JP2006010309A - Heat exchange method, and heat exchanger - Google Patents

Heat exchange method, and heat exchanger Download PDF

Info

Publication number
JP2006010309A
JP2006010309A JP2005184239A JP2005184239A JP2006010309A JP 2006010309 A JP2006010309 A JP 2006010309A JP 2005184239 A JP2005184239 A JP 2005184239A JP 2005184239 A JP2005184239 A JP 2005184239A JP 2006010309 A JP2006010309 A JP 2006010309A
Authority
JP
Japan
Prior art keywords
fluid
heat
heat exchanger
heating
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005184239A
Other languages
Japanese (ja)
Other versions
JP2006010309A5 (en
Inventor
Henrik O Stahl
ヘンリク・オットー・シュタール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of JP2006010309A publication Critical patent/JP2006010309A/en
Publication of JP2006010309A5 publication Critical patent/JP2006010309A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1669Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube
    • F28D7/1676Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger showing improved durability against metallic powdering and stress corrosion. <P>SOLUTION: In the heat exchange method consecutively cooling a first fluid by carrying out indirect heat exchange with a second fluid, the first fluid is consecutively led into at least two concentric U-shaped pipe bundles respectively dividing at least one first heating area and a second heating area, the second fluid is led into a shell side part of the U-shaped pipe bundles, the heating areas are partially separated from each other by a wall, the first heating area is a comparatively cold area, the second heating area is a comparatively hot area, the pipe bundle of the comparatively cold first heating area is made by low alloy steel, the pipe bundle of the comparatively hot second heating area is made by heat resistant and corrosion resistant alloy, and each step of drawing out the cooled second fluid and the heated second fluid is included. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は熱交換器および該熱交換器を使用できる熱交換法に関する。特に本発明は水蒸気過熱器として使用できそして金属粉化および応力腐食に対する改善された耐久性を有する熱交換器に関する。   The present invention relates to a heat exchanger and a heat exchange method in which the heat exchanger can be used. In particular, the present invention relates to a heat exchanger that can be used as a steam superheater and has improved durability against metal dusting and stress corrosion.

水蒸気改質は非常にしばしば、一酸化炭素リッチの合成ガスを製造する重要な段階である。この反応においては、メタンおよび水蒸気は該水蒸気改質によって熱の供給下に、水素、二酸化炭素、一酸化炭素、水蒸気およびメタンよりなるガス組成物に転化される。改質後の合成ガスの温度は非常にしばしば750〜1050℃の間にある。この熱い合成ガスは次にボイラーにおいてまたはボイラーおよび過熱器において冷却される。   Steam reforming is very often an important step in producing carbon monoxide rich synthesis gas. In this reaction, methane and steam are converted into a gas composition comprising hydrogen, carbon dioxide, carbon monoxide, steam and methane under the supply of heat by the steam reforming. The temperature of the synthesis gas after reforming is very often between 750 and 1050 ° C. This hot synthesis gas is then cooled in the boiler or in the boiler and superheater.

改質されたガスのための冷却器に関連する過酷な条件の一つは金属粉化(metal dusting)として知られる腐食である。金属粉化は鉄および/またはニッケルをベースとする合金に一酸化炭素リッチのガスの侵食による腐食劣化である。金属粉化による基本的反応は、還元反応またはボードアール反応での一酸化炭素の分解である。金属粉化は金属表面温度がこれらの反応の平衡温度より下にある時にだけ生じる。該平衡温度は一般に750〜850℃である。しかしながら温度が低い場合、代表的には450℃より下では反応は顕著な速度では行われない。これは、改質されたガス用の冷却器中でのガスとの接触を避けるべき中間の金属表面温度が存在することを意味する。これらの温度範囲はニッケルベースの高合金のためには450〜800℃でありそして低合金鋼のためには400〜800℃である。   One of the severe conditions associated with coolers for reformed gases is corrosion known as metal dusting. Metal dusting is a corrosion degradation due to the erosion of carbon monoxide rich gas into iron and / or nickel based alloys. The basic reaction by metal powdering is the decomposition of carbon monoxide by a reduction reaction or a Baudal reaction. Metal dusting occurs only when the metal surface temperature is below the equilibrium temperature of these reactions. The equilibrium temperature is generally 750 to 850 ° C. However, if the temperature is low, typically the reaction does not occur at a significant rate below 450 ° C. This means that there is an intermediate metal surface temperature to avoid contact with the gas in the cooler for the modified gas. These temperature ranges are 450-800 ° C for nickel-based high alloys and 400-800 ° C for low alloy steels.

廃熱ボイラーの熱伝達表面は沸騰水への効果的な熱伝達によって冷却しそしてそれ故に一般に金属粉化の条件を避けるように設計することができる。しかしながら合成ガスのための冷却器として使用した時に、過熱器は金属粉化侵食を受け易いと考えるべきである。   The heat transfer surface of the waste heat boiler can be designed to cool by effective heat transfer to boiling water and therefore generally avoid metal dusting conditions. However, when used as a cooler for synthesis gas, the superheater should be considered susceptible to metal dusting erosion.

過熱器の設計で考慮すべき他の厳しい条件は、過熱される湿った水蒸気で応力腐食される可能性があることである。ニッケルベース合金は応力腐食に対して非常に過敏であるが、低合金鋼はそうではない。それ故にニッケルベース合金は乾燥流とだけ接触させるべきである。   Another severe condition to consider in superheater design is that it can be stress corroded by superheated wet steam. Nickel-based alloys are very sensitive to stress corrosion, but low alloy steels are not. Therefore, the nickel base alloy should be contacted only with the dry stream.

従って本発明の課題は、金属粉化および応力腐食に対する改善された耐久性を示す熱交換器を提供することである。   Accordingly, it is an object of the present invention to provide a heat exchanger that exhibits improved durability against metal dusting and stress corrosion.

解決手段Solution

本発明は、第一の流動体を第二の流動体と間接的に熱交換することによって引き続いて冷却する熱交換法において、
・ 第一の流動体を、少なくとも1つの第一の加熱領域と第二の加熱領域とをそれぞれ分ける少なくとも2つの同心U字管束中に引き続いて導入し、
・ U字管束の胴側部に第二の流動体を導入し、各加熱領域が壁で互いに部分的に分離されており、その際に第一の加熱領域が比較的に冷たい領域でありそして第二の加熱領域が比較的に熱い領域であり、第一の比較的に冷たい加熱領域の管束が低合金鋼で作製されておりそして第二の比較的に熱い加熱領域の管束が耐熱性で耐食性の合金で作製されており、
・ 第二の冷却された流動体および加熱された第一の流動体を引出す
各段階を含むことを特徴とする、上記方法に関する。
The present invention relates to a heat exchange method in which the first fluid is subsequently cooled by indirectly exchanging heat with the second fluid,
The first fluid is subsequently introduced into at least two concentric U-tube bundles each separating at least one first heating zone and a second heating zone;
Introducing a second fluid into the barrel side of the U-tube bundle, each heating zone being partially separated from one another by a wall, wherein the first heating zone is a relatively cold zone; and The second heating zone is a relatively hot zone, the first relatively cold heating zone tube bundle is made of low alloy steel, and the second relatively hot heating zone tube bundle is heat resistant. Made of corrosion-resistant alloy,
Withdrawing the second cooled fluid and the heated first fluid
It relates to a method as described above, characterized in that it comprises stages.

また、本発明は、上記の方法で使用するための熱交換器において、該熱交換器が第一および第二の流動体の間での熱伝達を許容するための熱交換面を持つ複数のU字管、少なくとも2つの逐次同心管束中に配置された該U字管、少なくとも一つの第一および第二の加熱領域にそれぞれ分ける管束、壁によって他から部分的に分離された各加熱領域を含み、第一の加熱領域が比較的に冷たい領域でありそして第二の加熱領域が比較的に熱い領域であり、第一の比較的に冷たい加熱領域の管束が低合金鋼で作製されておりそして第二の比較的に熱い領域の管束が耐熱性で耐食性の合金で作製されていることを特徴とする、上記熱交換器に関する。   The present invention also provides a heat exchanger for use in the above method, wherein the heat exchanger has a plurality of heat exchange surfaces for allowing heat transfer between the first and second fluids. A U-tube, the U-tube disposed in at least two successive concentric tube bundles, a tube bundle each divided into at least one first and second heating region, and each heating region partially separated from the other by a wall. The first heating region is a relatively cold region and the second heating region is a relatively hot region, and the first relatively cold heating region tube bundle is made of low alloy steel. The second heat exchanger is characterized in that the second relatively hot zone tube bundle is made of a heat-resistant and corrosion-resistant alloy.

図1は二つの加熱領域を有する熱交換器を図示している。   FIG. 1 illustrates a heat exchanger having two heating zones.

図2は熱交換器の水平切断面を図示している。   FIG. 2 illustrates a horizontal cut surface of the heat exchanger.

図3は3つの加熱領域を有する熱交換器を図示している。   FIG. 3 illustrates a heat exchanger having three heating zones.

本発明は過熱器として有用であり、そして金属合金と、予め決められたパターンの熱交換管束を通るガス/水蒸気流とを組合せを適切に選択することによって金属粉化および応力腐食を避けるように設計されている熱交換器に関する。この熱交換器は第一の流動体と第二の流動体との間の熱交換に適している。かゝる流動体の例には水蒸気(第一の流動体)および合成ガス(第二の流動体)がある。水蒸気改質反応器からの熱い合成ガスをこの熱交換器中で水蒸気によって冷却する。   The present invention is useful as a superheater and to avoid metal dusting and stress corrosion by properly selecting the combination of metal alloy and gas / water vapor flow through a predetermined pattern of heat exchange tube bundles. It relates to the designed heat exchanger. This heat exchanger is suitable for heat exchange between the first fluid and the second fluid. Examples of such fluids are water vapor (first fluid) and synthesis gas (second fluid). Hot syngas from the steam reforming reactor is cooled by steam in this heat exchanger.

熱交換器は薄い管状板のU字管のタイプよりなる。第一の流動体を移送するための複数のU字管は平行に配列されておりそして第二の流動体のための中心入口および胴部出口と間隔をおいて配置されている。胴側部熱交換はディスク状およびドーナツ状のバッフルによって促進される。複数の管は管束中に配置されており、各管側は個々の加熱領域に相応している。   The heat exchanger consists of a thin tubular plate U-tube type. A plurality of U-tubes for transporting the first fluid are arranged in parallel and spaced from the central inlet and the barrel outlet for the second fluid. Trunk side heat exchange is facilitated by disk-like and donut-like baffles. A plurality of tubes are arranged in a tube bundle, each tube side corresponding to an individual heating zone.

第一の流動体、例えば水蒸気は管中を流動しそして第二の流動体、例えば改質ガスはこれらの管の周り、即ち管の胴側部を流れ、それによって熱交換面が確保される。   The first fluid, e.g. water vapor, flows in the tubes and the second fluid, e.g. reformed gas, flows around these tubes, i.e. the barrel sides of the tubes, thereby ensuring a heat exchange surface. .

本発明の本質原理は、少なくとも2つの管束が熱交換器中に存在しそしてそれらが同心環状態で一つの管状薄板に連結されている。各管束のための各隔室は中間または末端に開口を有する金属製壁によって分離されており、該開口を第二の流動体が通りそしてその第二の流動体は一つの隔室から他の隔室へ流れる時に幾つかの流れに分配される。   The essential principle of the present invention is that at least two tube bundles are present in the heat exchanger and they are concentrically connected to one tubular sheet. Each compartment for each tube bundle is separated by a metal wall having an opening in the middle or end, through which the second fluid passes and the second fluid passes from one compartment to the other. When flowing into the compartment, it is divided into several streams.

第二の流動体は、図1および3に矢印で示す様に、各管束隔室内で第一の流動体に対して向流および並流で流れる。   The second fluid flows countercurrently and cocurrently with respect to the first fluid within each tube bundle compartment as indicated by the arrows in FIGS.

本発明の熱交換器を以下に更に詳細に説明する:
図1および3において第一の流動体と第二の流動体の流れ方向は曲がった矢印で示されている。
The heat exchanger of the present invention is described in further detail below:
1 and 3, the flow directions of the first fluid and the second fluid are indicated by curved arrows.

図1は壁によって分離された2つの加熱領域を持つ本発明の一つの実施態様に関する。第一の流動体、例えば水蒸気は入口1を通って熱交換器に入る。第一の流動体は次に第一の管束中のU字管を含みそして第一の加熱領域2を画する隔室に入る。第二の流動体との間接的熱交換において第一の加熱領域のU字管を通った後に、第一の流動体は第二の管束中のU字管を含みそして第二の加熱領域3を画する第二の隔室に入る。   FIG. 1 relates to one embodiment of the present invention having two heating zones separated by a wall. A first fluid, such as water vapor, enters the heat exchanger through inlet 1. The first fluid then enters the compartment containing the U-tube in the first tube bundle and defining the first heating zone 2. After passing through the U-tube of the first heating zone in indirect heat exchange with the second fluid, the first fluid contains the U-tube in the second tube bundle and the second heating zone 3 Enter the second compartment that defines

第二の管束のU字管は第一の管束のU字管の後に続いて配置されている。図1においては第二の加熱領域3を画する管束は熱交換器中の最も内部に位置しているが、第一の加熱領域2を画する管束は最も内部に位置しておりそしてこれら二つの管束は壁12によって分離されている。壁12は金属よりなっていてもよく、そして第二の流動体の流れを、ある隔室から別のそれに流れる時に幾つかの流れに分割することを可能とする開口15および16を設けている構造を有している。第一の流動体は第二の流動体との間接熱交換において、第二の加熱領域3中のU字管を通過する。第二の加熱領域3を通過した後に、第一の流動体は今度は加熱されそして出口4を通って熱交換器を離れる。   The U-tube of the second tube bundle is disposed subsequent to the U-tube of the first tube bundle. In FIG. 1, the tube bundle defining the second heating zone 3 is located at the innermost position in the heat exchanger, whereas the tube bundle defining the first heating zone 2 is located at the innermost position and these two The two tube bundles are separated by a wall 12. Wall 12 may be made of metal and is provided with openings 15 and 16 that allow a second fluid stream to be split into several streams as it flows from one compartment to another. It has a structure. The first fluid passes through the U-tube in the second heating zone 3 in indirect heat exchange with the second fluid. After passing through the second heating zone 3, the first fluid is now heated and leaves the heat exchanger through the outlet 4.

第二の流動体、例えば合成ガス、または冷却を必要とする他の何らかの熱いガスは入口5を通って熱交換器に入る。入口5は最も内部の管束の中間に位置する中央の管13に導かれる。中央の管13は開口14を有しており、該中央の管13を第二の流動体が離れることを可能としておりそしてこの加熱領域を画する管束の胴側部の第二の加熱領域3に入る。並流および向流の両方を保証するために開口14が中央管13の末端に位置していないことが有利である。   A second fluid, such as synthesis gas, or some other hot gas that requires cooling enters the heat exchanger through inlet 5. The inlet 5 is led to a central tube 13 located in the middle of the innermost tube bundle. The central tube 13 has an opening 14 which allows the second fluid to leave the central tube 13 and the second heating zone 3 on the barrel side of the tube bundle defining this heating zone. to go into. Advantageously, the opening 14 is not located at the end of the central tube 13 to ensure both co-current and counter-current.

第二の流動体は開口14を通って加熱領域3の中間に入りそして該流動体は次に管束の両末端に向って流れるように分けられる。第二の流動体はこのように外部表面、即ち最も内部の管束のU字管の胴側部と接触しそして第一の流動体との間接熱交換で冷却される。その後に第二の流動体は壁12の末端開口15および16を通過して、第一および第二加熱領域2および3を画する2つの管束に分けられる。開口15は壁12の下方末端にありそして開口16は壁12の上方末端にある。第二の流動体は次に、第一の加熱領域2を画する管束の胴側部を横断する。該第一の加熱領域2は第二の加熱領域3を画する最も内部の管束を取り囲んでいる。次にガスは末端開口15および16から管束中を加熱領域2の中間に向って流れる。別の冷却された第二の流動体は次に第一の加熱領域2、および出口6を通って熱交換器を離れる。   The second fluid enters the middle of the heating zone 3 through the opening 14 and the fluid is then divided to flow towards both ends of the tube bundle. The second fluid thus contacts the outer surface, i.e., the barrel side of the U-tube of the innermost tube bundle, and is cooled by indirect heat exchange with the first fluid. The second fluid then passes through the end openings 15 and 16 of the wall 12 and is divided into two tube bundles defining the first and second heating zones 2 and 3. Opening 15 is at the lower end of wall 12 and opening 16 is at the upper end of wall 12. The second fluid then traverses the barrel side of the tube bundle that defines the first heating zone 2. The first heating zone 2 surrounds the innermost tube bundle that defines the second heating zone 3. The gas then flows from the end openings 15 and 16 through the tube bundle towards the middle of the heating zone 2. Another cooled second fluid then leaves the heat exchanger through the first heating zone 2 and the outlet 6.

図2は熱交換器中の互いに関連する管束の配置を示している。壁12は加熱領域を二つの隔室に分けて加熱領域2および3としている。管束は最外部に位置する加熱領域2の管束および最内部に位置する加熱領域3の管束を有する熱交換器中に位置している。   FIG. 2 shows the arrangement of the associated tube bundles in the heat exchanger. The wall 12 divides the heating area into two compartments to form heating areas 2 and 3. The tube bundle is located in a heat exchanger having a tube bundle in the heating region 2 located at the outermost part and a tube bundle in the heating region 3 located at the innermost part.

本発明の一つの実施態様においては、熱交換器は図3に示す様に3つの加熱領域を有していてもよい。この場合には第二の管束の周りにU字管の第三の束が存在する。この第三の束は、第一の流動体と第二の流動体との更なる熱交換を可能とする加熱領域11を画している。第二の流動体は、2つの内部管束から外部管束を分離する壁18の中央開口17を通してこの加熱領域の中間に入る。それによって壁18は加熱領域2および3から加熱領域11を分離している。次に流動体は管束の両末端の方向に流れる流れに分割される。   In one embodiment of the invention, the heat exchanger may have three heating zones as shown in FIG. In this case, there is a third bundle of U-shaped tubes around the second tube bundle. This third bundle defines a heating zone 11 that allows further heat exchange between the first fluid and the second fluid. The second fluid enters the middle of this heating zone through a central opening 17 in the wall 18 that separates the outer tube bundle from the two inner tube bundles. Thereby, the wall 18 separates the heating zone 11 from the heating zones 2 and 3. The fluid is then split into a stream that flows in the direction of both ends of the tube bundle.

それ故に隔壁を分離する壁はその末端(15および16)にまたはその中間(17)に開口を有していてもよい。それ故に、幾つかの加熱領域がある場合には、次の各壁の開口は壁の末端またはその中間のいずれかに存在することによって交互に変える。これは第二の流動体の流れが各加熱領域における第一の流動体の流れに対して並流および向流の両方であることを確実にする。効果的な熱交換はそれによって実現される。   The wall separating the septa may therefore have openings at its ends (15 and 16) or at its middle (17). Therefore, if there are several heating zones, the next opening in each wall alternates by being present either at the end of the wall or in the middle. This ensures that the second fluid flow is both cocurrent and countercurrent to the first fluid flow in each heating zone. Effective heat exchange is thereby realized.

第二の流動体は、2つまたは3つの管束を通る後続の流れによってこの様にして冷却される。2つの加熱領域が図1に示す様に存在する場合には、第一の流動体は管を通る後続の流れによって加熱される。即ち、最も低い温度を有する最も外側の束から出発しそして最も熱くそしてそれ故に最も高い温度を有する最も内側の束を流れた後に離れる。それ故に、加熱領域2を画する最も外側の管束は冷たい領域(低温域)に相当しそして加熱領域3を画する最も内側の管束は熱い領域(高温域)に相当する。   The second fluid is thus cooled by subsequent flows through two or three tube bundles. If two heating zones are present as shown in FIG. 1, the first fluid is heated by the subsequent flow through the tube. That is, start with the outermost bundle having the lowest temperature and leave after flowing through the innermost bundle with the hottest and therefore highest temperature. Therefore, the outermost tube bundle defining the heating region 2 corresponds to a cold region (low temperature region), and the innermost tube bundle defining the heating region 3 corresponds to a hot region (high temperature region).

3つの加熱領域が図3に示す様に存在する場合には、加熱領域3と11との間の中間の加熱領域2は最も熱い域(高温域)と最も冷たい域(低温域)との間の中間の温度を有している。   When three heating regions exist as shown in FIG. 3, the intermediate heating region 2 between the heating regions 3 and 11 is between the hottest region (high temperature region) and the coldest region (low temperature region). Has an intermediate temperature.

バッフルは熱の分布を改善するために加熱領域に位置することができる。熱交換器に特に適するバッフルはディスク状またはドーナツ状である。これらは、第二の流動体が加熱領域をジグザグ運動で移動することを可能とする効果を有しそして追加的にU字管を位置決めする時に役立つ。図1に示したバッフル7、8および9はロッドによって適所に保持されている。バッフル7は熱く、即ち高温を経験し、そしてバッフル8は冷たく、即ち低温を経験する。中央の管中のバッフル10は熱いバッフルである。各バッフルは図3に示す実施態様においても配置されていてもよい。   The baffle can be located in the heating zone to improve the heat distribution. Baffles that are particularly suitable for heat exchangers are disk-shaped or donut-shaped. These have the effect of allowing the second fluid to move in a zigzag motion through the heating area and additionally help in positioning the U-tube. The baffles 7, 8 and 9 shown in FIG. 1 are held in place by rods. The baffle 7 is hot, i.e. experiences a high temperature, and the baffle 8 is cold, i.e. experiences a low temperature. The baffle 10 in the center tube is a hot baffle. Each baffle may also be arranged in the embodiment shown in FIG.

加熱域3を画する熱い(高温の)管束は金属粉化に耐久性のある材料で作製されていなければならない。これは例えばオーステナイトのニッケル/クロム/鉄−合金の様な高合金、例えばインコネル(Inconel(R))であってもよい。バッフル、ロッド、および管束が据えられているチャンネルを画する壁は金属粉化に対して耐久性がなければならない。加熱領域2を画する冷たい(低温の)管束は低合金鋼でよく、そして最も多い場合にはバッフルおよびロッドは低合金材料よりなるものでもよい。第三の管束が図3に示す様に存在する場合には、中間/中央の束の管は低合金鋼であるが、ロッド、バッフルおよび壁/チャンネルはインコネル(Inconel(R))であってもよい。低合金鋼は例えばフェライト鉄、クロム、モリブデン、炭素鋼であってもよい。   The hot (hot) tube bundle that defines the heating zone 3 must be made of a material that is resistant to metal dusting. This may be a high alloy such as, for example, an austenitic nickel / chromium / iron-alloy, for example Inconel®. The walls that define the channels in which the baffles, rods, and tube bundles are placed must be resistant to metal dusting. The cold (cold) tube bundle defining the heating zone 2 may be low alloy steel, and most often the baffles and rods may be made of a low alloy material. When a third tube bundle is present as shown in FIG. 3, the middle / center bundle tube is low alloy steel, but the rod, baffle and wall / channel are Inconel®. Also good. The low alloy steel may be, for example, ferritic iron, chromium, molybdenum, or carbon steel.

本発明の熱交換器の特徴は、U字管が材料表面が金属粉化の危険を与えるのに十分に高温である場合にも金属粉化に対して耐久性のある材料である。U字管は、比較的低温の領域に配置した場合に、比較的安価な低合金鋼でもよい。低合金鋼はウエット応力腐食に過敏ではない。第一の流動体が水蒸気である場合には、それは低合金鋼のU字管に入り、そして水蒸気はそれが完全に乾燥する前に高合金のU字管と接触させない。   A feature of the heat exchanger of the present invention is that the U-tube is a material that is durable against metal dusting even when the material surface is hot enough to pose a risk of metal dusting. The U-tube may be a relatively inexpensive low alloy steel when placed in a relatively low temperature region. Low alloy steels are not sensitive to wet stress corrosion. If the first fluid is water vapor, it enters the low alloy steel U-tube and the water vapor does not contact the high alloy U-tube before it is completely dried.

本発明の熱交換器は金属粉化および応力腐食に対しての耐久性が向上しているために、それの熱交換性能を向上させる。   Since the heat exchanger of the present invention has improved durability against metal powdering and stress corrosion, it improves its heat exchange performance.

熱交換器が有用である代表的な方法は以下に記載する水蒸気改質法である。   A typical method in which the heat exchanger is useful is the steam reforming method described below.

熱い流出物、例えば一酸化炭素含有改質ガス、例えば改質反応器からの合成ガスを廃熱ボイラーに通し、そこにおいて流出物の温度が、蒸気ドラムから供給される水蒸気を使用して例えば1050℃から475℃に低下される。次いで冷却された流出物を本発明の熱交換器に送り、そこにおいて温度を水蒸気との熱交換によって360℃に更に低下させる。この熱交換器は水蒸気過熱器として機能する。使用される水蒸気は蒸気ドラムから供給することができ、それによって例えば320〜400℃の温度から加熱される。   Hot effluent, such as carbon monoxide-containing reformed gas, eg, synthesis gas from a reforming reactor, is passed to a waste heat boiler where the temperature of the effluent is, for example, 1050 using steam supplied from a steam drum. The temperature is lowered from 0 ° C to 475 ° C. The cooled effluent is then sent to the heat exchanger of the present invention where the temperature is further reduced to 360 ° C. by heat exchange with steam. This heat exchanger functions as a steam superheater. The steam used can be supplied from a steam drum, whereby it is heated, for example from a temperature of 320-400 ° C.

図1は二つの加熱領域を有する熱交換器を図示している。FIG. 1 illustrates a heat exchanger having two heating zones. 図2は熱交換器の水平断面を図示している。FIG. 2 illustrates a horizontal section of the heat exchanger. 図3は3つの加熱領域を有する熱交換器を図示している。FIG. 3 illustrates a heat exchanger having three heating zones.

符号の説明Explanation of symbols

1・・・第一の流動体の入口
2・・・第一の加熱領域
3・・・第二の加熱領域
4・・・第一の流動体の出口
5・・・第二の流動体の入口
6・・・第二の流動体の出口
7,8,9,10・・・バッフル
11・・・加熱領域
12・・・壁
13・・・管
14,15,16、17・・・開口
18・・・壁
DESCRIPTION OF SYMBOLS 1 ... First fluid inlet 2 ... First heating region 3 ... Second heating region 4 ... First fluid outlet 5 ... Second fluid Inlet 6 ... Second fluid outlet 7, 8, 9, 10 ... Baffle 11 ... Heating region 12 ... Wall 13 ... Tubes 14, 15, 16, 17 ... Opening 18 ... wall

Claims (10)

第一の流動体を第二の流動体と間接的に熱交換することによって引き続いて冷却する熱交換法において、
・ 第一の流動体を、少なくとも1つの第一の加熱領域と第二の加熱領域とをそれぞれ分ける少なくとも2つの同心U字管束中に引き続いて導入し、
・ U字管束の胴側部に第二の流動体を導入し、各加熱領域が壁で互いに部分的に分離されており、その際に第一の加熱領域が比較的に冷たい領域でありそして第二の加熱領域が比較的に熱い領域であり、第一の比較的に冷たい加熱領域の管束が低合金鋼で作製されておりそして第二の比較的に熱い加熱領域の管束が耐熱性で耐食性の合金で作製されており、
・ 第二の冷却された流動体および加熱された第一の流動体を引出す
各段階を含むことを特徴とする、上記方法。
In a heat exchange method in which the first fluid is subsequently cooled by indirectly exchanging heat with the second fluid,
The first fluid is subsequently introduced into at least two concentric U-tube bundles each separating at least one first heating zone and a second heating zone;
Introducing a second fluid into the barrel side of the U-tube bundle, each heating zone being partially separated from one another by a wall, wherein the first heating zone is a relatively cold zone; and The second heating zone is a relatively hot zone, the first relatively cold heating zone tube bundle is made of low alloy steel, and the second relatively hot heating zone tube bundle is heat resistant. Made of corrosion-resistant alloy,
Withdrawing the second cooled fluid and the heated first fluid
A method as described above, comprising each step.
第一の流動体が水蒸気でありそして第二の流動体が改質されたガスである、請求項1に記載の熱交換方法。 The heat exchange method of claim 1, wherein the first fluid is water vapor and the second fluid is a modified gas. 耐熱性で耐食性の合金がオーステナイトのニッケル/クロム/鉄−合金である、請求項1に記載の熱交換法。 The heat exchange method according to claim 1, wherein the heat-resistant and corrosion-resistant alloy is an austenitic nickel / chromium / iron-alloy. 加熱された第一の流動体が過熱されたスチームである、請求項2に記載の熱交換法。 The heat exchange method according to claim 2, wherein the heated first fluid is superheated steam. 請求項1の方法で使用するための熱交換器において、第一および第二の流動体の間での熱移動を許容するための熱交換面を持つ複数のU字管、少なくとも2つの逐次同心管束中に配置された該U字管、少なくとも一つの第一および第二の加熱領域にそれぞれ分ける管束、壁によって他から部分的に分離された各加熱領域を含み、第一の加熱領域が比較的に冷たい領域でありそして第二の加熱領域が比較的に熱い領域であり、第一の比較的に冷たい加熱領域の管束が低合金鋼で作製されておりそして第二の比較的に熱い領域の管束が耐熱性で耐食性の合金で作製されていることを特徴とする、上記熱交換器。 2. A heat exchanger for use in the method of claim 1 wherein a plurality of U-tubes having heat exchange surfaces to allow heat transfer between the first and second fluids, at least two sequential concentric surfaces. The U-tube arranged in the tube bundle, the tube bundle divided into at least one first and second heating region, respectively, each heating region partially separated from the other by the wall, the first heating region being compared Cold zone and the second heating zone is a relatively hot zone, the first relatively cold heating zone tube bundle is made of low alloy steel and the second relatively hot zone The above heat exchanger is characterized in that the tube bundle is made of a heat-resistant and corrosion-resistant alloy. 熱交換器が三つの管束を有し、第三の束が第一の管束と第二の管束との間の中間に位置する、請求項5に記載の熱交換器。 The heat exchanger according to claim 5, wherein the heat exchanger has three tube bundles, and the third bundle is located between the first tube bundle and the second tube bundle. 耐熱性で耐食性の合金がオーステナイトのニッケル/クロム/鉄−合金である、請求項5に記載の熱交換器。 6. A heat exchanger according to claim 5, wherein the heat resistant and corrosion resistant alloy is an austenitic nickel / chromium / iron alloy. 熱交換器がディスク状およびドーナツ状のバッフルを有する、請求項5に記載の熱交換器。 6. A heat exchanger according to claim 5, wherein the heat exchanger has disk-like and donut-like baffles. 中間に位置する第三の束の管が低合金鋼よりなり、そしてバッフルおよび適所にバッフルを保持するロッドおよび中間の束の壁が耐熱性で耐食性の合金よりなる、請求項6に記載の熱交換器。 7. The heat of claim 6, wherein the intermediate third bundle tube comprises low alloy steel and the baffle and rod holding the baffle in place and the intermediate bundle wall comprises a heat resistant and corrosion resistant alloy. Exchanger. 加熱領域を分離する壁が金属よりなり、そしてその壁が、第二の流動体の流れを該壁にある複数の開口を通すことによって幾つかの流れに分けるような位置にある、請求項5に記載の熱交換器。 6. The wall separating the heating zones is made of metal, and the wall is positioned to divide the flow of the second fluid into several flows by passing through a plurality of openings in the wall. The heat exchanger as described in.
JP2005184239A 2004-06-25 2005-06-24 Heat exchange method, and heat exchanger Pending JP2006010309A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DKPA200400998 2004-06-25

Publications (2)

Publication Number Publication Date
JP2006010309A true JP2006010309A (en) 2006-01-12
JP2006010309A5 JP2006010309A5 (en) 2008-06-26

Family

ID=34937511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184239A Pending JP2006010309A (en) 2004-06-25 2005-06-24 Heat exchange method, and heat exchanger

Country Status (9)

Country Link
US (2) US20050284606A1 (en)
EP (1) EP1610081A1 (en)
JP (1) JP2006010309A (en)
KR (1) KR101175993B1 (en)
CN (1) CN1715743A (en)
AU (1) AU2005202782B2 (en)
CA (1) CA2510916C (en)
RU (1) RU2374587C2 (en)
ZA (1) ZA200505145B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137577A (en) * 2009-12-28 2011-07-14 Miura Co Ltd Heat exchanger
JP2014206370A (en) * 2008-06-26 2014-10-30 ハルドール・トプサー・アクチエゼルスカベット Overheat steam generator

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1017747A3 (en) * 2007-08-29 2009-05-05 Atlas Copco Airpower Nv HEAT EXCHANGER.
DE102010040278A1 (en) * 2010-09-06 2012-03-08 Siemens Aktiengesellschaft Heat exchanger e.g. steam generator used in nuclear plant, has perforated plate whose surface is divided into hot and cold regions, such that heat transfer medium flows through passages in opposite directions
RU2635673C1 (en) * 2010-12-22 2017-11-15 Флексэнерджи Энерджи Системз, Инк. Heat exchanger with secondary folding
JP5628067B2 (en) * 2011-02-25 2014-11-19 株式会社荏原製作所 Polishing apparatus provided with temperature adjustment mechanism of polishing pad
US20130292089A1 (en) * 2012-05-01 2013-11-07 Norcross Corporation Dual passage concentric tube heat exchanger for cooling/heating of fluid in a low pressure system
CA2901906C (en) 2013-03-07 2019-12-17 Foster Wheeler Usa Corporation Method and system for utilizing materials of differing thermal properties to increase furnace run length
AU2014270786A1 (en) * 2013-05-21 2015-11-12 Linde Aktiengesellschaft Heat exchanger, method for maintaining, producing and operating a heat exchanger, power plant and method for generating electric power
DE102014216974A1 (en) * 2014-08-26 2016-03-03 Mahle International Gmbh Thermoelectric module
US10414018B2 (en) * 2016-02-22 2019-09-17 Ebara Corporation Apparatus and method for regulating surface temperature of polishing pad
RU173350U1 (en) * 2016-11-22 2017-08-23 Андрей Александрович Виноградов DRY COOLING HOUSE FOR HOT CLIMATE
ES2842423T3 (en) 2017-05-26 2021-07-14 Alfa Laval Olmi S P A Shell and Tube Heat Exchanger
EP3543637A1 (en) * 2018-03-22 2019-09-25 Casale Sa Shell and tube heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774575A (en) * 1952-03-07 1956-12-18 Worthington Corp Regenerator
US3373802A (en) * 1964-12-07 1968-03-19 Reymersholms Gamla Ind Ab Heat exchanger with removable tube groups of decreasing flow area
JPS5553694A (en) * 1978-10-16 1980-04-19 Hitachi Ltd Heat exchanger
JPS60101593U (en) * 1983-12-19 1985-07-11 千代田化工建設株式会社 Vibration isolation structure for the bent part of the U-shaped tube for a U-shaped multi-tube heat exchanger
JPH06218270A (en) * 1993-01-26 1994-08-09 Mitsubishi Gas Chem Co Inc Vertical type fluidized bed catalyst reactor
JPH09279313A (en) * 1996-04-15 1997-10-28 Sumitomo Metal Ind Ltd Stainless steel for exhaust gas system of city waste incineration equipment
JP2002139297A (en) * 2000-11-01 2002-05-17 Tetsuto Tamura Quick cooling system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1917595A (en) * 1929-07-16 1933-07-11 Elliott Co Heater
US2061429A (en) * 1932-04-13 1936-11-17 Charles H Leach Heat exchange apparatus
US2869834A (en) * 1956-04-10 1959-01-20 Patterson Kelley Co Heat exchanger
US3958630A (en) * 1975-01-24 1976-05-25 Exxon Research And Engineering Company Heat exchanger baffle arrangement
FR2596066B1 (en) * 1986-03-18 1994-04-08 Electricite De France AUSTENITIQUE NICKEL-CHROME-FER ALLOY
DK167242B1 (en) * 1989-02-16 1993-09-27 Topsoe Haldor As APPARATUS AND PROCEDURE FOR EXOTHERMAL REACTIONS
US4907643A (en) * 1989-03-22 1990-03-13 C F Braun Inc. Combined heat exchanger system such as for ammonia synthesis reactor effluent
US6153152A (en) * 1990-04-03 2000-11-28 The Standard Oil Company Endothermic reaction apparatus and method
DE4111821C1 (en) * 1991-04-11 1991-11-28 Vdm Nickel-Technologie Ag, 5980 Werdohl, De
US5400432A (en) * 1993-05-27 1995-03-21 Sterling, Inc. Apparatus for heating or cooling of fluid including heating or cooling elements in a pair of counterflow fluid flow passages
DE59705073D1 (en) * 1997-03-14 2001-11-29 Borsig Babcock Ag Heat exchangers with U-tubes
JP3509695B2 (en) * 2000-04-13 2004-03-22 哲人 田村 Rapid cooling apparatus and method
US6695983B2 (en) * 2001-04-24 2004-02-24 Praxair Technology, Inc. Syngas production method utilizing an oxygen transport membrane
JP3952861B2 (en) * 2001-06-19 2007-08-01 住友金属工業株式会社 Metal material with metal dusting resistance
MY138154A (en) * 2001-10-22 2009-04-30 Shell Int Research Process to prepare a hydrogen and carbon monoxide containing gas
US20030213854A1 (en) * 2002-05-15 2003-11-20 Stickford George H. Evaporator configuration for a micro combined heat and power system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774575A (en) * 1952-03-07 1956-12-18 Worthington Corp Regenerator
US3373802A (en) * 1964-12-07 1968-03-19 Reymersholms Gamla Ind Ab Heat exchanger with removable tube groups of decreasing flow area
JPS5553694A (en) * 1978-10-16 1980-04-19 Hitachi Ltd Heat exchanger
JPS60101593U (en) * 1983-12-19 1985-07-11 千代田化工建設株式会社 Vibration isolation structure for the bent part of the U-shaped tube for a U-shaped multi-tube heat exchanger
JPH06218270A (en) * 1993-01-26 1994-08-09 Mitsubishi Gas Chem Co Inc Vertical type fluidized bed catalyst reactor
JPH09279313A (en) * 1996-04-15 1997-10-28 Sumitomo Metal Ind Ltd Stainless steel for exhaust gas system of city waste incineration equipment
JP2002139297A (en) * 2000-11-01 2002-05-17 Tetsuto Tamura Quick cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206370A (en) * 2008-06-26 2014-10-30 ハルドール・トプサー・アクチエゼルスカベット Overheat steam generator
JP2011137577A (en) * 2009-12-28 2011-07-14 Miura Co Ltd Heat exchanger

Also Published As

Publication number Publication date
CA2510916C (en) 2013-08-13
ZA200505145B (en) 2006-04-26
AU2005202782A1 (en) 2006-01-12
US20100218931A1 (en) 2010-09-02
AU2005202782B2 (en) 2009-12-10
EP1610081A1 (en) 2005-12-28
US20050284606A1 (en) 2005-12-29
KR20060049684A (en) 2006-05-19
CA2510916A1 (en) 2005-12-25
CN1715743A (en) 2006-01-04
RU2374587C2 (en) 2009-11-27
KR101175993B1 (en) 2012-08-23
RU2005119478A (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP2006010309A (en) Heat exchange method, and heat exchanger
KR101826589B1 (en) Multi-Stage Multi-Tube Shell-and-Tube Reactor
CA2728858C (en) Process for the production of ammonia
RU2599889C2 (en) Heat exchanger with u-shaped tubes, method of heat exchange between heat carrier and coolant and use of heat exchanger with u-shaped tubes
WO2006117572A1 (en) Apparatus and process for steam reforming of hydrocarbons
CN110267912A (en) Expansible heat exchanger reburner for synthesis gas production
JP2006143564A5 (en)
CN106966363B (en) For with the technique of the corrosion manufacture hydrogen of reduction
EP3771688B1 (en) Segregated steam system and process in a hydrogen production facility
US11007498B2 (en) Layout for inter-bed cooling in sulfuric acid plants
BRPI0913102B1 (en) Method for producing ammonia
CA3088018C (en) Segregated steam system and process in a hydrogen production facility
AU2009262595B2 (en) Process for the production of ammonia and steam superheater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110224

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110325

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809