JP2006007234A - Core for casting - Google Patents
Core for casting Download PDFInfo
- Publication number
- JP2006007234A JP2006007234A JP2004184169A JP2004184169A JP2006007234A JP 2006007234 A JP2006007234 A JP 2006007234A JP 2004184169 A JP2004184169 A JP 2004184169A JP 2004184169 A JP2004184169 A JP 2004184169A JP 2006007234 A JP2006007234 A JP 2006007234A
- Authority
- JP
- Japan
- Prior art keywords
- core
- casting
- alkaline earth
- molding
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Mold Materials And Core Materials (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
本発明は、崩壊性鋳造用コア(中子)に関し、特に耐圧性が要求されるダイカスト用に適用するのが効果的である。 The present invention relates to a collapsible casting core (core), and is particularly effective when applied to die castings that require pressure resistance.
中空部を有する製品を鋳造する場合は、前もってコアをキャビティ内に配設し、その周りに熔融金属を流し込み、金属の凝固後コアを取り除くことによって目的とする中空形状を有する鋳造品を得る技術は公知である。
一般に砂型鋳造の場合には、珪砂等の耐火材を基材として造型したコアを用いている。
重力金型鋳造の場合には、従来の砂型に使用していたコアを使用することが可能であるが、ダイカスト等の加圧金型鋳造になると、コアにはこの鋳造圧に耐えられるだけの強度が要求されるだけでなく、平滑な鋳肌も要求されることが多く、従来の砂型用のコアは使用が困難であった。
従って、一般にダイカスト等の加圧鋳造においては、金属製のコアを使用せざるを得ないのが実情である。
よって、金属製コアの取り除きが可能な、比較的単純な形状でアンダーカット部を形成しないコアだけがダイカストでは使用されている。
そのために、複雑な形状のコアを有する製品は、ダイカストでは従来製造できなかった。
このように、金属製コアは、強度的に十分であるが、鋳造後のコアの取り除きの点では大きな制約を受け、適用できる製品の種類は少ない。
そこで、強度的には優れ、鋳造後のコアの取り除きが容易な物質として、比較的融点の低い金属を使用して鋳造後にコアだけを加熱して溶かし出すことが考えられたが、適当な融点の金属がないこと及び溶かし出す際、鋳造金属と反応し、化合物を作ることによって鋳肌を損なう欠点があり実用できなかった。
特公昭37−16551号公報のように、メタ珪酸塩類を使用し、鋳造後コアを水に溶かして取り除く方法も考えられたが、コアの成型が難しく、鋳造後のコアの水に対する溶解性が悪いので、取り出しが困難なため実用的ではなかった。
また、メタ珪酸ナトリウム(Na2O・SiO2)と二珪酸ナトリウム(Na2O・2SiO2)の混合物を熔融成型した水溶性コアは、コアの溶出時にその水溶液が強アルカリ性を示し、Al、Zn等の鋳造金属を浸食する欠点があった。
アルミニウム合金の鋳込み温度である700℃を超える融点を持つ水溶性の中性塩、例えば塩化カリウム(KCl)、塩化ナトリウム(NaCl)及び塩化カルシウム(CaCl2)を熔融成型した水溶性コア、及びそれらに強度向上を目的として耐火物配合した方法が提案されたが、コアの溶出に長時間を要する等の問題があった。
さらに、無機塩類粉末を予備乾燥し、高圧力でプレス成型後焼結する方法も知られており、強度向上を目的としてMgO等を添加することも提案されているものの、コアの強度が十分でなく、製造コストの面からもダイカストには適用できないものであった。
このほか、特公平8−18106号公報には、炭酸カルシウム、アルミナ、シリカ、石膏、熱硬化樹脂のスラリーによって成型し、塗型処理等を行う方法が提案されているが、寸法精度が不十分であるうえ、工程が複雑であり、ジェット水流によって取り出すため、複雑な形状には適用できないものであった。
コアに関する技術ではないが、特開平3−23030号公報には水崩壊性鋳型及びその製造方法が開示されている。
しかし、上記の製法は、水崩壊成分(MgO、CaO)と耐火物を混合し、金型一軸成形、CIP成形した後焼成する方法あるいは、前記粉末の混合物に樹脂等を混合して流動性を持たせ射出成形あるいは鋳込み成形した後、仮焼、焼成して造型する方法によるものであり、成型後の焼成に伴う焼結によってのみ強度を発現しているものである。
従って、この方法では仮焼、及び焼結時の収縮(10〜20%程度)が避けられず、またその収縮に異方性があることが多く、高い寸法精度を要するコアの製造には適さないものである。
また、熱処理によりMg〇及び/又はCa〇を生成する物質を利用する際にあっては、熱分解させるために形状付与後(脱脂を必要としない場合でも)仮焼する必要があり、成型体の収縮がさらに大きくなる問題が内在する。
さらに上記の方法においては、崩壊はこの水崩壊成分(MgO、CaO)膨潤のみによって鋳型を崩壊させるものである。
即ち、この方法では、鋳造品の外周部(外側に開放されて、膨張すれば剥がれ落ちる)部分には適用可能であるが、中子のように方の外周を鋳造品が包み込む部分を有するものへの適用が困難である。特にアンダーカットを有する場合には、「水崩壊性成分」の膨潤により鋳型の除去が困難になるばかりでなく、鋳造品を破壊する場合がある問題も有する。
When casting a product having a hollow part, a technique for obtaining a cast product having a desired hollow shape by arranging a core in a cavity in advance, pouring molten metal around the core, and removing the core after solidification of the metal. Is known.
In general, in the case of sand mold casting, a core formed using a refractory material such as silica sand as a base material is used.
In the case of gravity mold casting, it is possible to use the core used in conventional sand molds, but when die casting or other pressurized mold casting is used, the core can only withstand this casting pressure. In addition to demanding strength, a smooth casting surface is often required, and conventional sand mold cores have been difficult to use.
Therefore, in general, in pressure casting such as die casting, it is the actual situation that a metal core must be used.
Therefore, only the core which can remove the metal core and has a relatively simple shape and which does not form an undercut portion is used in die casting.
For this reason, a product having a core having a complicated shape cannot be conventionally manufactured by die casting.
As described above, the metal core is sufficient in strength, but is greatly restricted in terms of removing the core after casting, and there are few types of products that can be applied.
Therefore, as a material that is excellent in strength and easy to remove the core after casting, it was considered to use a metal with a relatively low melting point to heat and melt only the core after casting. When there is no metal, and when it melts out, it reacts with the cast metal to form a compound, which has the disadvantage of damaging the casting surface, and is not practical.
As disclosed in Japanese Examined Patent Publication No. 37-16551, a method of using metasilicates and removing the core by dissolving it in water after casting was also considered. However, it is difficult to mold the core, and the water solubility of the core after casting is low. Since it was bad, it was not practical because it was difficult to take out.
In addition, a water-soluble core obtained by melt-molding a mixture of sodium metasilicate (Na 2 O · SiO 2 ) and sodium disilicate (Na 2 O · 2SiO 2 ) exhibits strong alkalinity when the core is eluted, Al, There was a drawback of eroding the cast metal such as Zn.
A water-soluble neutral salt having a melting point exceeding 700 ° C. which is a casting temperature of an aluminum alloy, such as potassium chloride (KCl), sodium chloride (NaCl) and calcium chloride (CaCl 2 ), and a water-soluble core In order to improve the strength, a method of blending a refractory was proposed, but there were problems such as requiring a long time for elution of the core.
Furthermore, a method of pre-drying inorganic salt powder and sintering after press molding at high pressure is also known, and although it has been proposed to add MgO or the like for the purpose of improving the strength, the strength of the core is sufficient. In view of manufacturing cost, it was not applicable to die casting.
In addition, Japanese Patent Publication No. 8-18106 proposes a method of molding with a slurry of calcium carbonate, alumina, silica, gypsum, thermosetting resin, and performing a coating treatment, but the dimensional accuracy is insufficient. In addition, since the process is complicated and it is taken out by a jet water stream, it cannot be applied to a complicated shape.
Although not related to the core, JP-A-3-23030 discloses a water-disintegrating mold and a method for producing the same.
However, the above-mentioned manufacturing method can be achieved by mixing water-disintegrating components (MgO, CaO) and a refractory, uniaxially forming a mold, performing CIP molding, and firing, or mixing a resin or the like into the powder mixture. This is due to a method of molding by injection molding or cast molding, followed by calcination and firing, and the strength is expressed only by sintering accompanying firing after molding.
Therefore, in this method, shrinkage during calcining and sintering (about 10 to 20%) is unavoidable, and the shrinkage is often anisotropic, which is suitable for manufacturing a core that requires high dimensional accuracy. There is nothing.
In addition, when using a substance that generates MgO and / or CaO by heat treatment, it must be calcined after imparting its shape (even if degreasing is not required) in order to cause thermal decomposition, There is an inherent problem that the shrinkage of the material becomes larger.
Further, in the above method, the collapse is caused to collapse the template only by the swelling of the water-disintegrating component (MgO, CaO).
That is, in this method, it can be applied to the outer peripheral part of the cast product (opened to the outside and peeled off when expanded), but has a part in which the cast product wraps around the outer periphery like a core. Application to is difficult. In particular, in the case of having an undercut, not only is it difficult to remove the mold due to swelling of the “water-disintegrating component”, but there is also a problem that the cast product may be destroyed.
本発明は、上述のような従来の課題を解決するためになされたもので、製造方法が簡易であり、強度及び寸法精度が十分であり、過度の膨潤を抑えつつ崩壊性に優れ鋳造後の製品から容易に除去できる鋳造用コアを提供しようとするものである。 The present invention has been made in order to solve the conventional problems as described above, has a simple manufacturing method, has sufficient strength and dimensional accuracy, is excellent in disintegration while suppressing excessive swelling, and is obtained after casting. It seeks to provide a casting core that can be easily removed from the product.
本発明に係る鋳造用コアは、1種または2種以上の電解質に、1種または2種以上のアルカリ土類(酸化ラジウムを除く)を成型後に0.5〜50体積%となる範囲で添加し混合した原材料を用いて熔融鋳造によって成型して得られることを特徴とする。
ここで、電解質とは、例えば硫酸ナトリウム、硝酸ナトリウム、塩化ナトリウム、硫酸カリウム等水溶性の無機塩をいい、本発明においてアルカリ土類とは、放射性アルカリ土金属のラジウムを除いた、酸化カルシウム(生石灰)、酸化ストロンチウム、酸化バリウム、酸化マグネシウム等を意味するが、本発明においては水と反応したときの膨張性が良く、排水処理が比較的容易である酸化マグネシウム、生石灰がよい。
また、消石灰や炭酸マグネシウム等高温で分解してアルカリ土類になるものを含む。
The casting core according to the present invention is added to one or more electrolytes within a range of 0.5 to 50% by volume after molding one or more alkaline earths (excluding radium oxide). It is obtained by molding by melt casting using raw materials mixed together.
Here, the electrolyte refers to a water-soluble inorganic salt such as sodium sulfate, sodium nitrate, sodium chloride, and potassium sulfate. In the present invention, the alkaline earth refers to calcium oxide (excluding radioactive alkaline earth metal radium). Mean lime), strontium oxide, barium oxide, magnesium oxide, etc. In the present invention, preferred is magnesium oxide or quick lime, which has good expansibility when reacted with water and is relatively easy to drain.
Moreover, the thing which decomposes | disassembles at high temperature, such as slaked lime and magnesium carbonate, and becomes alkaline earth is included.
1種または2種以上の電解質に、1種または2種以上のアルカリ土類(酸化ラジウムを除く)及びアルカリ土類以外の耐火物を、アルカリ土類と併せて成型後に50体積%を超えないよう添加し、熔融鋳造によって鋳造用コアを成型するのがよい。
ここで、アルカリ土類以外の耐火物とは、電解質中の分散粒子を得る趣旨で、アルミナ、シリカ、ムライト等の酸化物系の耐火物が例として挙げられる。
なお、アルカリ土類は、アルカリ土類金属の水酸化物、炭酸塩またはそれらの混合物を配合していてもよい。
本発明に係るコアの崩壊機序の模式図を図3に示す。
図3に示す例は、電解質にアルカリ土類を配合し、さらに分散粒子として酸化物系耐火物を配合したものである。
電解質に例えば、生石灰等のアルカリ土類を添加混合し、さらに耐火物を混合してコアを熔融鋳造すると、図3(イ)に示すような構造になる。
この場合に、耐火物が分散粒子としてコアの強度を発現するが、生石灰等のアルカリ土類も分散粒子として強度に寄与する。
なお、アルカリ土類源として、アルカリ土類金属の水酸化物や炭酸塩を配合すると、電解質を熔融し成型する際、熱分解により微細なアルカリ土類が生成し、これが電解質凝固時の結晶核として作用し、分散粒子が微細化、分散均一化し、電解質の凝固組織の微細化と併せて強度向上に寄与する。
従って、本発明において、アルカリ土類金属の水酸化物、炭酸塩またはそれらの混合物を配合するとは、水酸化物や炭酸塩等が混合(混ざっただけ)したもののみならず、化合して異なった結晶構造を持つもの、アルカリ土類(酸化物)を大気中に放置したときにできる酸化物と水酸化物の混合物、あるいは酸化物と炭酸塩の混合物、自然界に鉱物として産出する他の物質との混合物あるいは化合物で熱分解により得られるものが含まれる。
One or two or more kinds of alkaline earths (excluding radium oxide) and refractories other than alkaline earths are combined with alkaline earths and do not exceed 50% by volume in one or more electrolytes. It is preferable to mold the casting core by melt casting.
Here, the refractory other than alkaline earth is intended to obtain dispersed particles in the electrolyte, and examples thereof include oxide-based refractories such as alumina, silica, and mullite.
The alkaline earth may contain an alkaline earth metal hydroxide, carbonate, or a mixture thereof.
A schematic diagram of the core disintegration mechanism according to the present invention is shown in FIG.
In the example shown in FIG. 3, alkaline earth is blended in the electrolyte, and oxide refractory is blended as dispersed particles.
For example, when an alkaline earth such as quick lime is added to and mixed with the electrolyte, and a refractory is further mixed to melt and cast the core, the structure shown in FIG.
In this case, the refractory material exhibits the strength of the core as dispersed particles, but alkaline earth such as quicklime also contributes to the strength as dispersed particles.
In addition, when alkaline earth metal hydroxide or carbonate is blended as an alkaline earth source, when the electrolyte is melted and molded, fine alkaline earth is generated by thermal decomposition, which is the crystal nucleus during the solidification of the electrolyte. As a result, the dispersed particles are refined and dispersed uniformly, contributing to the improvement of the strength together with the refinement of the solidified structure of the electrolyte.
Accordingly, in the present invention, blending of an alkaline earth metal hydroxide, carbonate or a mixture thereof is not limited to a mixture (only mixed) of hydroxide, carbonate, or the like, but differs depending on the combination. With a crystalline structure, a mixture of oxides and hydroxides, or a mixture of oxides and carbonates when alkaline earths (oxides) are left in the atmosphere, and other substances that are naturally produced as minerals And a mixture or a compound obtained by pyrolysis.
上記のようなコアを周囲から包み込むように鋳込み中空形状製品を加圧鋳造し、製品をそのまま水中に浸漬すると、図3(ロ)に示すように、電解質が水に溶け出す。
アルカリ土類は、アルカリ土類金属の水酸化物となり、このとき膨潤して電解質に亀裂(クラック)を生じさせ、更に水を浸透させ崩壊を促進するように作用する。
これにより、図3(ハ)に示すように電解質(無機塩)の崩壊と溶解が飛躍的に速くなる。
When a cast hollow product is pressure-cast so as to wrap the core as described above and the product is immersed in water as it is, the electrolyte is dissolved in water as shown in FIG.
The alkaline earth becomes a hydroxide of an alkaline earth metal, and at this time, it swells to cause a crack in the electrolyte, and further acts to penetrate water and promote disintegration.
Thereby, as shown in FIG. 3 (C), the decay and dissolution of the electrolyte (inorganic salt) are dramatically accelerated.
アルカリ土類の配合量を成型後に0.5体積%以上から50体積%以下の範囲に設定したのは、配合量が成型後0.5体積%以下ではこの効果の発現が認められず、また50体積%以上では熔融した電解質の流動性が悪くコア成型の作業性が困難になるためである。
耐火物の配合量を、前記アルカリ土類と併せて成型後50体積%以下に限定したのは、その範囲をこえると熔融した電解質の流動性が悪く上記と同様に作業性が困難になるためである。
The reason why the alkaline earth compounding amount was set in the range of 0.5% by volume or more and 50% by volume or less after molding was that this effect was not observed when the compounding amount was 0.5% by volume or less after molding. This is because if it is 50% by volume or more, the fluidity of the molten electrolyte is poor and the workability of the core molding becomes difficult.
The reason why the amount of the refractory is limited to 50% by volume or less after molding in combination with the alkaline earth is that, if the range is exceeded, the fluidity of the molten electrolyte is poor and the workability is difficult as above. It is.
電解質の1種または2種以上に、アルカリ土類と、必要に応じてアルカリ土類以外の耐火物を配合し、熔解鋳造して得られたコアは強度が高く、アルミニウム合金、マグネシウム合金、黄銅合金の加圧鋳造に充分に耐えられる。
しかも、鋳造後のコアの取り除きは、製品を水に浸漬するだけで容易に達成される。
本発明の水溶性コアを使用すれば、従来コアの取り除きが困難なため製作不可能であった製品が普通の重力鋳造のみならず、ダイカストにおいても製作可能となる。
本発明においては、電解質をバインダーとし、熔融鋳造により形状を付与するものであり、冷却による収縮があるものの、耐火物及びアルカリ土類の配合により1%以下に低減可能であり、実用上寸法精度に問題がない。
また、アルカリ土類源として、アルカリ土類金属の水酸化物や炭酸塩を用いても、電解質の昇温溶解時に分解が起こり、成型体の収縮を未然に回避することが可能である。
本発明においてさらに特徴的なのは、電解質が「水崩壊性成分(MgO、CaO等)」と水との過剰な接触を防止する機能があり、このことによって水と接触面近傍のみの「水崩壊成分」が膨潤し、電解質に微細な亀裂(クラック)を生じさせ、さらに水を浸透させ崩壊を促進するよう作用するものである。このことは、中子へ水が過剰に浸透し、広範囲で「水崩壊成分」が膨潤し製品に圧縮応力を作用させ固着し、配合した意図に反して崩壊が困難になり、ひいては製品自体が破損に至ることを回避する相乗効果を持つものである。
このように、本発明においては、鋳造後のコアの取り除き作業は簡単であり、得られた鋳肌はきわめて平滑であり、技術的、経済的にきわめて大きな効果をもたらすものである。
The core obtained by blending alkaline earth and refractories other than alkaline earth as required with one or more electrolytes and melting and casting has high strength. Aluminum alloy, magnesium alloy, brass Can withstand pressure casting of alloys.
Moreover, removal of the core after casting can be easily achieved simply by immersing the product in water.
If the water-soluble core of the present invention is used, a product that could not be manufactured due to the difficulty of removing the core can be manufactured not only by ordinary gravity casting but also by die casting.
In the present invention, an electrolyte is used as a binder, and a shape is imparted by melt casting, and although there is shrinkage due to cooling, it can be reduced to 1% or less by blending refractory and alkaline earth, and practically dimensional accuracy There is no problem.
Further, even when an alkaline earth metal hydroxide or carbonate is used as the alkaline earth source, decomposition occurs at the time of dissolution of the electrolyte at elevated temperature, and shrinkage of the molded body can be avoided in advance.
Further characteristic in the present invention is that the electrolyte has a function of preventing excessive contact between the “water-disintegrating component (MgO, CaO, etc.)” and water. ”Swells, causes fine cracks (cracks) in the electrolyte, and further acts to promote penetration by water permeation. This means that water penetrates into the core excessively, and the “water-disintegrating component” swells over a wide area and acts to fix the product by applying a compressive stress. It has a synergistic effect that avoids breakage.
As described above, in the present invention, the removal operation of the core after casting is simple, the obtained casting surface is very smooth, and brings about a great effect technically and economically.
まず、コアの成型例を図1にて説明する。
コア(中子)はそれぞれ粉末状にした電解質、アルカリ土類、耐火物を所定の割合に配合、混合したものを加熱すると電解質が熔解しスラリー状になる。
これをコア成型用の型(1a、1b)に流し込み、冷却後に型1a、型1bに分割してコア2を取り出す。
図1に示したコアの例は実際にダイカスト鋳造に耐えられるだけの強度、及び鋳造後の崩壊性を調査確認するためにテストピース的に製作したものであり、コア形状としては、鋳造製品の中空形状にあわせて自由に成型可能である。
次に、本発明の実施例を説明するが、電解質、アルカリ土類、耐火物等の種類、配合割合等は鋳造合金種に応じて、熔融温度、強度等を加味して選択使用されるものであり、以下の実施例に限定されるものではない。
First, an example of core molding will be described with reference to FIG.
Each of the cores (cores) is mixed with powdered electrolyte, alkaline earth, and refractory at a predetermined ratio, and when the mixture is heated, the electrolyte melts into a slurry.
This is poured into a core molding die (1a, 1b), and after cooling, it is divided into a die 1a and a die 1b and the core 2 is taken out.
The example of the core shown in FIG. 1 is manufactured as a test piece in order to investigate and confirm the strength that can actually withstand die casting and the disintegration property after casting. It can be molded freely according to the hollow shape.
Next, examples of the present invention will be described. The type, blending ratio, etc. of electrolyte, alkaline earth, refractory, etc. are selected and used in consideration of the melting temperature, strength, etc. according to the type of casting alloy. However, the present invention is not limited to the following examples.
硝酸ナトリウム45体積%と、粉末状酸化マグネシウム10体積%と、シリカ45体積%を配合し、これを450℃に加熱後、コア成型金型に流し込み直径約25mm、長さ約100mmのコア2を成型した。
このコアを用いて、図2に示すようなダイカスト製品3を型締力500トンのダイカストマシンを使用してアルミニウム合金(ADC12)、熔湯温度650℃、鋳込み射出速度80m/s、鋳造圧力900kgf/cm2で鋳造した。
次にこの製品3を約20分間、水中に浸漬したところ、コア2は完全に溶出することができ、製品の中空部3aを容易に形成できた。
また鋳肌も良好なものであった。
なお、上記のように製作したコア(中子)の断面写真を図4に示す。
熔融した電解質(混合物)が冷却する際に、型と接触する外側から冷却し外形寸法が定まり、その後にコア内部へと凝固が進行するので内部に凝固収縮による孔が出来、これが水溶解を促進することも明らかになった。
45% by volume of sodium nitrate, 10% by volume of powdered magnesium oxide and 45% by volume of silica are blended, heated to 450 ° C., poured into a core molding die, and a core 2 having a diameter of about 25 mm and a length of about 100 mm is formed. Molded.
Using this core, a die-cast product 3 as shown in FIG. 2 is made of an aluminum alloy (ADC12) using a die-casting machine with a clamping force of 500 tons, a molten metal temperature of 650 ° C., a casting injection speed of 80 m / s, and a casting pressure of 900 kgf. Cast at / cm 2 .
Next, when the product 3 was immersed in water for about 20 minutes, the core 2 could be completely eluted, and the hollow portion 3a of the product could be easily formed.
The casting surface was also good.
A cross-sectional photograph of the core (core) produced as described above is shown in FIG.
When the molten electrolyte (mixture) cools, it cools from the outside in contact with the mold, and the outer dimensions are determined. Then, solidification progresses into the core, so that a hole due to solidification shrinkage is created inside, which promotes water dissolution. It became clear to do.
硫酸ナトリウム10体積%と、硫酸カリウム40体積%と、水酸化カルシウム5体積%と、アルミナ45体積%を配合し、これを900℃に加熱後、金型に流し込み直径約25mm、長さ約100mmのコアを成型した。
このコアを中子として、型締力500トンのダイカストマシンを使用してアルミニウム合金(ADC12)、熔湯温度650℃、射出速度80m/s、鋳造圧力900kgf/cm2で鋳造した。
次にこの製品を約20分間、水中に浸漬したところ、コアは完全に溶出することができた。
また鋳肌も良好なものであった。
10% by volume of sodium sulfate, 40% by volume of potassium sulfate, 5% by volume of calcium hydroxide, and 45% by volume of alumina are blended, heated to 900 ° C., poured into a mold, and have a diameter of about 25 mm and a length of about 100 mm. Molded core.
Using this core as a core, a die casting machine with a clamping force of 500 tons was used to cast an aluminum alloy (ADC12) at a molten metal temperature of 650 ° C., an injection speed of 80 m / s, and a casting pressure of 900 kgf / cm 2 .
The product was then immersed in water for about 20 minutes and the core could be completely eluted.
The casting surface was also good.
硝酸ナトリウム90体積%と、亜硝酸ナトリウム5体積%と、炭酸カルシウム5体積%を配合し、加熱熔解してコア型に流し込みコアを得た。
このようにして得られたコアを生型鋳造に供することができた。
90% by volume of sodium nitrate, 5% by volume of sodium nitrite, and 5% by volume of calcium carbonate were blended, melted by heating, and poured into a core mold to obtain a core.
The core thus obtained could be used for green casting.
1a、1b コア成型金型
2 コア
3 ダイカスト製品
1a, 1b Core mold 2 Core 3 Die-cast product
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184169A JP4403233B2 (en) | 2004-06-22 | 2004-06-22 | Casting core manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184169A JP4403233B2 (en) | 2004-06-22 | 2004-06-22 | Casting core manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006007234A true JP2006007234A (en) | 2006-01-12 |
JP4403233B2 JP4403233B2 (en) | 2010-01-27 |
Family
ID=35775040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004184169A Expired - Fee Related JP4403233B2 (en) | 2004-06-22 | 2004-06-22 | Casting core manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4403233B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009195962A (en) * | 2008-02-23 | 2009-09-03 | Toyama Prefecture | Molding core |
DE102010012907A1 (en) | 2009-03-27 | 2010-12-09 | Suzuki Motor Corp., Hamamatsu-Shi | Decayable form and process for its preparation |
CN103889615A (en) * | 2011-10-19 | 2014-06-25 | 铃木株式会社 | Casting core, method for producing same, and method for casting using said core |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5510074B2 (en) * | 2010-05-28 | 2014-06-04 | スズキ株式会社 | Method and apparatus for removing water-soluble core |
-
2004
- 2004-06-22 JP JP2004184169A patent/JP4403233B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009195962A (en) * | 2008-02-23 | 2009-09-03 | Toyama Prefecture | Molding core |
DE102010012907A1 (en) | 2009-03-27 | 2010-12-09 | Suzuki Motor Corp., Hamamatsu-Shi | Decayable form and process for its preparation |
US8002017B2 (en) | 2009-03-27 | 2011-08-23 | Suzuki Motor Corporation | Method of manufacturing a collapsible mold |
DE102010012907B4 (en) * | 2009-03-27 | 2016-03-31 | Suzuki Motor Corp. | Decayable form and process for its preparation |
CN103889615A (en) * | 2011-10-19 | 2014-06-25 | 铃木株式会社 | Casting core, method for producing same, and method for casting using said core |
JPWO2013058152A1 (en) * | 2011-10-19 | 2015-04-02 | スズキ株式会社 | Casting core, manufacturing method thereof and casting method using the core |
US9022094B2 (en) | 2011-10-19 | 2015-05-05 | Suzuki Motor Corporation | Casting core, method for producing same, and method for casting using said core |
Also Published As
Publication number | Publication date |
---|---|
JP4403233B2 (en) | 2010-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2551335C2 (en) | Salt-based rod and method of its production | |
WO2001002112A1 (en) | Disintegrative core for high pressure casting, method for manufacturing the same, and method for extracting the same | |
US11179767B2 (en) | Compositions and methods for foundry cores in high pressure die casting | |
JP4685933B2 (en) | Manufacturing method of salt core for casting and salt core for casting | |
US20230036173A1 (en) | Casting elements and methods of making the same using low temperature solidification | |
US20130068129A1 (en) | Infiltrate-stabilized salt cores | |
US3356129A (en) | Process of casting metals by use of water-soluble salt cores | |
JP4403233B2 (en) | Casting core manufacturing method | |
BR0215879B1 (en) | Process for blow molding and cold box curing of an exothermic glove for casting molds and glove | |
JPS62144846A (en) | Casting mold for high melting point metal and its production | |
US3501320A (en) | Die casting core | |
JP2000119070A (en) | Castable refractory and refractory brick using the same | |
GB2074065A (en) | Water-soluble casting core | |
KR100400132B1 (en) | A method for manufacturing a dissolution type core for a casting, a core and a method for extracting the core | |
JP4688618B2 (en) | Anti-sulfur coating agent | |
JPS62144847A (en) | Quickly collapsible casting mold | |
JP2008036702A (en) | Casting mold for metal casting | |
JP2645600B2 (en) | Manufacturing method of magnesium alloy casting | |
US7182121B1 (en) | Investment casting method and materials | |
WO2023237882A1 (en) | Inorganic water-soluble binder system | |
RU2148464C1 (en) | Mixture for casting form and rod making | |
JPH09192777A (en) | Gypsum mold | |
JP2011031276A (en) | Core for casting | |
JP5176015B2 (en) | Molding core | |
SU506464A1 (en) | Composition for hardening shell ceramic molds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090929 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |