JP2006012676A - Manufacturing method of film stack for membrane-electrode assembly - Google Patents

Manufacturing method of film stack for membrane-electrode assembly Download PDF

Info

Publication number
JP2006012676A
JP2006012676A JP2004190000A JP2004190000A JP2006012676A JP 2006012676 A JP2006012676 A JP 2006012676A JP 2004190000 A JP2004190000 A JP 2004190000A JP 2004190000 A JP2004190000 A JP 2004190000A JP 2006012676 A JP2006012676 A JP 2006012676A
Authority
JP
Japan
Prior art keywords
catalyst
membrane
film
electrode assembly
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004190000A
Other languages
Japanese (ja)
Other versions
JP4787474B2 (en
Inventor
Kazunori Yamaguchi
和徳 山口
Hiromi Totsuka
博己 戸塚
Hitohide Sugiyama
仁英 杉山
Masanori Takahata
正則 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2004190000A priority Critical patent/JP4787474B2/en
Publication of JP2006012676A publication Critical patent/JP2006012676A/en
Application granted granted Critical
Publication of JP4787474B2 publication Critical patent/JP4787474B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a film stack for a membrane-electrode assembly capable of providing a solid polymer type fuel cell improved in utilization efficiency of a catalyst. <P>SOLUTION: This manufacturing method of a film stack for a membrane-electrode assembly is characterized by comprising: a first process for providing catalyst slurry containing water and/or alcohol, graphite, catalyst particles and an ion-conductive resin; a second process for applying the catalyst slurry to a surface of a substrate; a third process for drying the applied catalyst slurry to provide a catalyst membrane; and a fourth process for the transferring catalyst membrane on the substrate to an electrolyte membrane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池に使用される膜−電極接合体用積層膜の製造方法に関する。   The present invention relates to a method for producing a laminated film for a membrane-electrode assembly used in a polymer electrolyte fuel cell.

燃料電池は、燃料と酸化剤とを連続的に供給し、これらが反応したときの化学エネルギーを電力として取り出す発電システムである。燃料電池は、これに用いる電解質の種類によって、動作温度が比較的低いアルカリ型、リン酸型、固体高分子型と、高温で動作する溶融炭酸塩型、固体酸化物電解質型とに大別される。これらの中で、固体高分子型燃料電池は、一般に、固体高分子電解質として作用する電解質膜(隔膜)の両面に、触媒膜が担持されたガス拡散電極を接合した単セルを有し、一方のガス拡散電極が存在する側の室(燃料室)に燃料である水素を、他方のガス拡散電極が存在する側の室(酸化剤室)に酸化剤である酸素や空気等の酸素含有ガスをそれぞれ供給し、両ガス拡散電極間に外部負荷回路を接続することにより、燃料電池として作用される。また、該固体高分子型燃料電池に用いられる燃料は水素の他、メタノールやエタノールなどのアルコールを直接燃料として用いる場合もある。   A fuel cell is a power generation system that continuously supplies fuel and an oxidant and takes out chemical energy as electric power when they react. Fuel cells are roughly classified into alkaline, phosphoric acid, and solid polymer types that operate at relatively low temperatures, and molten carbonate and solid oxide electrolyte types that operate at high temperatures, depending on the type of electrolyte used. The Among these, a polymer electrolyte fuel cell generally has a single cell in which a gas diffusion electrode carrying a catalyst membrane is bonded to both surfaces of an electrolyte membrane (diaphragm) that acts as a solid polymer electrolyte, Hydrogen, which is the fuel, in the chamber (fuel chamber) on the side where the gas diffusion electrode is present, and oxygen-containing gas such as oxygen or air, which is the oxidant, in the chamber (oxidant chamber), where the other gas diffusion electrode is present Are connected to each other, and an external load circuit is connected between both gas diffusion electrodes, thereby acting as a fuel cell. In addition to hydrogen, alcohols such as methanol and ethanol may be used directly as fuel for the polymer electrolyte fuel cell.

固体高分子型燃料電池を構成する単セルの基本構造は、イオン伝導性のある電解質膜の両面に触媒膜を配し、更にその外側の両面にガス拡散電極を配して5層構造の膜−電極接合体〔MEA(Membrane Electrode Assembly)ともいう〕とし、更にその外側の両面にセパレータを配し、単セルと成すのが一般的である。
燃料極側のセパレータにおけるガス流路を通ってガス拡散電極面に導かれた水素は、ガス拡散電極にて均一に拡散され、燃料極側の触媒膜に導かれ、白金などの触媒によって、水素は水素イオンと電荷に分離され、水素イオンは電解質膜を通って、電解質を挟んで反対側の酸素極における触媒膜に導かれる。
一方、燃料極側にて発生した電荷は、負荷を有する回路を通って、酸素極側のガス拡散電極に導かれ、更には酸素極側の触媒膜に導かれる。これと同時に、酸素極側のセパレータから導かれた酸素は、酸素極側のガス拡散電極を通って、酸素極側の触媒膜に到達した上記の電荷及び水素イオンの存在下、水を生成し発電サイクルを完結する。
このような燃料電池サイクルにおいて、燃料極側及び酸素極側ともに、いずれの触媒膜とも、電荷及びイオンの分離、結合といった電気化学的な反応を行いつつ、生成水の排水あるいは保水といった物理的な特性をも兼ね備える必要があり、燃料電池単セル構造中において、極めて重要な機能を有する部分となっている。
The basic structure of a single cell constituting a polymer electrolyte fuel cell is a five-layer membrane in which a catalyst membrane is arranged on both sides of an ion-conductive electrolyte membrane, and gas diffusion electrodes are arranged on both sides of the outer membrane. -It is common to form an electrode assembly (also referred to as MEA (Membrane Electrode Assembly)), and further to form a single cell by disposing separators on both outer surfaces.
Hydrogen led to the gas diffusion electrode surface through the gas flow path in the separator on the fuel electrode side is uniformly diffused by the gas diffusion electrode, led to the catalyst film on the fuel electrode side, and is hydrogenated by a catalyst such as platinum. Is separated into hydrogen ions and electric charges, and the hydrogen ions pass through the electrolyte membrane and are guided to the catalyst membrane at the oxygen electrode on the opposite side across the electrolyte.
On the other hand, the electric charge generated on the fuel electrode side is led to a gas diffusion electrode on the oxygen electrode side through a circuit having a load, and further to a catalyst film on the oxygen electrode side. At the same time, oxygen introduced from the separator on the oxygen electrode side passes through the gas diffusion electrode on the oxygen electrode side and generates water in the presence of the charges and hydrogen ions that have reached the catalyst film on the oxygen electrode side. Complete the power generation cycle.
In such a fuel cell cycle, both the fuel electrode side and the oxygen electrode side are subjected to an electrochemical reaction such as separation and bonding of charges and ions with any catalyst film, and physical discharge such as drainage or retention of generated water. It is necessary to combine the characteristics, and the fuel cell single cell structure has a very important function.

従来技術における膜−電極接合体は、触媒を分散したスラリーを電解質膜の両面に塗工し、その上にガス拡散電極を貼り合わせた構成であった。該構成は、電解質膜の表裏に燃料極及び酸素極用の触媒を設けており、単セルを効率的に組み立てることが可能などの利点を有するものの、電解質膜の両面に触媒または触媒を担持した炭素粒子を分散した塗液を塗工する場合、スラリー中の溶媒を乾燥除去する際に、電解質膜にシワが発生しやすく、それ故に平滑な触媒層を形成することが困難であった(例えば、特許文献1参照)。
そこで、塗液をガス拡散電極上に塗工する方法も考えられている(例えば、特許文献2参照)。ここで、塗液は、通常、触媒担持カーボン、イオン伝導性樹脂(例えば、デュポン社製の商品名:ナフィオン)及び溶媒からなり、イオン伝導性樹脂を触媒粒子の結着剤として用いるのが一般的である。
The membrane-electrode assembly in the prior art has a configuration in which a slurry in which a catalyst is dispersed is applied to both surfaces of an electrolyte membrane, and a gas diffusion electrode is bonded thereon. The structure is provided with a catalyst for the fuel electrode and the oxygen electrode on the front and back of the electrolyte membrane, which has the advantage of being able to efficiently assemble a single cell, but supports the catalyst or catalyst on both sides of the electrolyte membrane. When applying a coating liquid in which carbon particles are dispersed, when the solvent in the slurry is removed by drying, wrinkles are likely to occur in the electrolyte membrane, and therefore it is difficult to form a smooth catalyst layer (for example, , See Patent Document 1).
Therefore, a method of coating the coating liquid on the gas diffusion electrode has been considered (for example, see Patent Document 2). Here, the coating liquid usually comprises a catalyst-supporting carbon, an ion conductive resin (for example, product name: Nafion manufactured by DuPont) and a solvent, and the ion conductive resin is generally used as a binder for catalyst particles. Is.

しかし、多孔質体であるガス拡散電極上に塗液を塗工する場合、多孔質体である電極に触媒粒子が浸入しやすく、均一な触媒層を得ることが難しい。また、かかる塗工による触媒層においては、触媒自体が塗液の結着剤である樹脂中に埋没しやすいなどの原因で、電気化学的に有効であるいわゆる三相界面が効率よく配置できず、触媒層内部における触媒の配置が必ずしも最適化されていなかったことから、触媒を多量に使用する必要が生じていた。更には、メタノールやエタノール等を直接燃料として用いる固体高分子型燃料電池においては、触媒による燃料からの水素イオンの分離効率が悪いために、より多くの触媒量が必要となっていた。このため、水素のイオン化を効率的に行える触媒層が望まれている。
さらに、上記のような、イオン伝導性樹脂で結着された触媒担持カーボンが多孔質構造をとるものの、その孔径が1μm以下と小さいことから、生成水や供給水が凝縮して孔が閉塞することで、発電効率の低下をきたす問題があった。また、触媒粒子の電解質膜やガス拡散電極への固定化が困難であり、単セルを組みあげるまでの工程において、触媒粒子が脱落するなどの不具合を生じる場合があった。
特開平5−29005号公報 特開平7−130376号公報
However, when a coating solution is applied on a gas diffusion electrode that is a porous body, catalyst particles easily enter the electrode that is a porous body, and it is difficult to obtain a uniform catalyst layer. In addition, in the catalyst layer formed by such coating, the so-called three-phase interface that is electrochemically effective cannot be arranged efficiently because the catalyst itself is easily embedded in the resin that is the binder of the coating liquid. Since the arrangement of the catalyst inside the catalyst layer was not necessarily optimized, it was necessary to use a large amount of the catalyst. Furthermore, in a polymer electrolyte fuel cell that uses methanol, ethanol, or the like as a direct fuel, a greater amount of catalyst is required because of the poor separation efficiency of hydrogen ions from fuel by the catalyst. For this reason, a catalyst layer that can efficiently ionize hydrogen is desired.
Furthermore, although the catalyst-carrying carbon bound with the ion conductive resin has a porous structure as described above, the pore diameter is as small as 1 μm or less, so that the generated water and supply water are condensed and the pores are blocked. As a result, there is a problem that power generation efficiency is lowered. In addition, it is difficult to immobilize the catalyst particles on the electrolyte membrane or the gas diffusion electrode, and there are cases in which problems such as catalyst particles dropping off occur in the process until the single cell is assembled.
JP-A-5-29005 JP-A-7-130376

本発明は前記課題を解決するためになされたもので、触媒の利用効率が向上した固体高分子型燃料電池が得られる膜−電極接合体用積層膜の製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing a laminated membrane for a membrane-electrode assembly from which a polymer electrolyte fuel cell having improved catalyst utilization efficiency can be obtained. .

本発明の膜−電極接合体用積層膜の製造方法は、水及び/またはアルコール、黒鉛、触媒粒子及びイオン伝導性樹脂を含む触媒スラリーを得る第1工程と、前記触媒スラリーを基板上に塗工する第2工程と、前記塗工された触媒スラリーを乾燥して触媒膜を得る第3工程と、前記基板上の触媒膜を電解質膜に転写する第4工程と、を有することを特徴とする。   The method for producing a laminated film for a membrane-electrode assembly of the present invention comprises a first step of obtaining a catalyst slurry containing water and / or alcohol, graphite, catalyst particles and an ion conductive resin, and applying the catalyst slurry on a substrate. A second step of processing, a third step of drying the coated catalyst slurry to obtain a catalyst film, and a fourth step of transferring the catalyst film on the substrate to an electrolyte film, To do.

本発明の膜−電極接合体用積層膜の製造方法によれば、予め均一に分散された触媒粒子を含む触媒スラリーを用いて基板上に触媒膜を形成するため、触媒膜における触媒粒子及びイオン伝導性樹脂の配置が最適化され、尚且つ平滑な触媒膜を得ることができる。そのため、本発明の膜−電極接合体用積層膜を用いて固体高分子型燃料電池を得た場合は、触媒の利用効率が高く、集電性に優れ、発電寿命の長い燃料電池を提供することができる。また、単セルを作製する工程時に触媒粒子が脱落するという問題も生じにくい。   According to the method for producing a laminated film for a membrane-electrode assembly of the present invention, a catalyst film is formed on a substrate using a catalyst slurry containing catalyst particles uniformly dispersed in advance. The arrangement of the conductive resin is optimized, and a smooth catalyst film can be obtained. Therefore, when a polymer electrolyte fuel cell is obtained by using the laminated film for membrane-electrode assembly of the present invention, a fuel cell having high catalyst utilization efficiency, excellent current collecting property, and long power generation life is provided. be able to. In addition, the problem of catalyst particles falling off during the process of producing a single cell is less likely to occur.

以下、本発明の好ましい実施の形態を説明する。
(第1工程)
本発明の膜−電極接合体用積層膜の製造方法における第1工程は、水及び/またはアルコール、黒鉛、触媒粒子及びイオン伝導性樹脂を含む触媒スラリーを得る。触媒スラリーには、必要に応じて導電助剤を分散させてもよい。水及び/またはアルコール溶液を用いることにより、該溶媒中で黒鉛、触媒粒子及びイオン伝導性樹脂を高分散させることが可能であり、均一なスラリーを得ることができる。本発明においては、水が好ましい。不純物の有無から、イオン交換水を用いることがより好ましい。イオン交換水を用いることにより、黒鉛および触媒粒子を良好に分散させることができるからである。
該触媒スラリーを用いることにより、黒鉛および触媒粒子が高分散された触媒膜が得られるので、導電性および触媒効率が向上し、電池性能が向上する。また、水系の塗料のため、環境にも良い。
本発明においては上記触媒スラリーを得ることができれば、水及び/またはアルコール、イオン伝導性樹脂を含む溶液、黒鉛及び触媒粒子の各構成材の添加・混合順は限定されない。しかし、はじめに水及び/またはアルコールとイオン伝導性樹脂を含む溶液とを混合して樹脂スラリーと成し、該樹脂スラリーに黒鉛を添加して炭素スラリーと成し、最後に該炭素スラリーに触媒粒子を添加して触媒スラリーと成すことが、触媒膜表面に触媒粒子が保持されやすく、その結果触媒効率が向上しやすいため好ましい。
Hereinafter, preferred embodiments of the present invention will be described.
(First step)
The 1st process in the manufacturing method of the laminated film for membrane-electrode assemblies of this invention obtains the catalyst slurry containing water and / or alcohol, graphite, catalyst particle | grains, and ion conductive resin. You may disperse | distribute a conductive support agent to a catalyst slurry as needed. By using water and / or an alcohol solution, it is possible to highly disperse graphite, catalyst particles, and ion conductive resin in the solvent, and a uniform slurry can be obtained. In the present invention, water is preferred. From the presence or absence of impurities, it is more preferable to use ion-exchanged water. It is because graphite and catalyst particles can be favorably dispersed by using ion exchange water.
By using the catalyst slurry, a catalyst film in which graphite and catalyst particles are highly dispersed is obtained, so that conductivity and catalyst efficiency are improved, and battery performance is improved. In addition, because it is a water-based paint, it is good for the environment.
In the present invention, as long as the catalyst slurry can be obtained, the order of addition and mixing of the constituent materials of water and / or alcohol, a solution containing an ion conductive resin, graphite, and catalyst particles is not limited. However, first, water and / or alcohol and a solution containing an ion conductive resin are mixed to form a resin slurry, and graphite is added to the resin slurry to form a carbon slurry. Finally, catalyst particles are added to the carbon slurry. To form a catalyst slurry is preferable because the catalyst particles are easily held on the surface of the catalyst film, and as a result, the catalyst efficiency is easily improved.

第1工程の触媒スラリーにおける各構成材の分散には、市販のミキサーを用いることができ、例えば特殊機化社製の「ホモミキサー」、キーエンス社製の「ハイブリッドミキサー」等が好適に用いられる。   A commercially available mixer can be used for dispersion of each constituent material in the catalyst slurry of the first step, and for example, “Homomixer” manufactured by Tokushu Kika Co., Ltd., “Hybrid Mixer” manufactured by Keyence Corporation, etc. are preferably used. .

前記の触媒スラリーの濃度は、得るべき特性、例えば機械強度、塗工のしやすさ等を考慮に入れ適宜変更することができ、例えば薄膜を得たい場合は低濃度で、厚膜を得たい場合は高濃度で調製することができる。   The concentration of the catalyst slurry can be appropriately changed in consideration of characteristics to be obtained, such as mechanical strength and ease of coating. For example, when a thin film is desired, a low concentration and a thick film are desired. In some cases, it can be prepared at a high concentration.

前記黒鉛としては、いずれの種類のものを用いることができる。特に、鱗状、鱗片状、薄片状または膨張黒鉛を用いることが望ましく、その中の1つまたは、2つ以上の混合物を用いることが好ましい。上記の種類の黒鉛を用いることにより多孔質構造を形成することが可能になり、その構造ゆえに触媒の利用効率が高く、集電性に優れ、発電寿命が長い固体高分子型燃料電池を製造することが可能になる。   Any type of graphite can be used. In particular, it is desirable to use scaly, scaly, flake or expanded graphite, and it is preferable to use one or a mixture of two or more thereof. By using the above types of graphite, it becomes possible to form a porous structure, which makes it possible to produce a polymer electrolyte fuel cell with high catalyst utilization efficiency, excellent current collection, and a long power generation life. It becomes possible.

前記黒鉛の平均粒径としては、0.1〜200μmであることが望ましい。0.1μm未満であると、黒鉛間の接触抵抗の増加による導電性の減少が起こり、200μmより大きいと、塗料化や製膜化がしずらいため好ましくない。   The average particle size of the graphite is preferably 0.1 to 200 μm. If it is less than 0.1 μm, the conductivity decreases due to an increase in the contact resistance between graphite, and if it is more than 200 μm, it is difficult to form a paint or a film, which is not preferable.

触媒粒子は、触媒のみからなる粒子であってもよく、触媒を担持した炭素材料であってもよいが、触媒を担持した炭素材料を用いると、触媒をさらに高い効率で利用できるため好ましい。
前記触媒としては、白金触媒や、白金とルテニウムからなる合金触媒等を主に用いることができる。例えば、触媒膜を燃料電池の燃料極と電解質膜との間に設ける場合には、水素イオンを生成できる触媒が必要であって、このような水素イオンを生成できる触媒として、白金とルテニウムからなる合金触媒が使用される。また、触媒膜を燃料電池の酸素極と電解質膜との間に設ける場合には、酸素イオンを生成できる触媒が必要であって、このような酸素イオンを生成できる触媒として白金触媒が使用される。
The catalyst particles may be particles composed only of the catalyst or may be a carbon material carrying a catalyst. However, it is preferable to use a carbon material carrying a catalyst because the catalyst can be used with higher efficiency.
As the catalyst, a platinum catalyst, an alloy catalyst composed of platinum and ruthenium, or the like can be mainly used. For example, in the case where the catalyst film is provided between the fuel electrode of the fuel cell and the electrolyte film, a catalyst capable of generating hydrogen ions is required, and the catalyst capable of generating such hydrogen ions is composed of platinum and ruthenium. An alloy catalyst is used. Further, when the catalyst film is provided between the oxygen electrode of the fuel cell and the electrolyte membrane, a catalyst capable of generating oxygen ions is required, and a platinum catalyst is used as a catalyst capable of generating such oxygen ions. .

触媒粒子として、触媒を担持した炭素材料を用いる場合、該炭素材料としては、主として炭素原子からなり導電性を有する無機材料であって、酸化雰囲気に耐性があるものであれば、いずれも利用することが可能である。
例えば炭素材料としては、ファーネスブラック、チャネルブラック、アセチレンブラック等に代表されるいわゆるカーボンブラックを用いることができる。カーボンブラックとしては、比表面積や粒子径の大きさによらずいずれのグレードのものも使用可能であるが、比表面積が大きく、かつ二次凝集粒子の大きさが比較的大きい高ストラクチャーのものが、性能と生産性の両立から好適に利用できる。例えば、ライオンアクゾ社製 商品名:ケッチンEC、キャボット社製 商品名:VulcanXC72R、電気化学工業社製 商品名:デンカブラックは、導電性グレードのカーボンブラックの中でも、塗液での高分散性と触媒膜に用いた場合の抵抗の低さから特に好適に用いられる。
また、カーボンブラック以外では、黒鉛のほか、カーボン繊維、カーボンナノチューブ等の炭素繊維などもカーボンブラックと同様に好適に用いられる。
When a carbon material carrying a catalyst is used as the catalyst particles, any carbon material can be used as long as it is a conductive inorganic material mainly composed of carbon atoms and resistant to an oxidizing atmosphere. It is possible.
For example, as the carbon material, so-called carbon black typified by furnace black, channel black, acetylene black and the like can be used. Any grade of carbon black can be used regardless of the specific surface area and particle size, but it has a high structure with a large specific surface area and relatively large secondary agglomerated particles. Therefore, it can be suitably used from the viewpoint of both performance and productivity. For example, product name: Ketchin EC, manufactured by Lion Akzo, product name: Vulcan XC72R, manufactured by Denki Kagaku Kogyo Co., Ltd., product name: DENKA BLACK It is particularly preferably used because of its low resistance when used in a film.
In addition to carbon black, carbon fibers such as carbon fibers and carbon nanotubes can be suitably used in the same manner as carbon black.

触媒膜において、イオン伝導性樹脂は黒鉛表面に保持されており、触媒粒子及び必要に応じて導電助剤を固持している。イオン伝導性樹脂としては、一般的にプロトン(水素イオン)交換基を有するものを用いられる。プロトン交換基としては、スルホン酸基、カルボン酸基、リン酸基、などが好適に用いられる。中でも、フルオロアルキルエーテル側鎖とフルオロアルキル主鎖から構成されるプロトン交換基を有する樹脂、例えば、デュポン社製 商品名:ナフィオン等がより好ましく用いられる。   In the catalyst film, the ion conductive resin is held on the graphite surface, and holds the catalyst particles and, if necessary, the conductive assistant. As the ion conductive resin, one having a proton (hydrogen ion) exchange group is generally used. As the proton exchange group, a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or the like is preferably used. Among them, a resin having a proton exchange group composed of a fluoroalkyl ether side chain and a fluoroalkyl main chain, for example, a product name: Nafion manufactured by DuPont, is more preferably used.

導電助剤としては、炭素原子からなり導電性を有する無機材料であって、酸化雰囲気に耐性があるものであれば、いずれも利用することが可能である。
例えば、ファーネスブラック、チャネルブラック、アセチレンブラック等に代表されるいわゆるカーボンブラックを用いることができる。カーボンブラックとしては、比表面積や粒子径の大きさによらずいずれのグレードのものも使用可能であるが、比表面積が大きく、かつ二次凝集粒子の大きさが比較的大きい高ストラクチャーのものが、性能と生産性の両立から好適に利用できる。例えば、ライオンアクゾ社製 商品名:ケッチンEC、キャボット社製 商品名:VulcanXC72R、電気化学工業社製 商品名:デンカブラックは、導電性グレードのカーボンブラックの中でも、塗液での高分散性と触媒膜に用いた場合の抵抗の低さから特に好適に用いられる。
また、カーボンブラック以外では、黒鉛のほか、カーボン繊維、カーボンナノチューブ等の炭素繊維などもカーボンブラックと同様に好適に用いられる。そのなかでも、特にカーボンナノチューブが高導電性を示すため、本発明には好適に用いられる。上記いずれの導電助剤を添加することによっても、黒鉛間の導通が良好になり更に発電特性が向上する。
Any conductive auxiliary agent can be used as long as it is an inorganic material made of carbon atoms and having electrical conductivity and is resistant to an oxidizing atmosphere.
For example, so-called carbon black typified by furnace black, channel black, acetylene black and the like can be used. Any grade of carbon black can be used regardless of the specific surface area and particle size, but it has a high structure with a large specific surface area and relatively large secondary agglomerated particles. Therefore, it can be suitably used from the viewpoint of both performance and productivity. For example, product name: Ketchin EC, manufactured by Lion Akzo, product name: Vulcan XC72R, manufactured by Denki Kagaku Kogyo Co., Ltd., product name: DENKA BLACK It is particularly preferably used because of its low resistance when used in a film.
In addition to carbon black, carbon fibers such as carbon fibers and carbon nanotubes can be suitably used in the same manner as carbon black. Of these, carbon nanotubes are particularly suitable for the present invention because they exhibit high conductivity. Addition of any of the above-mentioned conductive aids improves the electrical conductivity between graphite and further improves the power generation characteristics.

触媒スラリーの配合比としては、黒鉛が5重量部から15重量部、触媒粒子が0.5重量部から5重量部、イオン伝導性樹脂が0.5重量部から5重量部および導電助剤が0.5重量部から5重量部とすることが好ましい。上記配合比において、黒鉛が5重量部より少ないと導電性が低下し、15重量部より多い場合は塗料化や製膜化に際して支障をきたすため好ましくない。触媒粒子は0.5重量部未満であると、燃料であるプロトンの生成が不十分となり、5重量部より多い場合では、プロトンの生成量は5重量部のものと同等であるのでコスト面から好ましくない。また、イオン伝導性樹脂は、0.5重量部未満であると、水素イオンの伝達が十分ではなく、5重量部より多い場合では、黒鉛表面上に保持されている触媒粒子を完全に覆ってしまうため、触媒能を低下させ、発電特性を低下させるため好ましくない。導電助剤は、0.5重量部未満であると、良好な導電性を与えるために十分ではなく、5重量部より多い場合であると塗料化や製膜化に際して支障をきたすため好ましくない。   The mixing ratio of the catalyst slurry is 5 to 15 parts by weight of graphite, 0.5 to 5 parts by weight of catalyst particles, 0.5 to 5 parts by weight of ion conductive resin, and a conductive auxiliary agent. The amount is preferably 0.5 to 5 parts by weight. In the above blending ratio, if the amount of graphite is less than 5 parts by weight, the conductivity is lowered, and if it is more than 15 parts by weight, it is not preferable because it causes troubles in coating and film formation. When the catalyst particles are less than 0.5 parts by weight, the production of protons as fuel is insufficient, and when the amount is more than 5 parts by weight, the amount of protons produced is equivalent to that of 5 parts by weight. It is not preferable. Further, if the ion conductive resin is less than 0.5 parts by weight, the transmission of hydrogen ions is not sufficient, and if it is more than 5 parts by weight, the catalyst particles held on the graphite surface are completely covered. Therefore, it is not preferable because the catalytic ability is lowered and the power generation characteristics are lowered. If the amount of the conductive assistant is less than 0.5 parts by weight, it is not sufficient for imparting good conductivity, and if it is more than 5 parts by weight, it is not preferable because it causes troubles in coating and film formation.

(第2工程)
次に、前記触媒スラリーを基板上に塗工する。
第2工程において用いられる基板としては、下記で述べる第3工程時の触媒スラリーを乾燥させた後に得られる触媒膜から剥離できるものであればよく、例えば、ポリエチレンテレフタレート、ポリ四フッ化エチレン、ポリイミド、ポリエチレンナフタレート等からなるフィルムを用いることができる。このようなベースフィルムとして樹脂フィルムを用いる場合は、離型処理、易接着処理などの表面処理を施したものでもよく、塗布方法により適宜選択すれば良い。
特に、第4工程時に、基板上の乾燥された触媒膜を電解質膜に基板側から熱プレスで転写することを考慮すると、耐熱性のある基板が好適に用いられ、例えば、ポリイミドフィルム等が好ましい。
(Second step)
Next, the catalyst slurry is applied onto a substrate.
The substrate used in the second step may be any substrate that can be removed from the catalyst film obtained after drying the catalyst slurry in the third step described below. For example, polyethylene terephthalate, polytetrafluoroethylene, polyimide A film made of polyethylene naphthalate or the like can be used. When a resin film is used as such a base film, it may be subjected to a surface treatment such as a mold release treatment or an easy adhesion treatment, and may be appropriately selected depending on the coating method.
In particular, in consideration of transferring the dried catalyst film on the substrate to the electrolyte film by hot pressing from the substrate side during the fourth step, a heat-resistant substrate is preferably used, for example, a polyimide film is preferable. .

また、塗工方法は、特に限定されるものではなく、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等を用いることができる。触媒スラリーの粘度によって、塗工方法を選択することが可能である。   The coating method is not particularly limited, and a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, or the like can be used. The coating method can be selected depending on the viscosity of the catalyst slurry.

(第3工程)
次に前記塗工された触媒スラリーを乾燥して触媒膜を得る。
この乾燥方法としては、自然乾燥法であってもよいし、ドライヤー等を用いた強制乾燥法であってもよい。触媒スラリーを乾燥させることによって得られた触媒膜は多孔質となる。
触媒膜において多孔質の孔径は、1μm以上であることが好ましい。さらに、孔径が5μm以上と大きい場合、すなわち触媒膜が高空隙率である場合には、流体抵抗がきわめて小さくなり、燃料や生成水の透過が容易であり、高出力を継続的に得るための燃料電池においては特に好適に利用することが可能である。このような触媒膜によれば、特に、アルコールなどの液系燃料から水素イオンを取り出す際に、従来は非常に多く使用しなければいけなかった高価な触媒の量を、非常に少なくすることが可能となる。
(Third step)
Next, the coated catalyst slurry is dried to obtain a catalyst film.
This drying method may be a natural drying method or a forced drying method using a dryer or the like. The catalyst membrane obtained by drying the catalyst slurry becomes porous.
In the catalyst membrane, the porous pore diameter is preferably 1 μm or more. Furthermore, when the pore diameter is as large as 5 μm or more, that is, when the catalyst membrane has a high porosity, the fluid resistance becomes extremely small, the permeation of fuel and generated water is easy, and a high output is continuously obtained. The fuel cell can be particularly preferably used. According to such a catalyst membrane, particularly when taking out hydrogen ions from a liquid fuel such as alcohol, the amount of expensive catalyst that had to be used in a very large amount can be greatly reduced. It becomes possible.

触媒膜の厚さは、好ましくは1〜400μmであり、より好ましくは、5〜200μm、更により好ましくは10〜150μmである。1μm未満であると、触媒粒子量が少ないことより、発電特性の低下が起こりやすい。また、400μmを超えると、電気的な接触抵抗が大きくなるほか、燃料流体の通過距離が長くなることで、燃料供給が滞る場合があるほか、生成水の排出効率が低下し好ましくない。さらに、膜の弾性が低下するために破損しやすくなる。   The thickness of the catalyst membrane is preferably 1 to 400 μm, more preferably 5 to 200 μm, and even more preferably 10 to 150 μm. If it is less than 1 μm, the amount of catalyst particles is small, so that the power generation characteristics are liable to decrease. On the other hand, if it exceeds 400 μm, the electrical contact resistance increases, and the fuel fluid passage distance becomes longer, so that the fuel supply may be delayed and the discharge efficiency of the generated water is lowered, which is not preferable. Furthermore, since the elasticity of the film is lowered, it is easily damaged.

(第4工程)
次に前記第3工程で得られた基板上の触媒膜を電解質膜に転写することによって膜−電極接合体用積層膜を得ることができる。基板上の触媒膜を電解質膜に転写する方法としては、例えば熱プレスにより行なえばよい。熱プレスを行なって基板上の触媒膜を電解質膜に転写すると基板、触媒膜及び電解質膜が順次積層された積層体を得ることができ、この積層体から基体を剥離することによって膜−電極接合体用積層膜を得ることができる。
上記電解質膜としては、固体高分子電解質からなるものを用いることができ、例えば、デュポン社製 商品名:ナフィオン117、同社製 商品名:ナフィオン112等を例示することができる。
(4th process)
Next, by transferring the catalyst film on the substrate obtained in the third step onto the electrolyte film, a laminated film for a membrane-electrode assembly can be obtained. As a method for transferring the catalyst film on the substrate to the electrolyte film, for example, heat pressing may be performed. When the catalyst film on the substrate is transferred to the electrolyte membrane by performing hot pressing, a laminate in which the substrate, the catalyst membrane and the electrolyte membrane are sequentially laminated can be obtained. By peeling the substrate from this laminate, membrane-electrode bonding A laminated film for body can be obtained.
As the electrolyte membrane, one made of a solid polymer electrolyte can be used, and examples thereof include a product name: Nafion 117 manufactured by DuPont and a product name: Nafion 112 manufactured by the same company.

上記製造方法によれば、黒鉛が多孔質構造を形成し、触媒粒子、導電助剤およびイオン伝導性樹脂が黒鉛表面に保持された触媒膜を得ることが出来る。
得られる触媒膜は、イオン伝導性樹脂および触媒粒子、導電助剤が、黒鉛によって形成された多孔質構造の孔の表面に均一に露出する構造をとり、触媒と燃料流体との接触効率が上がるとともに、燃料流体から触媒の作用で生成したイオンが、効率よく伝送されるので、高い集電性機能を示す。
さらに、塗工法なので、膜厚を容易に制御して触媒膜を制御することができる。
さらに、乾燥法で触媒膜を形成させるので、生産性良く、安価に大型化して生産することができる等の製造上のメリットを得ることができる。
According to the above production method, it is possible to obtain a catalyst film in which graphite forms a porous structure, and catalyst particles, a conductive assistant and an ion conductive resin are held on the graphite surface.
The resulting catalyst membrane has a structure in which the ion conductive resin, the catalyst particles, and the conductive assistant are uniformly exposed on the surface of the pores of the porous structure formed by graphite, and the contact efficiency between the catalyst and the fuel fluid is increased. At the same time, ions generated by the action of the catalyst from the fuel fluid are efficiently transmitted, so that a high current collecting function is exhibited.
Furthermore, since the coating method is used, the catalyst film can be controlled by easily controlling the film thickness.
Furthermore, since the catalyst film is formed by a drying method, it is possible to obtain manufacturing merits such as high productivity and low-cost production.

以下実施例に基づいて本発明を説明する。
[燃料極用触媒膜]
(第1工程)
まず、水20重量部とイオン伝導性樹脂を含む溶液(デュポン社製 商品名:ナフィオン 20重量%溶液)10重量部を混合して樹脂スラリーと成した。次に、上記樹脂スラリーに鱗片状の黒鉛8重量部及び導電助剤としてカーボンブラック1重量部を添加して炭素スラリーと成した。続いて、上記炭素スラリーに触媒担持カーボンブラック2重量部(田中貴金属社製;触媒として白金・ルテニウム54重量%をカーボンブラック46重量%に担持した粒子)を添加し、特殊機化社製の「ホモミキサー」により攪拌して触媒スラリーとした。
(第2工程)
得られた触媒スラリーを、ポリイミド製のフィルムからなる基板上にアプリケーターを用いて塗工した。
(第3工程)
次に前記基板上の触媒スラリーをドライヤーによって乾燥させて厚さが50μmの燃料極用触媒膜を得た。上記で得られた触媒膜の断面について、その細部構造を走査型電子顕微鏡(SEM)を用いて観察したところ、黒鉛によって多孔質を形成しており、黒鉛表面には触媒粒子、導電助剤及びイオン伝導性樹脂が保持されていることが確認できた。
Hereinafter, the present invention will be described based on examples.
[Fuel electrode catalyst membrane]
(First step)
First, 20 parts by weight of water and 10 parts by weight of a solution containing an ion conductive resin (DuPont brand name: Nafion 20% by weight solution) were mixed to form a resin slurry. Next, 8 parts by weight of scaly graphite and 1 part by weight of carbon black as a conductive assistant were added to the resin slurry to form a carbon slurry. Subsequently, 2 parts by weight of catalyst-supported carbon black (manufactured by Tanaka Kikinzoku; particles in which 54% by weight of platinum / ruthenium is supported on 46% by weight of carbon black as a catalyst) was added to the above carbon slurry. The mixture was stirred with a “homomixer” to obtain a catalyst slurry.
(Second step)
The obtained catalyst slurry was coated on a substrate made of a polyimide film using an applicator.
(Third step)
Next, the catalyst slurry on the substrate was dried by a drier to obtain a fuel electrode catalyst membrane having a thickness of 50 μm. Regarding the cross section of the catalyst film obtained above, the detailed structure was observed using a scanning electron microscope (SEM). As a result, a porous material was formed by graphite, and catalyst particles, conductive assistants and It was confirmed that the ion conductive resin was retained.

[酸素極用触媒膜]
触媒粒子として、白金を用いた触媒担持カーボンブラック(田中貴金属社製;触媒として白金46重量%をカーボンブラック54重量%に担持した粒子)を用いたほかは、前記と同様にして、触媒スラリーを調製し、得られた塗液を、上記と同様の条件でポリイミド製のフィルムからなる基板上に塗工し、乾燥して厚さが50μmの酸素極用触媒膜を得た。上記で得られた触媒膜の断面について、その細部構造を走査型電子顕微鏡(SEM)を用いて観察したところ、黒鉛によって多孔質を形成しており、黒鉛表面には触媒粒子、導電助剤及びイオン伝導性樹脂が保持されていることが確認できた。
[Catalyst membrane for oxygen electrode]
A catalyst slurry was prepared in the same manner as described above except that catalyst-supported carbon black using platinum as catalyst particles (manufactured by Tanaka Kikinzoku Co., Ltd .; particles in which 46% by weight of platinum was supported on 54% by weight of carbon black as a catalyst) was used. The prepared and obtained coating liquid was applied on a substrate made of a polyimide film under the same conditions as described above, and dried to obtain a catalyst film for an oxygen electrode having a thickness of 50 μm. Regarding the cross section of the catalyst film obtained above, the detailed structure was observed using a scanning electron microscope (SEM). As a result, a porous material was formed by graphite, and catalyst particles, conductive assistants and It was confirmed that the ion conductive resin was retained.

[膜−電極接合体用積層膜]
(第4工程)
次に上記燃料極用触媒膜と酸素極用触媒膜とを電解質膜(デュポン社製 商品名:ナフィオン117)の両面に基板上の触媒膜面が接触するように配した後、該基板側から熱プレス(120℃)して触媒膜を電解質膜に転写した。そして、ポリイミド製のフィルムを剥離して燃料極用触媒膜、電解質膜及び酸素極用触媒膜が順次積層された膜−電極接合体用積層膜を得た。
[Laminated film for membrane-electrode assembly]
(4th process)
Next, the fuel electrode catalyst membrane and the oxygen electrode catalyst membrane are arranged so that the catalyst membrane surface on the substrate is in contact with both surfaces of the electrolyte membrane (trade name: Nafion 117 manufactured by DuPont), and then from the substrate side. The catalyst membrane was transferred to the electrolyte membrane by hot pressing (120 ° C.). The polyimide film was peeled off to obtain a laminated film for a membrane-electrode assembly in which a fuel electrode catalyst membrane, an electrolyte membrane, and an oxygen electrode catalyst membrane were sequentially laminated.

前記実施例1において、導電助剤をカーボンナノチューブ1重量部とした以外は同様にして膜−電極接合体用積層膜を得た。なお、燃料極用触媒膜及び酸素極用触媒膜の厚みは両方とも50μmであった。   A laminated film for a membrane-electrode assembly was obtained in the same manner as in Example 1 except that the conductive additive was changed to 1 part by weight of carbon nanotubes. The thicknesses of the fuel electrode catalyst film and the oxygen electrode catalyst film were both 50 μm.

[比較例1]
前記実施例1において使用された白金・ルテニウム合金を担持した触媒担持カーボンブラック及び白金合金を担持した触媒担持カーボンブラックを用意し、それぞれ2重量部を酢酸ブチル20重量部に混合し、超音波洗浄機にて10分間分散して、燃料極用触媒分散液及び酸素極用触媒分散液を各々22重量部ずつ得た。その後、上記各分散液22重量部に対して、イオン伝導性樹脂を含む溶液(デュポン社製 商品名:ナフィオン 5重量%溶液)8重量部をそれぞれに混合して、更に超音波洗浄機で30分間分散し、黒鉛を含有していない触媒スラリーを得た。該触媒スラリーを電解質膜(デュポン社製 商品名:ナフィオン117)の表と裏の両面にアプリケーターを用いて塗工し、乾燥させて、燃料極用触媒層、電解質膜及び酸素極用触媒層が順次積層された積層体を作製した。燃料極側の触媒層の厚さは50μmであり、酸素極側の触媒層の厚さは50μmであった。触媒層断面を観察した結果、触媒層は多孔質を有していなかった。
[Comparative Example 1]
The catalyst-carrying carbon black carrying the platinum / ruthenium alloy used in Example 1 and the catalyst-carrying carbon black carrying the platinum alloy were prepared, 2 parts by weight were mixed with 20 parts by weight of butyl acetate, and ultrasonic cleaning was performed. The resulting mixture was dispersed for 10 minutes in a machine to obtain 22 parts by weight of the fuel electrode catalyst dispersion and the oxygen electrode catalyst dispersion. Thereafter, 8 parts by weight of a solution containing an ion conductive resin (trade name: Nafion 5 wt% solution manufactured by DuPont) was mixed with 22 parts by weight of each of the dispersions, and further 30 by an ultrasonic cleaner. Dispersed for a minute to obtain a catalyst slurry containing no graphite. The catalyst slurry is applied to both the front and back surfaces of an electrolyte membrane (trade name: Nafion 117, manufactured by DuPont) using an applicator and dried to form a fuel electrode catalyst layer, an electrolyte membrane, and an oxygen electrode catalyst layer. A stacked body was sequentially stacked. The thickness of the catalyst layer on the fuel electrode side was 50 μm, and the thickness of the catalyst layer on the oxygen electrode side was 50 μm. As a result of observing the cross section of the catalyst layer, the catalyst layer was not porous.

<燃料電池発電特性>
次に、前記実施例1及び2で得られた膜−電極接合体用積層膜と比較例1で得られた触媒膜を用いて下記のように燃料電池を作製して該燃料電池の発電特性を評価した。
まず、実施例1−1として、実施例1で作製した膜−電極接合体用積層膜の両面にガス拡散電極としてカーボンペーパーを配し、熱プレスして膜−電極接合体(MEA)とした。次に得られた膜−電極接合体を単セルに組み込んで燃料電池を得た。
また、実施例1−2として、実施例1で作製した膜−電極接合体用積層膜をそのまま単セルに組み込んで燃料電池を得た。
また、実施例2−1として、実施例2で作製した膜−電極接合体用積層膜の両面にガス拡散電極としてカーボンペーパーを配し、熱プレスして膜−電極接合体(MEA)とした。次に得られた膜−電極接合体を単セルに組み込んで燃料電池を得た。
また、実施例2−2として、実施例2で作製した膜−電極接合体用積層膜をそのまま単セルに組み込んで燃料電池を得た。
また、比較例1に関しては、前記比較例1で作製した燃料極用触媒層、電解質膜及び酸素極用触媒層が順次積層された積層体の両面にガス拡散電極としてカーボンペーパーを配し、熱プレスして膜−電極接合体とした。次に得られた膜−電極接合体を単セルに組み込んで、評価用の燃料電池とした。
次に、前記実施例1、2および比較例1から得られた各燃料電池へ、水素及び酸素を供給ガスとして、バブリングにて加湿し2.5気圧の供給圧とした上で、単セルにかかる温度を80℃に保持した状態で運転した。電流密度が1A/cmにおける電圧を、5時間後、500時間後および1000時間後に調べた結果を表1に示す。
<Fuel cell power generation characteristics>
Next, a fuel cell was prepared as follows using the laminated film for the membrane-electrode assembly obtained in Examples 1 and 2 and the catalyst film obtained in Comparative Example 1, and the power generation characteristics of the fuel cell were as follows. Evaluated.
First, as Example 1-1, carbon paper was arranged as a gas diffusion electrode on both surfaces of the laminated film for the membrane-electrode assembly produced in Example 1, and heat-pressed to obtain a membrane-electrode assembly (MEA). . Next, the obtained membrane-electrode assembly was incorporated into a single cell to obtain a fuel cell.
Moreover, as Example 1-2, the laminated film for membrane-electrode assemblies produced in Example 1 was incorporated into a single cell as it was to obtain a fuel cell.
Moreover, as Example 2-1, carbon paper was arranged as a gas diffusion electrode on both surfaces of the laminated film for the membrane-electrode assembly produced in Example 2, and hot-pressed to obtain a membrane-electrode assembly (MEA). . Next, the obtained membrane-electrode assembly was incorporated into a single cell to obtain a fuel cell.
Moreover, as Example 2-2, the laminated film for membrane-electrode assemblies produced in Example 2 was incorporated into a single cell as it was to obtain a fuel cell.
For Comparative Example 1, carbon paper was disposed as a gas diffusion electrode on both sides of a laminate in which the fuel electrode catalyst layer, the electrolyte membrane, and the oxygen electrode catalyst layer prepared in Comparative Example 1 were sequentially laminated. The membrane-electrode assembly was pressed. Next, the obtained membrane-electrode assembly was incorporated into a single cell to obtain a fuel cell for evaluation.
Next, each fuel cell obtained from Examples 1 and 2 and Comparative Example 1 was supplied with hydrogen and oxygen as supply gases, and was humidified by bubbling to a supply pressure of 2.5 atm. The operation was carried out while maintaining this temperature at 80 ° C. Table 1 shows the results of examining the voltage at a current density of 1 A / cm 2 after 5 hours, 500 hours and 1000 hours.

Figure 2006012676
Figure 2006012676

表1から明らかなように、本発明の製造方法から得られた膜−電極接合体用積層膜を用いた実施例1及び2の燃料電池(セル)は、いずれも連続運転時における電圧低下が少ない結果であった。しかし、触媒粒子とイオン伝導性樹脂のみを含む塗液を直接電解質膜に塗工した比較例1では、連続運転で電圧低下が認められた。このことは、塗工する際に、電解質膜に若干のうねりが生じたことと、塗工面の厚さムラや触媒粒子の凝集などが原因となって、発電性能に悪影響を及ぼしたためと推定される。   As is clear from Table 1, the fuel cells (cells) of Examples 1 and 2 using the laminated film for membrane-electrode assembly obtained from the production method of the present invention both have a voltage drop during continuous operation. There were few results. However, in Comparative Example 1 in which a coating liquid containing only catalyst particles and an ion conductive resin was directly applied to the electrolyte membrane, a voltage drop was observed during continuous operation. This is presumed to be due to the negative influence on the power generation performance due to slight undulation in the electrolyte membrane during coating, uneven thickness of the coating surface and aggregation of catalyst particles. The

更に、前記実施例1および2の触媒膜と比較例1の触媒層を用いて、上記と同様の単セルを組み、燃料として水によるメタノール希釈液(メタノール5重量%)を用い、発電性能を評価した。評価方法については前記と同様に行い電流密度が1A/cmにおける電圧を調べた結果を表2に示す。 Furthermore, using the catalyst membranes of Examples 1 and 2 and the catalyst layer of Comparative Example 1, a single cell similar to the above was assembled, and a methanol dilution with water (5% by weight of methanol) was used as the fuel to improve power generation performance. evaluated. About the evaluation method, it carried out similarly to the above, and the result of having investigated the voltage in case the current density is 1 A / cm < 2 > is shown in Table 2.

Figure 2006012676
Figure 2006012676

上記、表2から明らかなように、本発明の製造方法から得られた膜−電極接合体用積層膜を用いた実施例1及び2の燃料電池(セル)は、メタノール液系の固体高分子型燃料電池においても、良好な性能を発揮することが確認された。   As is apparent from Table 2 above, the fuel cells (cells) of Examples 1 and 2 using the laminated film for membrane-electrode assembly obtained from the production method of the present invention are methanol liquid solid polymers. It has been confirmed that the fuel cell also exhibits good performance.

Claims (6)

水及び/またはアルコール、黒鉛、触媒粒子及びイオン伝導性樹脂を含む触媒スラリーを得る第1工程と、
前記触媒スラリーを基板上に塗工する第2工程と、
前記塗工された触媒スラリーを乾燥して触媒膜を得る第3工程と、
前記基板上の触媒膜を電解質膜に転写する第4工程と、
を有することを特徴とする膜−電極接合体用積層膜の製造方法。
A first step of obtaining a catalyst slurry comprising water and / or alcohol, graphite, catalyst particles and an ion conductive resin;
A second step of applying the catalyst slurry onto a substrate;
A third step of drying the coated catalyst slurry to obtain a catalyst film;
A fourth step of transferring the catalyst film on the substrate to the electrolyte film;
A method for producing a laminated film for a membrane-electrode assembly, comprising:
触媒スラリーに導電助剤が含有されていることを特徴とする請求項1に記載の膜−電極接合体用積層膜の製造方法。   The method for producing a laminated film for a membrane-electrode assembly according to claim 1, wherein the catalyst slurry contains a conductive additive. 黒鉛が鱗状、鱗片状、薄片状および膨張黒鉛のいずれか1つもしくは2つ以上を含むことを特徴とする請求項1または2に記載の膜−電極接合体用積層膜の製造方法。   The method for producing a laminated film for a membrane-electrode assembly according to claim 1 or 2, wherein the graphite contains any one or more of scaly, scaly, flakes, and expanded graphite. 導電助剤が、カーボンブラック及び/または炭素繊維からなることを特徴とする請求項2または3に記載の膜−電極接合体用積層膜の製造方法。   The method for producing a laminated film for a membrane-electrode assembly according to claim 2 or 3, wherein the conductive additive comprises carbon black and / or carbon fiber. 炭素繊維がカーボンナノチューブであることを特徴とする請求項4に記載の膜−電極接合体用積層膜の製造方法。   The method for producing a laminated film for a membrane-electrode assembly according to claim 4, wherein the carbon fiber is a carbon nanotube. 触媒膜が多孔質であることを特徴とする請求項1〜5のいずれかに記載の膜−電極接合体用積層膜の製造方法。   The method for producing a laminated film for a membrane-electrode assembly according to any one of claims 1 to 5, wherein the catalyst membrane is porous.
JP2004190000A 2004-06-28 2004-06-28 Method for producing laminated film for membrane-electrode assembly Expired - Fee Related JP4787474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190000A JP4787474B2 (en) 2004-06-28 2004-06-28 Method for producing laminated film for membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190000A JP4787474B2 (en) 2004-06-28 2004-06-28 Method for producing laminated film for membrane-electrode assembly

Publications (2)

Publication Number Publication Date
JP2006012676A true JP2006012676A (en) 2006-01-12
JP4787474B2 JP4787474B2 (en) 2011-10-05

Family

ID=35779662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190000A Expired - Fee Related JP4787474B2 (en) 2004-06-28 2004-06-28 Method for producing laminated film for membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP4787474B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250543A (en) * 2006-03-13 2007-09-27 Gm Global Technology Operations Inc Method of making fuel cell components including catalyst layer and plural ionomer overcoat layers
JP2014107026A (en) * 2012-11-22 2014-06-09 Asahi Glass Co Ltd Membrane electrode assembly for solid polymer fuel cell
CN106784943A (en) * 2016-12-19 2017-05-31 华南理工大学 A kind of membrane electrode of fuel batter with proton exchange film of high power density and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129243A (en) * 1995-11-02 1997-05-16 Toyota Central Res & Dev Lab Inc Low temperature fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2002093424A (en) * 2000-07-10 2002-03-29 Toray Ind Inc Manufacturing method of membrane-electrode joined body
JP2003115302A (en) * 2001-01-16 2003-04-18 Showa Denko Kk Catalyst composition for cell, gas diffusion layer and fuel cell provided with these
WO2003058735A2 (en) * 2002-01-08 2003-07-17 Johnson Matthey Public Limited Company Electrocatalyst ink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129243A (en) * 1995-11-02 1997-05-16 Toyota Central Res & Dev Lab Inc Low temperature fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2002093424A (en) * 2000-07-10 2002-03-29 Toray Ind Inc Manufacturing method of membrane-electrode joined body
JP2003115302A (en) * 2001-01-16 2003-04-18 Showa Denko Kk Catalyst composition for cell, gas diffusion layer and fuel cell provided with these
WO2003058735A2 (en) * 2002-01-08 2003-07-17 Johnson Matthey Public Limited Company Electrocatalyst ink

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250543A (en) * 2006-03-13 2007-09-27 Gm Global Technology Operations Inc Method of making fuel cell components including catalyst layer and plural ionomer overcoat layers
JP2014107026A (en) * 2012-11-22 2014-06-09 Asahi Glass Co Ltd Membrane electrode assembly for solid polymer fuel cell
CN106784943A (en) * 2016-12-19 2017-05-31 华南理工大学 A kind of membrane electrode of fuel batter with proton exchange film of high power density and preparation method thereof
CN106784943B (en) * 2016-12-19 2019-05-14 华南理工大学 A kind of membrane electrode of fuel batter with proton exchange film of high power density and preparation method thereof

Also Published As

Publication number Publication date
JP4787474B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4655167B2 (en) Method for producing electrode catalyst layer for fuel cell
JP4702735B2 (en) Manufacturing method of gas diffusion layer for fuel cell
WO2011114783A1 (en) Process for production of cathode catalyst layer for fuel cell, cathode catalyst layer, and membrane electrode assembly for solid polymer fuel cell
CN101136480A (en) Membrane-electrode assembly for fuel cell, method of preparing same, and fuel cell system cpmrising same
US20220149388A1 (en) Cathode catalyst layer for fuel cell and fuel cell
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
JP2008311180A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP2023126365A (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP6809135B2 (en) Coating composition, separator with coat layer, current collector plate with coat layer and fuel cell
JP2006120506A (en) Solid polymer fuel cell
JP2007012424A (en) Gas diffusion electrode, membrane-electrode joined body and its manufacturing method, and solid polymer fuel cell
US8278012B2 (en) Membrane electrode assembly for fuel cell, and fuel cell system including the same
WO2012043337A1 (en) Fuel-cell electrode catalyst layer manufacturing method, fuel-cell membrane-electrode assembly, and polymer electrolyte fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP4787474B2 (en) Method for producing laminated film for membrane-electrode assembly
JP2008198516A (en) Fuel cell
JP4348154B2 (en) Catalyst membrane for polymer electrolyte fuel cell, production method thereof and fuel cell using the same
JP2005243295A (en) Gas diffusion layer, and mea for fuel cell using the same
JP2005209544A (en) Catalyst film for solid polymer electrolyte fuel cell, catalyst slurry used for it, its manufacturing method and film-electrode junction using it, and solid polymer electrolyte fuel cell
JP2011076739A (en) Gas diffusion layer for solid polymer fuel cell, and manufacturing method thereof
WO2014091870A1 (en) Fuel cell electrode sheet and method for producing same
KR100761525B1 (en) Integrated type gas diffusion layer, electrode comprising the same, membrane electrode assembly comprising the same, and fuel cell comprising the same
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
JP2006134648A (en) Electrode structure of solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees