JP2006010133A - Installation mechanism of heat exchange pipe in heat exchange system using foundation pile as structure - Google Patents

Installation mechanism of heat exchange pipe in heat exchange system using foundation pile as structure Download PDF

Info

Publication number
JP2006010133A
JP2006010133A JP2004185099A JP2004185099A JP2006010133A JP 2006010133 A JP2006010133 A JP 2006010133A JP 2004185099 A JP2004185099 A JP 2004185099A JP 2004185099 A JP2004185099 A JP 2004185099A JP 2006010133 A JP2006010133 A JP 2006010133A
Authority
JP
Japan
Prior art keywords
heat exchange
foundation pile
pipe
pile
spiral shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004185099A
Other languages
Japanese (ja)
Inventor
Shigeo Takahashi
重雄 高橋
Mutsumi Yokoi
睦己 横井
Shogo Murakami
正吾 村上
Kentaro Sekine
賢太郎 関根
Ryuzo Ooka
龍三 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2004185099A priority Critical patent/JP2006010133A/en
Publication of JP2006010133A publication Critical patent/JP2006010133A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of becoming a factor of cost increase due to requiring a countermeasure such as increasing strength of concrete and enlarging a pile diameter by taking into consideration reduction in strength by a cross-sectional loss, and worsening heat exchange efficiency by interposing the concrete for constituting a foundation pile between an underground part and a heat exchange pipe, in arranging the heat exchange pipe inside the foundation pile, in a system for exchanging heat with the underground part by using the foundation pile as a structure. <P>SOLUTION: Here, this invention proposes an installation mechanism of the heat exchange pipe for supporting the heat exchange pipe 5 in a cubic spiral shape on the outer peripheral side of the foundation pipe so as to be positioned in a void of a design pile diameter of the foundation pile and an excavation hole. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、構造体としての基礎杭を利用した熱交換システムにおける熱交換用配管の設置機構に関するものである。   The present invention relates to a heat exchange piping installation mechanism in a heat exchange system using a foundation pile as a structure.

外気温度に比べて年間を通して略一定な地中の温度を空調用の熱源として利用することが従来から行われている。即ち、地中の温度は、その深さにもよるが、10m以上の深さでは、年間を通じて略15℃程度に維持されており、このように比較的深い地中の温度を空調用の熱源として利用することを目的とするシステムの一つとして、建物の基礎杭の内部に水等の熱媒体を流す熱交換用配管を設置して熱交換を行うようにしたシステムが提案されている。   Conventionally, the underground temperature, which is substantially constant throughout the year compared to the outside air temperature, has been used as a heat source for air conditioning. That is, the underground temperature depends on the depth, but at a depth of 10 m or more, it is maintained at about 15 ° C. throughout the year. Thus, the relatively deep underground temperature is used as a heat source for air conditioning. As one of the systems intended to be used as a system, a system has been proposed in which a heat exchange pipe for flowing a heat medium such as water is installed inside a foundation pile of a building to perform heat exchange.

例えば特許文献1に記載のものでは、下部先端が塞がれた工場生産の既製のコンクリート基礎杭の同心状の穴にU字形の熱交換用配管を挿入して、この熱交換用配管に熱媒体を循環させるようにすると共に、基礎杭の同心状の穴と熱交換用配管を熱伝達の良い材料で埋めた構成としている。   For example, in the one described in Patent Document 1, a U-shaped heat exchanging pipe is inserted into a concentric hole of a ready-made concrete foundation pile manufactured at the factory whose lower end is blocked, and the heat exchanging pipe is heated. The medium is circulated, and the concentric holes of the foundation pile and the heat exchange pipe are filled with a material having good heat transfer.

この従来の文献では、基礎杭の穴に挿入した熱交換用配管を支持するための具体的な支持機構や、基礎杭の穴を埋める熱伝達の良い材料の具体例については全く開示されていない。   This conventional document does not disclose a specific support mechanism for supporting the heat exchange pipe inserted into the hole of the foundation pile or a specific example of a material with good heat transfer filling the hole of the foundation pile. .

そこで、現場打ちの基礎杭内に熱交換用配管を設置しようとした場合に通常考えられる方法としては、例えば図7に示したように現場打の基礎杭を構築するための鉄筋かごaのフープ筋bに内接するように主筋cと主筋cの間に熱交換用配管dを配置して、それをフープ筋に取り付ける方法や、このような主となる鉄筋かごの内側の同心状に配管固定用の小径の鉄筋かごを配置して、この小径の鉄筋かごに熱交換用配管を取り付ける方法等が挙げられる。尚、図7において符号eは掘削孔を示すものである。
特開昭60−8659号公報
Therefore, when a heat exchange pipe is intended to be installed in a foundation-made foundation pile, for example, as shown in FIG. 7, a hoop of rebar cage a for constructing the foundation-made foundation pile. A heat exchanging pipe d is arranged between the main bar c and the main bar c so as to be inscribed in the bar b, and the pipe is fixed concentrically inside the main reinforcing bar cage. For example, there is a method of arranging a small-diameter rebar cage and attaching a heat exchange pipe to the small-diameter rebar cage. In FIG. 7, symbol e indicates a drilling hole.
Japanese Unexamined Patent Publication No. 60-8659

しかしながら、基礎杭の内部に熱交換用配管を設置する場合には、断面欠損による強度の低下を考慮して、コンクリートの強度を上げたり、杭径を大きくする等の対策が必要となり、コスト増の要因となると共に、地中と熱交換用配管との間に基礎杭を構成するコンクリートが厚く介在するため熱交換効率が悪い。また、前者の方法では、主筋cと配管dとの間隔が狭くなるため
、この部分にコンクリートが十分に流れ込まず、充填不良を起こすことが懸念され、また後者の方法では、二重の鉄筋かごを用いることになるため、材料、人工手間共に、コスト増の要因となる。
そこで本発明は、このような課題を解決することを目的とするものである。
However, when heat exchange pipes are installed inside the foundation pile, it is necessary to take measures such as increasing the strength of the concrete or increasing the pile diameter in consideration of the decrease in strength due to cross-sectional defects. In addition, the concrete constituting the foundation pile is thickly interposed between the underground and the heat exchange pipe, so the heat exchange efficiency is poor. In the former method, the distance between the main bar c and the pipe d is narrow, so there is a concern that the concrete does not sufficiently flow into this portion, resulting in poor filling. In the latter method, the double reinforcing bar cage is used. Therefore, both the material and the artificial hand cause cost increase.
Accordingly, the present invention aims to solve such problems.

上述した課題を解決するために、請求項1の発明では、構造体としての基礎杭を利用して熱交換用配管を設置して地中との熱交換を行うようにしたシステムにおいて、熱交換用配管を、基礎杭の設計杭径と掘削孔との空隙に位置するように基礎杭の外周側に立体螺旋形状に支持することを構成とした上記熱交換システムにおける熱交換用配管の設置機構を提案する。   In order to solve the above-described problems, in the invention of claim 1, in a system in which a heat exchange pipe is installed using a foundation pile as a structure to exchange heat with the ground, heat exchange is performed. Installation mechanism of heat exchange pipe in the heat exchange system configured to support the pipe for construction in a three-dimensional spiral shape on the outer peripheral side of the foundation pile so as to be located in the gap between the design pile diameter of the foundation pile and the excavation hole Propose.

また請求項2の発明では、請求項1の構成において、熱交換用配管は、現場打ちの基礎杭を構築するための鉄筋かごの外周側に、支持具により適宜距離を隔てて立体螺旋形状に支持し、この状態においてコンクリートを打設して基礎杭を構築することにより、基礎杭の設計杭径と掘削孔との空隙に配置することを提案する。   Moreover, in invention of Claim 2, in the structure of Claim 1, the piping for heat exchange is made into a three-dimensional spiral shape at an appropriate distance by a support tool on the outer peripheral side of a reinforcing steel cage for constructing a foundation pile to be built in the field. In this state, it is proposed to place the concrete in the gap between the design pile diameter of the foundation pile and the excavation hole by constructing the foundation pile by placing concrete.

また請求項3に記載の発明では、請求項1の構成において、熱交換用配管は、既製の基礎杭の外周に支持することにより、基礎杭の設計杭径と掘削孔との空隙に配置すること提案する。   Moreover, in invention of Claim 3, in the structure of Claim 1, heat exchange piping is arrange | positioned in the space | gap of the design pile diameter of a foundation pile, and a drilling hole by supporting on the outer periphery of a ready-made foundation pile. Propose that.

また請求項4の発明では、以上の構成において、熱交換用配管は、その立体螺旋形状を、軸方向に伸縮可能に構成し、立体螺旋形状が短縮状態の熱交換用配管の立体螺旋形状を現場において伸長させて基礎杭の外周側に支持することを提案する。   In the invention of claim 4, in the above configuration, the heat exchange pipe is configured so that its three-dimensional spiral shape can be expanded and contracted in the axial direction, and the three-dimensional spiral shape of the heat exchange pipe in a shortened state is obtained. It is proposed to extend it at the site and support it on the outer periphery of the foundation pile.

本発明によれば、熱交換用配管は基礎杭の設計杭径と掘削孔との空隙に配置するので、杭内部に設置するよりも土に近くなるため熱交換を効率よく行うことができ、また現場打ちで、杭本体の内部に支持機構により支持する場合のように、コンクリートの断面欠損や充填不良を起こすこともなく、支持機構によるコスト増もない。   According to the present invention, because the heat exchange pipe is arranged in the gap between the design pile diameter of the foundation pile and the excavation hole, heat exchange can be performed efficiently because it is closer to the soil than installing inside the pile, Moreover, there is no cross-section defect or poor filling of the concrete as in the case of supporting on the inside of the pile body by a support mechanism, and there is no cost increase due to the support mechanism.

特に、熱交換用配管は、基礎杭の外周側に立体螺旋形状に支持するので、連続した1本の配管として構成することができ、従って杭頭部に現れる配管の数を必要最小限の2本とすることができ、従って熱交換システムの本体の配管と接続するための時間と人手を削減できると共にバルブ数や配管本数によるイニシャルコスト増が小さく、また接続不良による漏水のリスクも小さい。   In particular, since the heat exchanging pipe is supported in a three-dimensional spiral shape on the outer peripheral side of the foundation pile, it can be configured as one continuous pipe, and therefore the number of pipes appearing at the pile head is minimized to 2. Therefore, it is possible to reduce the time and manpower required for connection with the piping of the main body of the heat exchange system, and the initial cost increase due to the number of valves and the number of piping is small, and the risk of water leakage due to poor connection is small.

熱交換用配管は、現場打ちの基礎杭を構築するための鉄筋かごの外周側に、支持具により適宜距離を隔てて立体螺旋形状に支持し、この状態においてコンクリートを打設して基礎杭を構築することにより、基礎杭の設計杭径と掘削孔との空隙に配置する他、既製の基礎杭の外周に支持することもできる。   The heat exchanging pipes are supported in a three-dimensional spiral shape at an appropriate distance by a support tool on the outer periphery of the reinforcing steel cage for constructing the on-site foundation pile. By constructing it, it can be supported in the outer periphery of the ready-made foundation pile, in addition to being arranged in the gap between the design pile diameter of the foundation pile and the excavation hole.

熱交換用配管は、その立体螺旋形状を、軸方向に伸縮可能に構成し、立体螺旋形状が短縮状態の熱交換用配管の立体螺旋形状を現場において伸長させて基礎杭の外周側に支持する方法を採用すれば、熱交換用配管に関する施工手間を削減して施工性を高くすることができ、この方法は、既製の基礎杭の外周に熱交換用配管を支持する場合に適している。   The heat exchange pipe is configured so that its three-dimensional spiral shape can be expanded and contracted in the axial direction, and the three-dimensional spiral shape of the heat exchange pipe having a shortened three-dimensional spiral shape is extended on-site and supported on the outer peripheral side of the foundation pile. If the method is adopted, it is possible to increase the workability by reducing the construction labor related to the heat exchange pipe, and this method is suitable for supporting the heat exchange pipe on the outer periphery of a ready-made foundation pile.

次に本発明の実施例を添付図面を参照して説明する。
図1は本発明の設置機構の実施例を概略的に示す縦断面図、図2はその横断面図であり、符号1は掘削孔、2は基礎杭(コンクリート杭)を現場打ちで構築するための鉄筋かごであり、掘削孔1に建て込んだ状態を示している。尚、現場打ちの基礎杭を構築するための工法としては、アースドリル工法、リバースサーキュレーション工法、オールケーシング工法等の適宜の工法を適用することができる。鉄筋かご2は、従来のものと同様に多数の長さ方向の主筋3の回りに多数のフープ筋4を配筋した構成であり、この鉄筋かご2の上部側等の外周には、鉄筋かご2、従って、構築される基礎杭の偏心防止用のスペーサー(図示省略)を適宜設けている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view schematically showing an embodiment of an installation mechanism of the present invention, FIG. 2 is a transverse sectional view thereof, reference numeral 1 is an excavation hole, and 2 is a foundation pile (concrete pile) constructed on site. This shows a state where the steel bar is built in the excavation hole 1. In addition, as a construction method for constructing a foundation pile piled on site, an appropriate construction method such as an earth drill method, a reverse circulation method, an all casing method, or the like can be applied. The rebar cage 2 has a configuration in which a large number of hoop bars 4 are arranged around a number of main bars 3 in the length direction in the same manner as the conventional one. 2, Therefore, the spacer (illustration omitted) for the eccentric prevention of the foundation pile constructed | assembled is provided suitably.

符号5は下部が連なった二重のパイプ5a,5bから成る熱交換用配管であり、この熱交換用配管5は、例えば樹脂パイプとし、それを鉄筋かご2の外周側に、支持具6により適宜距離を隔てて立体螺旋形状に支持して、その端部、即ち2本のパイプを鉄筋かご2の上側に突出させる。熱交換用配管5は、下部が連なった二重のパイプ5a,5bから構成しているので、往き管及び還り管として利用する2本のパイプが並んで立体二重螺旋形状に支持される。   Reference numeral 5 denotes a heat exchanging pipe composed of double pipes 5a and 5b with continuous lower portions. The heat exchanging pipe 5 is, for example, a resin pipe, and is attached to the outer peripheral side of the reinforcing bar 2 by a support 6. The three-dimensional spiral shape is supported at an appropriate distance, and its ends, that is, the two pipes are protruded above the reinforcing bar 2. Since the heat exchanging pipe 5 is composed of double pipes 5a and 5b in which the lower part is continuous, two pipes used as an outgoing pipe and a return pipe are arranged side by side and supported in a three-dimensional double spiral shape.

ここで、熱交換用配管5を構成するパイプ5a,5bを支持する支持具6は、鉄筋かご2から突設した支持体7と、樹脂製のバンド、針がね、クランプ等の適宜の固定手段8とから成る適宜の構成を採用することができる。   Here, the support 6 that supports the pipes 5a and 5b constituting the heat exchange pipe 5 includes a support 7 projecting from the rebar cage 2 and appropriate fixing such as a resin band, a needle guard, a clamp, and the like. An appropriate configuration comprising the means 8 can be employed.

以上のように熱交換用配管5を立体螺旋形状に支持した鉄筋かご2を掘削孔1内に建て込んだ後、コンクリートを打設して基礎杭の本体を構築する。   After the rebar cage 2 supporting the heat exchange pipe 5 in a three-dimensional spiral shape is built in the excavation hole 1 as described above, concrete is placed to construct the main body of the foundation pile.

このため熱交換用配管5と土(掘削孔)との間にはコンクリートが充填されてしまうが、充填されてしまう厚さは、実際の杭径と掘削孔との余掘分だけなので、杭内部に熱交換用配管5を設置する場合よりもコンクリート厚は小さく、土に、より近くなるため、熱交換を効率良く行うことができ、また杭本体の内部に設ける場合のように、コンクリートの断面欠損や充填不良を起こすこともなく、内部に支持機構を設けないため、それによるコスト増もない。   For this reason, concrete is filled between the heat exchanging pipe 5 and the soil (excavation hole), but since the thickness to be filled is only the actual pile diameter and the excess excavation hole, the pile The concrete thickness is smaller than the case of installing the heat exchange pipe 5 inside, and it is closer to the soil, so that heat exchange can be performed efficiently, and the concrete can be made as in the case of the pile body. There is no cross-sectional defect or filling failure, and no support mechanism is provided inside, so there is no increase in cost.

熱交換用配管5は、基礎杭の外周側に立体螺旋形状、この実施例の場合は立体二重螺旋形状に支持されて、連続した1本の配管として構成することができるので、杭頭部に現れる配管の端部の数を必要最小限の2本とすることができ、従って熱交換システムの配管(図示省略)と接続するための時間や人手及びバルブ数や配管本数によるイニシャルコスト増が小さく、また接続不良による漏水のリスクも小さい。   Since the heat exchanging pipe 5 is supported in a three-dimensional spiral shape on the outer peripheral side of the foundation pile, and in the case of this embodiment, in a three-dimensional double spiral shape, it can be configured as one continuous pipe, The number of pipe ends that appear in the system can be reduced to the minimum necessary two, so that the initial cost increases due to the time, manpower, number of valves, and number of pipes for connecting to the heat exchange system pipe (not shown). The risk of water leakage due to poor connection is also small.

次に図3、図4は本発明において、上述したように下部が連なった二重のパイプ5a,5bから成る熱交換用配管5を既製の基礎杭9の外周側に立体二重螺旋形状に支持するための施工方法の実施例を概略的に示すものである。
この施工方法では、熱交換用配管5は、上述したように樹脂パイプ等の弾性変形可能な管材料を用いて、その立体二重螺旋形状を、軸方向に伸縮可能に構成し、図3に示すように、立体二重螺旋形状を短縮させた状態で現場まで運搬した後、現場で短縮状態において吊り上げられた基礎杭9に嵌め、この状態で図3の矢印に示す方向に引き上げて伸長させながら支持具(図示省略)で支持することにより、図4に示すように基礎杭9の外周側に所定距離を隔てて立体二重螺旋形状に支持することができる。
Next, in FIGS. 3 and 4, in the present invention, as described above, the heat exchanging pipe 5 composed of the double pipes 5a and 5b with the lower part connected is formed into a three-dimensional double spiral shape on the outer peripheral side of the ready-made foundation pile 9. The Example of the construction method for supporting is shown roughly.
In this construction method, the heat exchanging pipe 5 is configured such that, as described above, the three-dimensional double helix shape can be expanded and contracted in the axial direction using an elastically deformable pipe material such as a resin pipe. As shown, after transporting to the site in a state where the three-dimensional double helix is shortened, it is fitted to the foundation pile 9 lifted in the shortened state at the site, and in this state, it is pulled up in the direction shown by the arrow in FIG. However, by supporting it with a support tool (not shown), it can be supported in a three-dimensional double spiral shape with a predetermined distance on the outer peripheral side of the foundation pile 9 as shown in FIG.

この実施例の施工方法は、勿論、現場打ちの基礎杭に適用することができ、この場合には、熱交換用配管5を図3に示すように立体二重螺旋形状を短縮させた状態で現場まで運搬した後、現場において、吊り上げられた鉄筋かごに嵌め、この状態で図3の矢印に示す方向に引き上げて伸長させながら支持具(図示省略)で支持することにより、図4に示すように基礎杭9の外周側に所定距離を隔てて立体二重螺旋形状に支持することができる。   Of course, the construction method of this embodiment can be applied to a foundation pile piled on the spot, and in this case, the heat exchange pipe 5 is in a state where the solid double spiral shape is shortened as shown in FIG. As shown in FIG. 4, after being transported to the site, it is fitted into a rebar cage that is lifted on the site, and is supported by a support (not shown) while being pulled up and extended in this state in the direction indicated by the arrow in FIG. Further, it can be supported in a three-dimensional double spiral shape with a predetermined distance on the outer peripheral side of the foundation pile 9.

次に図5は本発明における熱交換用配管5の立体螺旋形状の他の実施例を示す概念図であり、この実施例では熱交換用配管5は、現場打ちのための鉄筋かご2)(又は既製の基礎杭)の外周側に、往き管及び還り管として利用する下部で連なった2本のパイプ5c,5dのいずれか一方のパイプ5cのみを立体螺旋形状に支持すると共に、他方のパイプ5dは直線状に支持した構成としている。   Next, FIG. 5 is a conceptual diagram showing another embodiment of the three-dimensional spiral shape of the heat exchange pipe 5 in the present invention. In this embodiment, the heat exchange pipe 5 is a rebar cage 2 for on-site driving) (Or a ready-made foundation pile) on the outer peripheral side of the pipe 5c, 5d connected to the lower part to be used as the forward pipe and the return pipe, while supporting only one pipe 5c in a three-dimensional spiral shape and the other pipe 5d is configured to be supported linearly.

次に図6は本発明における熱交換用配管5の立体螺旋形状の他の実施例を示す概念図であり、この実施例では熱交換用配管5は、既製の基礎杭9(又は現場打ちのための鉄筋かご)の外周側に、往き管及び還り管として利用する、下部で連なった2本のパイプ5e,5fの両者を支持具(図示省略)により立体螺旋形状に支持している。   Next, FIG. 6 is a conceptual diagram showing another embodiment of the three-dimensional spiral shape of the heat exchanging pipe 5 according to the present invention. In this embodiment, the heat exchanging pipe 5 is made of a ready-made foundation pile 9 (or a field-made pile). The two pipes 5e and 5f connected at the lower part, which are used as an outgoing pipe and a return pipe, are supported in a three-dimensional spiral shape by a support (not shown) on the outer peripheral side of the reinforcing steel basket).

上記図5、図6の実施例に示す熱交換用配管5のいずれの立体螺旋形状の支持形態においても、上記実施例2において説明した施工方法を適用することができる。   The construction method described in the second embodiment can be applied to any three-dimensional spiral support form of the heat exchange pipe 5 shown in the embodiments of FIGS. 5 and 6.

本発明は以上のとおり、構造体としての基礎杭内に熱交換用配管を設置して地中との熱交換を行うようにしたシステムにおいて、熱交換用配管は基礎杭の設計杭径と掘削孔との空隙に配置するようにしているので、杭内部に設置するよりも土に近くなるため熱交換を効率よく行うことができ、また現場打ちで、杭本体の内部に支持機構により支持する場合のように、コンクリートの断面欠損や充填不良を起こすこともなく、支持機構によるコスト増もない。   As described above, in the system in which the heat exchange pipe is installed in the foundation pile as a structure to exchange heat with the ground as described above, the heat exchange pipe has the design pile diameter of the foundation pile and the excavation. Since it is arranged in the gap with the hole, it is closer to the soil than it is installed inside the pile, so heat exchange can be performed efficiently, and it is supported on the inside of the pile body by a support mechanism on site. As in the case, there is no cross section defect or poor filling of the concrete, and there is no cost increase due to the support mechanism.

特に、熱交換用配管は、基礎杭の外周側に立体螺旋形状に支持するので、連続した1本の配管として構成することができ、従って杭頭部に現れる配管の数を必要最小限の2本とすることができ、従って熱交換システムの本体の配管と接続するための時間と人手を削減すると共にバルブ数や配管本数によるイニシャルコスト増が小さく、また接続不良による漏水のリスクも小さい。   In particular, since the heat exchanging pipe is supported in a three-dimensional spiral shape on the outer peripheral side of the foundation pile, it can be configured as one continuous pipe, and therefore the number of pipes appearing at the pile head is minimized to 2. Therefore, it is possible to reduce the time and manpower required for connecting to the piping of the main body of the heat exchange system, and the initial cost increase due to the number of valves and the number of piping is small, and the risk of water leakage due to poor connection is also small.

本発明の設置機構の実施例を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows schematically the Example of the installation mechanism of this invention. 図1の横断面図である。It is a cross-sectional view of FIG. 本発明の設置機構に適用する施工方法の実施例を概略的に示す斜視図である。It is a perspective view which shows roughly the Example of the construction method applied to the installation mechanism of this invention. 本発明の設置機構に適用する施工方法の実施例を図3とは別の局面において概略的に示す斜視図である。It is a perspective view which shows schematically the Example of the construction method applied to the installation mechanism of this invention in the situation different from FIG. 本発明の設置機構の他の実施例を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows schematically the other Example of the installation mechanism of this invention. 本発明の設置機構の更に他の実施例を概略的に示す斜視図である。It is a perspective view which shows schematically the further another Example of the installation mechanism of this invention. 従来技術を用いた場合の鉄筋かごへの熱交換用配管の支持形態の例を示す横断面図である。It is a cross-sectional view which shows the example of the support form of the piping for heat exchange to the reinforcing steel cage at the time of using a prior art.

符号の説明Explanation of symbols

1 掘削孔
2 鉄筋かご
3 主筋
4 フープ筋
5 熱交換用配管
5a,5b パイプ
5c,5d パイプ
5e,5f パイプ
6 支持具
7 支持体
8 固定手段
9 基礎杭(既製)
DESCRIPTION OF SYMBOLS 1 Excavation hole 2 Reinforcing bar cage 3 Main reinforcement 4 Hoop reinforcement 5 Heat exchange piping 5a, 5b Pipe 5c, 5d Pipe 5e, 5f Pipe 6 Support tool 7 Support body 8 Fixing means 9 Foundation pile (ready-made)

Claims (4)

構造体としての基礎杭を利用して熱交換用配管を設置して地中との熱交換を行うようにしたシステムにおいて、熱交換用配管を、基礎杭の設計杭径と掘削孔との空隙に位置するように基礎杭の外周側に立体螺旋形状に支持することを特徴とする構造体としての基礎杭を利用した熱交換システムにおける熱交換用配管の設置機構 In a system in which heat exchange pipes are installed using foundation piles as a structure to exchange heat with the ground, the heat exchange pipes are connected to the gap between the design pile diameter of the foundation pile and the excavation hole. Of heat exchange piping in a heat exchange system using a foundation pile as a structure characterized by being supported in a three-dimensional spiral shape on the outer peripheral side of the foundation pile so as to be located at 熱交換用配管は、現場打ちの基礎杭を構築するための鉄筋かごの外周側に、支持具により適宜距離を隔てて立体螺旋形状に支持し、この状態においてコンクリートを打設して基礎杭を構築することにより、基礎杭の設計杭径と掘削孔との空隙に配置することを特徴とする請求項1に記載の構造体としての基礎杭を利用した熱交換システムにおける熱交換用配管の設置機構 The heat exchanging pipes are supported in a three-dimensional spiral shape at an appropriate distance by a support tool on the outer periphery of the reinforcing steel cage for constructing the on-site foundation pile. The installation of the heat exchange pipe in the heat exchange system using the foundation pile as a structure according to claim 1, wherein the arrangement is arranged in a gap between the design pile diameter of the foundation pile and the excavation hole. mechanism 熱交換用配管は、既製の基礎杭の外周に支持することにより、基礎杭の設計杭径と掘削孔との空隙に配置することを特徴とする請求項1に記載の構造体としての基礎杭を利用した熱交換システムにおける熱交換用配管の設置機構 2. The foundation pile as a structure according to claim 1, wherein the pipe for heat exchange is arranged in the gap between the design pile diameter of the foundation pile and the excavation hole by supporting it on the outer periphery of the ready-made foundation pile. Mechanism of heat exchange piping in a heat exchange system using a heat exchanger 熱交換用配管は、その立体螺旋形状を、軸方向に伸縮可能に構成し、立体螺旋形状が短縮状態の熱交換用配管の立体螺旋形状を現場において伸長させて基礎杭の外周側に支持することを特徴とする請求項1〜3までのいずれか1項に記載の構造体としての基礎杭を利用した熱交換システムにおける熱交換用配管の設置機構
The heat exchange pipe is configured so that its three-dimensional spiral shape can be expanded and contracted in the axial direction, and the three-dimensional spiral shape of the heat exchange pipe having a shortened three-dimensional spiral shape is extended on-site and supported on the outer peripheral side of the foundation pile. The installation mechanism of the pipe for heat exchange in the heat exchange system using the foundation pile as a structure as described in any one of Claims 1-3 characterized by the above-mentioned
JP2004185099A 2004-06-23 2004-06-23 Installation mechanism of heat exchange pipe in heat exchange system using foundation pile as structure Pending JP2006010133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185099A JP2006010133A (en) 2004-06-23 2004-06-23 Installation mechanism of heat exchange pipe in heat exchange system using foundation pile as structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004185099A JP2006010133A (en) 2004-06-23 2004-06-23 Installation mechanism of heat exchange pipe in heat exchange system using foundation pile as structure

Publications (1)

Publication Number Publication Date
JP2006010133A true JP2006010133A (en) 2006-01-12

Family

ID=35777581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185099A Pending JP2006010133A (en) 2004-06-23 2004-06-23 Installation mechanism of heat exchange pipe in heat exchange system using foundation pile as structure

Country Status (1)

Country Link
JP (1) JP2006010133A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085556A (en) * 2007-10-02 2009-04-23 Nippon Concrete Ind Co Ltd Method for installing underground heat exchanging unit and underground heat exchanging unit
JP2009092350A (en) * 2007-10-11 2009-04-30 Atom Kankyo Kogaku:Kk Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
KR100967085B1 (en) * 2009-12-15 2010-07-01 벽산건설 주식회사 In the ground heat exchanger and in the ground heat exchanger form of construction method
JP2011141093A (en) * 2010-01-08 2011-07-21 Nakamura Bussan Kk Cast-in-place pile
KR101065330B1 (en) 2009-11-24 2011-09-16 롯데건설 주식회사 Construction method for geothermal heat exchanger
CN101362951B (en) * 2008-09-04 2011-10-12 潍坊联兴炭素有限公司 Cooling water jacket of petroleum coke can-type calcine furnace
ITAN20100091A1 (en) * 2010-06-07 2011-12-08 Energy Resources S R L MODULAR STRUCTURE FOR THE WINDING OF A PIPE
ITMC20110005A1 (en) * 2011-01-31 2012-08-01 Stefano Porfiri GEOTHERMAL HEAT EXCHANGER WITH DOUBLE COAXIAL SPIRAL
WO2012107235A1 (en) * 2011-02-11 2012-08-16 S.A. Ryb Improved spiral-shaped geothermal sensor
KR101220448B1 (en) * 2010-10-20 2013-01-10 삼성물산 주식회사 Heat Exchanging File Structure And Construction Method Thereof
JP2013036687A (en) * 2011-08-08 2013-02-21 Inoac Housing & Construction Materials Co Ltd Heat exchanger and method of installing the same
JP2013075311A (en) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd Apparatus for manufacturing heat exchanger
KR101274230B1 (en) * 2011-03-31 2013-06-14 삼성물산 주식회사 Geothermal pipe for geothermal heat exchanger and method for manufacturing the same
JP2013120019A (en) * 2011-12-08 2013-06-17 Mitani Sekisan Co Ltd Subterranean heat exchange equipment using precast pile
WO2014101711A1 (en) * 2012-12-25 2014-07-03 潍坊联兴新材料科技股份有限公司 Heat exchanger structure for extending service life of calcined coke heat exchanger
CN104006663A (en) * 2014-06-12 2014-08-27 济南中海炭素有限公司 Cooling device for materials after calcination of anthracite or petroleum coke
JP2015045472A (en) * 2013-08-29 2015-03-12 前田建設工業株式会社 Construction method of heat transfer pipe used in underground heat exchange device
CN104514218A (en) * 2013-09-30 2015-04-15 清华大学 Energy pile and system thereof
JP2015081761A (en) * 2013-10-24 2015-04-27 清水建設株式会社 Underground heat exchanger, and construction method therefor
CN106595338A (en) * 2016-12-27 2017-04-26 滨州市甲力太阳能科技有限公司 Coil pipe type heat exchanger
CN107466188A (en) * 2017-08-16 2017-12-12 中国原子能科学研究院 A kind of cooling medium transport structure on high potential xegregating unit
CN111795516A (en) * 2020-06-16 2020-10-20 普泛能源技术研究院(北京)有限公司 Wound tube core structure and efficient absorption device and method for directional liquid distribution of wound tube core structure
DE102019121027A1 (en) * 2019-08-03 2021-02-04 Hubert Langheinz Hollow jacket tube heat exchanger device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085556A (en) * 2007-10-02 2009-04-23 Nippon Concrete Ind Co Ltd Method for installing underground heat exchanging unit and underground heat exchanging unit
JP2009092350A (en) * 2007-10-11 2009-04-30 Atom Kankyo Kogaku:Kk Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
CN101362951B (en) * 2008-09-04 2011-10-12 潍坊联兴炭素有限公司 Cooling water jacket of petroleum coke can-type calcine furnace
KR101065330B1 (en) 2009-11-24 2011-09-16 롯데건설 주식회사 Construction method for geothermal heat exchanger
KR100967085B1 (en) * 2009-12-15 2010-07-01 벽산건설 주식회사 In the ground heat exchanger and in the ground heat exchanger form of construction method
JP2011141093A (en) * 2010-01-08 2011-07-21 Nakamura Bussan Kk Cast-in-place pile
ITAN20100091A1 (en) * 2010-06-07 2011-12-08 Energy Resources S R L MODULAR STRUCTURE FOR THE WINDING OF A PIPE
KR101220448B1 (en) * 2010-10-20 2013-01-10 삼성물산 주식회사 Heat Exchanging File Structure And Construction Method Thereof
ITMC20110005A1 (en) * 2011-01-31 2012-08-01 Stefano Porfiri GEOTHERMAL HEAT EXCHANGER WITH DOUBLE COAXIAL SPIRAL
WO2012107235A1 (en) * 2011-02-11 2012-08-16 S.A. Ryb Improved spiral-shaped geothermal sensor
FR2971578A1 (en) * 2011-02-11 2012-08-17 Ryb Sa ENHANCED SPIRAL GEOTHERMAL SENSOR
KR101274230B1 (en) * 2011-03-31 2013-06-14 삼성물산 주식회사 Geothermal pipe for geothermal heat exchanger and method for manufacturing the same
JP2013036687A (en) * 2011-08-08 2013-02-21 Inoac Housing & Construction Materials Co Ltd Heat exchanger and method of installing the same
JP2013075311A (en) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd Apparatus for manufacturing heat exchanger
JP2013120019A (en) * 2011-12-08 2013-06-17 Mitani Sekisan Co Ltd Subterranean heat exchange equipment using precast pile
WO2014101711A1 (en) * 2012-12-25 2014-07-03 潍坊联兴新材料科技股份有限公司 Heat exchanger structure for extending service life of calcined coke heat exchanger
JP2015045472A (en) * 2013-08-29 2015-03-12 前田建設工業株式会社 Construction method of heat transfer pipe used in underground heat exchange device
CN104514218A (en) * 2013-09-30 2015-04-15 清华大学 Energy pile and system thereof
JP2015081761A (en) * 2013-10-24 2015-04-27 清水建設株式会社 Underground heat exchanger, and construction method therefor
CN104006663A (en) * 2014-06-12 2014-08-27 济南中海炭素有限公司 Cooling device for materials after calcination of anthracite or petroleum coke
CN106595338A (en) * 2016-12-27 2017-04-26 滨州市甲力太阳能科技有限公司 Coil pipe type heat exchanger
CN106595338B (en) * 2016-12-27 2018-10-12 滨州市甲力太阳能科技有限公司 A kind of coil exchanger
CN107466188A (en) * 2017-08-16 2017-12-12 中国原子能科学研究院 A kind of cooling medium transport structure on high potential xegregating unit
DE102019121027A1 (en) * 2019-08-03 2021-02-04 Hubert Langheinz Hollow jacket tube heat exchanger device
CN111795516A (en) * 2020-06-16 2020-10-20 普泛能源技术研究院(北京)有限公司 Wound tube core structure and efficient absorption device and method for directional liquid distribution of wound tube core structure

Similar Documents

Publication Publication Date Title
JP2006010133A (en) Installation mechanism of heat exchange pipe in heat exchange system using foundation pile as structure
JP4229436B2 (en) Installation mechanism of heat exchange piping in a heat exchange system using building foundation piles
JP5384058B2 (en) Geothermal heat exchanger for geothermal heat pump system
JP2007315742A (en) Underground heat exchanger and its buried structure
JP2008096063A (en) Foundation pile serving also as underground heat exchanger, installing method for underground heat exchanger, and underground heat exchanger
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
JP4459866B2 (en) Pile head structure
JP2006029006A (en) Cast-in-place reinforced concrete pile
JP2007002578A (en) Reinforced structure of steel frame reinforced concrete structural material and its construction method
JP7039856B2 (en) Construction method of reinforcing bar cage for piles, piles and geothermal heat exchange piping
JP4953973B2 (en) Embedded heat exchanger and method for manufacturing the same
JP4163042B2 (en) Installation mechanism of heat exchange piping in heat exchange system using building foundation piles
JP2013124441A (en) Precast concrete pile for underground heat use and underground heat using system
JP4602167B2 (en) Pile head structure
JP5634932B2 (en) Concrete temperature control pipe and concrete temperature control method using this pipe
JP2011141093A (en) Cast-in-place pile
WO2022243669A1 (en) Pile cap
JP5258983B2 (en) Pile head structure
JP3163849U (en) Heat exchange pile and its connection structure
JP6632237B2 (en) Heat exchange device using ready made pile and ready made pile with heat exchange pipe
KR101189079B1 (en) Geothermal exchanging pile
KR101448202B1 (en) A Tube For Energy Pile
JP5164507B2 (en) Ground heat exchange unit installation method and ground heat exchange unit
JP2021059946A (en) Construction method of underground structure
KR102348578B1 (en) Heat exchanging file of retaining wall and retaining wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090924