JP2006009818A - Faucet valve - Google Patents

Faucet valve Download PDF

Info

Publication number
JP2006009818A
JP2006009818A JP2004183432A JP2004183432A JP2006009818A JP 2006009818 A JP2006009818 A JP 2006009818A JP 2004183432 A JP2004183432 A JP 2004183432A JP 2004183432 A JP2004183432 A JP 2004183432A JP 2006009818 A JP2006009818 A JP 2006009818A
Authority
JP
Japan
Prior art keywords
valve
carbon
resin
ceramic
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004183432A
Other languages
Japanese (ja)
Inventor
Hiroshi Oshima
浩 大島
Noriaki Tateno
範昭 建野
Takahiro Taniguchi
隆博 谷口
Toshimitsu Ogusu
敏光 小楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2004183432A priority Critical patent/JP2006009818A/en
Publication of JP2006009818A publication Critical patent/JP2006009818A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a faucet valve having excellent slidable property and rigidity and manufacturable at a low cost. <P>SOLUTION: In this valve, a bottom plate 2 is fixed to the lower part of a valve box 1, a two inflow ports 3 are formed in the bottom plate 2, and a valve seat 5 is stacked on the bottom plate 2 through a packing 4. A valve hole 6 communicating with the inflow port is formed in the valve seat 5, a valve element 7 is slidably stacked on the valve seat 5, and a lever holder 8 is installed between the upper part of the valve element 7 and the valve box 1. A lever 9 having a lower end engaged with a recessed part in the upper surface of the valve element 7 is rotatably installed in the lever holder 8 through a pin 10. Then, at least the valve element 7 is formed of a resin bonded carbon. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、湯水混合栓や止水栓等に用いる水栓バルブに関する。   The present invention relates to a faucet valve used for a hot and cold water mixing tap, a stop cock, and the like.

炭素は自己潤滑性に優れた特性を有する。そこでこの特性を活かすべく、互いに摺接する弁座と弁体の少なくとも一方の部材に、黒鉛などの炭素を含む材料を用いた提案が特許文献1〜6になされている。   Carbon has excellent self-lubricating properties. Therefore, in order to make use of this characteristic, Patent Documents 1 to 6 have proposed that a material containing carbon such as graphite is used for at least one member of a valve seat and a valve body which are in sliding contact with each other.

特許文献1には、アルミナ粉を80〜99重量%、炭素粉を1〜20重量%混合し、成形と焼成を行って摺動面の面粗度をRa2μm以下としたセラミックバルブが提案されている。   Patent Document 1 proposes a ceramic valve in which 80 to 99% by weight of alumina powder and 1 to 20% by weight of carbon powder are mixed, and the surface roughness of the sliding surface is set to Ra2 μm or less by molding and firing. Yes.

特許文献2には、炭化珪素(SiC)100重量部に対し、炭素(C)を0.2〜50重量部加え、炭素の結晶相、非晶相とのレーザーラマン分光強度のピーク面積比が0.1〜10.0のセラミックバルブが提案されている。   In Patent Document 2, 0.2 to 50 parts by weight of carbon (C) is added to 100 parts by weight of silicon carbide (SiC), and the peak area ratio of the laser Raman spectral intensity between the crystalline phase and the amorphous phase of carbon is as follows. 0.1 to 10.0 ceramic valves have been proposed.

特許文献3には、炭素のドメイン径(セラミックマトリックス中に分布している炭素粒子あるいはそれらの集合体の大きさ)が0.01〜30μmで炭素のドメイン面積率が5〜70%の、摺動部品に用いるセラミック炭素系複合材料が提案されている。   Patent Document 3 discloses a slide having a carbon domain diameter (the size of carbon particles distributed in a ceramic matrix or an aggregate thereof) of 0.01 to 30 μm and a carbon domain area ratio of 5 to 70%. Ceramic carbon-based composite materials used for moving parts have been proposed.

特許文献4には、バルブを構成する固定ディスク部材と可動ディスク部材の一方を、炭化珪素(SiC)−炭素(C)系複合部材で作製し、他方をアルミナとし、摺動面のRaを0.1〜0.3μmとする提案がなされている。   In Patent Document 4, one of a fixed disk member and a movable disk member constituting a valve is made of a silicon carbide (SiC) -carbon (C) composite member, the other is made of alumina, and Ra of the sliding surface is 0. .1 to 0.3 μm has been proposed.

特許文献5には、ディスクバルブを構成する弁座と弁体の一方を炭化珪素−炭素を系の自己潤滑性のセラミックで作製するとともに摺接面を中高形状にする提案がなされている。   Patent Document 5 proposes that one of a valve seat and a valve body constituting a disc valve is made of silicon carbide-carbon based self-lubricating ceramic and that the sliding contact surface has a medium-high shape.

特許文献6には、ポリフェニレンサルファイド(PPS)樹脂を主体とし、これに炭素繊維、ガラス状カーボン、黒鉛、マイカ、タルク、ニ硫化モリブデンなどを添加したバルブ用の樹脂組成物が提案されている。   Patent Document 6 proposes a resin composition for a valve which is mainly composed of polyphenylene sulfide (PPS) resin and added with carbon fiber, glassy carbon, graphite, mica, talc, molybdenum disulfide and the like.

特開昭63−297876号公報JP-A 63-297876 特開平3−199164号公報Japanese Patent Laid-Open No. 3-199164 特開平5−9055号公報Japanese Patent Laid-Open No. 5-9055 特開平7−190208号公報JP-A-7-190208 特開平9−42479号公報JP 9-42479 A 特開2003−14141号公報JP 2003-14141 A

特許文献1に開示されるバルブは、炭素の特性を活かして、セラミックディスクの摺動性を改善しているように見えるが、評価にはグリスを塗布しており、炭素の自己潤滑性を活かしていない。   The valve disclosed in Patent Document 1 seems to improve the slidability of the ceramic disk by taking advantage of the characteristics of carbon, but grease is applied for evaluation, and the self-lubricating property of carbon is utilized. Not.

特許文献2に開示されるバルブは、炭化珪素(SiC)を主体としており、SiCは非常に硬いため加工が困難で、2000℃以上の非酸化雰囲気で焼成しなければならないので高価になる。また、炭化珪素と炭素は反応しないため、炭素を多く含むものは欠けやすいという欠点も有る。   The valve disclosed in Patent Document 2 is mainly made of silicon carbide (SiC), which is very hard and difficult to process, and is expensive because it must be fired in a non-oxidizing atmosphere at 2000 ° C. or higher. In addition, since silicon carbide and carbon do not react with each other, there is a disadvantage that a material containing a large amount of carbon is easily lost.

特許文献3に開示される摺動部材をバルブに応用した場合、大気中焼成可能なものを真空、又は、非酸化雰囲気で焼成しなければならない。全空隙率が10%以上と大きいものもあり、シール出来ずに漏水するものも有るという問題点もある。更にマトリックスがセラミックであるので、高精度の加工と面粗度が要求され、コストアップにつながる。   When the sliding member disclosed in Patent Document 3 is applied to a valve, a material that can be fired in the air must be fired in a vacuum or in a non-oxidizing atmosphere. Some have a large total porosity of 10% or more, and some have a problem of leaking water without being able to seal. Furthermore, since the matrix is ceramic, high-precision processing and surface roughness are required, leading to an increase in cost.

特許文献4に開示されるバルブは、固定ディスクと可動ディスクの一方をSi−Cを主体とし、他方をアルミナとしている典型的なセラミックバルブであり、このようなセラミックバルブは、前記した特許文献2と同様に、リークを防止するには摺動面の面粗度を極めて平滑にしなければならず、結局コストアップになってしまう。   The valve disclosed in Patent Document 4 is a typical ceramic valve in which one of a fixed disk and a movable disk is mainly made of Si-C and the other is made of alumina. Such a ceramic valve is disclosed in Patent Document 2 described above. Similarly, in order to prevent leakage, the surface roughness of the sliding surface must be extremely smooth, resulting in an increase in cost.

特許文献5に開示されるバルブにあっても、弁座又は弁体を炭化珪素(Si)−炭素(C)系の材料にて構成するため、前記した問題があり、また、セラミックをμm単位で中高形状に加工するには、加工機の管理等に労力がかかる。   Even in the valve disclosed in Patent Document 5, since the valve seat or the valve body is made of a silicon carbide (Si) -carbon (C) -based material, there are the above-mentioned problems, and the ceramic is in units of μm. However, it takes a lot of work to manage the processing machine to process it into a medium-high shape.

特許文献6に開示される樹脂組成物を湯水混合専用のバルブに応用した場合、熱湯に曝されると、クリープを発生したり、漏水することがある。熱可塑性樹脂を使用し、射出成形をしているため、耐熱性が十分ではなく、強度の低いウェルド部が存在するという問題もある。更に、成形時に原料に流動性が必要なため、摺動特性を改善するためのフィラーを多く添加できない。   When the resin composition disclosed in Patent Document 6 is applied to a valve dedicated to hot water mixing, when exposed to hot water, creep may occur or water may leak. Since injection molding is performed using a thermoplastic resin, there is a problem that heat resistance is not sufficient and a weld portion with low strength exists. Furthermore, since fluidity is required for the raw material at the time of molding, a large amount of filler for improving sliding characteristics cannot be added.

以上に述べたように、従来のバルブとして、自己潤滑性を高めるため、炭素を添加したものが提案されているが、何れもセラミック、又は、樹脂を主体とし、炭素を主成分としたものではない。その結果、セラミック、樹脂を主成分とする材料の問題がそのまま残っている。   As described above, as conventional valves, those with carbon added have been proposed in order to improve self-lubricating properties. However, all of them have ceramic or resin as the main component and carbon as the main component. Absent. As a result, the problem of the material mainly composed of ceramic and resin remains as it is.

上記課題を解決するため本発明は、弁座と弁体とを摺動自在に重ね合わさせてなる水栓バルブの、少なくとも前記弁体の材料を熱硬化性樹脂と炭素からなる樹脂結合質炭素とした。   In order to solve the above problems, the present invention provides a water faucet valve in which a valve seat and a valve body are slidably overlapped, and at least the material of the valve body is a resin-bonded carbon composed of a thermosetting resin and carbon. did.

弁体は一般に平板状(ディスク形状)であり、高精度に仕上げられた平面同士で水を止水する。そのため、プレス成形製作するのに向いている。また、炭素と熱硬化性樹脂を使用しているため耐熱性(90℃の熱水中で変形、劣化がない)に優れ、射出成形におけるウェルド部のように強度の弱い部分もない。主成分が自己潤滑性をもつ炭素であるため、摺動特性も良好である。   The valve body is generally flat (disk shape), and water is stopped between flat surfaces finished with high accuracy. Therefore, it is suitable for press molding production. Moreover, since carbon and a thermosetting resin are used, it is excellent in heat resistance (there is no deformation or deterioration in hot water at 90 ° C.), and there is no weak part like a weld part in injection molding. Since the main component is carbon having self-lubricating properties, the sliding characteristics are also good.

このように、弁体を樹脂結合質炭素で作製することで、セラミックや金属を主体としたバルブに比較して、摺動特性に優れ且つ安価なバルブとすることができる。また、熱可塑性樹脂を主体としたバルブに比較すると、シール性に優れ、耐熱性や強度、耐久性に優れるバルブとすることができる。   Thus, by producing the valve body with resin-bonded carbon, it is possible to make the valve excellent in sliding characteristics and inexpensive compared with a valve mainly made of ceramic or metal. Further, as compared with a valve mainly composed of a thermoplastic resin, it is possible to provide a valve having excellent sealing properties and excellent heat resistance, strength, and durability.

可動側の弁体を炭素と熱硬化性樹脂とするのは、例えばセラミック製弁座と組み合わせた場合、セラミックと比較して硬度が低く磨耗量が多いが、可動側であれば、全面均一に磨耗し、段差などの漏水に繋がるような磨耗が発生しないためである。   For example, when the movable valve body is made of carbon and a thermosetting resin, when combined with a ceramic valve seat, the hardness is lower and the amount of wear is higher than that of ceramic. This is because there is no wear that leads to water leakage such as steps.

また、炭素と熱硬化性樹脂からなる樹脂結合質炭素として使用する熱硬化性樹脂としてはフェノール系樹脂が挙げられ、その全体に対する割合は10重量%〜50重量%とする。10重量%未満では十分な強度(曲げ強度)が得られず、50重量%を超えると、熱硬化時のアウトガスの量が増え、割れ等の不具合を生じやすくなり、ヤング率低下、摺動特性劣化(磨耗係数がアップ)という問題がある。   Moreover, as a thermosetting resin used as the resin-bonded carbon composed of carbon and a thermosetting resin, a phenol-based resin can be used, and the ratio of the thermosetting resin is 10% by weight to 50% by weight. If it is less than 10% by weight, sufficient strength (bending strength) cannot be obtained, and if it exceeds 50% by weight, the amount of outgas at the time of thermosetting increases, and problems such as cracking tend to occur, lowering the Young's modulus, sliding properties There is a problem of deterioration (the wear coefficient is increased).

表面粗さは、一般に良く使用されているセラミックに関しては、可動側、固定側ともRa0.25μm以下のものが使用されているが、セラミックに対してヤング率が大幅に小さい樹脂結合質炭素の場合は、樹脂結合質炭素がRa0.1〜0.7μmであり、セラミックの表面粗さがRa0.25μm以下であれば、17.5kg/cmの水圧がかかっても止水できた。この原因は、上下からの押し付け力により、樹脂結合質炭素が弾性変形するためと思われる。つまり、ヤング率の高いセラミックの場合は、押し付け力によるセラミックの弾性変形量は小さいが、ヤング率の低い樹脂結合質炭素の場合は、シール面での弾性変形量が大きいため、表面粗さが悪くてもシール可能であると推定される。 The surface roughness of the commonly used ceramic is Ra 0.25 μm or less on both the movable side and the fixed side, but in the case of resin-bonded carbon whose Young's modulus is significantly smaller than that of the ceramic. When the resin bond carbon was Ra 0.1 to 0.7 μm and the surface roughness of the ceramic was Ra 0.25 μm or less, the water could be stopped even when a water pressure of 17.5 kg / cm 2 was applied. This is probably because the resin-bound carbon is elastically deformed by the pressing force from above and below. That is, in the case of a ceramic with a high Young's modulus, the amount of elastic deformation of the ceramic due to the pressing force is small, but in the case of a resin-bonded carbon with a low Young's modulus, the amount of elastic deformation at the seal surface is large, so the surface roughness is It is estimated that even if it is bad, it can be sealed.

平坦度に関しては、セラミックを使用した場合1〜2LB程度の高精度な仕上げとなるが、本発明では、固定側のセラミックは高精度に仕上げる必要があるが、樹脂結合質炭素の場合、樹脂結合質炭素に反りが発生しても、ヤング率の高いセラミックの平坦度が良ければ、シールできた。これも表面粗さと同様に樹脂結合質炭素のヤング率が低いため押し付け力により弾性変形して、高精度なセラミック側に倣うため、10LB以下の平坦度でも止水性良好と推定される。   With regard to flatness, when ceramic is used, the finish is about 1 to 2 LB, but in the present invention, the ceramic on the fixed side needs to be finished with high precision. Even if the carbonaceous material was warped, it could be sealed if the flatness of the ceramic with a high Young's modulus was good. Similarly to the surface roughness, since the Young's modulus of the resin-bonded carbon is low, it is elastically deformed by the pressing force and follows the high-precision ceramic side.

本発明に係る水栓バルブによれば、弁座が、炭素を主成分とするため、従来の樹脂を主成分とする材料と比較し、ヤング率が大きく、熱水に対して安定しているため、シール効果を発揮でき、漏水等の不具合が無く、またセラミック材料と比較した場合には、面粗度が粗く平面度が悪くても、弾性変形により、高水圧下(17.5kg/cm)でもシールでき、且つ、操作性も良好なものとすることができる。 According to the faucet valve of the present invention, since the valve seat is mainly composed of carbon, it has a large Young's modulus and is stable against hot water as compared with conventional materials mainly composed of resin. Therefore, the sealing effect can be exhibited, there is no problem such as water leakage, and when compared with ceramic materials, even if the surface roughness is rough and the flatness is poor, the elastic deformation causes a high water pressure (17.5 kg / cm 2 ) can be sealed, and the operability can be improved.

以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明に係る水栓バルブの一例としてのシングルレバータイプのバルブの断面図であり、バルブは弁箱1の下部に底板2を固定し、この底板2には2つの流入口3を形成している。尚、図では流入口は重なるので1つのみを示している。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view of a single lever type valve as an example of a faucet valve according to the present invention. The valve has a bottom plate 2 fixed to a lower portion of a valve box 1, and two inlets 3 are provided on the bottom plate 2. Forming. In the figure, only one inlet is shown because the inlets overlap.

前記底板2上にはパッキン4を介して弁座5を重ねている。そしてこの弁座5には前記流入口3と連通する弁孔6が形成され、更に弁座5の上には弁体7が摺動自在に重ねられ、この弁体7の上と前記弁箱1との間にレバーホルダ8が設けられ、このレバーホルダ8内に下端が前記弁体7の上面の凹部に係合するレバー9をピン10を介して回動自在に取り付けている。   A valve seat 5 is stacked on the bottom plate 2 via a packing 4. A valve hole 6 communicating with the inlet 3 is formed in the valve seat 5, and a valve body 7 is slidably stacked on the valve seat 5. 1 is provided with a lever holder 8, and a lever 9 whose lower end engages with a recess on the upper surface of the valve body 7 is rotatably mounted via a pin 10 in the lever holder 8.

ところで、本発明にあっては、少なくても前記弁体7を樹脂結合質炭素で構成している。樹脂結合質炭素にて作製する場合には、以下のようにして作製する。   By the way, in the present invention, at least the valve body 7 is made of resin-bonded carbon. In the case of producing with resin-bonded carbon, it is produced as follows.

50重量%の人造黒鉛と50重量%の土状黒鉛からなる骨材に、結合材としてのフェノール樹脂を添加した後、粉砕、分級をして平均粒径を200μmに調整した後、金型成形、更には、200℃で硬化させて、ブロック状の樹脂結合質炭素を得た。更には切削加工を行い、目的形状に加工し、弁体のシールに関する面はラップ加工を行い、表面粗さ(Ra)を0.7μm以下に仕上げた。   After adding a phenolic resin as a binder to an aggregate composed of 50% by weight artificial graphite and 50% by weight earth-like graphite, pulverization and classification are performed to adjust the average particle size to 200 μm, and then molding is performed. Furthermore, it was cured at 200 ° C. to obtain a block-like resin-bonded carbon. Further, cutting was performed to obtain a target shape, and the surface related to the seal of the valve body was lapped to finish the surface roughness (Ra) to 0.7 μm or less.

ところで、以下の(表1)は樹脂結合質炭素を構成する炭素に対する熱硬化性樹脂の含有率と、クラックの有無、抗折強度及び摩擦係数との実験結果を示すグラフであり、このグラフから以下のことが分かる。
即ち、熱硬化性樹脂と炭素からなる樹脂結合質炭素に関しては、熱硬化性樹脂の全体に対する割合が、10重量%から50重量%であることが必要で、10重量%未満の場合、熱硬化性樹脂が全体に行き渡らず強度が低くなりすぎ、強度不足により、加工時、組立て時、使用時に割れや欠けが発生しやすくなる。50重量%より多いと、熱硬化性樹脂が硬化時にクラックを発生する場合があり、また、摺動性良好な炭素の比率が少なくなるため、摩擦係数が増加する傾向にある。
By the way, the following (Table 1) is a graph which shows the experimental result of the content rate of the thermosetting resin with respect to the carbon which comprises resin bond carbon, the presence or absence of a crack, a bending strength, and a friction coefficient, From this graph. The following can be understood.
That is, for the resin-bonded carbon composed of a thermosetting resin and carbon, the ratio of the thermosetting resin to the whole is required to be 10% by weight to 50% by weight. The resin does not reach the whole and the strength becomes too low, and due to insufficient strength, cracks and chips are likely to occur during processing, assembly and use. If it is more than 50% by weight, the thermosetting resin may crack when cured, and the ratio of carbon with good slidability decreases, so the friction coefficient tends to increase.

次に炭素材料のバルブとしての評価結果を行なうため、樹脂結合質炭素を用いてバルブを作成し、図1のカートリッジに組付け、耐圧試験及び耐久試験を行なった。結果を以下の(表2)に示す。
尚、(表2)において、中心線表面粗さ(Ra)の測定は、テイラーホプソン(株)製の表面粗さ計S4Cを用いた。耐圧試験は、水圧1.75MPaで1分間保持して目視で水漏れの有無を評価した。耐久試験は、水側水圧0.5MPa、湯側水圧0.5MPaで湯側止水−湯側全開吐出−水側止水−水側全開吐水−湯側止水を1サイクルとして、サイクル時間15秒にて、10万回行なった。
Next, in order to perform the evaluation results of the carbon material as a valve, a valve was made using resin-bonded carbon, assembled to the cartridge of FIG. 1, and subjected to a pressure test and a durability test. The results are shown below (Table 2).
In Table 2, the center line surface roughness (Ra) was measured using a surface roughness meter S4C manufactured by Taylor Hopson Co., Ltd. In the pressure resistance test, the presence or absence of water leakage was evaluated visually by holding at a water pressure of 1.75 MPa for 1 minute. The endurance test was performed at a cycle time of 15 with a water side water pressure of 0.5 MPa and a hot water side water pressure of 0.5 MPa, with hot water side water stop-hot water side full open discharge-water side stop water-water side full open water-hot water side stop water as one cycle. 100,000 times per second.

耐圧性能を満たすには、(表2)の試料No.3と試料No.6の比較から、可動側バルブを構成する樹脂結合質炭素の表面粗さ(Ra)は0.7μm以下とすべきことが分かり、また固定側バルブを構成するアルミナの表面粗さ(Ra)は試料No.4から0.25μm以下とすべきことが分かる。また、樹脂結合質炭素の表面粗さ(Ra)は、試料No.9に示すように良すぎる場合(0.1μm以下)は、初期の操作力が高くなる傾向がある。   In order to satisfy the pressure resistance performance, the sample No. in (Table 2). 3 and sample no. 6 shows that the surface roughness (Ra) of the resin-bonded carbon constituting the movable side valve should be 0.7 μm or less, and the surface roughness (Ra) of the alumina constituting the stationary side valve is Sample No. It can be seen that it should be 4 to 0.25 μm or less. Further, the surface roughness (Ra) of the resin-bonded carbon is determined by the sample No. When it is too good as shown in 9 (0.1 μm or less), the initial operating force tends to be high.

炭素100%でシール性のある不浸透炭素の場合は、初期は問題ないが、耐久試験を持続してゆくと、操作時に引っ掛かるような違和感が発生した。理由は不明であるが、炭素100%の場合は、磨耗量が多く、相手材のアルミナ炭素が転移して、炭素同士の摺動となるため、炭素同士が貼り付いて、操作時の引っ掛かり感になっている可能性はあると考えられる。
アルミナ同士の摺動の場合は、よく知られているようにグリースが無いと短時間で固着した。
In the case of impervious carbon with 100% carbon and sealability, there was no problem at the beginning, but when the durability test was continued, a sense of incongruity that would get caught during operation occurred. The reason is unknown, but in the case of 100% carbon, the amount of wear is large, and the alumina carbon of the mating material is transferred and slides between the carbons. There is a possibility that
In the case of sliding between aluminas, as is well known, it fixed in a short time without any grease.

本発明に係る水栓バルブの一例としてのシングルレバータイプのバルブの断面図Sectional drawing of the single lever type valve as an example of the faucet valve concerning the present invention

符号の説明Explanation of symbols

1…弁箱
2…床板
3…流入口
4…パッキン
5…弁座
6…弁孔
7…弁体
8…レバーホルダ
9…レバー
10…ピン
DESCRIPTION OF SYMBOLS 1 ... Valve box 2 ... Floor board 3 ... Inlet 4 ... Packing 5 ... Valve seat 6 ... Valve hole 7 ... Valve body 8 ... Lever holder 9 ... Lever 10 ... Pin

Claims (3)

弁座と、この弁座に摺動自在に重ね合わされる弁体とを備えた水栓バルブであって、前記弁座及び弁体のうち、少なくとも弁体の材料を熱硬化性樹脂と炭素からなる樹脂結合質炭素としたことを特徴とする水栓バルブ。 A faucet valve comprising a valve seat and a valve body slidably superimposed on the valve seat, wherein at least the material of the valve body is made of a thermosetting resin and carbon. A faucet valve characterized by being made of resin-bonded carbon. 請求項1に記載の水栓バルブにおいて、前記弁体はプレス成形にて成形され、且つ熱硬化性樹脂の全体に対する割合が、10重量%以上50重量%以下であることを特徴とする水栓バルブ。 The faucet valve according to claim 1, wherein the valve body is formed by press molding, and a ratio to the whole thermosetting resin is 10 wt% or more and 50 wt% or less. valve. 請求項1または請求項2に記載の水栓バルブにおいて、前記弁座の材料をセラミックとし、前記弁体の表面粗さ(Ra)を0.1〜0.7μm、前記弁座の表面粗さ(Ra)を0.25μm以下としたことを特徴とする水栓バルブ。 The faucet valve according to claim 1 or 2, wherein a material of the valve seat is ceramic, a surface roughness (Ra) of the valve body is 0.1 to 0.7 µm, and a surface roughness of the valve seat. A water faucet valve wherein (Ra) is 0.25 μm or less.
JP2004183432A 2004-06-22 2004-06-22 Faucet valve Pending JP2006009818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183432A JP2006009818A (en) 2004-06-22 2004-06-22 Faucet valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183432A JP2006009818A (en) 2004-06-22 2004-06-22 Faucet valve

Publications (1)

Publication Number Publication Date
JP2006009818A true JP2006009818A (en) 2006-01-12

Family

ID=35777301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183432A Pending JP2006009818A (en) 2004-06-22 2004-06-22 Faucet valve

Country Status (1)

Country Link
JP (1) JP2006009818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271029A (en) * 2009-04-23 2010-12-02 Sumitomo Heavy Ind Ltd Cooling storage type refrigerating machine, method of manufacturing rotary valve for the cooling storage type refrigerating machine and method of manufacturing the cooling storage type refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271029A (en) * 2009-04-23 2010-12-02 Sumitomo Heavy Ind Ltd Cooling storage type refrigerating machine, method of manufacturing rotary valve for the cooling storage type refrigerating machine and method of manufacturing the cooling storage type refrigerating machine

Similar Documents

Publication Publication Date Title
Venkatesh et al. Scoping review of brake friction material for automotive
CN112752912B (en) Method for preparing a friction material, in particular for manufacturing a brake pad, and associated brake pad
JP2017537861A (en) Article containing carbon composite and method for producing the same
Jang et al. Brake friction materials
KR20170087492A (en) Friction material composition, and friction material and friction member using said friction material composition
JP2815199B2 (en) Wet friction material
CN100371617C (en) Friction material for transmission
JP2006009818A (en) Faucet valve
JPH05179232A (en) Sintered metallic friction material for brake
JP6596956B2 (en) Friction material composition, and friction material and friction member using the same
RU186442U1 (en) Ball valve
JP4589215B2 (en) Sintered friction material
JP2008025018A (en) Sintering friction material
JP4091761B2 (en) Disc valve
JP2007113642A (en) Friction couple and friction material
JP2007107662A (en) Sintered friction material
JP7401233B2 (en) Sintered friction material and method for manufacturing sintered friction material
JP2008189791A (en) Friction material
JP2007126738A (en) Sintered frictional material
US20060283672A1 (en) Friction device
WO2007080855A1 (en) Synchronizer ring, process for producing the same, and thermal spray powder
KR102448524B1 (en) Brake pad for ship oil pump using simultaneous sintering process and method of manufacuring thereof
JP5990934B2 (en) Disc valve
JP6026731B2 (en) Friction material
JP3025938B2 (en) Disc valve