JP2006013354A - Manufacturing method of multilayer circuit board - Google Patents

Manufacturing method of multilayer circuit board Download PDF

Info

Publication number
JP2006013354A
JP2006013354A JP2004191729A JP2004191729A JP2006013354A JP 2006013354 A JP2006013354 A JP 2006013354A JP 2004191729 A JP2004191729 A JP 2004191729A JP 2004191729 A JP2004191729 A JP 2004191729A JP 2006013354 A JP2006013354 A JP 2006013354A
Authority
JP
Japan
Prior art keywords
insulating layer
insulating layers
shrinkage
temperature
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004191729A
Other languages
Japanese (ja)
Inventor
Norio Nakano
紀男 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004191729A priority Critical patent/JP2006013354A/en
Publication of JP2006013354A publication Critical patent/JP2006013354A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a multilayer circuit board, wherein its dimensional accuracy is improved by suppressing its contraction in the surface-direction, and by suppressing the generations of its deformation and its delamination. <P>SOLUTION: The manufacturing method has a first process of so laminating first insulating layers 1a, 1b, second insulating layers 1c, 1d, 1e whose contraction-initiating temperature is higher than the one for the first insulating layers; and third insulation layers 1f, 1g whose contraction initiating temperature is higher than the one of the second insulation layers as to interpose the second insulating layer between the first and third insulating layers; a second process for so heating a laminate 1 obtained in the first process at a temperature which is lower than the contraction-initiating temperature of the second insulation layers, and is not lower than the contraction-initiating temperature of the first insulating layers as to contract the first insulation layers in the thickness-direction of them largely in comparison with the surface-direction of them; a third process of so heating the laminate 1 at a temperature which is lower than the contraction-initiating temperature of the third insulating layers, and is not lower than the contraction-initiating temperature of the second insulating layers as to contract the second insulating layers in their thickness-direction large, in comparison with their surface-direction; and a fourth process of so heating the laminate 1 at a temperature which is not lower than the contraction-initiating temperature of the third insulating layers as to contract the third insulating layers in the thickness-direction of them by a large amount and as to complete the sintering of the laminate 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体装置や複合電子部品等に用いられる多層配線基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a multilayer wiring board used for semiconductor devices, composite electronic components, and the like.

従来より、半導体装置や複合電子部品等に多層回路基板が用いられている。   Conventionally, multilayer circuit boards have been used for semiconductor devices and composite electronic components.

かかる従来の多層回路基板としては、例えば、無機組成物から成る複数の絶縁層を積層した積層体の内部に配線導体やビアホール導体を設けてこれらを相互に接続し、更に前記積層体の一主面に電子部品素子を接続するための搭載部を設けた構造のものが知られている。近年、多層回路基板の寸法精度の向上が要求されており、収縮開始温度の異なる2種類の絶縁層として第1絶縁層と、第1絶縁層よりも高温で収縮を開始する第2絶縁層とを用いて積層体を形成することにより、焼成の収縮による寸法変化を抑制するようにした多層回路基板の製造方法が提案されている(例えば、特許文献1参照)。   As such a conventional multilayer circuit board, for example, a wiring conductor and a via-hole conductor are provided inside a laminated body in which a plurality of insulating layers made of an inorganic composition are laminated, and these are connected to each other. A structure having a mounting portion for connecting an electronic component element on the surface is known. In recent years, there has been a demand for improvement in dimensional accuracy of multilayer circuit boards. A first insulating layer as two types of insulating layers having different shrinkage start temperatures, and a second insulating layer that starts shrinking at a higher temperature than the first insulating layer, There has been proposed a method for manufacturing a multilayer circuit board in which a dimensional change due to firing shrinkage is suppressed by forming a laminated body using a material (see, for example, Patent Document 1).

上述した多層回路基板を製造する場合は、まず図3に示すように複数の絶縁層51a〜51eを用意し、それぞれの絶縁層に配線導体52やビアホール導体53を設ける。しかる後、絶縁層51a〜51eを積層してこれを一体焼成することにより、多層回路基板が製作される。このとき、絶縁層51a、51b、51cを形成する無機組成物と、絶縁層51d、51eを形成する無機組成物とでは、焼成に伴い収縮を開始する温度が相互に異なっている。   When the multilayer circuit board described above is manufactured, first, a plurality of insulating layers 51a to 51e are prepared as shown in FIG. 3, and a wiring conductor 52 and a via-hole conductor 53 are provided in each insulating layer. Thereafter, the insulating layers 51a to 51e are stacked and integrally fired to manufacture a multilayer circuit board. At this time, the temperature at which shrinkage starts with firing is different between the inorganic composition forming the insulating layers 51a, 51b, and 51c and the inorganic composition forming the insulating layers 51d and 51e.

このような多層回路基板の製造方法によれば、収縮開始温度の低い絶縁層が収縮を開始した際は、未焼結状態にある収縮開始温度の高い絶縁層により面方向における収縮が抑制される。一方、収縮開始温度の高い絶縁層が収縮を開始した際は、収縮開始温度の低い絶縁層により面方向における収縮が抑制される。以上のようなメカニズムにより、積層体の面方向への収縮を抑制し、厚み方向に大きく収縮させることで、多層回路基板の寸法精度を高くなす試みがなされている。
特開2001−15875号公報
According to such a method for manufacturing a multilayer circuit board, when an insulating layer having a low shrinkage start temperature starts to shrink, shrinkage in the surface direction is suppressed by the insulating layer having a high shrinkage start temperature in an unsintered state. . On the other hand, when an insulating layer having a high shrinkage start temperature starts to shrink, shrinkage in the surface direction is suppressed by the insulating layer having a low shrinkage start temperature. Attempts have been made to increase the dimensional accuracy of the multilayer circuit board by suppressing the shrinkage in the plane direction of the laminate and greatly shrinking in the thickness direction by the mechanism as described above.
JP 2001-15875 A

しかしながら、上述した従来の製造方法においては、収縮開始温度の異なる2種類の絶縁層のみを用いて積層体を形成しているため、2種類の絶縁層間で収縮挙動の重なる領域が存在する場合、すなわち第1絶縁層の収縮が完了する前に第2絶縁層の収縮が開始してしまう場合には、第1絶縁層と第2絶縁層がともに収縮をしてしまうこととなり、多層回路基板の寸法精度が低下してしまうという欠点を有していた。そこで、第1絶縁層の収縮を完了させた後、第2絶縁層の収縮を開始させるようにして積層体を焼結させることにより各々の絶縁層の収縮を抑制する方法も考えられるが、この場合は、第1絶縁層と第2絶縁層との境界面において、第1絶縁層と第2絶縁層との接着強度が低く、層間剥離や積層体の変形が発生しやすくなる。このような層間剥離や変形が発生すると、積層体の絶縁性や強度の劣化を招くという欠点が誘発される。   However, in the above-described conventional manufacturing method, since the laminate is formed using only two types of insulating layers having different shrinkage start temperatures, when there are regions where shrinkage behavior overlaps between the two types of insulating layers, That is, when the contraction of the second insulating layer starts before the contraction of the first insulating layer is completed, both the first insulating layer and the second insulating layer contract, and the multilayer circuit board There was a drawback that the dimensional accuracy was lowered. Then, after completing the contraction of the first insulating layer, a method of suppressing the contraction of each insulating layer by sintering the laminated body so as to start the contraction of the second insulating layer is conceivable. In this case, the adhesive strength between the first insulating layer and the second insulating layer is low at the interface between the first insulating layer and the second insulating layer, and delamination and deformation of the stacked body are likely to occur. When such delamination and deformation occur, the disadvantage of inducing deterioration of the insulation and strength of the laminate is induced.

本発明は上記欠点に鑑み案出されたもので、その目的は、面方向の収縮を抑制させることにより、寸法精度が高く、且つ変形や層間剥離の発生を有効に抑えることが可能な多層回路基板の製造方法を提供することにある。   The present invention has been devised in view of the above-described drawbacks, and its purpose is to provide a multilayer circuit that has high dimensional accuracy and can effectively suppress the occurrence of deformation and delamination by suppressing shrinkage in the surface direction. It is to provide a method for manufacturing a substrate.

本発明の多層回路基板の製造方法は、第1絶縁層と、前記第1絶縁層よりも高温で収縮を開始する第2絶縁層と、前記第2絶縁層よりも高温で収縮を開始する第3絶縁層とを、前記第1絶縁層と前記第3絶縁層との間に前記第2絶縁層を介在させて積層することにより積層体を形成する工程Aと、前記積層体を、第2絶縁層の収縮開始温度よりも低く、且つ第1絶縁層の収縮開始温度以上の温度で加熱することにより前記第1絶縁層をその面方向に比して厚み方向に大きく収縮させる工程Bと、前記第1絶縁層の収縮が継続している状態で、前記積層体を、第3絶縁層の収縮開始温度よりも低く、且つ第2絶縁層の収縮開始温度以上の温度で加熱することにより前記第2絶縁層をその面方向に比して厚み方向に大きく収縮させる工程Cと、前記第1絶縁層の収縮が完了した後、前記第2絶縁層の収縮が継続している状態で、前記積層体を、前記第3の絶縁層の収縮開始温度以上の温度で加熱することにより前記第3絶縁層をその面方向に比して厚み方向に大きく収縮させる工程Dと、を含むものである。   The method for manufacturing a multilayer circuit board of the present invention includes a first insulating layer, a second insulating layer that starts shrinking at a higher temperature than the first insulating layer, and a first insulating layer that starts shrinking at a higher temperature than the second insulating layer. Forming a stacked body by stacking 3 insulating layers with the second insulating layer interposed between the first insulating layer and the third insulating layer; and A step B in which the first insulating layer is greatly contracted in the thickness direction as compared to the surface direction by heating at a temperature lower than the contraction start temperature of the insulating layer and not less than the contraction start temperature of the first insulating layer; By heating the laminated body at a temperature lower than the shrinkage start temperature of the third insulating layer and not less than the shrinkage start temperature of the second insulating layer while the shrinkage of the first insulating layer continues. A step C of contracting the second insulating layer in the thickness direction relative to the surface direction; After the contraction of the insulating layer is completed, in a state where the contraction of the second insulating layer continues, the stacked body is heated at a temperature equal to or higher than the contraction start temperature of the third insulating layer. And a step D of greatly contracting the insulating layer in the thickness direction as compared to the surface direction.

また、本発明の多層配線基板の製造方法は、前記工程Cにおいて、前記第2絶縁層が収縮を開始するまでの間に、前記第1絶縁層はその全収縮量に対し90%に相当する体積収縮が完了していることを特徴とするものである。   Further, in the method for manufacturing a multilayer wiring board according to the present invention, the first insulating layer corresponds to 90% of the total contraction amount until the second insulating layer starts contracting in the step C. The volume shrinkage is completed.

更に、本発明の多層配線基板の製造方法は、前記工程Dにおいて、前記第3絶縁層が収縮を開始するまでの間に、前記第2絶縁層はその全収縮量に対し90%に相当する体積収縮が完了していることを特徴とするものである。   Furthermore, in the method for manufacturing a multilayer wiring board according to the present invention, in the step D, the second insulating layer corresponds to 90% of the total shrinkage until the third insulating layer starts to shrink. The volume shrinkage is completed.

本発明の多層回路基板の製造方法によれば、積層体を、第2絶縁層の収縮開始温度よりも低く、且つ第1絶縁層の収縮開始温度以上の温度で加熱することにより、前記第1絶縁層をその面方向に比して厚み方向に大きく収縮させ、しかる後、前記積層体を、第3絶縁層の収縮開始温度よりも低く、且つ第2絶縁層の収縮開始温度以上の温度で加熱することにより、前記第2絶縁層をその面方向に比して厚み方向に大きく収縮させ、最後に、第3絶縁層の収縮開始温度以上の温度で加熱することにより、第1、第2及び第3の絶縁層を焼結させている。ここで重要なことは、前記積層体を、第1絶縁層と第3絶縁層との間に第2絶縁層を介在させて形成した上、第2絶縁層の収縮開始時に第1絶縁層の収縮が継続している状態にしておくようにし、また、第3絶縁層の収縮開始時に第1絶縁層の収縮が完了し、且つ第2絶縁層の収縮が継続している状態にしておくことである。   According to the method for manufacturing a multilayer circuit board of the present invention, the laminate is heated at a temperature lower than the shrinkage start temperature of the second insulating layer and equal to or higher than the shrinkage start temperature of the first insulating layer. The insulating layer is greatly shrunk in the thickness direction as compared to the surface direction, and then the laminate is at a temperature lower than the shrinkage start temperature of the third insulation layer and higher than the shrinkage start temperature of the second insulation layer. By heating, the second insulating layer is greatly shrunk in the thickness direction as compared to the surface direction, and finally, the first and second are heated at a temperature equal to or higher than the shrinkage start temperature of the third insulating layer. And the third insulating layer is sintered. What is important here is that the stacked body is formed by interposing the second insulating layer between the first insulating layer and the third insulating layer, and at the start of shrinkage of the second insulating layer, Make sure that the contraction continues, and that the contraction of the first insulating layer is completed at the start of contraction of the third insulating layer, and that the contraction of the second insulating layer continues. It is.

以上のようにして積層体を焼結させることにより、まず第1絶縁層が収縮する際、第1絶縁層の面方向への収縮が未焼結状態の第2絶縁層及び第3絶縁層の剛性により抑制される。次に第2絶縁層の収縮開始時には、第1絶縁層、第2絶縁層がともに収縮をするが、第1絶縁層及び第2絶縁層の面方向への収縮は未焼結状態の第3絶縁層の剛性により抑制される。この間に、第1絶縁層と第2絶縁層との境界面で第1絶縁層を構成する無機組成物と第2絶縁層を構成する無機組成物との拡散が起こり、第1絶縁層と第2絶縁層との密着性が良好に維持される。そして第3絶縁層の収縮開始時には、第2絶縁層、第3絶縁層がともに収縮を行うが、第2絶縁層及び第3絶縁層の面方向への収縮は、既に焼結している第1絶縁層の剛性により抑制される。この間に、第2絶縁層と第3絶縁層との境界面で第2絶縁層を構成する無機組成物と第3絶縁層を構成する無機組成物との拡散が起こり第2絶縁層と第3絶縁層との密着性が良好に維持される。結果として、積層体の面方向の収縮を抑制させることとなり、多層回路基板の反りの発生を抑え、寸法精度を高くするとともに、絶縁層間の層間剥離を有効に防止することができる。   By sintering the laminate as described above, when the first insulating layer first shrinks, the shrinkage in the surface direction of the first insulating layer is caused by the unsintered second insulating layer and the third insulating layer. Suppressed by rigidity. Next, at the start of contraction of the second insulating layer, both the first insulating layer and the second insulating layer contract, but the contraction in the plane direction of the first insulating layer and the second insulating layer is the third in the unsintered state. It is suppressed by the rigidity of the insulating layer. During this time, diffusion of the inorganic composition constituting the first insulating layer and the inorganic composition constituting the second insulating layer occurs at the boundary surface between the first insulating layer and the second insulating layer, and the first insulating layer and the second insulating layer 2 Adhesion with the insulating layer is maintained well. At the start of contraction of the third insulating layer, both the second insulating layer and the third insulating layer contract. However, the contraction in the surface direction of the second insulating layer and the third insulating layer is already sintered. It is suppressed by the rigidity of one insulating layer. During this time, diffusion occurs between the inorganic composition constituting the second insulating layer and the inorganic composition constituting the third insulating layer at the boundary surface between the second insulating layer and the third insulating layer, and the second insulating layer and the third insulating layer. Good adhesion to the insulating layer is maintained. As a result, the shrinkage in the plane direction of the laminate is suppressed, the occurrence of warpage of the multilayer circuit board can be suppressed, the dimensional accuracy can be increased, and delamination between insulating layers can be effectively prevented.

以下、本発明を添付図面に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の製造方法によって製作した多層回路基板の断面図であり、図中の1a、1bは第1絶縁層、1c〜1eは第2絶縁層、1f、1gは第3絶縁層、2は配線導体、3はビアホール導体である。   FIG. 1 is a cross-sectional view of a multilayer circuit board manufactured by the manufacturing method of the present invention, in which 1a and 1b are first insulating layers, 1c to 1e are second insulating layers, 1f and 1g are third insulating layers, 2 is a wiring conductor and 3 is a via-hole conductor.

同図に示す多層回路基板10は、第1絶縁層1a、1b、第2絶縁層1c〜1e、第3絶縁層1f、1gを積層した構造を有している。多層回路基板10の内部及び表層には、配線導体2が形成されており、表層の配線導体は、主に電子部品素子の搭載部となる接続パッドとして機能し、内部の配線導体及びビアホール導体は、主に各回路素子を電気的に接続する配線や、インダクタやキャパシタ等の回路素子として機能する。   A multilayer circuit board 10 shown in FIG. 1 has a structure in which first insulating layers 1a and 1b, second insulating layers 1c to 1e, and third insulating layers 1f and 1g are stacked. A wiring conductor 2 is formed inside and on the surface layer of the multilayer circuit board 10, and the surface layer wiring conductor mainly functions as a connection pad serving as an electronic component element mounting portion, and the inner wiring conductor and via-hole conductor are It mainly functions as wiring for electrically connecting each circuit element, and circuit elements such as inductors and capacitors.

第1絶縁層1a、1b、第2絶縁層1c〜1e及び第3絶縁層1f、1gは、それぞれ焼成時の収縮開始温度が異なる無機組成物から成り、これら無機組成物の材料としては、例えば800℃〜1200℃の比較的低い温度で焼成が可能なガラス−セラミック材料が好適に用いられる。ガラス−セラミック材料にはガラス粉末及びセラミック粉末が含まれ、ガラス粉末は、例えば30〜100重量部含まれており、ガラス粉末を除く材料がセラミック粉末となる。本実施形態においては、例えば、第1絶縁層はガラス粉末を87重量部、第2絶縁層はガラス粉末を67重量部、第3絶縁層はガラス粉末を55重量部の組成から成る材料により製作した。   The first insulating layers 1a and 1b, the second insulating layers 1c to 1e, and the third insulating layers 1f and 1g are composed of inorganic compositions having different shrinkage start temperatures at the time of firing. Examples of the materials of these inorganic compositions include: A glass-ceramic material that can be fired at a relatively low temperature of 800 ° C. to 1200 ° C. is preferably used. The glass-ceramic material includes a glass powder and a ceramic powder. The glass powder is, for example, 30 to 100 parts by weight, and the material excluding the glass powder is a ceramic powder. In this embodiment, for example, the first insulating layer is made of a material composed of 87 parts by weight of glass powder, the second insulating layer is made of 67 parts by weight of glass powder, and the third insulating layer is made of a material composed of 55 parts by weight of glass powder. did.

ガラス粉末の具体的な組成としては、例えば、必須成分として、SiO2を20〜70重量部、Al23を0.5〜30重量部、MgOを3〜60重量部、また任意成分として、CaOを0〜35重量部、BaOを0〜35重量部、SrOを0〜35重量部、B23を0〜20重量部、ZnOを0〜30重量部、TiO2を0〜10重量部、Na2Oを0〜3重量部、Li2Oを0〜5重量部含むものが挙げられる。 As a specific composition of the glass powder, for example, as essential components, 20 to 70 parts by weight of SiO 2 , 0.5 to 30 parts by weight of Al 2 O 3 , 3 to 60 parts by weight of MgO, and optional components 0 to 35 parts by weight of CaO, 0 to 35 parts by weight of BaO, 0 to 35 parts by weight of SrO, 0 to 20 parts by weight of B 2 O 3 , 0 to 30 parts by weight of ZnO, 0 to 10 parts of TiO 2 Part by weight, 0 to 3 parts by weight of Na 2 O and 0 to 5 parts by weight of Li 2 O can be mentioned.

セラミック粉末としては、Al23、SiO2、MgTiO3、CaZrO3、CaTiO3、Mg2SiO4、BaTi49、ZrTiO4、SrTiO3、BaTiO3、TiO2から選ばれる1種以上が挙げられる。 The ceramic powder includes at least one selected from Al 2 O 3 , SiO 2 , MgTiO 3 , CaZrO 3 , CaTiO 3 , Mg 2 SiO 4 , BaTi 4 O 9 , ZrTiO 4 , SrTiO 3 , BaTiO 3 and TiO 2. Can be mentioned.

上記組成のガラス粉末とセラミック粉末との組み合わせによれば、1000℃以下での低温焼結が可能となるとともに、配線導体として、銀(融点960℃)、銅(融点1083℃)、金(融点1063℃)などの低抵抗導体を用いて形成することが可能となり、低損失な回路を作成できる。また、誘電率の制御も可能であり、高誘電率化による回路の小型化、低損失化、あるいは、低誘電率化による高速伝送化に適している。しかも、上記の範囲で種々組成を制御することによって、焼成収縮挙動を容易に制御、変更することができる。   According to the combination of the glass powder and the ceramic powder having the above composition, low-temperature sintering at 1000 ° C. or lower is possible, and silver (melting point: 960 ° C.), copper (melting point: 1083 ° C.), gold (melting point) as the wiring conductor. 1063 ° C.) or the like, and a low-loss circuit can be created. Also, the dielectric constant can be controlled, which is suitable for circuit miniaturization and low loss due to high dielectric constant, or high-speed transmission due to low dielectric constant. In addition, by controlling various compositions within the above range, the firing shrinkage behavior can be easily controlled and changed.

尚、配線導体2やビアホール導体3は銀、銅、金のいずれか一種を含む導電材料からから成り、その厚みは例えば5〜25μmに設定される。   The wiring conductor 2 and the via-hole conductor 3 are made of a conductive material containing any one of silver, copper, and gold, and the thickness thereof is set to 5 to 25 μm, for example.

また、ビアホール導体3の直径は任意に設定することができ、ビアホール導体3が埋設される絶縁層の厚みが10〜300μmの場合、ビアホール導体3の直径は例えば50〜300μmに設定される。   Moreover, the diameter of the via-hole conductor 3 can be set arbitrarily, and when the thickness of the insulating layer in which the via-hole conductor 3 is embedded is 10 to 300 μm, the diameter of the via-hole conductor 3 is set to 50 to 300 μm, for example.

次に上述した多層回路基板の製造方法について、図を用いて説明する。   Next, the manufacturing method of the multilayer circuit board mentioned above is demonstrated using figures.

(工程A)
図2に示す1a、1bは第1絶縁層であり、1c〜1eは第2絶縁層であり、1f、1gは第3絶縁層である。これらの絶縁層は、例えば上述したガラス粉末とセラミック粉末とを組み合わせた粉末に、有機バインダーと有機溶剤及び必要に応じて可塑剤とを混合してスラリー化し、このスラリーを用いてドクターブレード法などによりテープ成形を行い、所定寸法に切断することによって得られるセラミックグリーンシートである。このとき、第1絶縁層1a、1bは第2絶縁層1c〜1eに比して厚みが薄く、第2絶縁層1c〜1eは第3絶縁層1f、1gに比して厚みが薄く形成されており、第1絶縁層1a、1bの各々の厚みは、例えば2〜80μmに設定され、第2絶縁層1c〜1eの各々の厚みは、例えば5〜150μmに設定され、第3絶縁層1f、1gの各々の厚みは、例えば10〜300μmに設定される。
(Process A)
In FIG. 2, 1a and 1b are first insulating layers, 1c to 1e are second insulating layers, and 1f and 1g are third insulating layers. These insulating layers are, for example, a powder obtained by combining the above-described glass powder and ceramic powder, mixed with an organic binder, an organic solvent, and, if necessary, a plasticizer to form a slurry, and using this slurry, a doctor blade method or the like It is a ceramic green sheet obtained by tape-molding and cutting to a predetermined dimension. At this time, the first insulating layers 1a and 1b are thinner than the second insulating layers 1c to 1e, and the second insulating layers 1c to 1e are thinner than the third insulating layers 1f and 1g. The thickness of each of the first insulating layers 1a and 1b is set to, for example, 2 to 80 μm, the thickness of each of the second insulating layers 1c to 1e is set to, for example, 5 to 150 μm, and the third insulating layer 1f Each thickness of 1 g is set to 10 to 300 μm, for example.

次に、各絶縁層にパンチングなどによって貫通孔を形成し、その貫通孔内にビアホール導体3となる導体ペーストを充填し、各絶縁層の主面には配線導体2となる導体ペーストをスクリーン印刷法などによって被着させる。   Next, through holes are formed in each insulating layer by punching or the like, a conductive paste that becomes the via-hole conductor 3 is filled in the through holes, and a conductor paste that becomes the wiring conductor 2 is screen-printed on the main surface of each insulating layer Deposit by law.

本実施形態においては、例えば、第1絶縁層を構成する無機材料はガラス粉末が、SOを40重量部、Alを2重量部、MgOを15重量部、CaOを1重量部、BaOを15重量部、Bを20重量部、ZnOを1重量部、TiOを0.5重量部、NaOを0.5重量部、LiOを5重量部と、セラミック粉末が、MgTiOを15重量部の組成から成り、また第2絶縁層を構成する無機組成物はガラス粉末が、SOを40重量部、Alを2重量部、MgOを15重量部、CaOを1重量部、BaOを15重量部、BOを20重量部、ZnOを1重量部、TiOを0.5重量部、NaOを0.5重量部、LiOを5重量部、セラミック粉末が、Alを45重量部含む材料から成り、第3絶縁層を構成する無機材料はガラス粉末が、SOを40重量部、Alを2重量部、MgOを15重量部、CaOを1重量部、BaOを15重量部、Bを20重量部、ZnOを1重量部、TiOを0.5重量部、NaOを0.5重量部、LiOを5重量部と、セラミック粉末が、MgTiOを82重量部の組成から成っている。このように絶縁層を構成する無機組成物のガラス含有量を変えることにより各絶縁層ごとに収縮開始温度を異ならせることができる。これらの無機組成物に、有機バインダとしてアクリルバインダ、有機溶剤としてトルエンを添加してなるスラリーを調整し、それぞれ第1絶縁層、第2絶縁層、第3絶縁層となるセラミックグリーンシートを形成した。そして、配線導体2とビアホール導体3の材料は、例えば、銀粉末に、有機バインダとしてエチルセルロース、有機溶剤として2−2−4−トリメチル−3−3−ペンタジオールモノイソブチレートを添加して成るペーストを用いた。 In this embodiment, for example, the inorganic material constituting the first insulating layer is glass powder, 40 parts by weight of SO 2 , 2 parts by weight of Al 2 O 3 , 15 parts by weight of MgO, 1 part by weight of CaO, 15 parts by weight of BaO, 20 parts by weight of B 2 O 3 , 1 part by weight of ZnO, 0.5 parts by weight of TiO 2 , 0.5 parts by weight of Na 2 O, 5 parts by weight of Li 2 O, ceramic The powder is composed of 15 parts by weight of MgTiO 3, and the inorganic composition constituting the second insulating layer is glass powder, 40 parts by weight of SO 2 , 2 parts by weight of Al 2 O 3 , and 15 parts by weight of MgO. Part, CaO 1 part, BaO 15 part, BO 3 20 part, ZnO 1 part, TiO 2 0.5 part, Na 2 O 0.5 part, Li 2 O 5 parts by weight, ceramic powder, or a material containing 45 parts by weight of Al 2 O 3 Made, the inorganic material glass powder constituting the third insulating layer, the SO 2 40 parts by weight, Al 2 O 3 and 2 parts by weight, 15 parts by weight of MgO, 1 part by weight of CaO, 15 parts by weight of BaO, 20 parts by weight of B 2 O 3 , 1 part by weight of ZnO, 0.5 part by weight of TiO 2 , 0.5 part by weight of Na 2 O, 5 parts by weight of Li 2 O, ceramic powder, MgTiO 3 The composition is 82 parts by weight. Thus, the shrinkage start temperature can be varied for each insulating layer by changing the glass content of the inorganic composition constituting the insulating layer. A slurry obtained by adding an acrylic binder as an organic binder and toluene as an organic solvent to these inorganic compositions was prepared to form ceramic green sheets serving as a first insulating layer, a second insulating layer, and a third insulating layer, respectively. . The material of the wiring conductor 2 and the via-hole conductor 3 is formed, for example, by adding ethyl cellulose as an organic binder and 2-2-4-trimethyl-3-3-pentadiol monoisobutyrate as an organic solvent to silver powder. A paste was used.

このようにして得られた絶縁層を、第1絶縁層と第3絶縁層との間に第2絶縁層が介在されるようにして所定の順に積層することにより積層体1を形成する。尚、本実施形態においては第1絶縁層をA、第2絶縁層をB、第3絶縁層をCとした場合、ABCBCBAの積層順になるようにして各絶縁層を積層した。   The laminated body 1 is formed by laminating the insulating layers thus obtained in a predetermined order so that the second insulating layer is interposed between the first insulating layer and the third insulating layer. In the present embodiment, when the first insulating layer is A, the second insulating layer is B, and the third insulating layer is C, the respective insulating layers are stacked in the order of ABCBCBA stacking.

(工程B)
次に、得られた積層体1を、第2絶縁層の収縮開始温度よりも低く、且つ第1絶縁層の収縮開始温度以上の温度で加熱することにより、第1絶縁層1a、1bをその面方向に比して厚み方向に大きく収縮させている。かかる工程Bにおいて、第1絶縁層1a、1bが収縮する際、第1絶縁層1a、1bの面方向への収縮が未焼結状態の第2絶縁層1c〜1e及び第3絶縁層1f、1gの剛性により抑制されることになる。
(Process B)
Next, the obtained laminated body 1 is heated at a temperature lower than the shrinkage start temperature of the second insulating layer and equal to or higher than the shrinkage start temperature of the first insulating layer, whereby the first insulating layers 1a and 1b are heated. It is contracted greatly in the thickness direction compared to the surface direction. In the step B, when the first insulating layers 1a and 1b contract, the contraction in the surface direction of the first insulating layers 1a and 1b is unsintered second insulating layers 1c to 1e and the third insulating layer 1f, It is suppressed by the rigidity of 1 g.

本実施形態においては、第1絶縁層は収縮開始温度が690℃、第2絶縁層は収縮開始温度が765℃になるように無機組成物の組成が調整されており、例えば、焼成温度を750℃に保った状態で所定時間、積層体の加熱を行う。   In the present embodiment, the composition of the inorganic composition is adjusted such that the first insulating layer has a shrinkage start temperature of 690 ° C., and the second insulating layer has a shrinkage start temperature of 765 ° C., for example, the firing temperature is 750 ° C. The laminated body is heated for a predetermined time while being kept at ° C.

(工程C)
次に、第1絶縁層1a、1bの収縮が継続している状態で、積層体1を、第3絶縁層の収縮開始温度よりも低く、且つ第2絶縁層の収縮開始温度以上の温度で加熱することにより、第2絶縁層1c〜1eをその面方向に比して厚み方向に大きく収縮させている。かかる工程Cにおいて、第1絶縁層1a、1bの収縮が継続している状態で第2絶縁層1c〜1eの収縮を開始させることにより、第1絶縁層と第2絶縁層との境界面、すなわち絶縁層1a−絶縁層1c間、絶縁層1b−絶縁層1e間の境界面で第1絶縁層を構成する無機組成物と第2絶縁層を構成する無機組成物との拡散が起こり第1絶縁層と第2絶縁層との密着性が向上する。また、第1絶縁層1a、1bの収縮が継続している状態で第2絶縁層1c〜1eをその収縮開始温度以上の温度で加熱するので、第1絶縁層及び第2絶縁層1c〜1eがともに収縮することになるが、この間は、未焼結状態の第3絶縁層1f、1gの剛性により第1絶縁層1a、1b及び第2絶縁層1c〜1eの面方向への収縮が抑制される。
(Process C)
Next, in a state in which the first insulating layers 1a and 1b continue to contract, the stacked body 1 is at a temperature lower than the contraction start temperature of the third insulating layer and equal to or higher than the contraction start temperature of the second insulating layer. By heating, the second insulating layers 1c to 1e are contracted greatly in the thickness direction as compared to the surface direction. In the step C, by starting contraction of the second insulating layers 1c to 1e in a state where the contraction of the first insulating layers 1a and 1b is continued, a boundary surface between the first insulating layer and the second insulating layer, That is, diffusion occurs between the inorganic composition constituting the first insulating layer and the inorganic composition constituting the second insulating layer at the interface between the insulating layer 1a and the insulating layer 1c and at the interface between the insulating layer 1b and the insulating layer 1e. Adhesion between the insulating layer and the second insulating layer is improved. In addition, since the second insulating layers 1c to 1e are heated at a temperature equal to or higher than the shrinkage start temperature while the first insulating layers 1a and 1b continue to contract, the first insulating layer and the second insulating layers 1c to 1e are heated. In the meantime, the shrinkage in the surface direction of the first insulating layers 1a and 1b and the second insulating layers 1c to 1e is suppressed by the rigidity of the unsintered third insulating layers 1f and 1g. Is done.

また本実施形態においては、第3絶縁層の収縮開始温度が835℃になるように無機組成物の組成が調整されており、この工程Cでは、焼成温度を800℃に保った状態で所定時間、積層体の加熱を行う。   In this embodiment, the composition of the inorganic composition is adjusted so that the shrinkage start temperature of the third insulating layer is 835 ° C. In this step C, the firing temperature is kept at 800 ° C. for a predetermined time. Then, the laminated body is heated.

(工程D)
次に、第1絶縁層1a、1bの収縮が完了した後、第2絶縁層1c〜1eの収縮が継続している状態で、積層体1を、第3絶縁層1f、1gの収縮開始温度以上の温度で加熱することにより第3絶縁層をその面方向に比して厚み方向に大きく収縮させる。かかる工程Dにおいて、第2絶縁層1c〜1eの収縮が継続している状態で、第3絶縁層1f、1gの収縮を開始させることにより、第2絶縁層と第3絶縁層との境界面、すなわち絶縁層1c−絶縁層1f間、絶縁層1f−絶縁層1d、絶縁層1d−絶縁層1g、絶縁層1g−絶縁層1e間の境界面で第2絶縁層を構成する無機組成物と第3絶縁層を構成する無機組成物との拡散が起こり第2絶縁層と第3絶縁層との密着性が向上する。また、第2絶縁層1c〜1e及び第3絶縁層1f、1gがともに収縮している間は、第2絶縁層1c〜1e及び第3絶縁層1f、gの面方向への収縮は、収縮を完了した第1絶縁層1a、1bの剛性により抑制されることになる。
(Process D)
Next, after the contraction of the first insulating layers 1a and 1b is completed, the contraction start temperature of the third insulating layers 1f and 1g is reduced in the state in which the contraction of the second insulating layers 1c to 1e continues. By heating at the above temperature, the third insulating layer is greatly contracted in the thickness direction as compared to the surface direction. In the step D, the interface between the second insulating layer and the third insulating layer is started by starting the contraction of the third insulating layers 1f and 1g while the contraction of the second insulating layers 1c to 1e is continued. That is, the inorganic composition constituting the second insulating layer at the interface between the insulating layer 1c-insulating layer 1f, the insulating layer 1f-insulating layer 1d, the insulating layer 1d-insulating layer 1g, and the insulating layer 1g-insulating layer 1e Diffusion with the inorganic composition constituting the third insulating layer occurs, and adhesion between the second insulating layer and the third insulating layer is improved. Further, while the second insulating layers 1c to 1e and the third insulating layers 1f and 1g are both contracted, the contraction in the plane direction of the second insulating layers 1c to 1e and the third insulating layers 1f and g is contracted. Is suppressed by the rigidity of the first insulating layers 1a and 1b.

この工程Dでは、例えば焼成温度を860℃に保った状態で積層体の加熱を続けることにより第2絶縁層1c〜1e及び第3絶縁層1f、1gの収縮を行い、その状態で加熱を続けることにより、まず第2絶縁層1c〜1eが焼結し、つづいて第3絶縁層1f、1gが焼結され、これにより積層体全体が焼結されたことになる。   In this step D, for example, the second insulating layers 1c to 1e and the third insulating layers 1f and 1g are contracted by continuing to heat the laminated body while maintaining the firing temperature at 860 ° C., and heating is continued in that state. As a result, first, the second insulating layers 1c to 1e are sintered, and then the third insulating layers 1f and 1g are sintered, whereby the entire laminate is sintered.

ここで収縮の開始とは、絶縁層を構成する無機組成物の焼結に伴う収縮が開始されることを意味している。絶縁層に含まれる有機バインダーは加熱により分解、除去され、この際、0〜1%程度の収縮が発生することがあるが、これはバインダの除去に伴うものであり、無機組成物の焼結による実質的な収縮とは別のものである。脱バインダ温度は使用するバインダにより異なるが、アクリルあるいはメタクリルバインダでは500℃、ブチラールバインダでは600℃程度までに終了する。焼成における収縮開始温度については、その温度の差が10℃以上であることが望ましく、更に望ましくは20℃以上である。   Here, the start of contraction means that contraction accompanying the sintering of the inorganic composition constituting the insulating layer is started. The organic binder contained in the insulating layer is decomposed and removed by heating, and in this case, shrinkage of about 0 to 1% may occur. This is due to the removal of the binder, and the inorganic composition is sintered. This is different from the substantial shrinkage caused by. The binder removal temperature varies depending on the binder to be used, but it ends by about 500 ° C. for an acrylic or methacrylic binder and about 600 ° C. for a butyral binder. Regarding the shrinkage start temperature in firing, the difference in temperature is preferably 10 ° C. or higher, more preferably 20 ° C. or higher.

焼成における体積収縮については、工程Cにおいて第2絶縁層1c〜1eが収縮を開始するまでの間に、第1絶縁層1a、1bは、その全収縮量に対し90%に相当する体積収縮が完了するように加熱時間を設定している。これは第1絶縁層の収縮量が90%未満の場合、収縮の抑制効果のばらつきが大きくなり、その結果、面方向の寸法精度にばらつきが生じるためである。したがって、第2絶縁層1c〜1eが収縮を開始するまでの間に、第1絶縁層1a、1bは、その全収縮量に対し90%に相当する体積収縮が完了していることが望ましく、更には95%以上完了していることが望ましい。これと同様の理由により、工程Dにおいて第3絶縁層1f、1gが収縮を開始するまでの間に、第2絶縁層1c〜1eは、その全収縮量に対し90%に相当する体積収縮が完了していることが望ましく、更には95%以上完了していることが望ましい。   Regarding the volume shrinkage in firing, the first insulation layers 1a and 1b have a volume shrinkage corresponding to 90% of the total shrinkage amount until the second insulation layers 1c to 1e start shrinking in Step C. The heating time is set to complete. This is because when the shrinkage amount of the first insulating layer is less than 90%, the variation of the shrinkage suppression effect becomes large, and as a result, the dimensional accuracy in the surface direction varies. Therefore, it is desirable that the first insulating layers 1a and 1b have completed volume shrinkage corresponding to 90% of the total shrinkage amount until the second insulating layers 1c to 1e start shrinking, Furthermore, it is desirable that 95% or more is completed. For the same reason, the second insulating layers 1c to 1e have a volume shrinkage corresponding to 90% of the total shrinkage amount until the third insulating layers 1f and 1g start shrinking in the process D. It is desirable that it is completed, and more preferably 95% or more.

また本発明において、絶縁層の収縮完了とは、その絶縁層の全体積の収縮が99%以上進行した時点を意味する。   Further, in the present invention, the completion of contraction of the insulating layer means the time when the contraction of the entire volume of the insulating layer has progressed 99% or more.

また各絶縁層の厚みに関し、熱の印加に伴い第1絶縁層1a、1bよりも高温で収縮を開始する第2絶縁層1c〜1eは、第1絶縁層1a、1bよりも厚みを厚くするとともに、熱の印加に伴い第2絶縁層1c〜1eよりも高温で収縮を開始する第3絶縁層1f、1gは、第2絶縁層1c〜1eよりも厚みを厚くしている。これにより、低い収縮開始温度の第1絶縁層1a、1bは、その収縮による応力が小さいので、高い収縮開始温度の第2絶縁層1c〜1eによって面方向への収縮がより効果的に抑制されることとなる。尚、第2絶縁層と第3絶縁層との厚みの関係に対しても同様のことがいえる。   Regarding the thickness of each insulating layer, the second insulating layers 1c to 1e that start shrinking at a higher temperature than the first insulating layers 1a and 1b with application of heat are made thicker than the first insulating layers 1a and 1b. At the same time, the third insulating layers 1f and 1g that start shrinking at a higher temperature than the second insulating layers 1c to 1e with the application of heat are thicker than the second insulating layers 1c to 1e. Thereby, the first insulating layers 1a and 1b having a low shrinkage start temperature have a small stress due to the shrinkage, and thus the shrinkage in the plane direction is more effectively suppressed by the second insulation layers 1c to 1e having a high shrinkage start temperature. The Rukoto. The same applies to the thickness relationship between the second insulating layer and the third insulating layer.

尚、各絶縁層は、積層方向の中央に配される第2絶縁層1dを境に、第1、第2、第3絶縁層が上下対称になるように、すなわちABCBCBAの順に積層されている。   Each insulating layer is laminated so that the first, second, and third insulating layers are vertically symmetrical with respect to the second insulating layer 1d disposed in the center in the laminating direction, that is, ABCBCBA. .

以上の工程A〜Dを経て積層体を焼結させることにより、多層回路基板の寸法精度を高くするとともに、絶縁層間の層間剥離を有効に防止することができる。   By sintering the laminate through the above steps A to D, it is possible to increase the dimensional accuracy of the multilayer circuit board and effectively prevent delamination between insulating layers.

尚、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更、改良等が可能である。   In addition, this invention is not limited to the above-mentioned embodiment, A various change, improvement, etc. are possible within the range which does not deviate from the summary of this invention.

例えば上述の実施形態では、積層体1の製作にあたり、セラミックグリーンシートを用いて各絶縁層を形成し、これを積層するようにしたが、これに代えて、比較的厚みの薄い第1絶縁層1a、1bを構成する無機組成物をペースト状になし、これを第2絶縁層の形成に用いられるセラミックグリーンシートの主面に、印刷等で塗布して直接形成するようにしても良い。この場合、厚みの薄い第1絶縁層がペーストの塗布等によって比較的簡単に形成されるようになり、厚みの薄い第1絶縁層をセラミックグリーンシート等で構成する場合に比し第1絶縁層を形成する際の作業性が良好となり、多層回路基板の生産性を向上させることができる利点もある。   For example, in the above-described embodiment, when the laminated body 1 is manufactured, each insulating layer is formed by using ceramic green sheets and laminated. However, instead of this, the first insulating layer having a relatively thin thickness is used. The inorganic composition constituting 1a and 1b may be formed into a paste and applied directly to the main surface of the ceramic green sheet used for forming the second insulating layer by printing or the like. In this case, the first insulating layer having a small thickness can be formed relatively easily by applying a paste or the like, and the first insulating layer is compared with the case where the first insulating layer having a small thickness is made of a ceramic green sheet or the like. There is an advantage that the workability in forming the substrate becomes good and the productivity of the multilayer circuit board can be improved.

また、上述の実施形態において、積層体1を加熱する際、積層体上にその上面全体を覆うことができる大きさの重石を載せておくようにすれば、重石の加重によって多層回路基板の変形や層間剥離をより有効に防止することができる。   Further, in the above-described embodiment, when the laminated body 1 is heated, if a weight of a size capable of covering the entire upper surface is placed on the laminated body, the multilayer circuit board is deformed by the weight of the weight. And delamination can be more effectively prevented.

更に、上述の実施形態においては、第1、第2、第3絶縁層を、ABCBCBAの順に積層したが、積層順序はこれに限らず、配線導体等の分布にかかるバランスとの兼ね合いなどにより種々のパターンが可能であり、例えば、第1、第2、第3絶縁層が積層体の厚み方向にある程度不均一に分布するような積層順(ABBCCCCなど)でも構わない。   Furthermore, in the above-described embodiment, the first, second, and third insulating layers are stacked in the order ABCBCBA. However, the stacking order is not limited to this, and there are various types depending on the balance with the distribution conductor distribution and the like. For example, a stacking order (ABBCCCC or the like) in which the first, second, and third insulating layers are distributed somewhat unevenly in the thickness direction of the stacked body may be used.

更にまた、本実施形態においては、配線導体等の形成に用いる導体ペーストとして、無機成分が全て銀粉末からなるものを使用するようにしたが、これにガラスフリット等の添加材を所定量添加して用いても良いことは言うまでもない。例えば、銀粉末の含有率が99.9%以上の場合、第1絶縁層が収縮を開始する温度よりも低い温度(650℃以下)から収縮を開始するため、先に収縮開始した配線導体は第1絶縁層及び第2絶縁層の収縮による圧縮効果により緻密性が高められ、回路の導体抵抗値を低くすることができる。このような導体ペーストは固形分率は、例えば、90%〜99.9%の範囲に設定しておくのが好ましく、これによって配線導体の緻密性を向上させることができる。   Furthermore, in the present embodiment, as the conductor paste used for forming the wiring conductor or the like, a paste in which the inorganic components are all made of silver powder is used, but a predetermined amount of an additive such as glass frit is added thereto. Needless to say, it may be used. For example, when the silver powder content is 99.9% or higher, the first insulating layer starts to contract from a temperature lower than the temperature at which the first insulating layer starts to contract (650 ° C. or lower). The compactness is enhanced by the compression effect due to the contraction of the first insulating layer and the second insulating layer, and the conductor resistance value of the circuit can be lowered. The solid content of such a conductive paste is preferably set in the range of 90% to 99.9%, for example, so that the denseness of the wiring conductor can be improved.

また更に、焼成収縮が終了した後、配線導体の表面にメッキ処理等の表面処理を行っても良く、本発明においては、低温の焼成でも緻密に焼結した多層回路基板が得られるので、メッキ液等が積層体に浸食することが少なく、表面処理の工程を効率化することができる。   Furthermore, after the firing shrinkage is finished, the surface of the wiring conductor may be subjected to a surface treatment such as a plating treatment. In the present invention, a multilayer circuit board that is densely sintered even by low-temperature firing is obtained. The liquid or the like is less likely to erode the laminate, and the surface treatment process can be made more efficient.

更にまた、本発明の製造方法は、複数個の多層回路基板を切り出すことができる複数個取り用の母基板を製作する場合にも適用可能である。このような複数個取り用母基板は、多層回路基板と1対1に対応する複数個の基板領域を有し、隣合う基板領域間の境界に沿って切断し、複数個の多層回路基板に分割することによって複数個の多層回路基板を同時に得る複数個取りの手法に用いられるものであり、このような複数個取り用の母基板に本発明を適用した場合、ダイシングラインが積層体の焼成に伴う変形等によって設計上の位置よりずれたり、歪んでしまうといった不都合は殆どないことから、母基板を正確に切断することができ、寸法精度の高い多層回路基板を得ることができる利点もある。   Furthermore, the manufacturing method of the present invention can also be applied to the case where a plurality of mother boards for manufacturing a plurality of multilayer circuit boards can be manufactured. Such a plurality of mother boards for use have a plurality of board areas corresponding to a multilayer circuit board in a one-to-one correspondence, and are cut along a boundary between adjacent board areas to form a plurality of multilayer circuit boards. It is used in a method of obtaining a plurality of multilayer circuit boards by dividing them at the same time, and when the present invention is applied to such a substrate substrate for obtaining a plurality of dicing lines, the dicing line is fired in the laminate. Since there is almost no inconvenience such as deviation or distortion from the design position due to deformation etc. due to deformation, there is also an advantage that the mother board can be cut accurately and a multilayer circuit board with high dimensional accuracy can be obtained. .

本発明の一実施形態に係る多層回路基板の断面図である。1 is a cross-sectional view of a multilayer circuit board according to an embodiment of the present invention. 本発明の一実施形態に係る多層回路基板の製造工程を説明する図である。It is a figure explaining the manufacturing process of the multilayer circuit board which concerns on one Embodiment of this invention. 従来の多層回路基板の製造工程を説明する図である。It is a figure explaining the manufacturing process of the conventional multilayer circuit board.

符号の説明Explanation of symbols

1・・・・・・・積層体
1a、1b・・・第1絶縁層
1c〜1e・・・第2絶縁層
1f、1g・・・第3絶縁層
2・・・・・・・配線導体
3・・・・・・・ビアホール導体
DESCRIPTION OF SYMBOLS 1 ... multilayer body 1a, 1b ... 1st insulating layer 1c-1e ... 2nd insulating layer 1f, 1g ... 3rd insulating layer 2 .... Wiring conductor 3. Via hole conductor

Claims (3)

第1絶縁層と、前記第1絶縁層よりも高温で収縮を開始する第2絶縁層と、前記第2絶縁層よりも高温で収縮を開始する第3絶縁層とを、前記第1絶縁層と前記第3絶縁層との間に前記第2絶縁層を介在させて積層することにより積層体を形成する工程Aと、
前記積層体を、第2絶縁層の収縮開始温度よりも低く、且つ第1絶縁層の収縮開始温度以上の温度で加熱することにより前記第1絶縁層をその面方向に比して厚み方向に大きく収縮させる工程Bと、
前記第1絶縁層の収縮が継続している状態で、前記積層体を、第3絶縁層の収縮開始温度よりも低く、且つ第2絶縁層の収縮開始温度以上の温度で加熱することにより前記第2絶縁層をその面方向に比して厚み方向に大きく収縮させる工程Cと、
前記第1絶縁層の収縮が完了した後、前記第2絶縁層の収縮が継続している状態で、前記積層体を、前記第3絶縁層の収縮開始温度以上の温度で加熱することにより前記第3絶縁層をその面方向に比して厚み方向に大きく収縮させる工程Dと、を含む多層回路基板の製造方法。
A first insulating layer; a second insulating layer that starts shrinking at a higher temperature than the first insulating layer; and a third insulating layer that starts shrinking at a higher temperature than the second insulating layer. Forming a laminate by laminating the second insulating layer between the first insulating layer and the third insulating layer; and
The laminated body is heated at a temperature lower than the shrinkage start temperature of the second insulating layer and equal to or higher than the shrinkage start temperature of the first insulating layer, thereby making the first insulating layer in the thickness direction as compared to the surface direction. Step B for large shrinkage,
By heating the laminated body at a temperature lower than the shrinkage start temperature of the third insulating layer and not less than the shrinkage start temperature of the second insulating layer while the shrinkage of the first insulating layer continues. A step C of contracting the second insulating layer greatly in the thickness direction compared to the surface direction;
After the shrinkage of the first insulating layer is completed, the laminate is heated at a temperature equal to or higher than the shrinkage start temperature of the third insulating layer while the shrinkage of the second insulating layer is continued. And a step D of contracting the third insulating layer largely in the thickness direction as compared to the surface direction.
前記工程Cにおいて、前記第2絶縁層が収縮を開始するまでの間に、前記第1絶縁層はその全収縮量に対し90%に相当する体積収縮が完了していることを特徴とする請求項1に記載の多層回路基板の製造方法。 The volume contraction corresponding to 90% of the total contraction amount of the first insulating layer is completed before the second insulating layer starts contracting in the step C. Item 8. A method for manufacturing a multilayer circuit board according to Item 1. 前記工程Dにおいて、前記第3絶縁層が収縮を開始するまでの間に、前記第2絶縁層はその全収縮量に対し90%に相当する体積収縮が完了していることを特徴とする請求項1または請求項2に記載の多層回路基板の製造方法。 In the step D, until the third insulating layer starts to contract, the second insulating layer has completed volume contraction corresponding to 90% of the total contraction amount. A method for manufacturing a multilayer circuit board according to claim 1 or 2.
JP2004191729A 2004-06-29 2004-06-29 Manufacturing method of multilayer circuit board Pending JP2006013354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191729A JP2006013354A (en) 2004-06-29 2004-06-29 Manufacturing method of multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191729A JP2006013354A (en) 2004-06-29 2004-06-29 Manufacturing method of multilayer circuit board

Publications (1)

Publication Number Publication Date
JP2006013354A true JP2006013354A (en) 2006-01-12

Family

ID=35780197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191729A Pending JP2006013354A (en) 2004-06-29 2004-06-29 Manufacturing method of multilayer circuit board

Country Status (1)

Country Link
JP (1) JP2006013354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109053A (en) * 2006-10-27 2008-05-08 Kyocera Corp Glass ceramic multilayer circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109053A (en) * 2006-10-27 2008-05-08 Kyocera Corp Glass ceramic multilayer circuit board

Similar Documents

Publication Publication Date Title
JP4557003B2 (en) MULTILAYER CERAMIC SUBSTRATE, MANUFACTURING METHOD THEREOF, AND COMPOSITE GREEN SHEET FOR PRODUCTION OF MULTILAYER CERAMIC SUBSTRATE
KR0174635B1 (en) Method of making ceramic multilayer
JPH0992983A (en) Manufacture of ceramic multilayer board
JP2002094244A (en) Method for manufacturing ceramic multi-layer board and unburned ceramic laminated body
JP4788544B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP4557002B2 (en) MULTILAYER CERAMIC SUBSTRATE, MANUFACTURING METHOD THEREOF, AND COMPOSITE GREEN SHEET FOR PRODUCTION OF MULTILAYER CERAMIC SUBSTRATE
JP2009111394A (en) Manufacturing method of multi-layer ceramic substrate
JP2008109063A (en) Ceramic multilayer substrate
KR101805074B1 (en) Preparation method of ceramic multilayer circuit board
JP2004200679A (en) Manufacturing method for multilayer circuit substrate
JP5015550B2 (en) Glass ceramic circuit board and manufacturing method thereof
JP6121782B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP4261949B2 (en) Ceramic multilayer substrate
JP4077752B2 (en) Large substrate for multiple acquisition
JP2006013354A (en) Manufacturing method of multilayer circuit board
JP2008135523A (en) Multilayered board and its manufacturing method
JP4069772B2 (en) Multilayer circuit board manufacturing method
JP2008186909A (en) Ceramic multilayer plate board
KR100289959B1 (en) Manufacturing method of embedded capacitor of low temperature simultaneous firing ceramic
JP2004235374A (en) Capacitor-incorporated substrate and chip type capacitor
JP4167517B2 (en) Multilayer circuit board manufacturing method
JP2005191316A (en) Multilayered circuit board and its production method
JP4416346B2 (en) Circuit board manufacturing method
JP2006270083A (en) Aggregate board and method of fabricating the same
JP4869005B2 (en) Multilayer substrate manufacturing method