線1には、系統電圧が印加されている。半サイクルT1の起点時刻に対応する当初の時刻t0では、第1磁極の極性はN極であり、第2磁極の極性はS極であり、第3磁極の極性はN極であり、第4磁極の極性はS極であるとする。そうすると、次の半サイクルT1の中間時刻に対応する時刻t1/2では、第2磁極の極性はS極のままであり、第3磁極の極性はN極のままであり、第4磁極の極性はS極のままである。そして、次の半サイクルT2に対応する時刻t1にて、第3磁極の極性はN極からS極に変化し、第4磁極の極性はS極からN極に変化する。また、次の半サイクルT2の中間時刻に対応する時刻t1.5では、第4磁極の極性はN極のままである。
これに対して、回転子6の極性は、半サイクルT1の起点時刻に対応する当初の時刻t0では図8に示したようにN極となるように制御できるので、固定子3の相対電気角で90度に向かう所の第1磁極と同極性の状態が得られる。回転子6は、図8に示したように、その半サイクルT1の中間時刻に対応する時刻t1/2までは切替回路12に依る閉回路によってN極に制御された状態で進行しその時刻t1/2にて切替回路13に依る閉回路によってS極に切り替わるので、時刻t1/2での回転子の極性は回転子6の電気角で次の90度に向かう所の第2磁極と同極性になる。回転子6は、時刻t1/2にてS極に切替制御された後はそのS極に制御された状態で、半サイクルT1の後半期間と半サイクルT2の前半期間の終了時刻である時刻t1.5まで進行し、その時刻t1.5にて切替回路12に依る閉回路によってN極に切り替えられる。したがって、半サイクルT2の起点時刻に対応する時刻t1での回転子6の極性は固定子3の相対電気角で次の90度に向かう所の第3磁極と同極性になる。また、時刻1.5での回転子6は、固定子3の相対電気角で次の90度に向かう所の第4磁極と同極性になる。つまり、回転子6が同期速度の2倍の速度で回転している場合でも系統に連系した同期発電を行っているのであり、界磁巻線1には、系統に同期した波形の発電出力が得られる。
以上、発光素子の発光と受光素子の受光との関係により、固定子巻線の発生する磁極と回転子巻線に発生させる磁極が同期し系統連系した発電が行えることを説明してきたが、これらを総括した説明を更に付加する。図2には、発光素子群A及び発光素子群Bが示されている。これら発光素子群は、系統に連係して発光し、固定子に固定されている。いま、2極の固定子の場合を考えると、発光素子群Aが発光しているときの第一固定子の磁極をN(S)と仮定すると、同様に発光素子群Bが発光しているとき第二固定子の磁極はN(S)となる。常に、発光している側の固定子がN(S)となる。したがって、回転子においても同様のことが言える。即ち、常に受光している受光素子側の回転子の磁極はN(S)となる。このように、発光素子群の発光及び受光素子の受光により、図3−4の切替回路12、13は、回転子巻線に流れる電流方向を切り替え、上述のように電気角90°に向かう回転子の磁極を固定子の磁極と同極性に制御し、系統連系することができる。
以上のように、実施の形態1によれば、商用電源周波数である系統周波数の電気角で180度(例えば半サイクル)の各期間において、一斉点灯と一斉消灯とを交互に行う2つ発光素子群を固定配置し、また、回転子に2つの発光素子群の投光を受ける2組の受光素子を略180度の位相差を有して一体的に回転するように設け、回転子巻線に流れる電流の向きを2組の受光素子の受光状態に応じて切り替え得るようにしたので、回転子が同期速度で回転している場合だけでなく、回転子が同期速度の前後の速度で回転している場合でも、回転子の磁極と固定子の対応する磁極との極性を同一にすることができ、系統に同期した発電が行える。
このように、実施の形態1による発電装置は、回転子の回転速度が同期速度の前後の速度であっても系統連系発電が可能であるが、このような特性は、従来の同期発電機や誘導発電機、自励式発電機では得られなかった特性である。
また、実施の形態1による発電装置は、回転子に巻線を有するが、この回転子巻線には外部から励磁電流の供給を行う必要がなく、また同期回転速度を維持する制御を行うことなく、系統連系が可能である。したがって、従来の同期発電機では必要であった回転子巻線を有する場合の励磁電源やスリップリング、ブラシ等が不要となり、制御系設備・回路が簡素化されるので、経済的かつ耐久性に優れる発電装置が得られる。
さらに、実施の形態1による発電装置は、回転子に永久磁石を持たないので、回転始動時はほぼ無負荷であり、回転速度の上昇に伴って回転子巻線の励磁電流が増大する特性であるので、回転始動が非常に容易になる。したがって、実施の形態1による発電装置は、特に、回転子の駆動力が比較的弱い上に変動が比較的大きい風力発電で用いるのに好適である。
加えて、回路の切り替えによって単独運転が可能となるので、容易に商用電源の無い所でも発電可能な発電装置に転換できるようになる。
実施の形態2.
図10は、この発明の実施の形態2である発電装置の簡略構成を示す図である。なお、図10では、図1に示した構成と同一ないしは同等である構成には同一の符号が付されている。ここでは、実施の形態2に関わる部分を中心に説明する。
すなわち、図10に示すように、この実施の形態2による発電装置では、図1に示した構成において、切替回路12、13に代えて、切替回路70、71が設けられている。切替回路70、71は、一方の入出力端が互いに接続され、他方の入出力端がそれぞれ回転子巻線4の対応する端部に接続されている。すなわち、切替回路70、71の直列回路の両端が回転子巻線4の両端に接続されている。
180度の位相差を有して回転移動する受光素子8、9は、発光素子群A、Bの投光を交互に受光する。そして、回転子6が回転すると、回転子巻線4には、界磁巻線1が形成する磁極によって誘導電流が流れる。図11に示すように、切替回路70、71の直列回路は、回転子巻線4を流れる電流の向きを切り替える動作を行うようになっている。図11は、図10に示す回転子巻線を流れる電流の向きを切り替える機構を説明する原理図である。以下、図11を参照して説明する。
図11において、切替回路70は、受光素子8とトランジスタQ1とダイオードD1とを備えている。受光素子8は、発光素子群Aまたは発光素子群Bの投光を受ける。受光素子8のコレクタ電極は高電位(例えば所定値の直流電圧)に接続され、エミッタ電極はトランジスタQ1のベース電極に接続される。トランジスタQ1のコレクタ電極は回転子巻線4の一端とダイオードD1のカソードとに接続されている。トランジスタQ1のエミッタ電極はダイオードD1のアノードに接続されている。
同様に、切替回路71は、受光素子9とトランジスタQ2とダイオードD2とを備えている。受光素子9は、発光素子群Bまたは発光素子群Aの投光を受ける。受光素子9のコレクタ電極は高電位(例えば所定値の直流電圧)に接続され、エミッタ電極はトランジスタQ2のベース電極に接続される。トランジスタQ2のコレクタ電極は回転子巻線4の他端とダイオードD2のカソードとに接続されている。トランジスタQ2のエミッタ電極はダイオードD2のアノードに接続されている。そして、ダイオードD1のアノードとダイオードD2のアノードは、共通に接続されている。
図11に示す構成において、受光素子8がオン動作を行い、受光素子9がオフ動作を行っているときは、切替回路70では、トランジスタQ1がオン動作を行い、ダイオードD1は、短絡状態になる。一方、切替回路71ではトランジスタQ2はオン動作をしない。したがって、回転子巻線4を流れる電流の向き、回転子巻線4の一端→トランジスタQ1→ダイオードD2→回転子巻線4の他端と一巡する向きとなる。
逆に、受光素子8がオフ動作を行い、受光素子9がオン動作を行っているときは、切替回路71では、トランジスタQ2がオン動作を行いダイオードD2は、短絡状態になる。一方、切替回路70では、トランジスタQ1はオン動作をしない。したがって、回転子巻線4を流れる電流の向きは、上記とは逆向きとなり、回転子巻線4の他端→トランジスタQ2→ダイオードD1→回転子巻線4の一端と一巡する向きとなる。
したがって、実施の形態2においても、発光素子群A、Bの点灯状態および消灯状態との相対的な位相関係に従って回転子巻線4に一方向の電流を流すか、流れる向きを切り替えるかの制御を行うことができるので、図4〜図9にて説明した動作が行われる。したがって、実施の形態1と同様の作用・効果が得られる。
実施形態3.
図12は、この発明の実施形態3である発電装置の要部構成を示す回路図である。この
実施形態3では、回転子巻線を2以上によって構成する場合の一例が示されている。すなわち、実施の形態1,2にて示した回転子巻線4は、この実施の形態3では、図12に示すように、共通に接続する一端側が電気角で略60度の間隔で配置される3つの回転子巻線81,82,83で構成されている。なお、回転子巻線81,82,83は、それぞれ図3−1にて説明した構成である。また、回転子巻線81,82,83の片端に示す黒丸は、図3−1における巻き始め端4cを示している。
図12において、回転子巻線81は、切替制御の対象として、一端(巻き始め端)が電気角0度の位置に配置されている。そして、回転子巻線82,83は、それぞれ回転方向の後端側に配置されている。そのうち、回転子巻線82は、図示例では一端(巻き終わり端)が電気角で略−60度の位置に配置されている。また、回転子巻線83は、一端(巻き始め端)が電気角で略−120度の位置に配置されている。なお、一端が電気角で略−60度の位置に配置されている回転子巻線82のその一端は巻き始め端であっても良い。
すなわち、図12では、回転子巻線81の一端(巻き始め端)と回転子巻線82の一端(図示例では巻き終わり端)と回転子巻線83の一端(巻き始め端)とは共通に接続されている。回転子巻線81の他端には図3−4に示したような2つの切替回路85,86が設けられ、回転子巻線82の他端には逆並列接続のダイオードD5,D6が設けられ、回転子巻線83の他端には逆並列接続のダイオードD7,D8が設けられている。
具体的に説明する。切替回路85は、受光素子8とトランジスタQ1とダイオードD1とを備えている。受光素子8のベース電極は、発光素子群Aまたは発光素子群Bの投光を受ける。受光素子8のコレクタ電極は高電位(例えば所定値の直流電圧)に接続され、エミッタ電極はトランジスタQ1のベース電極に接続されている。トランジスタQ1のコレクタ電極は回転子巻線81の他端(巻き終わり端)とダイオードD1のカソードとに接続されている。トランジスタQ1のエミッタ電極はダイオードD1のアノードに接続されている。
切替回路86は、受光素子9とトランジスタQ2とダイオードD2とを備えている。受光素子9のベース電極は、発光素子群Bまたは発光素子群Aの投光を受ける。受光素子9のエミッタ電極は低電位(例えば接地電位など)に接続され、コレクタ電極はトランジスタQ2のベース電極に接続されている。トランジスタQ2のコレクタ電極は回転子巻線81の他端(巻き終わり端)とダイオードD2のアノードとに接続されている。トランジスタQ2のエミッタ電極はダイオードD2のカソードに接続されている。
回転子巻線82の他端(巻き始め端)には、ダイオードD5のアノードとダイオードD6のカソードとが接続され、回転子巻線83の他端(巻き終わり端)にはダイオードD7のアノードとダイオードD8のカソードとが接続されている。ダイオードD5,D7の各カソードは、共通に切替回路86におけるトランジスタQ2のエミッタ電極とダイオードD2のカソードとの接続端に接続され、また、ダイオードD3のカソードに接続されている。ダイオードD6,D8の各アノードは、共通に切替回路85におけるトランジスタQ1のエミッタ電極とダイオードD1のアノードとの接続端に接続され、またダイオードD4のアノードに接続されている。ダイオードD3のアノードとダイオードD3のカソードは、共通に、回転子巻線81,82,83の一端接続ラインに接続されている。
以上の構成において、受光素子8がオン動作を行い、受光素子9がオフ動作を行っているときは、切替回路85では、トランジスタQ1はオン動作を行いダイオードD1が短絡状態になる。切替回路86では、トランジスタQ2はオフ動作状態を維持する。これによって、回転子巻線81の他端は、切替回路85を介して、ダイオードD4,D6,D8の各アノードに接続される。その結果、回転子巻線81に実線矢印の向きに電流を流すことができるルートとして、ダイオードD4を経由したルートと、ダイオードD6および回転子巻線82を経由したルートと、ダイオードD8および回転子巻線83を経由したルートの3つの閉ループが形成される。
逆に、受光素子8がオフ動作を行い、受光素子9がオン動作を行っているときは、切替回路86では、トランジスタQ2はオン動作を行いダイオードD2が短絡状態になる。切替回路85では、トランジスタQ1はオフ動作状態を維持する。これによって、回転子巻線81の他端は、切替回路86を介して、ダイオードD3,D5,D7の各カソードに接続される。その結果、回転子巻線81に破線矢印の向きに電流を流すことができるルートとして、ダイオードD3を経由したルートと、ダイオードD5および回転子巻線82を経由したルートと、ダイオードD7および回転子巻線83を経由したルートの3つの閉ループが形成される。
この構成によれば、切替制御する回転子巻線81には、回転子巻線82,83に誘起される電流も注入されるので、発電出力を高めることができる。実験によれば、実施の形態1に示す構成では、〜1kW程度であったが、図12に示す構成では、5kWの発電出力が得られた。
なお、切替制御を行う回転子巻線に対して電流注入を行う回転子巻線を2つ設ける場合を示したが、その他に、1つの回転子巻線を設ける方法もある。この方法には、(1)電気角で略−60度の位置に配置する方法と、(2)電気角で略−120度の位置に配置する方法とがある。そして、切替制御を行う回転子巻線(一端側は電気角0度の位置に配置される)のその一端側を巻き始め端とすると、(1)の方法では、電気角で略−60度の位置に配置する回転子巻線のその一端側は、巻き終わり端であってもよく巻き始め端であってもよいが、(2)の方法では、電気角で略−120度の位置に配置する回転子巻線のその一端側は、巻き始め端であることが望ましい。
実験によれば、(1)の方法では、電気角で略−60度の位置に配置する回転子巻線の一端側を巻き始め端とするか巻き終わり端とするかによって異なるが、1.2kW〜1.6kWの発電出力が確認できた。また、(2)の方法では、1.4kWの発電出力が確認できた。
このように、実施の形態3によれば、発電効率の高い同期発電装置が得られる。
ここで、実施の形態1〜3では、非接触の切替手段を、固定配置される複数の発光素子と、180度の位相差を有して回転子と一体的に回転し前記複数の発光素子の投光を受光する2個の受光素子を含む切替回路とで構成する場合を示したが、以上の説明から理解できるように、発光素子に代えて磁界の発生とその停止を制御できる磁界発生手段(具体的には電磁石)を用い、受光素子に代えてホール素子を用いても同様に構成することができる。
以上のように、この発明にかかる発電装置は、入力である回転駆動力の大小にかかわらず系統周波数と同期した発電出力を得るのに有用であり、特に、回転駆動力の変動が大きい風力発電に適している。
この発明の実施形態1である発電装置の簡略構成を示す図である。 図1に示す2組の受光素子と複数の発光素子との関係および複数の発光素子の配置態様を説明する図である。 図1に示す回転子巻線の基本構成を説明する概念図である。 図1に示す回転子巻線4の具体的構成例を説明する概念図である。 図1に示す回転子巻線と受光素子を有する2つの切替回路との関係を説明する等価回路図(図1に示す回転子巻線を流れる電流の向きを切り替える機構を説明する原理図)である。 図3−3に示す受光素子を有する2つの切替回路の具体例を示す図である。 図1に示す回転子が停止状態にある場合の系統周波数に対する発光素子群と受光素子との関係を説明するタイムチャートである。 図1に示す回転子が同期速度の1/2の速度で回転している場合の同期発電動作を説明するタイムチャートである。 図1に示す回転子が同期速度の2/3の速度で回転している場合の同期発電動作を説明するタイムチャートである。 図1に示す回転子が同期速度で回転している場合の同期発電動作を説明するタイムチャートである。 図1に示す回転子が同期速度の2倍の速度で回転している場合の同期発電動作を説明するタイムチャートである。 図1に示す回転子が同期速度とその前後の速度で回転している場合の固定子の磁極と回転子の磁極との関係を説明するタイムチャートである。 この発明の実施形態2である発電装置の簡略構成を示す図である。 図10に示す回転子巻線を流れる電流の向きを切り替える機構を説明する原理図である。 この発明の実施形態3である発電装置の要部構成を示す回路図である。
符号の説明
1 界磁巻線
2 固定子鉄心
3 固定子
4,81,82,83 回転子巻線
5 回転子鉄心
6 回転子
7 風車
8,9 受光素子
10 発光素子
11,14 板材(配置面)
12,13,71,72,85,86 切替回路
15 発光素子駆動部

Claims (12)

  1. 回転子巻線を有する回転子と固定子巻線を有する固定子とを備え、回転子の回転により固定子巻線から発電出力を得る発電装置において、
    前記固定子巻線に印加される電圧の単位時間あたりに進行する電気角と、前記回転子の回転により、当該回転子が有する磁極の単位時間あたりに進行する電気角との相対速度に応じ、前記回転子巻線に流れる電流を、一の方向または他の方向に切り替える非接触の切替手段を備える、
    ことを特徴とする発電装置。
  2. 前記非接触の切替手段は、前記固定子とともに静止して配置された適宜の形状の部材に略円形の円周上に複数配置され、発光動作は、円周を略2分割した2群に分かれ、該固定子巻線に印加される電圧位相に同期して、第1の群と第2の群が交互に一斉点灯と一斉消灯を継続して繰り返すよう制御される発光素子と、
    該回転子とともに回転可能な適宜の形状の部材に、前記回転子の軸に対し略同心円の円周上に略180度の物理角を隔てて、該発光素子の発光の照射を受けることが可能に対面し配置される2組の受光素子を含む切替回路とを備えることを特徴とする請求項1に記載の発電装置。
  3. 前記切替回路は、
    前記2組の受光素子の一方の受光素子がオン動作したとき導通状態になる第1のスイッチと前記第1スイッチが導通状態のとき前記回転子巻線に一端から他端に向かう電流を流すようにする第1の一方向性素子とを含む第1回路と、
    他方の受光素子がオン動作したとき導通状態になる第2スイッチと前記第2スイッチが導通状態のとき前記回転子巻線に他端から一端に向かう電流を流すようにする第2の一方向性素子とを含む第2回路と、
    を備えていることを特徴とする請求項2に記載の発電装置。
  4. 前記第1回路と前記第2回路とは、それぞれ、前記回転子巻線の両端子間に接続されている、ことを特徴とする請求項3に記載の発電装置。
  5. 前記第1回路と前記第2回路との直列回路が前記回転子巻線の両端子間に接続されている、ことを特徴とする請求項3に記載の発電装置。
  6. 前記非接触の切替手段は、前記固定子とともに静止して配置された適宜の形状の部材に略円形の円周上に複数配置され、磁界発生動作は、円周を略2分割した2群に分かれ、該固定子巻線に印加される電圧位相に同期して、第1の群と第2の群が交互に一斉磁界発生と一斉磁界発生停止を継続して繰り返すよう制御される磁界発生手段と、
    該回転子とともに回転可能な適宜の形状の部材に、前記回転子の軸に対し略同心円の円周上に略180度の物理角を隔てて、該磁界発生手段の発生する磁界を受けることが可能に対面し配置される2組のホール素子を含む切替回路とを備えることを特徴とする請求項1に記載の発電装置。
  7. 前記切替回路は、
    前記2組のホール素子の一方のホール素子がオン動作したとき導通状態になる第1のスイッチと前記第1のスイッチが導通状態のとき前記回転子巻線に一端から他端に向かう電流を流すようにする第1の一方向性素子とを含む第1回路と、
    他方のホール素子がオン動作したとき導通状態になる第2のスイッチと前記第の2スイッチが導通状態のとき前記回転子巻線に他端から一端に向かう電流を流すようにする第2の一方向性素子とを含む第2回路と、
    を備えていることを特徴とする請求項6に記載の発電装置。
  8. 前記第1回路と前記第2回路とは、それぞれ、前記回転子巻線の両端子間に接続されている、ことを特徴とする請求項7に記載の発電装置。
  9. 前記第1回路と前記第2回路の直列回路が前記回転子巻線の両端子間に接続されている、ことを特徴とする請求項7に記載の発電装置。
  10. 前記回転子巻線は、所定の電気角度だけ隔てて配置した第1の回転子巻線と第2の回転子巻線の前記一端同士を互いに接続して構成され、
    前記切替回路は、前記第1回路と前記第2回路とが、それぞれ、前記第1の回転子巻線の両端子間に接続されているとともに、前記第1回路と前記第2回路の一方がオン動作して前記第1の回転子巻線を導通状態に制御するとき、当該第1の回転子巻線と前記第2の回転子巻線とが閉回路を形成するように前記他端同士を電気的に接続し前記第2の回転子巻線に流れる電流を前記第1の回転子巻線に注入する構成、
    を備えていることを特徴とする請求項3または7に記載の発電装置。
  11. 前記回転子巻線は、所定の電気角度だけ隔てて配置した第1の回転子巻線、第2の回転子巻線および第3の回転子巻線の前記一端同士を互いに接続して構成され、
    前記切替回路は、前記第1回路と前記第2回路とが、それぞれ、前記第1の回転子巻線の両端子間に接続されているとともに、前記第1回路と前記第2回路の一方がオン動作して前記第1の回転子巻線を導通状態に制御するとき、当該第1の回転子巻線と前記第2および第3の回転子巻線とが閉回路を形成するように前記他端同士を電気的に接続し前記第2および第3の回転子巻線に流れる電流を前記第1の回転子巻線に注入する構成、
    を備えることを特徴とする請求項3または7に記載の発電装置。
  12. 前記所定の電気角は、略180度を、前記回転子が有する1極を構成する磁極片に配置される前記回転子巻線の数で除した商の数であることを特徴とする請求項10または11に記載の発電装置。

JP2004186733A 2004-06-24 2004-06-24 発電装置 Expired - Fee Related JP3805345B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186733A JP3805345B2 (ja) 2004-06-24 2004-06-24 発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186733A JP3805345B2 (ja) 2004-06-24 2004-06-24 発電装置

Publications (2)

Publication Number Publication Date
JP2006014459A true JP2006014459A (ja) 2006-01-12
JP3805345B2 JP3805345B2 (ja) 2006-08-02

Family

ID=35781024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186733A Expired - Fee Related JP3805345B2 (ja) 2004-06-24 2004-06-24 発電装置

Country Status (1)

Country Link
JP (1) JP3805345B2 (ja)

Also Published As

Publication number Publication date
JP3805345B2 (ja) 2006-08-02

Similar Documents

Publication Publication Date Title
US7755241B2 (en) Electrical machine
US7385330B2 (en) Permanent-magnet switched-flux machine
US8847455B2 (en) Rotary electric machine and driving controller for rotary electric machine
JP5216686B2 (ja) 永久磁石形発電機
US7843102B1 (en) Electrical machine
JP2007244194A (ja) 電動発電機及び自動電動発電充電装置
JP2010172048A (ja) 電動機
JP5543186B2 (ja) スイッチドリラクタンスモータ駆動システム
JP2021145544A (ja) 相補的で一方向磁性の回転子/固定子組立体の対
KR101184461B1 (ko) 스위치드 릴럭턴스 모터
JP5543185B2 (ja) スイッチドリラクタンスモータ駆動システム
JP3201875U (ja) 永久磁石モータのための駆動回路
JP2017225203A (ja) スイッチドリラクタンスモータ駆動システム
JP3805345B2 (ja) 発電装置
EP1147595B1 (en) Permanent magnet electric machine with energy saving control
JP2012533273A (ja) 界磁極発生器と回転する直流供給用ブラシによる交流発電装置及び直流発電装置
JP2006217685A (ja) 発電装置
JP3795901B2 (ja) 発電装置
KR20190028834A (ko) 다중브러시와 분배기를 이용한 ac 또는 dc 발전장치
JP3847740B2 (ja) 発電装置
KR102224902B1 (ko) 전동기
WO2006057206A1 (ja) 発電機
JP2006217684A (ja) 発電装置
KR20200099773A (ko) 전동기
RU177488U1 (ru) Однофазный синхронно-шаговый генератор переменного напряжения

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees