JP2006010493A - Evaluation method for evaluating object using ultrasonic wave - Google Patents

Evaluation method for evaluating object using ultrasonic wave Download PDF

Info

Publication number
JP2006010493A
JP2006010493A JP2004187813A JP2004187813A JP2006010493A JP 2006010493 A JP2006010493 A JP 2006010493A JP 2004187813 A JP2004187813 A JP 2004187813A JP 2004187813 A JP2004187813 A JP 2004187813A JP 2006010493 A JP2006010493 A JP 2006010493A
Authority
JP
Japan
Prior art keywords
evaluated
grindstone
evaluation
evaluation method
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004187813A
Other languages
Japanese (ja)
Inventor
Takao Ugawa
貴穂 鵜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kure Norton KK
Original Assignee
Kure Norton KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kure Norton KK filed Critical Kure Norton KK
Priority to JP2004187813A priority Critical patent/JP2006010493A/en
Publication of JP2006010493A publication Critical patent/JP2006010493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-destructive evaluation method capable of evaluating a relative density distribution in an evaluating object, and capable of a state of a tissue constituted of a spatial part and a nonspatial part of a porous material provided with a large number of consecutive open spaces. <P>SOLUTION: This evaluation method forms an image of the relative density distribution in the evaluated object, by ultrasonic flaw detection, to evaluate the evaluated object. In the method, the evaluated object is irradiated with an ultrasonic wave, a reflected ultrasonic wave is detected to find a sonic velocity V propagated in an inside of the evaluated object, pursuant to Expression (1) V=T/(t2-t1), where T represents an evaluated object thickness, t1 represents a time when the evaluated object is irradiated with an ultrasonic wave, and t2 represents a time when the ultrasonic wave is reflected from the evaluated object, and the obtained sonic velocity is formed into an image. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超音波を利用した被評価物の評価方法に関する。本発明で評価される被評価物は、基本的に内部に空間を含まないものでも、あるいは基本的に内部に空間を含む、例えば多数の連続気孔を備えた、多孔質のものでもよく、本発明の評価方法は、そのような被評価物における相対的な密度分布を評価する方法として用いられる。本発明によれば、こうして得られた被評価物における相対的密度分布を利用して、例えば多孔質の被評価物における空間部と非空間部により構成される組織の状態を評価することも可能である。本発明の評価方法は、例えば砥石の評価で好ましく用いられる。   The present invention relates to a method for evaluating an object to be evaluated using ultrasonic waves. The object to be evaluated evaluated according to the present invention may basically be one that does not include a space inside, or may be a porous one that basically includes a space inside, for example, has a large number of continuous pores. The evaluation method of the invention is used as a method for evaluating the relative density distribution in such an object to be evaluated. According to the present invention, it is possible to evaluate the state of the tissue constituted by, for example, a space portion and a non-space portion in a porous evaluation object using the relative density distribution in the evaluation object thus obtained. It is. The evaluation method of the present invention is preferably used for evaluation of a grindstone, for example.

超音波を使用した評価方法としてよく用いられるのは、材料のクラック等の欠陥を発見する方法である。この方法は昔から一般的に用いられており、一例として特許文献1には、管材、条鋼製品の素材となる鋼片の内部欠陥を超音波により検出する技術が記載されている。特許文献2には、超音波探傷を利用して鋼材のポリシティーの分布状態を検出する技術が記載されている。更に、特許文献3には、研削砥石の内部クラックを超音波で検出する砥石検査方法が記載されている。これらの例のほかに、材料の内部クラックを超音波で検出する多数の技術が知られている。砥石関係の評価で超音波探傷を利用する別の例として、特許文献4には、ニューラルネットワーク(学習法)を利用してCBNセグメント砥石の接着部の欠陥を検出する技術が開示されている。   A method often used as an evaluation method using ultrasonic waves is a method for finding defects such as cracks in a material. This method has been generally used for a long time, and as an example, Patent Document 1 describes a technique for detecting an internal defect of a steel piece as a material of a pipe material or a steel bar product by ultrasonic waves. Patent Document 2 describes a technique for detecting the distribution state of the steel polysity using ultrasonic flaw detection. Further, Patent Document 3 describes a grinding wheel inspection method for detecting internal cracks of a grinding wheel with ultrasonic waves. In addition to these examples, a number of techniques for detecting internal cracks in materials with ultrasound are known. As another example of using ultrasonic flaw detection in the evaluation of a grindstone, Patent Literature 4 discloses a technique for detecting a defect in the bonded portion of a CBN segment grindstone using a neural network (learning method).

特開平9−96626号公報JP-A-9-96626 特開2002−286702号公報JP 2002-286702 A 特開平5−26851号公報Japanese Patent Laid-Open No. 5-26851 特開2003−279550号公報JP 2003-279550 A

しかしながら、上記の技術は全て、クラック等の材料欠陥を検出するためのものである。超音波探傷を用いた非破壊の評価方法として、被評価物における相対的な密度分布を評価する方法、そしてその評価に基づき、例えば連続空間を備えた多孔質材料における空間部と非空間部により構成される組織の状態を評価することは、これまで開示されていない。これまでにも、特に連続気孔を備えた研削砥石の密度、及び空間部と非空間部の分布を評価するには、微小ロックウェル硬度測定を用い、短間隔で評価する方法がある。しかし、この方法は破壊検査なので、材料試験的な評価は可能であるが、製品の検査には用いられない。より具体的に言えば、この方法では試験物(研削砥石)の端部に欠けが発生するので、製品砥石の測定は不可である。   However, all of the above techniques are for detecting material defects such as cracks. As a nondestructive evaluation method using ultrasonic flaw detection, a method of evaluating a relative density distribution in an object to be evaluated, and based on the evaluation, for example, by a space portion and a non-space portion in a porous material having a continuous space Assessing the state of the organized organization has not been disclosed so far. Until now, in particular, in order to evaluate the density of the grinding wheel having continuous pores and the distribution of the space portion and the non-space portion, there has been a method of evaluating at a short interval using micro Rockwell hardness measurement. However, since this method is a destructive inspection, a material test evaluation is possible, but it is not used for a product inspection. More specifically, in this method, chipping occurs at the end of the test object (grinding grindstone), so the product grindstone cannot be measured.

本発明の課題は、非破壊の評価方法として、被評価物における相対的な密度分布を評価し、そして多数の連続空間を備えた多孔質材料の空間部と非空間部により構成されるような組織の状態の評価を可能にする方法を確立することである。   An object of the present invention is to evaluate a relative density distribution in an object to be evaluated as a non-destructive evaluation method, and to be configured by a space portion and a non-space portion of a porous material having a large number of continuous spaces. Establishing a method that allows assessment of the state of the organization.

本発明の被評価物の評価方法は、その好ましい態様を含めて、次のとおりである。
(1)超音波探傷により、被評価物における相対的密度分布を画像化して被評価物を評価することを特徴とする評価方法。
(2)被評価物に超音波を照射し、反射した超音波を検出して、被評価物中を伝播する音速値Vを下記の式(1)、
V=T/(t2−t1) (1)
T: 被評価物厚さ
t1: 被評価物に超音波を照射した時間
t2: 被評価物から超音波が反射した時間
により求め、得られた音速値を画像化することを特徴とする(1)記載の評価方法。
(3)被評価物の超音波探傷を最小0.1mm間隔で行うことを特徴とする(2)記載の評価方法。
(4)式(1)により算出した音速値Vの平均値Vavを使用して、被評価物の弾性率Epを下記の式(2)、
Ep=kρVav 2 (2)
k: ポアソン比νより、k=(1+ν)(1−2ν)/(1−ν)で算 出される係数
ρ: 被評価物密度
で算出し、被評価物の弾性率を評価することを特徴とする(2)又は(3)記載の評価方法。
(5)被評価物は基本的に内部に空間を含まないものであることを特徴とする(1)〜(4)のいずれか一つに記載の評価方法。
(6)被評価物は基本的に内部に空間又は連続空隙が存在するものであることを特徴とする(1)〜(4)のいずれか一つに記載の評価方法。
(7)被評価物は研削砥石であることを特徴とする(1)〜(4)いずれか一つに記載の評価方法。
The method for evaluating an object to be evaluated according to the present invention is as follows, including preferred embodiments thereof.
(1) An evaluation method characterized by evaluating an evaluation object by imaging a relative density distribution in the evaluation object by ultrasonic flaw detection.
(2) The ultrasonic wave is irradiated to the object to be evaluated, the reflected ultrasonic wave is detected, and the sound velocity value V propagating through the object to be evaluated is expressed by the following equation (1),
V = T / (t2-t1) (1)
T: Thickness of the object to be evaluated
t1: Time when the object to be evaluated was irradiated with ultrasonic waves
t2: The evaluation method according to (1), characterized in that the sound velocity value obtained by obtaining the ultrasonic wave from the object to be evaluated is imaged.
(3) The evaluation method according to (2), wherein the ultrasonic inspection of the object to be evaluated is performed at a minimum interval of 0.1 mm.
(4) Using the average value V av of the sound velocity values V calculated by the equation (1), the elastic modulus Ep of the object to be evaluated is expressed by the following equation (2),
Ep = kρV av 2 (2)
k: Coefficient calculated from Poisson's ratio ν by k = (1 + ν) (1-2ν) / (1-ν)
ρ: The evaluation method according to (2) or (3), wherein the evaluation method calculates the evaluation object density and evaluates the elastic modulus of the evaluation object.
(5) The evaluation method according to any one of (1) to (4), wherein the object to be evaluated basically does not include a space inside.
(6) The evaluation method according to any one of (1) to (4), wherein the object to be evaluated basically has a space or a continuous gap inside.
(7) The evaluation method according to any one of (1) to (4), wherein the object to be evaluated is a grinding wheel.

本発明の方法を用いれば、非破壊にて、被評価物における相対的な密度分布を評価することができ、そしてその結果に基づき、例えば多数の連続空間を備えた多孔質材料の空間部と非空間部の分布とそれに由来する組織状態を評価することができる。それにより、本発明の方法は、さまざまな産業分野の各種製品の出荷検査、品質向上のための評価指針として用いることができ、セラミック産業を始めとする各種産業の発達、特に研削砥石業界への貢献が大である。   By using the method of the present invention, it is possible to evaluate a relative density distribution in an object to be evaluated in a non-destructive manner, and based on the result, for example, a space portion of a porous material having a large number of continuous spaces, and The distribution of the non-space portion and the tissue state derived from it can be evaluated. As a result, the method of the present invention can be used as an evaluation guide for shipping inspection and quality improvement of various products in various industrial fields, and development of various industries including the ceramic industry, particularly for the grinding wheel industry. The contribution is great.

超音波探傷を利用して被評価物の評価を行う本発明の実施形態を、図を用いて説明する。ここでは、連続気孔を備えた研削砥石を被評価物の例とする。   An embodiment of the present invention for evaluating an object to be evaluated using ultrasonic flaw detection will be described with reference to the drawings. Here, a grinding wheel having continuous pores is taken as an example of the object to be evaluated.

超音波探傷は、水中で実施されるのが好適であり、その場合、一般的には水浸式パルス反射法と呼ばれている。図1は、水浸式パルス反射法で本発明を実施するために構築したシステム装置を示している。   The ultrasonic flaw detection is preferably performed in water, and in this case, it is generally called a water immersion type pulse reflection method. FIG. 1 shows a system apparatus constructed to implement the present invention by a water immersion type pulse reflection method.

この図において、6は被評価物(連続気孔を備えたビトリファイド研削砥石)であり、この被評価物6を水槽8の水中に浸し固定する。この水中には、被評価物6に対向するように、超音波プローブ7が配置されている。被評価物(砥石)6をしばらく静置し、その連続気孔内に水を浸透させる。次に、パソコン等のコンピュータ1の操作により3のコントローラーを制御して、Z軸モーター4及びR軸モーター5を始動させ、被評価物6を所定の測定位置につける。この図の装置では、被評価物6を回転させ、プローブ7を上下に移動させているが、それらの位置の制御方法は被評価物の形状等により変更できる。   In this figure, 6 is an object to be evaluated (a vitrified grinding wheel with continuous pores), and this object 6 is immersed in water in a water tank 8 and fixed. An ultrasonic probe 7 is disposed in the water so as to face the object 6 to be evaluated. The object to be evaluated (grinding stone) 6 is allowed to stand for a while, and water is infiltrated into the continuous pores. Next, the controller 3 is controlled by operating the computer 1 such as a personal computer, the Z-axis motor 4 and the R-axis motor 5 are started, and the evaluation object 6 is placed at a predetermined measurement position. In the apparatus of this figure, the evaluation object 6 is rotated and the probe 7 is moved up and down, but the control method of these positions can be changed depending on the shape of the evaluation object.

次に、コンピュータ1の操作により超音波探傷器2を始動させ、プローブ7より超音波9を被評価物6に照射し、被評価物6から反射した超音波をこのプローブ7で感知してその信号を超音波探傷器2に送信し、コンピュータ1にてデジタル変換演算処理して、図2に例示した超音波波形を得る。続いて、コンピュータ1の操作により再びコントローラー3を制御し、Z軸モーター4とR軸モーター5を始動させて、被評価物6を次の測定位置につけ、前記と同様に超音波の照射と反射波の処理を行う。更に、この一連の操作を逐次的に繰返し、最終的に評価結果を図3のごとく画像化する。   Next, the ultrasonic flaw detector 2 is started by the operation of the computer 1, the ultrasonic wave 9 is irradiated to the evaluation object 6 from the probe 7, and the ultrasonic wave reflected from the evaluation object 6 is detected by the probe 7. The signal is transmitted to the ultrasonic flaw detector 2, and the computer 1 performs digital conversion calculation processing to obtain the ultrasonic waveform illustrated in FIG. Subsequently, the controller 3 is controlled again by the operation of the computer 1, the Z-axis motor 4 and the R-axis motor 5 are started, the evaluation object 6 is placed at the next measurement position, and ultrasonic irradiation and reflection are performed in the same manner as described above. Do wave processing. Further, this series of operations is sequentially repeated, and finally the evaluation result is imaged as shown in FIG.

以下、具体的な演算処理手順を説明する。
図2に例示した、被評価物の1つの測定点について得られた超音波波形から、被評価物に超音波を照射した時間t1と、被評価物から超音波が反射した時間t2を求める。t1は、プローブ7から照射された超音波が被評価物6に到達した時間として検出し、t2は、プローブ7から照射された超音波が被評価物6に到達し、Tの被評価物の厚み間を往復した時間として検出する。得られたt1、t2の値と、予め測定してコンピュータ1にインプットしておいた被評価物の厚みTの値から、下式、
V=T/(t2−t1) (1)
で音速値Vを算出する。この音速値Vは、超音波が被評価物6を通過するときの速度を表している。
Hereinafter, a specific calculation processing procedure will be described.
From the ultrasonic waveform obtained for one measurement point of the evaluation object illustrated in FIG. 2, a time t1 when the ultrasonic wave is applied to the evaluation object and a time t2 when the ultrasonic wave is reflected from the evaluation object are obtained. t1 is detected as the time when the ultrasonic wave irradiated from the probe 7 reaches the object 6 to be evaluated, and t2 is the time when the ultrasonic wave irradiated from the probe 7 reaches the object 6 to be evaluated. Detected as the time of reciprocation between thicknesses. From the values of t1 and t2 obtained and the value of the thickness T of the object to be evaluated that was measured and input to the computer 1 in advance,
V = T / (t2-t1) (1)
To calculate the sound velocity value V. This sound speed value V represents the speed at which the ultrasonic wave passes through the evaluation object 6.

続いて、上述のように被評価物の一定間隔の測定個所について測定を繰返し、算出された各音速値Vをコンピュータで画像処理して、最終的に図3のような分布図を作成する。   Subsequently, as described above, the measurement is repeated for the measurement points at regular intervals of the object to be evaluated, and the calculated sound velocity values V are image-processed by a computer to finally create a distribution diagram as shown in FIG.

図3の分布図を説明すると、濃く表示された部分が音速値の高い部分、薄く表示された部分が音速値の低い部分を表している。音が伝播する物質の密度が高いほど音速値は高くなるので、音速値が高いということは物質の密度が高いことを示す。測定箇所に空間が存在することでそこの密度が低くなると、超音波の伝播速度は遅くなる。従って、被評価物についての超音波の速度値の分布を示す図3から、被評価物における相対的な密度分布を知ることができる。図3は、音速値が高い箇所を濃くし、低い部分を薄くしているが、その逆も可能である。また、このような濃淡表示に替えて、色相の違いにより速度値の分布(すなわち密度分布)を表示することも可能である。   Referring to the distribution diagram of FIG. 3, a darkly displayed portion indicates a high sound speed value portion, and a lightly displayed portion indicates a low sound speed value portion. The higher the density of the material through which sound is transmitted, the higher the sound velocity value. Therefore, a higher sound velocity value indicates a higher material density. If the density is low due to the presence of a space at the measurement location, the propagation speed of the ultrasonic wave becomes slow. Therefore, the relative density distribution in the evaluation object can be known from FIG. 3 showing the distribution of ultrasonic velocity values for the evaluation object. In FIG. 3, the portion where the sound velocity value is high is darkened and the low portion is thinned, but the reverse is also possible. Further, instead of such grayscale display, it is also possible to display a velocity value distribution (that is, a density distribution) by a difference in hue.

次に、算出された音速値Vの平均値Vavを使用して、被評価物の弾性率Epを下記の式により求めることができる。
Ep=kρVav 2 (2)
音速値Vの平均値Vavは、測定した全ての音速値の算術平均により得られる。そしてこの式のkは被評価物のポアソン比νより、k=(1+ν)(1−2ν)/(1−ν)で算出される係数である。ポアソン比は物質固有の値であり、専門書籍等に記載されている値を使用することができる。また、この式のρは被評価物の密度であり、被評価物の体積と重量から、下式、
ρ=(被評価物の質量)/(被評価物の体積) (3)
により求めることができる。
Next, using the average value V av of the calculated sound velocity values V, the elastic modulus Ep of the object to be evaluated can be obtained by the following equation.
Ep = kρV av 2 (2)
The average value V av of the sound velocity values V is obtained by the arithmetic average of all the measured sound velocity values. K in this equation is a coefficient calculated from the Poisson's ratio ν of the object to be evaluated by k = (1 + ν) (1-2ν) / (1-ν). The Poisson's ratio is a value specific to a substance, and a value described in a specialized book or the like can be used. In addition, ρ in this equation is the density of the object to be evaluated, and from the volume and weight of the object to be evaluated,
ρ = (mass of object to be evaluated) / (volume of object to be evaluated) (3)
It can ask for.

算出された弾性率の値が高いほど、被評価物の密度は高くなる傾向がある。このことから、例えば被評価物が定期的及び連続的に生産され、市場に販売する製品である場合、製品ごとに弾性率を求めることで、製品ごとの密度傾向を評価できる。被評価物が研削砥石の場合は、弾性率が高いと俗に言う「砥石が硬い」という傾向を示し、弾性率が低いとその逆である。本発明による弾性率の評価により、製品砥石ごとでの研削傾向を推定することが可能となり、それにより製品研削砥石の品質管理評価に貢献することができる。   The higher the calculated elastic modulus value, the higher the density of the object to be evaluated. From this, for example, when the evaluated object is a product that is produced regularly and continuously and sold to the market, the density tendency for each product can be evaluated by obtaining the elastic modulus for each product. When the object to be evaluated is a grinding wheel, it shows a tendency that “the grinding wheel is hard”, which is commonly referred to as having a high elastic modulus, and vice versa when the elastic modulus is low. The evaluation of the elastic modulus according to the present invention makes it possible to estimate the grinding tendency for each product grindstone, thereby contributing to the quality control evaluation of the product grindstone.

本発明の評価方法における音速値の測定間隔は、自由に変更できるが、最低0.1mm間隔が望ましい。0.1mmより狭い測定間隔であると、測定間隔の調整が難しく、また図3のように分布を図示する場合わかりにくくなりかねない。被評価物の大きさ、形態等を考慮して、0.1mm以上の測定間隔を適宜採用することが可能であるが、実用上、より望ましい測定間隔は0.5mm間隔以上である。測定間隔は、被評価物の大きさ、形態等にもよるが、被評価物における材料の密度分布を見るという目的から、例えば1.5mm以下とするのが好ましい。   The measurement interval of the sound velocity value in the evaluation method of the present invention can be freely changed, but a minimum interval of 0.1 mm is desirable. If the measurement interval is smaller than 0.1 mm, it is difficult to adjust the measurement interval, and it may be difficult to understand when the distribution is illustrated as shown in FIG. In consideration of the size, form, etc. of the object to be evaluated, a measurement interval of 0.1 mm or more can be appropriately employed. However, a more preferable measurement interval in practice is 0.5 mm or more. The measurement interval is preferably 1.5 mm or less, for example, for the purpose of checking the density distribution of the material in the evaluation object, although it depends on the size and form of the evaluation object.

本発明の評価方法は、砥石における相対的密度分布を評価するのに好適に利用することができ、そしてそれに基づき砥石における組織状態を評価することが可能である。以下、そのような砥石について説明する。   The evaluation method of the present invention can be suitably used for evaluating the relative density distribution in the grindstone, and based on this, the structure state in the grindstone can be evaluated. Hereinafter, such a grindstone will be described.

砥石の種類を使用する砥粒の種類により大別すると、アルミナ系や炭化ケイ素等の砥粒を使用した砥石(通常「一般砥石」と呼ばれる)と、CBN又はダイヤモンド砥粒を含む砥石(通常「SA砥石」と呼ばれる)に分けられる。最近では、SA砥石の使用割合が増加している。   Roughly classified according to the type of abrasive grains that use the type of grindstone, a grindstone that uses abrasive grains such as alumina or silicon carbide (usually called “general grindstone”) and a grindstone that contains CBN or diamond abrasive grains (usually “ Called "SA grinding wheel"). Recently, the use ratio of SA grindstone is increasing.

SA砥石は、使用する砥粒が一般砥石で使用されるものより硬質であり、一般砥石と比較して50〜100倍の耐久性があると一般的に言われていて、主に精密研削で使用される。しかしながら、SA砥石で使用するCBN、ダイヤモンド等の砥粒(SA砥粒)は、アルミナ系、炭化ケイ素等の砥粒と比較して高価である。そこでSA砥石の場合、SA砥粒は研削作業を行わない不必要な部分には含まれておらず、例えば1A1タイプの砥石ではCBN又はダイヤモンド砥粒を含む層は外周3mm程度である。図4に、1A1タイプの砥石を上から見た図を示す。この図において、13は研削盤の軸部に装着するための孔であり、14はSA砥石部を固定する支持体であって、主に金属製又はセラミック製であり、あるいはアルミナ系、炭化ケイ素等の砥粒を使用した一般砥石などが使用され、そして15がSA砥石部であり、支持体14の外周に薄い寸法で支持されている。   SA grindstones are generally said to be harder than those used in general grindstones and have a durability of 50 to 100 times that of regular grindstones. used. However, abrasive grains (SA abrasive grains) such as CBN and diamond used in the SA grindstone are expensive compared to abrasive grains such as alumina and silicon carbide. Therefore, in the case of the SA grindstone, the SA grits are not included in unnecessary portions where the grinding operation is not performed. For example, in the 1A1 type grindstone, the layer containing CBN or diamond grits is about 3 mm in outer circumference. The figure which looked at the 1A1 type grindstone from the top in FIG. 4 is shown. In this figure, 13 is a hole for mounting on the shaft part of the grinding machine, and 14 is a support for fixing the SA grindstone part, which is mainly made of metal or ceramic, or alumina-based, silicon carbide A general grindstone using abrasive grains such as is used, and 15 is an SA grindstone portion, which is supported on the outer periphery of the support 14 with a thin dimension.

SA砥石にプローブ7(図1)から超音波を照射した場合、SA砥石部を通過した超音波は砥石底面部(図4のSA砥石部15と支持体14との界面)より反射し、反射波形がプローブ7に受信される。   When the SA grindstone is irradiated with ultrasonic waves from the probe 7 (FIG. 1), the ultrasonic waves that have passed through the SA grindstone are reflected from the bottom surface of the grindstone (the interface between the SA grindstone 15 and the support 14 in FIG. 4) and reflected. The waveform is received by the probe 7.

SA砥石部は、リング状の形状(図4に示した形状)である場合と、図5(a)及び(b)に示したような、支持体の同じ曲率を持った小さな砥石片(一般的にセグメント砥石と呼ばれている)を支持体14に貼り付けて1A1砥石を製作する場合がある。   The SA grindstone has a ring-like shape (the shape shown in FIG. 4) and a small grindstone piece having the same curvature as the support (generally shown in FIGS. 5A and 5B). In some cases, the 1A1 grindstone is manufactured by sticking the segment grindstone to the support 14.

セグメント砥石は、図5(a)に示したようにSA砥石部16のみで構成される場合と、図5(b)に示したように金属製又はセラミック製の、あるいはアルミナ系、炭化ケイ素等の砥粒を使用した一般砥石で構成される、支持体17に、SA砥石部18を装着した形態がある。   The segment grindstone is composed of only the SA grindstone portion 16 as shown in FIG. 5A, and is made of metal or ceramic as shown in FIG. 5B, or alumina, silicon carbide, etc. There is a form in which the SA grindstone portion 18 is mounted on the support 17 composed of a general grindstone using the above-mentioned abrasive grains.

SA砥石では、結合剤としてビトリファイド結合剤、レジノイド結合剤、メタル結合剤、電着結合剤又はろう付け結合剤が使用される。砥石組織としては、砥石内に連続気孔が形成された有気孔タイプ、基本的に気孔がない無気孔タイプ、及び砥粒層が1層のみ形成されるタイプがある。SA砥石で使用する砥粒、結合剤及び組織は、研削条件等から適宜決められる。   In SA grindstones, vitrified binders, resinoid binders, metal binders, electrodeposition binders or brazing binders are used as binders. As a grindstone structure, there are a porous type in which continuous pores are formed in the grindstone, a non-porous type having basically no pores, and a type in which only one abrasive grain layer is formed. The abrasive grains, binder, and structure used in the SA grindstone are appropriately determined from grinding conditions and the like.

本発明の方法を連続気孔が形成された有気孔タイプの砥石の評価に応用する場合、一般には、気孔体積率が50%より少なく、連続気孔の1つの気孔径が300μmより小さい砥石が評価可能である。   When the method of the present invention is applied to the evaluation of a porous hole type grindstone in which continuous pores are formed, it is generally possible to evaluate a grindstone having a pore volume ratio of less than 50% and one pore diameter of less than 300 μm. It is.

使用する超音波の周波数は、被評価物の気孔有無、気孔体積量に応じて2.5〜20.0MHzの間で選択するのが好ましい。被評価物に気孔が存在する場合、気孔率が高い被評価物にはより低い周波数の超音波を使用するのが好ましい。   The frequency of the ultrasonic wave to be used is preferably selected between 2.5 and 20.0 MHz according to the presence or absence of pores of the object to be evaluated and the pore volume. When pores are present in the evaluation object, it is preferable to use ultrasonic waves having a lower frequency for the evaluation object having a high porosity.

上述のとおり、SA砥石で用いられる砥粒は一般砥石で用いられるものより高価であり、且つSA砥石は一般に精密研削に用いられるので、SA砥石の品質は一般砥石と比べてより重要である。また特に、有気孔タイプの砥石の場合、連続気孔の形成状態は研削性能に大きな影響をもたらすので、できるだけ均一な連続気孔が形成された砥石が望ましい。しかし、これまでは非破壊で被評価物の微小箇所を効率的に測定評価する技術がなく、SA砥石の品質の改善が進んでいなかった。本発明によれば、特に有気孔タイプの砥石のような被評価物における相対的密度分布(及びそれに対応する組織状態)を視覚的にわかりやすく表示することができるようになり、そのような砥石の今後の品質改善に大きな効果をもたらすことができる。   As described above, since the abrasive grains used in the SA grindstone are more expensive than those used in the general grindstone, and the SA grindstone is generally used for precision grinding, the quality of the SA grindstone is more important than the general grindstone. In particular, in the case of a porous hole type grindstone, since the formation state of continuous pores has a great influence on the grinding performance, a grindstone in which continuous pores as uniform as possible are formed is desirable. However, until now, there has been no technique for efficiently measuring and evaluating a minute portion of an object to be evaluated in a non-destructive manner, and improvement of the quality of the SA grinding stone has not progressed. According to the present invention, a relative density distribution (and a corresponding tissue state) in an object to be evaluated, such as a porous hole type grindstone, can be displayed visually in an easily understandable manner. Can have a great effect on future quality improvement.

以下、実施例により本発明を更に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these Examples.

被評価物として、外径230.6mmの炭化ケイ素系ビトリファイド砥石の支持体に接着して外径250mmの1A1タイプの砥石を製作するための、図5(b)に示したタイプのセグメント砥石(長さ42mm、幅15mm、厚み9.7mmで、SA砥石層の厚さ3mm)を用意した。このセグメント砥石は、CBN80/100砥粒と、ホウケイ酸ガラスをベースとするビトリファイド結合剤を使用する有気孔タイプであり、砥粒体積率52%、結合剤体積率25.5%、気孔体積率22.5%の砥石であった。   As a to-be-evaluated object, a segment grindstone of the type shown in FIG. 5B for producing a 1A1 type grindstone having an outer diameter of 250 mm by adhering to a support of a silicon carbide vitrified grindstone having an outer diameter of 230.6 mm ( A SA grindstone layer having a length of 42 mm, a width of 15 mm, and a thickness of 9.7 mm was prepared. This segment grindstone is a porous type that uses CBN 80/100 abrasive grains and a vitrified binder based on borosilicate glass, and has an abrasive volume ratio of 52%, a binder volume ratio of 25.5%, and a pore volume ratio. The grinding wheel was 22.5%.

上記のセグメント砥石を支持体と同じ直径を持った固定治具に固定し、水槽に浸して静置することにより気孔内に水を浸透させた。   The segment grindstone was fixed to a fixing jig having the same diameter as that of the support, and immersed in a water tank and allowed to stand, thereby allowing water to penetrate into the pores.

周波数5MHz、ビーム径1mmの超音波を発する、振動子径0.5インチ(12.7mm)の焦点型超音波探傷子を用い、水浸式パルス反射法により、被評価物のセグメント砥石に超音波を照射した時間とセグメント砥石から超音波が反射した時間を、砥石長さ方向に0.5mm間隔で順次測定し、続いて超音波探傷子を砥石の幅方向に0.5mmずらして、前記と同様に超音波を照射した時間と超音波が反射した時間を、砥石長さ方向に0.5mm間隔で順次測定した。これを繰り返して、SA砥石部全体にわたり、砥石セグメントに超音波を照射した時間とセグメント砥石から超音波が反射した時間を、0.5mm間隔で測定した。   A focused ultrasonic flaw detector with a transducer diameter of 0.5 inch (12.7 mm) that emits ultrasonic waves with a frequency of 5 MHz and a beam diameter of 1 mm is used to superimpose the segment grindstone of the object to be evaluated by the water immersion type pulse reflection method. The time when the sound wave was irradiated and the time when the ultrasonic wave was reflected from the segment grindstone were sequentially measured at 0.5 mm intervals in the length direction of the grindstone, and then the ultrasonic flaw detector was shifted by 0.5 mm in the width direction of the grindstone, In the same manner as described above, the ultrasonic wave irradiation time and the ultrasonic wave reflection time were sequentially measured at 0.5 mm intervals in the grinding wheel length direction. By repeating this, the time during which the ultrasonic wave was applied to the grindstone segment and the time during which the ultrasonic wave was reflected from the segment grindstone were measured at intervals of 0.5 mm over the entire SA grindstone.

得られた測定値をもとに、コンピュータで上記の式(1)により、砥石セグメント中を伝播した超音波の速度を各測定個所ごとに算出し、結果を画像化して、図6に示した音速分布図を得た。この図において、音速値の高い部分は濃く表示され、それらの部分において評価したセグメント砥石は密度が高いことがわかる。こうして、被評価物のセグメント砥石における相対的な密度分布と、それに対応する組織状態(気孔の分布状態)を、視覚的に確認することができた。   Based on the obtained measurement value, the velocity of the ultrasonic wave propagating through the grindstone segment was calculated for each measurement location by the above equation (1) by a computer, and the result was imaged and shown in FIG. A sound velocity distribution map was obtained. In this figure, the parts where the sound speed value is high are displayed darkly, and it can be seen that the segment grindstones evaluated in these parts have a high density. Thus, it was possible to visually confirm the relative density distribution of the object to be evaluated in the segment grindstone and the corresponding tissue state (pore distribution state).

次に、上記の式(2)により被評価物のセグメント砥石の弾性率を求めるため、1500点の全ての測定個所について算出された音速値の算術平均として、9106m/secの値を得た。また、やはり上記の式(2)により被評価物のセグメント砥石の弾性率を求めるため、砥石のポアソン比により算出される係数kと密度ρを、次のように決定した。   Next, in order to obtain the elastic modulus of the segment grindstone of the evaluation object according to the above formula (2), a value of 9106 m / sec was obtained as the arithmetic average of the sound velocity values calculated for all 1500 measurement points. Moreover, in order to obtain the elastic modulus of the segment grindstone of the evaluation object by the above formula (2), the coefficient k and the density ρ calculated by the Poisson ratio of the grindstone were determined as follows.

ポアソン比は、物質のひずみ度合を数値化したものであり、本実施例で使用しているCBN砥粒とビトリファイド結合剤のひずみ度合を考えると、これらの材料の性質(特に硬さ)から、例えば外力が加わったときには、圧倒的にビトリファイド結合剤にひずみが生じる。従って、ここではCBN砥粒のひずみは考慮に入れなくてもよいと考えられ、ここでの砥石のポアソン比として、0.22の値を採用した。このポアソン比0.22の値は、作花済夫編「ガラスの事典」(朝倉書店、1985年9月)の350ページの表1に示されたホウケイ酸ガラス(ビトリファイド結合剤の主成分)のポアソン比0.20〜0.24の中心値を採用したものである。そしてこのポアソン比ν=0.22の値から、k=(1+ν)(1−2ν)/(1−ν)の式により、k≒0.9の値を得た。   Poisson's ratio is a numerical value of the degree of strain of a substance. Considering the degree of strain of CBN abrasive grains and vitrified binder used in this example, from the properties (particularly hardness) of these materials, For example, when an external force is applied, the vitrified binder is overwhelmingly distorted. Therefore, it is considered that the strain of the CBN abrasive grains need not be taken into consideration here, and a value of 0.22 was adopted as the Poisson's ratio of the grindstone here. This Poisson's ratio of 0.22 is the borosilicate glass (the main component of the vitrified binder) shown in Table 1 on page 350 of Sakuna Sakuo's “Encyclopedia of Glass” (Asakura Shoten, September 1985). The central value of Poisson's ratio of 0.20 to 0.24 is adopted. A value of k≈0.9 was obtained from the value of Poisson's ratio ν = 0.22 according to the equation k = (1 + ν) (1-2ν) / (1-ν).

砥石の密度ρは、砥石の質量と体積、及び砥石中におけるCBN砥粒とビトリファイド結合剤の体積率から計算して、ρ=2.35g/cm3の値を採用した。 The density ρ of the grindstone was calculated from the mass and volume of the grindstone and the volume ratio of the CBN abrasive grains and vitrified binder in the grindstone, and a value of ρ = 2.35 g / cm 3 was adopted.

これらの値を使って、上記の式(2)により、評価したセグメント砥石の弾性率Epの値として、Ep=175GPaが得られた。   Using these values, Ep = 175 GPa was obtained as the value of the elastic modulus Ep of the segmented grindstone evaluated according to the above equation (2).

本発明で使用する超音波探傷による評価システム装置の概略図である。It is the schematic of the evaluation system apparatus by ultrasonic flaw detection used by this invention. 本発明の方法を使用して得られる超音波波形の例を示す図である。It is a figure which shows the example of the ultrasonic waveform obtained using the method of this invention. 本発明の方法により得られる被評価物の画像化した相対的な密度分布を示す図である。It is a figure which shows the relative density distribution by which the to-be-evaluated object obtained by the method of this invention was imaged. 本発明の方法で評価する1A1タイプのSA砥石を説明する図である。It is a figure explaining 1A1 type SA grindstone evaluated by the method of the present invention. SA砥石で使用するセグメント砥石を説明する図である。It is a figure explaining the segment grindstone used with SA grindstone. 実施例で測定したセグメント砥石における音速の分布図である。It is a distribution map of the sound speed in the segment grindstone measured in the Example.

符号の説明Explanation of symbols

1 コンピュータ
2 超音波探傷器
3 コントローラー
4 Z軸モーター
5 R軸モーター
6 被評価物
7 プローブ
8 水槽
9 超音波
13 軸装着用の孔
14 支持体部
15 SA砥石層
16 セグメント砥石
17 セグメント砥石の支持体層
18 セグメント砥石のSA砥石層
DESCRIPTION OF SYMBOLS 1 Computer 2 Ultrasonic flaw detector 3 Controller 4 Z-axis motor 5 R-axis motor 6 Evaluated object 7 Probe 8 Water tank 9 Ultrasonic 13 Axis mounting hole 14 Support body part 15 SA grindstone layer 16 Segment grindstone 17 Support of segment grindstone Body layer 18 SA whetstone layer of segment grindstone

Claims (7)

超音波探傷により、被評価物における相対的な密度分布を画像化して被評価物を評価することを特徴とする評価方法。   An evaluation method comprising evaluating an evaluation object by imaging a relative density distribution in the evaluation object by ultrasonic flaw detection. 被評価物に超音波を照射し、反射した超音波を検出して、被評価物中を伝播する音速値Vを下記の式(1)、
V=T/(t2−t1) (1)
T: 被評価物厚さ
t1: 被評価物に超音波を照射した時間
t2: 被評価物から超音波が反射した時間
により求め、得られた音速値を画像化することを特徴とする請求項1記載の評価方法。
The object to be evaluated is irradiated with ultrasonic waves, the reflected ultrasonic waves are detected, and the sound velocity value V propagating through the object to be evaluated is expressed by the following equation (1),
V = T / (t2-t1) (1)
T: Thickness of the object to be evaluated
t1: Time when the object to be evaluated was irradiated with ultrasonic waves
t2: The evaluation method according to claim 1, characterized in that the sound speed value obtained by obtaining the ultrasonic wave from the object to be evaluated is imaged.
被評価物の超音波探傷を最小0.1mm間隔で行うことを特徴とする請求項2記載の評価方法。   3. The evaluation method according to claim 2, wherein ultrasonic flaw detection of the object to be evaluated is performed at intervals of a minimum of 0.1 mm. 式(1)により算出した音速値Vの平均値Vavを使用して、被評価物の弾性率Epを下記の式(2)、
Ep=kρVav 2 (2)
k: ポアソン比νより、k=(1+ν)(1−2ν)/(1−ν)で算 出される係数
ρ: 被評価物密度
で算出し、被評価物の弾性率を評価することを特徴とする請求項2又は3記載の評価方法。
Using the average value V av of the sound velocity values V calculated by the equation (1), the elastic modulus Ep of the object to be evaluated is expressed by the following equation (2),
Ep = kρV av 2 (2)
k: Coefficient calculated from Poisson's ratio ν by k = (1 + ν) (1-2ν) / (1-ν)
The evaluation method according to claim 2, wherein ρ is calculated by the density of the evaluation object, and the elastic modulus of the evaluation object is evaluated.
被評価物は基本的に内部に空間を含まないものであることを特徴とする請求項1〜4のいずれか一つに記載の評価方法。   The evaluation method according to claim 1, wherein the object to be evaluated basically does not include a space inside. 被評価物は基本的に内部に空間又は連続空隙が存在するものであることを特徴とする請求項1〜4のいずれか一つに記載の評価方法。   The evaluation object according to any one of claims 1 to 4, wherein the object to be evaluated basically has a space or continuous void inside. 被評価物は研削砥石であることを特徴とする請求項1〜4のいずれか一つに記載の評価方法。
The evaluation method according to claim 1, wherein the object to be evaluated is a grinding wheel.
JP2004187813A 2004-06-25 2004-06-25 Evaluation method for evaluating object using ultrasonic wave Pending JP2006010493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004187813A JP2006010493A (en) 2004-06-25 2004-06-25 Evaluation method for evaluating object using ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004187813A JP2006010493A (en) 2004-06-25 2004-06-25 Evaluation method for evaluating object using ultrasonic wave

Publications (1)

Publication Number Publication Date
JP2006010493A true JP2006010493A (en) 2006-01-12

Family

ID=35777917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187813A Pending JP2006010493A (en) 2004-06-25 2004-06-25 Evaluation method for evaluating object using ultrasonic wave

Country Status (1)

Country Link
JP (1) JP2006010493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178224A (en) * 2013-03-15 2014-09-25 Kubota Corp Porosity evaluation method, filtration pond, construction method of filtration pond, and soundness evaluation method of filtration pond

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363439A (en) * 1986-09-03 1988-03-19 株式会社東芝 Ultrasonic diagnostic apparatus
JPH01145564A (en) * 1987-12-02 1989-06-07 Hitachi Constr Mach Co Ltd Displaying apparatus of density distribution
JPH02141643A (en) * 1988-11-24 1990-05-31 Sumitomo Light Metal Ind Ltd Mechanical-property measuring apparatus
JP2000035483A (en) * 1998-06-30 2000-02-02 Yamamoto Eng Corp Imaging method of water permeability in deposit and ground structure containing underground fluid, and measuring method of physical characteristic of medium
JP2001240937A (en) * 2000-02-29 2001-09-04 Sanyo Special Steel Co Ltd High cleanliness steel
JP2003279550A (en) * 2002-03-22 2003-10-02 Kyoji Honma Intelligent ultrasonic flaw detection system by utilizing neural network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363439A (en) * 1986-09-03 1988-03-19 株式会社東芝 Ultrasonic diagnostic apparatus
JPH01145564A (en) * 1987-12-02 1989-06-07 Hitachi Constr Mach Co Ltd Displaying apparatus of density distribution
JPH02141643A (en) * 1988-11-24 1990-05-31 Sumitomo Light Metal Ind Ltd Mechanical-property measuring apparatus
JP2000035483A (en) * 1998-06-30 2000-02-02 Yamamoto Eng Corp Imaging method of water permeability in deposit and ground structure containing underground fluid, and measuring method of physical characteristic of medium
JP2001240937A (en) * 2000-02-29 2001-09-04 Sanyo Special Steel Co Ltd High cleanliness steel
JP2003279550A (en) * 2002-03-22 2003-10-02 Kyoji Honma Intelligent ultrasonic flaw detection system by utilizing neural network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN7010000491, Don J.Roth,他1名, "Thickness Independent Ultrasonic Imaging Applied to Abrasive Cut Off Wheels", Materials Evaluation, 20000427, Vol.58,No.4, P.551−557 *
JPN7010000492, 東江真一,他2名, "研削砥石の研削性能に関する研究(第1報)", 精密機械, 19840619, Vol.50,No.6, P.926−931 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178224A (en) * 2013-03-15 2014-09-25 Kubota Corp Porosity evaluation method, filtration pond, construction method of filtration pond, and soundness evaluation method of filtration pond

Similar Documents

Publication Publication Date Title
Blitz et al. Ultrasonic methods of non-destructive testing
Firestone The supersonic reflectoscope, an instrument for inspecting the interior of solid parts by means of sound waves
WO1999023486A1 (en) Method and apparatus for ultrasonically detecting flaw on surface of circular cylinder, and method of grinding roll utilizing the same
CN107747922A (en) A kind of sub-surface based on laser-ultrasound lacks the measuring method of buried depth
CN101750454B (en) For ultrasound inspection methods and the related probes of noise founding materials
Arguelles et al. Mode-converted ultrasonic scattering in polycrystals with elongated grains
Willems et al. Characterization of microstructure by backscattered ultrasonic waves
Hayashi Imaging defects in a plate with complex geometries
Leutenegger et al. Non-destructive testing of tubes using a time reverse numerical simulation (TRNS) method
JP5562118B2 (en) Ultrasonic nondestructive measuring method, ultrasonic nondestructive measuring device, and program
Lu et al. Finite element analysis and experimental investigation of ultrasonic testing of internal defects in SiCp/Al composites
JP2006010493A (en) Evaluation method for evaluating object using ultrasonic wave
Kim et al. Evaluating rolling contact fatigue damage precursors with Rayleigh waves in 1060 steel
JP6108685B2 (en) Immersion ultrasonic flaw detector with array probe and method thereof
JP3793873B2 (en) Apparatus for measuring elastic parameters of material surfaces and coating layers
JP2004205430A (en) Ultrasonic inspection method
JP4610398B2 (en) Inclusion detection method and apparatus using nonlinear ultrasonic waves
JP4298444B2 (en) Ultrasonic flaw detection method
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
JP4425011B2 (en) Inclusion detection method and apparatus using nonlinear ultrasonic waves
RU2644438C1 (en) Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation
JP2001343368A (en) Evaluation method of creep life and measuring method of hardness
JP4653624B2 (en) Crystal grain size measuring device, crystal grain size measuring method, program, and computer-readable storage medium
JP6619283B2 (en) Non-destructive inspection device for steel and non-destructive inspection method for steel
Pecorari et al. Quantitative evaluation of surface damage in brittle materials by acoustic microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706