JP2006006588A - Gear for toy with cushioning function and gap adjusting mechanism in axial direction thereof - Google Patents

Gear for toy with cushioning function and gap adjusting mechanism in axial direction thereof Download PDF

Info

Publication number
JP2006006588A
JP2006006588A JP2004187366A JP2004187366A JP2006006588A JP 2006006588 A JP2006006588 A JP 2006006588A JP 2004187366 A JP2004187366 A JP 2004187366A JP 2004187366 A JP2004187366 A JP 2004187366A JP 2006006588 A JP2006006588 A JP 2006006588A
Authority
JP
Japan
Prior art keywords
gear
toy
piston
incorporated
drive mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004187366A
Other languages
Japanese (ja)
Inventor
Hideyuki Ohashi
秀幸 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004187366A priority Critical patent/JP2006006588A/en
Publication of JP2006006588A publication Critical patent/JP2006006588A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Toys (AREA)
  • Gears, Cams (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear for toys, capable of extending the life of a driving mechanism of the toy including a driven side gear engaged with the gear even if incorporated in the driving mechanism of a toy such as an air-gun and operated at a high rotation speed, together with a gap adjusting mechanism in the axial direction thereof. <P>SOLUTION: The gear for toys has one gear with a toothless part and another gear, which are coaxially superimposed and connected with a cushioning mechanism interposed in the axial direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、駆動源からの動力を被駆動側に間欠的に伝達する特殊な歯車を、エアガンのような玩具の駆動機構に組み込んで高回転速度で回転させた場合でも、玩具の駆動機構の寿命を延ばすことができる玩具用歯車およびその軸方向隙間調整機構に関する。   Even if the special gear that intermittently transmits the power from the driving source to the driven side is incorporated in the toy driving mechanism such as an air gun and rotated at a high rotational speed, the toy driving mechanism The present invention relates to a toy gear that can extend its life and an axial clearance adjusting mechanism thereof.

玩具の一つであるエアガンとしては、ピストンをシリンダ内で往復移動させてその都度弾丸を発射するものが知られている。例えばモータなどの駆動源を用い、ばね力に抗してシリンダ内でピストンを後退させた後、ばねの反発力により一瞬にしてシリンダ内で前進させることにより、シリンダ内で作り出した圧縮空気の作用により弾丸を発射するエアガンが公知である(特許文献1)。   As an air gun which is one of toys, one which reciprocates a piston in a cylinder and fires a bullet each time is known. For example, after using a drive source such as a motor to move the piston back in the cylinder against the spring force, it is moved forward in the cylinder instantaneously by the repulsive force of the spring. An air gun that fires bullets is known (Patent Document 1).

この特許文献1に記載のエアガンには、図8、図9に示すように、モータ110とピストン103間に、駆動源であるモータ110の回転をピストン103の下部に設けたラック歯105に間欠的に伝達するため、特殊な玩具用歯車がピストン駆動用歯車108として組み込まれている。このような特殊な玩具用歯車は、図11に示すように、2つの歯車108A、108Bが同軸に重ね合わされ、駆動源側からの動力を被駆動側に間欠的に伝達する歯車という意味で以下、間欠歯車ともいう。   In the air gun described in Patent Document 1, as shown in FIGS. 8 and 9, the rotation of the motor 110 as a driving source is intermittently applied to the rack teeth 105 provided at the lower portion of the piston 103 between the motor 110 and the piston 103. For this purpose, a special toy gear is incorporated as a piston drive gear 108. As shown in FIG. 11, such a special toy gear is defined as a gear in which two gears 108A and 108B are coaxially overlapped to intermittently transmit power from the drive source side to the driven side. Also called intermittent gear.

図8、図9中、中央部に示すピストン駆動用歯車108が特殊な玩具用歯車であり、一方の歯車108Aに無歯部107が形成されている。従来の特殊な玩具用歯車は、無歯部107が形成されている一方の歯車108Aと他方の歯車108Bが同軸に重ね合わされ、軸方向に介在させた連結ピン108Cによって一体とされている。   8 and 9, the piston driving gear 108 shown at the center is a special toy gear, and a toothless portion 107 is formed on one gear 108A. In the conventional special toy gear, one gear 108A on which the toothless portion 107 is formed and the other gear 108B are coaxially overlapped and integrated by a connecting pin 108C interposed in the axial direction.

ピストン駆動用歯車108には、他方の歯車108Bと、モータ110の動力を入力する減速歯車109が噛合され、無歯部107を有する一方の歯車108Aと、ピストン103下部のラック105とが間欠的に噛み合う。この特殊な玩具用歯車をエアガンの駆動機構に組み込んだ場合の動作は以下のようである。   The piston driving gear 108 meshes with the other gear 108B and the reduction gear 109 that inputs the power of the motor 110, and the one gear 108A having the toothless portion 107 and the rack 105 under the piston 103 are intermittently connected. Engage with. The operation when this special toy gear is incorporated in the air gun drive mechanism is as follows.

図8に示すモータ110を回転させると、回転が減速歯車109などを介してピストン駆動用歯車108に伝達され、ピストン駆動用歯車108のギヤ歯106とラック歯105とが噛み合い、圧縮ばね104のばね力に抗してピストン103が後退する。更に回転すると図9に示すように、ピストン駆動用歯車108の無歯部107がピストン103の下部に到達し、その直後に噛み合いがなくなって、圧縮ばね104の反発力によって一瞬にしてピストン103が前進する。この過程を繰り返す毎に、吸引したエアが圧縮されてシリンダ102の噴出口101から噴出し、その直前で停止している弾丸121が発射される。   When the motor 110 shown in FIG. 8 is rotated, the rotation is transmitted to the piston driving gear 108 via the reduction gear 109 and the like, and the gear teeth 106 and the rack teeth 105 of the piston driving gear 108 are engaged with each other. The piston 103 moves backward against the spring force. When further rotated, as shown in FIG. 9, the toothless portion 107 of the piston driving gear 108 reaches the lower portion of the piston 103, and immediately after that, the meshing is lost and the piston 103 is instantaneously moved by the repulsive force of the compression spring 104. Advance. Each time this process is repeated, the sucked air is compressed and ejected from the ejection port 101 of the cylinder 102, and the bullet 121 stopped just before that is fired.

この圧縮ばね104は、ピストン103を押し出す強いばね力を有し、エアガン本体120に固定されたスピンドル111で受け止められている。一方ピストン103は、前部にO−リング112が装着されてシリンダ内の気密性を保持している。   The compression spring 104 has a strong spring force to push out the piston 103 and is received by a spindle 111 fixed to the air gun body 120. On the other hand, the piston 103 is provided with an O-ring 112 at the front thereof to maintain airtightness in the cylinder.

ここで特許文献1に記載されたピストン103の駆動機構では、図10に詳細を示すように、ピストン下部に設けたラックの第1歯105Aが他のラック歯より高い歯丈とされ確実にピストン駆動用歯車108の第1歯106Aを捕らえる構造としている。   Here, in the drive mechanism of the piston 103 described in Patent Document 1, as shown in detail in FIG. 10, the first teeth 105 </ b> A of the rack provided at the lower portion of the piston have a higher tooth height than the other rack teeth, and the piston reliably The first gear 106A of the driving gear 108 is captured.

また従来の特殊な玩具用歯車は、図11に示したように、2つの歯車108A、108Bが同軸に重ね合わされ、軸方向に介在させた連結ピン108Cで一体とされてピストン103の駆動機構に組み込まれている。
実公平7−22635号公報
In the conventional special toy gear, as shown in FIG. 11, two gears 108 </ b> A and 108 </ b> B are coaxially overlapped and integrated with a connecting pin 108 </ b> C interposed in the axial direction as a driving mechanism for the piston 103. It has been incorporated.
Japanese Utility Model Publication No. 7-22635

しかし従来のピストン103の駆動機構においては、単位時間当たりの弾丸発射数を多くするために、特殊な玩具用歯車であるピストン駆動用歯車108を高回転速度で作動させた場合、玩具の駆動機構の寿命が極端に短くなるという問題がある。   However, in the conventional driving mechanism of the piston 103, when the piston driving gear 108, which is a special toy gear, is operated at a high rotational speed in order to increase the number of bullets fired per unit time, the toy driving mechanism There is a problem that the life of the battery becomes extremely short.

図10によりこの問題点について説明する。図10において(a)〜(c)は、ピストン駆動用歯車108の第1歯106Aがピストン下部に設けたラックの第1歯105Aを捕らえる噛み合わせ前後の状態を示す模式図である。   This problem will be described with reference to FIG. 10A to 10C are schematic views showing states before and after meshing in which the first teeth 106A of the piston driving gear 108 catch the first teeth 105A of the rack provided at the lower portion of the piston.

図10(a)は、ピストン103が圧縮ばね104のばね力によりピストン待機位置に待機している状態を示し、図10(b)は、ピストン駆動用歯車108が回転してきてピストン下部に形成したラックの第1歯105Aと衝突したときの状態を示す。また図10(c)は、モータ110からの回転力と、モータ110以降からピストン駆動用歯車108までの各部の慣性モーメントに加えて、ピストン103の駆動機構には力の逃げ場がないため、ピストン103が後退を開始した状態を示す。この際に、多大なひずみがピストン下部に形成したラックの第1歯105Aとピストン駆動用歯車108の第1歯106Aに溜め込まれる。   FIG. 10A shows a state in which the piston 103 is waiting at the piston standby position by the spring force of the compression spring 104, and FIG. 10B shows that the piston driving gear 108 has been rotated and formed at the lower part of the piston. The state when it collides with the 1st tooth | gear 105A of a rack is shown. FIG. 10C shows the rotational force from the motor 110 and the moment of inertia of each part from the motor 110 to the piston driving gear 108, and the piston 103 drive mechanism has no force escape field. 103 shows a state in which retreating has started. At this time, a great amount of strain is accumulated in the first teeth 105A of the rack formed in the lower portion of the piston and the first teeth 106A of the piston driving gear 108.

図10(d)には、多大なひずみの蓄積によりピストン下部に形成したラックの第1歯105Aに損傷が生じ、玩具の駆動機構が早期にその機能を果たせなくなった状態を示す。このような損傷が生じない場合でも、多大なひずみが繰り返してピストン下部に形成したラックの第1歯105Aに加わるために、発熱により軟化して玩具の駆動機構が早期にその機能を果たせなくなることがある。   FIG. 10D shows a state in which the first tooth 105A of the rack formed at the lower portion of the piston is damaged due to the accumulation of a large amount of strain, and the toy drive mechanism cannot perform its function at an early stage. Even if such damage does not occur, since a large amount of strain is repeatedly applied to the first teeth 105A of the rack formed at the lower part of the piston, the toy drive mechanism cannot perform its function early due to softening due to heat generation. There is.

このような問題が玩具であるエアガンにおいて生じる原因は、ピストン駆動用歯車108が回転してきてピストン駆動用歯車108の第1歯106Aがピストン下部に形成したラックの第1歯105Aを捕らえる噛合開始時に、モータ110からの回転力と、モータ110以降からピストン駆動用歯車108までの各部の慣性モーメントに加えて、ピストン103の駆動機構に力の逃げ場がないため、大きな衝撃が噛み合う歯同士に繰り返しかかることの影響が大きいことを知見した。なお玩具であるエアガンにおいては、普通、ピストン下部に設けたラックの材質は樹脂製とされ、ピストン駆動用歯車108の材質は金属製とされている。   The reason why such a problem occurs in the air gun as a toy is that when the piston driving gear 108 rotates and the first teeth 106A of the piston driving gear 108 start to engage with the first teeth 105A of the rack formed under the piston. In addition to the rotational force from the motor 110 and the moment of inertia of each part from the motor 110 onward to the piston drive gear 108, the drive mechanism of the piston 103 does not have a force escape place, so a large impact is repeatedly applied to the teeth that mesh with each other. It was found that the influence of this was great. In an air gun as a toy, the material of the rack provided under the piston is usually made of resin, and the material of the piston driving gear 108 is made of metal.

すなわち単位時間当たりの弾丸発射数を多くするために、例えば毎分900発の弾丸発射数のところ、競技用のサバイバルゲームのように毎分1500発の弾丸発射数とし、かつ1発の弾丸発射エネルギーを1J(ジュール)としてピストン駆動用歯車108を高回転速度で作動させた場合には、歯車自体の慣性モーメントを含む、玩具の駆動機構の各部品による慣性モーメントが急激に増大すると共に、モータ110以降からピストン駆動用歯車108までの玩具の駆動機構には力の逃げ場がないので、大きな衝撃が最初に噛み合う歯同士に繰り返しかかることになる。その結果、玩具の駆動機構の寿命が極端に短くなるという問題があるから、弾丸発射数を制限するのが一般的である。   In other words, in order to increase the number of bullets fired per unit time, for example, the number of bullets fired at 900 shots per minute is set to 1500 bullets per minute as in a survival game for competitions, and one bullet is fired. When the piston driving gear 108 is operated at a high rotational speed with an energy of 1 J (joule), the moment of inertia of each component of the toy drive mechanism, including the moment of inertia of the gear itself, increases rapidly, and the motor Since the toy drive mechanism from 110 onwards to the piston drive gear 108 has no place for force to escape, a large impact is repeatedly applied to the teeth that are initially engaged. As a result, there is a problem that the life of the drive mechanism of the toy becomes extremely short, so that the number of bullets is generally limited.

また駆動機構にピストン駆動用歯車108を組み込んだエアガンにおいては、競技用のサバイバルゲームのように毎分1500発の弾丸発射数とし、1発の弾丸発射エネルギーを1J(ジュール)に上げて使用した場合、ピストン駆動用歯車108と噛み合う歯車の材質を高強度でかつ高靱性としたものに代えたとしても、大きな衝撃が最初に噛み合う歯同士に繰り返しかかることになるから、被駆動側歯車が機能を果たせなくなるまでの弾丸発射数が不十分となる。   In addition, the air gun incorporating the piston drive gear 108 in the drive mechanism is used with a bullet firing number of 1500 shots per minute, as in a survival game for competitions, with one bullet firing energy increased to 1 J (Joule). In this case, even if the material of the gear meshing with the piston driving gear 108 is changed to a material having high strength and toughness, a large impact is repeatedly applied to the teeth that mesh with each other first, so that the driven side gear functions. The number of bullets fired until it can no longer be fulfilled is insufficient.

またモータ110以降からピストン駆動用歯車108までの間のピストン103の駆動機構には力の逃げ場がないため、駆動源からの動力を被駆動側に間欠的に伝達する特殊な歯車を、玩具の駆動機構に組み込んで高回転速度で回転させた場合には、玩具の駆動機構を構成する各部品に無理な力が加わり、部品の寿命が短くなる恐れもある。   In addition, since the drive mechanism of the piston 103 from the motor 110 to the piston drive gear 108 does not have a force escape place, a special gear that intermittently transmits the power from the drive source to the driven side is used. When it is incorporated into a drive mechanism and rotated at a high rotational speed, an excessive force is applied to each part constituting the toy drive mechanism, which may shorten the life of the part.

本発明は、駆動源からの動力を被駆動側に間欠的に伝達する特殊な歯車を、エアガンのような玩具の駆動機構に組み込んで高回転速度で回転させた場合でも、その歯車と噛み合う被駆動側歯車を含む、玩具の駆動機構の寿命を延ばすことができる玩具用歯車およびその軸方向隙間調整機構と共に提供することを目的とする。   Even when a special gear that intermittently transmits power from a driving source to a driven side is incorporated in a toy driving mechanism such as an air gun and rotated at a high rotation speed, the gear is engaged with the gear. An object of the present invention is to provide a toy gear including a driving side gear that can extend the life of a toy drive mechanism and an axial clearance adjustment mechanism thereof.

本発明は、玩具の駆動機構に組み込んで、駆動源からの動力を被駆動側に間欠的に伝達するために使用する玩具用歯車であって、無歯部を有する一方の歯車と他方の歯車が同軸に重ね合わされ、軸方向に介在させた衝撃緩和機構により連結されてなることを特徴とする玩具用歯車である。この間欠歯車は、衝撃緩和機能付き間欠歯車ともいう。   The present invention relates to a toy gear incorporated in a toy drive mechanism and used to intermittently transmit power from a drive source to a driven side, and has one gear and the other gear having a toothless portion. Are toy gears that are overlapped coaxially and connected by an impact relaxation mechanism interposed in the axial direction. This intermittent gear is also referred to as an intermittent gear with an impact relaxation function.

また本発明は、玩具の駆動機構に組み込んで、駆動用歯車として使用する玩具用歯車であって、一方の歯車と他方の歯車が同軸に重ね合わされ、軸方向に介在させた衝撃緩和機構により連結されてなることを特徴とする玩具用歯車である。   The present invention is also a toy gear incorporated in a toy drive mechanism and used as a drive gear, wherein one gear and the other gear are coaxially overlapped and connected by an impact relaxation mechanism interposed in the axial direction. It is a toy gear characterized by being made.

この歯車は、単に、衝撃緩和機能付き歯車ともいう。   This gear is also simply referred to as a gear with an impact relaxation function.

また本発明は、前記衝撃緩和機能付き間欠歯車または前記衝撃緩和機能付き歯車を玩具の駆動機構に駆動用歯車として組み込むに当たり、その軸を遊動状態で挿入し、かつその軸に圧縮ばねを装着した状態で玩具本体に設けた軸受け間に組み込んでなることを特徴とする玩具用歯車の軸方向隙間調整機構である。   Further, in the present invention, when the intermittent gear with an impact relaxation function or the gear with the impact relaxation function is incorporated as a drive gear in a toy drive mechanism, the shaft is inserted in a floating state, and a compression spring is attached to the shaft. It is an axial clearance adjustment mechanism for a toy gear, which is assembled between bearings provided on the toy body in a state.

また本発明は、前記衝撃緩和機能付き間欠歯車をピストン駆動用歯車として組み込むに当たり、その軸を遊動状態で挿入し、玩具本体に設けた軸受け間に組み込んだことを特徴とするエアガン用ピストンの駆動機構である。   According to the present invention, when the intermittent gear with an impact mitigating function is incorporated as a piston driving gear, the shaft is inserted in a floating state and incorporated between bearings provided on the toy body, and the piston of the air gun is driven. Mechanism.

また本発明は、前記衝撃緩和機能付き歯車を、その軸を遊動状態で挿入し、動力源からピストン駆動用歯車に至る経路途中の玩具本体に設けた軸受け間に組み込んだことを特徴とするエアガン用ピストンの駆動機構である。   Further, the present invention is an air gun characterized in that the gear with the impact relaxation function is incorporated between bearings provided in a toy body in the middle of a path from a power source to a piston driving gear with its shaft inserted in a floating state. It is a drive mechanism of a piston.

また前記衝撃緩和機能付き間欠歯車をピストン駆動用歯車として組み込むに当たり、その軸を遊動状態で挿入し、玩具本体に設けた軸受け間に組み込むと共に、前記衝撃緩和機能付き歯車を、その軸を遊動状態で挿入し、動力源からピストン駆動用歯車に至る経路途中の玩具本体に設けた軸受け間に組み込んだことを特徴とするエアガン用ピストンの駆動機構である。   In addition, when the intermittent gear with an impact relaxation function is incorporated as a piston driving gear, its shaft is inserted in a floating state, and is incorporated between bearings provided on a toy body, and the gear with an impact relaxation function is in an idle state. The air gun piston drive mechanism is inserted between the bearings provided in the toy body in the middle of the path from the power source to the piston drive gear.

すなわち、本発明にかかる衝撃緩和機能付き間欠歯車と衝撃緩和機能付き歯車は、どちらも玩具の駆動機構に組み込んで使用する玩具用歯車である。   That is, the intermittent gear with an impact relaxation function and the gear with an impact relaxation function according to the present invention are both toy gears that are used by being incorporated in a toy drive mechanism.

本発明にかかる玩具用歯車によれば、エアガンのような玩具の駆動機構に組み込んで高回転速度で作動させた場合でも、その歯車と噛み合う被駆動側歯車を含む、玩具の駆動機構の寿命を延ばすことができる。   According to the toy gear according to the present invention, even when the toy drive mechanism such as an air gun is incorporated and operated at a high rotational speed, the life of the toy drive mechanism including the driven side gear meshing with the gear is improved. Can be extended.

また本発明にかかる玩具用歯車の軸方向隙間調整機構によれば、エアガンのような玩具の駆動機構に簡単に組み込めると共に安定した玩具の駆動機構とすることができる。   According to the axial clearance adjustment mechanism for a toy gear according to the present invention, it can be easily incorporated into a toy drive mechanism such as an air gun and can be a stable toy drive mechanism.

先ず第1実施の形態にかかる玩具用歯車について図1、図2により説明する。図1は、第1実施の形態にかかる衝撃緩和機能付き間欠歯車1を示す概略平面図であり、図2は、図1のX−X断面図である。   First, the toy gear according to the first embodiment will be described with reference to FIGS. FIG. 1 is a schematic plan view showing an intermittent gear 1 with an impact relaxation function according to the first embodiment, and FIG. 2 is a sectional view taken along line XX of FIG.

この図1、図2に示した玩具用歯車は、駆動源からの動力を被駆動側に間欠的に伝達するための歯車、すなわち間欠歯車であって、2つの歯車2、3が同軸に重ね合わされ、軸方向に介在させた衝撃緩和機構により連結されてなる衝撃緩和機能付き間欠歯車1である。なお軸方向に介在させた衝撃緩和機構の構成は後述する。   The toy gear shown in FIGS. 1 and 2 is a gear for intermittently transmitting power from a driving source to a driven side, that is, an intermittent gear, and the two gears 2 and 3 are coaxially overlapped. An intermittent gear 1 with an impact relaxation function, which is connected by an impact relaxation mechanism interposed in the axial direction. The structure of the impact relaxation mechanism interposed in the axial direction will be described later.

ここで衝撃緩和機能付き間欠歯車1の軸は、玩具の駆動機構に組み込む際に、その軸孔に対して遊動状態で挿入される。図1、図2中、9は、軸孔に挿入する衝撃緩和機能付き間欠歯車1の軸芯9を示す。   Here, the shaft of the intermittent gear 1 with an impact relaxation function is inserted in a floating state with respect to the shaft hole when the shaft is incorporated into a toy drive mechanism. 1 and 2, reference numeral 9 denotes the shaft core 9 of the intermittent gear 1 with an impact relaxation function that is inserted into the shaft hole.

第1実施の形態にかかる衝撃緩和機能付き間欠歯車1においては、一方の歯車2に無歯部7が形成され、かつまた所定数のギヤ歯6が形成されている。他方の歯車3には、無歯部はなく、駆動源側歯車の歯と噛み合う所定数のギヤ歯8が形成されている。例えば一方の歯車2には、全部で歯数30枚のところ、そのうち14枚を削り落として無歯部7とし、残った16枚のギヤ歯6が駆動源側歯車の歯と噛み合う。すなわち一方の歯車2には、衝撃緩和機能付き間欠歯車1を玩具の駆動機構に組み込んだ際に被駆動側歯車と噛み合う所定数のギヤ歯6が形成されている。   In the intermittent gear 1 with an impact relaxation function according to the first embodiment, a toothless portion 7 is formed on one gear 2 and a predetermined number of gear teeth 6 are formed. The other gear 3 has no toothless portion, and a predetermined number of gear teeth 8 that mesh with the teeth of the drive source side gear are formed. For example, one gear 2 has a total of 30 teeth, of which 14 are scraped off to form a toothless portion 7 and the remaining 16 gear teeth 6 mesh with the teeth of the drive source side gear. That is, one gear 2 is formed with a predetermined number of gear teeth 6 that mesh with the driven gear when the intermittent gear 1 with an impact mitigating function is incorporated into the toy drive mechanism.

したがって衝撃緩和機能付き間欠歯車1に遊動状態で軸を挿入し、玩具本体に設けた軸受け間に組み込んだ使用状態では、所定数のギヤ歯6が形成されている範囲において被駆動側歯車へ駆動源からの動力を伝達する。一方衝撃緩和機能付き間欠歯車1は、被駆動側歯車に対しては無歯部7の範囲だけ被駆動側歯車の歯と噛み合わず、いわゆる空転状態となって回転する。   Accordingly, when the shaft is inserted in the idle state in the intermittent gear 1 with an impact relaxation function and is incorporated between the bearings provided on the toy body, the driven gear is driven within a range in which a predetermined number of gear teeth 6 are formed. Transmits power from the source. On the other hand, the intermittent gear 1 with an impact relaxation function does not mesh with the teeth of the driven side gear within the range of the toothless portion 7 with respect to the driven side gear, and rotates in a so-called idling state.

要するに第1実施の形態にかかる衝撃緩和機能付き間欠歯車1は、玩具の駆動機構に組み込んで、駆動源からの動力を被駆動側に間欠的に伝達するために使用する玩具用歯車であって、無歯部を有する一方の歯車と他方の歯車が同軸に重ね合わされ、軸方向に介在させた衝撃緩和機構により連結されてなる玩具用歯車である。   In short, the intermittent gear 1 with an impact relaxation function according to the first embodiment is a toy gear incorporated in a toy drive mechanism and used to intermittently transmit power from a drive source to a driven side. The gear for toy is formed by superimposing one gear having a toothless portion and the other gear on the same axis and connected by an impact relaxation mechanism interposed in the axial direction.

この第1実施の形態にかかる衝撃緩和機能付き間欠歯車1は、軸方向に介在させた衝撃緩和機構により連結されている構造を有するから、玩具の駆動機構にその軸を遊動状態で挿入し、玩具本体に設けた軸受け間に組み込んだ使用状態で、そのギヤ歯6と被駆動側歯車の歯との噛み合い開始時での衝撃を緩和する衝撃緩和機能がある。   Since the intermittent gear 1 with an impact relaxation function according to the first embodiment has a structure connected by an impact relaxation mechanism interposed in the axial direction, the shaft is inserted into the toy drive mechanism in a floating state, There is an impact mitigating function for mitigating an impact at the start of meshing between the gear teeth 6 and the driven gear teeth in a use state incorporated between bearings provided on the toy body.

第1実施の形態にかかる衝撃緩和機能付き間欠歯車1に介在させた衝撃緩和機構について詳しく説明する。   The impact mitigating mechanism interposed in the intermittent gear 1 with an impact mitigating function according to the first embodiment will be described in detail.

図1、図2に示した衝撃緩和機構は、歯車2に軸方向に貫通させて形成した断面円形の貫通孔と、該貫通孔に挿入され、歯車3から軸方向に延在させてなる円筒状隙間規制部材5B付き押圧部材5と、衝撃緩衝材4からなる。また衝撃緩衝材4はリング状とされ、円筒状隙間規制部材5Bを外装した押圧部材5と、断面円形の貫通孔との間に圧縮状態で挿入されている。   The impact mitigation mechanism shown in FIG. 1 and FIG. 2 is a through hole having a circular cross section formed through the gear 2 in the axial direction, and a cylinder inserted into the through hole and extending from the gear 3 in the axial direction. It consists of a pressing member 5 with a clearance-like clearance regulating member 5B and an impact buffering material 4. The shock absorbing material 4 has a ring shape, and is inserted in a compressed state between the pressing member 5 that covers the cylindrical gap regulating member 5B and the through hole having a circular cross section.

この場合、無歯部7を有する歯車2には、周方向3箇所に等間隔に断面円形の貫通孔が軸方向に形成されている。一方歯車3には、前記貫通孔の位置に対応させて、雌ねじが形成され、2段の円筒状隙間規制部材5Aとリング状の衝撃緩衝材4を装着した状態で押圧部材5をねじ結合させて歯車3に固定している。押圧部材5は、この場合皿ねじとした。   In this case, the gear 2 having the toothless portion 7 has through-holes having a circular cross section formed at equal intervals in three circumferential directions in the axial direction. On the other hand, the gear 3 is formed with a female screw corresponding to the position of the through hole, and the pressing member 5 is screw-coupled with the two-stage cylindrical gap regulating member 5A and the ring-shaped impact cushioning material 4 attached. And fixed to the gear 3. In this case, the pressing member 5 was a countersunk screw.

また押圧部材5には2段の円筒状隙間規制部材5Bを外装することによりで隙間Gを規制した。この隙間Gは、第1実施の形態にかかる衝撃緩和機能付き間欠歯車1をエアガンの駆動機構にピストン駆動用歯車として組み込んで使用した場合における、回転方向位置での衝撃緩衝材4の圧縮量に相当する。   Further, the gap G is regulated by covering the pressing member 5 with a two-stage cylindrical gap regulating member 5B. The gap G corresponds to the compression amount of the shock absorbing material 4 at the rotational position when the intermittent gear 1 with an impact mitigating function according to the first embodiment is used as a piston driving gear in the air gun drive mechanism. Equivalent to.

衝撃緩衝材4としては、ゴム製のO−リングを用いることができる。例えばエアガンのような玩具の駆動機構では、耐熱性を有する衝撃緩衝材4とするのがよい。衝撃緩衝材4が前記の円筒状隙間規制部材5Bを外装した押圧部材5により短時間のうちに圧縮され、その後元の形状に戻ることを毎分900回も繰り返すために発熱するからである。衝撃緩衝材4としてゴム性のO−リングを使用する場合には、歯車回転方向位置での衝撃緩衝材4の圧縮量に相当する隙間Gは、O−リングの厚み、すなわち、外径と内径との差の×30%以下に設定するのが、衝撃緩衝材4の発熱量を抑制でき、衝撃緩和作用を持続できるので好ましい。   As the shock absorbing material 4, a rubber O-ring can be used. For example, in a toy drive mechanism such as an air gun, the shock-absorbing material 4 having heat resistance may be used. This is because the shock-absorbing material 4 is compressed in a short time by the pressing member 5 that covers the cylindrical gap regulating member 5B and then returns to its original shape and then generates heat to repeat 900 times per minute. When a rubber O-ring is used as the shock absorbing material 4, the gap G corresponding to the compression amount of the shock absorbing material 4 at the position in the gear rotation direction is the thickness of the O-ring, that is, the outer diameter and the inner diameter. Is preferably set to 30% or less of the difference from the above, because the amount of heat generated by the shock absorbing material 4 can be suppressed and the impact mitigating action can be sustained.

ただし衝撃緩衝材4としては、ゴム性のO−リングに限定されず、円筒状隙間規制部材5Bを外装した押圧部材5により短時間のうちに圧縮され、その後元の形状に戻ることを繰り返した場合でも、その形状の変化が小さくて衝撃を緩和する衝撃緩和作用を持続できる適宜な材料を選定することができる。   However, the shock-absorbing material 4 is not limited to the rubber O-ring, and is repeatedly compressed in a short time by the pressing member 5 that covers the cylindrical gap regulating member 5B, and then returns to its original shape. Even in such a case, it is possible to select an appropriate material that can maintain the impact mitigating action of mitigating the impact with a small change in shape.

この図1、図2に示した衝撃緩和機能付き間欠歯車1は、玩具の駆動機構に使用するのに好適である。その際には、衝撃緩和機能付き間欠歯車1の軸を遊動状態で挿入し、玩具本体に設けた軸受け間に組み込むことができる。   The intermittent gear 1 with an impact relaxation function shown in FIGS. 1 and 2 is suitable for use in a toy drive mechanism. In that case, the shaft of the intermittent gear 1 with an impact relaxation function can be inserted in a floating state and assembled between the bearings provided on the toy body.

次に第1実施の形態にかかる衝撃緩和機能付き間欠歯車1の作用について図3により説明する。   Next, the operation of the intermittent gear 1 with an impact relaxation function according to the first embodiment will be described with reference to FIG.

図3は、衝撃緩和機能付き間欠歯車1をエアガンの駆動機構にピストン駆動用歯車として組み込んだ使用状態の模式図であり、ギヤ歯6の第1歯6Aとピストン11下部に形成したラックとの噛み合い開始時前後の状態を(a)、(b)、(c)、(d)の順に示す図である。   FIG. 3 is a schematic diagram of a use state in which the intermittent gear 1 with an impact relaxation function is incorporated as a piston driving gear in an air gun drive mechanism, and the first tooth 6 </ b> A of the gear tooth 6 and the rack formed under the piston 11. It is a figure which shows the state before and behind a meshing start in order of (a), (b), (c), (d).

ここでギヤ歯6は図3において、上側の歯車2に形成されている一方、押圧部材5は、図3において図示しない下側の歯車3に、衝撃緩衝材4と円筒状隙間規制部材5Bを装着した状態で固定されている。なお、図2中、押圧部材5の頭部と断面円形の貫通孔との間の隙間は、円筒状隙間規制部材5Bを外装した押圧部材5と、断面円形の貫通孔との間に形成される隙間Gと同じとした。   Here, the gear teeth 6 are formed on the upper gear 2 in FIG. 3, while the pressing member 5 is provided with an impact buffer 4 and a cylindrical gap regulating member 5B on the lower gear 3 (not shown in FIG. 3). It is fixed in the attached state. In FIG. 2, the gap between the head of the pressing member 5 and the through hole having a circular cross section is formed between the pressing member 5 that covers the cylindrical gap regulating member 5 </ b> B and the through hole having a circular cross section. The same as the gap G.

したがって歯車3に固定した円筒状隙間規制部材5B付き押圧部材5は、エアガンの駆動機構にピストン駆動用歯車として組み込んで使用した場合、ギヤ歯6と被駆動側歯車であるラックとの噛み合い開始時において、衝撃緩衝材4を歯車回転方向位置で隙間Gだけ圧縮する役割を有すると共に、衝撃緩衝材4を圧縮し終わった以降、被駆動側歯車へ動力を伝達している間、押圧部材5の頭部が歯車2に形成した貫通孔の内面と接触し、また円筒状隙間規制部材5Bの大径部が貫通孔の内面と接触することにより、歯車3に入力された動力を歯車2に伝達する役割を有する。   Accordingly, when the pressing member 5 with the cylindrical gap regulating member 5B fixed to the gear 3 is used as a piston driving gear in the air gun driving mechanism, when the meshing of the gear teeth 6 and the rack which is the driven side gear starts. , The shock absorbing material 4 has a role of compressing the gap G at the position in the gear rotation direction, and after the compression of the shock absorbing material 4 is completed, while the power is transmitted to the driven gear, The head is in contact with the inner surface of the through hole formed in the gear 2, and the large diameter portion of the cylindrical clearance regulating member 5B is in contact with the inner surface of the through hole, whereby the power input to the gear 3 is transmitted to the gear 2. Have a role to play.

図3中、21はピストン11内に挿入された圧縮ばねを示す。   In FIG. 3, reference numeral 21 denotes a compression spring inserted into the piston 11.

(a)、(b)、(c)、(d)の順に説明すると、図3(a)は、ピストン11が圧縮ばね21のばね力によりピストン待機位置に待機しているときの状態を示し、歯車2に形成したギヤ歯の第1歯6Aは、ラック歯の第1歯12Aより回転方向後方に位置している。図3(b)は、ピストン駆動用歯車1が回転してきて、ギヤ歯の第1歯6Aがラック歯の第1歯12Aを捕らえたときの状態を示す。図3(b)では歯車2は、一旦その位置に停止する。   Explaining in the order of (a), (b), (c), (d), FIG. 3 (a) shows the state when the piston 11 is waiting at the piston standby position by the spring force of the compression spring 21. The first teeth 6A of the gear teeth formed on the gear 2 are positioned behind the first teeth 12A of the rack teeth in the rotational direction. FIG. 3B shows a state where the piston driving gear 1 has been rotated and the first tooth 6A of the gear tooth has caught the first tooth 12A of the rack tooth. In FIG. 3B, the gear 2 temporarily stops at that position.

図3(c)は、図示しない下側の歯車3に固定した押圧部材5により衝撃緩衝材4が歯車回転方向位置で隙間Gだけ圧縮され、衝撃緩衝材4により一定量の衝撃を吸収し終わった時点の状態を示す。すなわち、図3(b)〜図3(c)間において、歯車2の回転が停止し、下側の歯車3に固定した押圧部材5により歯車回転方向位置で衝撃緩衝材4が所定量だけ圧縮されて、駆動源であるモータ以降から衝撃緩和機能付き間欠歯車1までの各部品による慣性モーメントを吸収することができる。なお、その間においては、徐々に回転方向に対するモーメントが蓄積され、図3(d)に示すようにピストン11が後退し始める。   In FIG. 3C, the shock absorbing material 4 is compressed by the gap G at the gear rotation direction position by the pressing member 5 fixed to the lower gear 3 (not shown), and the shock absorbing material 4 finishes absorbing a certain amount of shock. Indicates the state at the time. That is, between FIG. 3B and FIG. 3C, the rotation of the gear 2 is stopped, and the shock absorbing material 4 is compressed by a predetermined amount at the position of the gear rotation direction by the pressing member 5 fixed to the lower gear 3. Thus, it is possible to absorb the moment of inertia due to each component from the motor that is the driving source to the intermittent gear 1 with an impact relaxation function. In the meantime, moments with respect to the rotational direction are gradually accumulated, and the piston 11 starts to retract as shown in FIG.

このように衝撃緩和機能付き間欠歯車1を玩具の駆動機構にピストン駆動用歯車として組み込んだ場合には、ギヤ歯の第1歯6Aがラック歯の第1歯12Aを捕らえるときの
噛み合い開始時において歯車回転方向位置で衝撃緩衝材4を所定量だけ圧縮することにより、歯車自体の慣性モーメントを含む、ピストン11の駆動機構を構成している各部品の慣性モーメントに起因する衝撃を吸収し、衝撃緩衝材4を所定量だけ圧縮し終わった以降は、衝撃緩衝材4を介することなく、歯車3から歯車2へ動力を伝達している。
Thus, when the intermittent gear 1 with an impact relaxation function is incorporated as a piston driving gear in the toy drive mechanism, at the start of meshing when the first tooth 6A of the gear tooth catches the first tooth 12A of the rack tooth. By compressing the shock-absorbing material 4 by a predetermined amount at the position of the gear rotation direction, the shock due to the moment of inertia of each component constituting the drive mechanism of the piston 11 including the moment of inertia of the gear itself is absorbed, After the buffer material 4 is compressed by a predetermined amount, power is transmitted from the gear 3 to the gear 2 without the impact buffer material 4 being interposed.

すなわち、衝撃緩衝材4により一定量の慣性モーメントを吸収し終わった以降、ピストン11のラックへ動力を伝達している間、押圧部材5の頭部が歯車2に形成した貫通孔の内面と接触し、また円筒状隙間規制部材5Bの大径部が貫通孔の内面と接触することにより、歯車3に入力された動力を歯車2に伝達しているために、衝撃緩衝材4による動力伝達ロスなく、歯車3から歯車2へ動力を伝えることができる。   That is, after absorbing a certain amount of moment of inertia by the shock absorbing material 4, the head of the pressing member 5 contacts the inner surface of the through-hole formed in the gear 2 while transmitting power to the rack of the piston 11. In addition, since the power input to the gear 3 is transmitted to the gear 2 when the large diameter portion of the cylindrical gap regulating member 5B is in contact with the inner surface of the through hole, the power transmission loss due to the shock absorbing material 4 is reduced. The power can be transmitted from the gear 3 to the gear 2.

そこで第1実施の形態にかかる衝撃緩和機能付き間欠歯車1によれば、エアガンのような玩具の駆動機構に組み込んで高回転速度で作動させた場合でも、その歯車と噛み合う被駆動側歯車を含む、玩具の駆動機構の寿命を延ばすことができる。   Therefore, according to the intermittent gear 1 with an impact mitigating function according to the first embodiment, even if it is incorporated in a toy drive mechanism such as an air gun and operated at a high rotational speed, it includes a driven gear that meshes with the gear. The life of the toy drive mechanism can be extended.

また第1実施の形態にかかる衝撃緩和機能付き間欠歯車1によれば、衝撃緩衝材4を所定量だけ圧縮し終わった以降、被駆動側歯車へ動力を伝達している間、衝撃緩衝材4による動力伝達ロスが抑制できる利点もある。   Further, according to the intermittent gear 1 with an impact relaxation function according to the first embodiment, after the impact buffer material 4 is compressed by a predetermined amount, the shock buffer material 4 is transmitted while power is transmitted to the driven gear. There is also an advantage that power transmission loss due to can be suppressed.

以上第1実施の形態にかかる衝撃緩和機能付き間欠歯車1について説明したが、本発明では、図1、2に示した玩具用歯車に限定されない。例えば図4、図5に示すような第2実施の形態にかかる衝撃緩和機能付き間欠歯車10とすることもできる。   Although the intermittent gear 1 with an impact relaxation function according to the first embodiment has been described above, the present invention is not limited to the toy gear shown in FIGS. For example, the intermittent gear 10 with an impact relaxation function according to the second embodiment as shown in FIGS.

この場合には、歯車2の中央部に、断面円形の貫通孔と十文字状の溝を軸方向に貫通させて形成し、一方歯車3には、平歯車2に形成した断面円形の貫通孔と十文字状の溝に隙間を形成して挿入することが可能な、突起と押圧部材5を延在させてなる。   In this case, a through-hole having a circular cross section and a cross-shaped groove are formed in the central portion of the gear 2 so as to penetrate in the axial direction, while the through-hole having a circular cross section formed in the spur gear 2 is formed in the gear 3. A protrusion and a pressing member 5 that can be inserted with a gap formed in a cross-shaped groove are extended.

ただし押圧部材5は、衝撃緩衝材4を装着した状態で締結ボルト5Aで歯車3に固定した。また衝撃緩衝材4は、歯車2に形成した断面円形の貫通孔と十文字状の溝内に、歯車3に延在させた突起と押圧部材5を挿入して形成される隙間に圧縮した状態で装着されている。この第2実施の形態にかかる衝撃緩和機能付き間欠歯車10を玩具の駆動機構に組み込んで使用した場合における、回転方向位置での衝撃緩衝材4の圧縮量に相当する隙間Gは、第1実施の形態にかかる衝撃緩和機能付き間欠歯車1と同様に設定するのが好ましい。   However, the pressing member 5 was fixed to the gear 3 with a fastening bolt 5A in a state where the shock absorbing material 4 was mounted. Further, the shock absorbing material 4 is compressed in a gap formed by inserting a protrusion and a pressing member 5 extending in the gear 3 into a through-hole having a circular cross section and a cross-shaped groove formed in the gear 2. It is installed. The gap G corresponding to the compression amount of the shock-absorbing material 4 at the rotational position when the intermittent gear 10 with the impact relaxation function according to the second embodiment is incorporated in a toy drive mechanism is used in the first embodiment. It is preferable to set similarly to the intermittent gear 1 with an impact relaxation function according to the embodiment.

図4、図5に示すような第2実施の形態にかかる衝撃緩和機能付き間欠歯車10は、例えば、無歯部7を有する一方の歯車2と他方の歯車3を同軸に重ね合わせ、衝撃緩衝材4を装着した押圧部材5を締結ボルト5Aで歯車3に取り付けることで組み立てることができる。   The intermittent gear 10 with an impact relaxation function according to the second embodiment as shown in FIGS. 4 and 5, for example, has one gear 2 having a toothless portion 7 and the other gear 3 overlapped on the same axis, thereby shock absorbing. The pressing member 5 on which the material 4 is mounted can be assembled by attaching it to the gear 3 with fastening bolts 5A.

第2実施の形態にかかる衝撃緩和機能付き間欠歯車10によれば、エアガンの駆動機構にピストン駆動用歯車として組み込んで使用した場合、第1実施の形態にかかる衝撃緩和機能付き間欠歯車1と同様な作用・効果を発揮することができる。   According to the intermittent gear 10 with an impact relaxation function according to the second embodiment, when used as a piston driving gear in an air gun drive mechanism, it is the same as the intermittent gear 1 with an impact relaxation function according to the first embodiment. It is possible to exert various actions and effects.

図6には、第1実施の形態にかかる衝撃緩和機能付き間欠歯車1をピストン駆動用歯車としてエアガンの駆動機構に組み込むに当たり、その軸を遊動状態で挿入し、かつその軸に圧縮ばね16を装着した状態でエアガン本体20に設けた軸受け13間に組み込んだ場合を示す。   In FIG. 6, when the intermittent gear 1 with an impact relaxation function according to the first embodiment is incorporated as a piston driving gear in the air gun drive mechanism, its shaft is inserted in a floating state, and the compression spring 16 is inserted into the shaft. The case where it mounts between the bearings 13 provided in the air gun main body 20 in the mounted state is shown.

図6中、衝撃緩和機能付き間欠歯車1の軸には、上から順にシムとも称される隙間調整リング14、ブッシュ15、圧縮ばね16が装着され、また減速歯車17の軸にも圧縮ばね16が装着され、ばね力により衝撃緩和機能付き間欠歯車1と減速歯車17を同方向に押しつけている。減速歯車17は、一体化された小歯車18と大歯車19とからなる。   In FIG. 6, a clearance adjusting ring 14, a bush 15, and a compression spring 16, which are also referred to as shims, are attached in order from the top to the shaft of the intermittent gear 1 with an impact relaxation function. Is mounted, and the intermittent gear 1 with an impact relaxation function and the reduction gear 17 are pressed in the same direction by a spring force. The reduction gear 17 includes an integrated small gear 18 and a large gear 19.

図6に示したような玩具用歯車の軸方向隙間調整機構によれば、衝撃緩和機能付き間欠歯車1のシム調整作業が不必要となるから組み込み作業を簡単に行うことができると共に、圧縮ばね16によって組み込んだ衝撃緩和機能付き間欠歯車1が常に一方向に一定の圧力で抑えられているので、衝撃緩和機能付き間欠歯車1のスラスト方向のガタツキもなくなって玩具の駆動機構が安定するという副次的効果もある。   According to the axial clearance adjustment mechanism of the toy gear as shown in FIG. 6, the shim adjustment work of the intermittent gear 1 with an impact relaxation function is unnecessary, so that the assembling work can be easily performed, and the compression spring Since the intermittent gear 1 with an impact mitigating function incorporated by 16 is always kept at a constant pressure in one direction, there is no backlash in the thrust direction of the intermittent gear 1 with an impact mitigating function, and the toy drive mechanism is stabilized. There is also the following effect.

例えばエアガン本体20に軸受け13として、ラジアルボールベアリングを使用した場合には、ボールベアリングの持つラジアル/スラスト方向のクリアランスを同時に排除できるので衝撃緩和機能付き間欠歯車1のスラスト方向のガタツキを抑えることができる。またエアガン本体20に軸受け13として、オイルレス・メタルを使用した場合には、やはり衝撃緩和機能付き間欠歯車1のスラスト方向のガタツキが排除できるので共振を抑えることができる。   For example, when a radial ball bearing is used as the bearing 13 in the air gun body 20, the radial / thrust clearance of the ball bearing can be eliminated at the same time. it can. Further, when an oilless metal is used as the bearing 13 for the air gun body 20, backlash in the thrust direction of the intermittent gear 1 with an impact relaxation function can be eliminated, so that resonance can be suppressed.

一方、図7に示すような従来の軸方向隙間調整機構を採用した場合には、圧縮ばね16が装着されていないから、シム調整作業を十分行い、衝撃緩和機能付き間欠歯車1がスムーズに回転することができるように適正なスラスト方向クリアランスを持たせて組み込む必要がある。例えばシム調整作業が不十分であった場合には、衝撃緩和機能付き間欠歯車1と減速歯車17とが側面同士で接触する危険性を排除できない。   On the other hand, when the conventional axial clearance adjustment mechanism as shown in FIG. 7 is employed, since the compression spring 16 is not mounted, the shim adjustment work is sufficiently performed and the intermittent gear 1 with an impact relaxation function rotates smoothly. It is necessary to incorporate it with an appropriate thrust direction clearance so that it can be performed. For example, when the shim adjustment work is insufficient, the risk that the intermittent gear 1 with an impact relaxation function and the reduction gear 17 are in contact with each other cannot be excluded.

このようなシム調整作業が必要となるのは、玩具の場合、適正なスラスト方向クリアランスがあるのに対して、玩具の駆動機構を納めるエアガン本体20の個体差により軸受け13間の距離が大きく変化し、それに伴ってスラスト方向クリアランスが過大になってしまうと、歯車同士が側面で接触したり、玩具の作動不良が生じるからである。なお玩具であるエアガンの場合には、適正なクリアランスが0.02mmであるのに対して、隙間調整リング14の厚みは最低でも0.1mmと適正なクリアランスより大きいから、シム調整作業を十分行っても、衝撃緩和機能付き間欠歯車1のスラスト方向のガタツキが排除できない場合がある。従来の軸方向隙間調整機構では、隙間調整リング14を適宜な枚数重ねて、衝撃緩和機能付き間欠歯車1のスラスト方向のガタツキを小さくしているため、圧縮ばね16が装着されていない。   Such a shim adjustment work is required in the case of a toy, while there is an appropriate thrust direction clearance, while the distance between the bearings 13 varies greatly due to individual differences in the air gun body 20 that houses the drive mechanism of the toy. However, if the thrust direction clearance becomes excessive accordingly, the gears come into contact with each other on the side surface or the toy malfunctions. In the case of an air gun, which is a toy, the proper clearance is 0.02 mm, while the gap adjustment ring 14 is at least 0.1 mm thicker than the proper clearance, so the shim adjustment work must be performed sufficiently. However, there is a case where the backlash in the thrust direction of the intermittent gear 1 with an impact relaxation function cannot be eliminated. In the conventional axial clearance adjusting mechanism, an appropriate number of clearance adjusting rings 14 are stacked to reduce the backlash in the thrust direction of the intermittent gear 1 with an impact relaxation function, and therefore the compression spring 16 is not mounted.

以上説明した第1、2実施の形態にかかる衝撃緩和機能付き間欠歯車1もしくは10は、図8、9に示したようなエアガンのピストン駆動用歯車としても、また他の玩具の駆動機構の駆動用歯車としても適用することができる。   The intermittent gear 1 or 10 with an impact relaxation function according to the first and second embodiments described above can be used as a piston driving gear for an air gun as shown in FIGS. It can also be applied as a gear for use.

ところで第1、2実施の形態にかかる衝撃緩和機能付き間欠歯車1もしくは10を、玩具の駆動機構の駆動用歯車として組み込むのが困難である場合には、従来のまま、無歯部を有する一方の歯車と他方の歯車が同軸に一体化されてなる玩具用歯車を駆動用歯車として組み込み、この間欠歯車と一緒に、一方の歯車と他方の歯車が同軸に重ね合わされ、軸方向に介在させた衝撃緩和機構により連結されてなる撃緩和機能付き歯車を、その軸を遊動状態で挿入し、玩具本体に設けた軸受け間に組み込んだ玩具の駆動機構とすることもできる。一方の歯車と他方の歯車が同軸に重ね合わされ、軸方向に介在させた衝撃緩和機構により連結されてなる撃緩和機能付き歯車は、玩具の駆動機構の駆動用歯車として同様に組み込むこともできる。このような場合でも、その歯車と噛み合う被駆動側歯車を含む、玩具の駆動機構の寿命を延ばすことができるから、一方の歯車と他方の歯車が同軸に重ね合わされ、軸方向に介在させた衝撃緩和機構により連結されてなる衝撃緩和機能付き歯車も有用である。   By the way, when it is difficult to incorporate the intermittent gear 1 or 10 with an impact mitigating function according to the first and second embodiments as a driving gear of a toy driving mechanism, the conventional one having a toothless portion remains as it is. A toy gear in which the other gear and the other gear are coaxially integrated is incorporated as a driving gear, and together with this intermittent gear, one gear and the other gear are coaxially overlapped and interposed in the axial direction. A gear with a shock mitigating function, which is connected by an impact mitigating mechanism, can be used as a toy drive mechanism in which the shaft is inserted in a floating state and incorporated between bearings provided on the toy body. A gear with an impact mitigation function in which one gear and the other gear are coaxially overlapped and connected by an impact mitigation mechanism interposed in the axial direction can be similarly incorporated as a drive gear of a toy drive mechanism. Even in such a case, the life of the drive mechanism of the toy including the driven side gear meshing with the gear can be extended, so that one gear and the other gear are coaxially overlapped, and the impact interposed in the axial direction. A gear with an impact relaxation function that is connected by a relaxation mechanism is also useful.

勿論、第1、2実施の形態にかかる衝撃緩和機能付き間欠歯車1もしくは10を玩具の駆動機構に駆動用歯車として組み込むことができれば、その軸を遊動状態で挿入し、玩具本体に設けた軸受け間に組み込み、この衝撃緩和機能付き間欠歯車1もしくは10と一緒に、衝撃緩和機能付き歯車を、その軸を遊動状態で挿入し、玩具本体に設けた軸受け間に組み込んだ玩具の駆動機構とすることも好適である。   Of course, if the intermittent gear 1 or 10 with impact reducing function according to the first or second embodiment can be incorporated as a drive gear in the toy drive mechanism, the shaft is inserted in a floating state and a bearing provided on the toy body. The toy drive mechanism is built in between the bearings provided in the toy body by inserting the shaft with the shock relaxation function together with the intermittent gear 1 or 10 with the shock relaxation function and inserting the shaft in the idle state. It is also suitable.

図1、図2に示した衝撃緩和機能付き間欠歯車1をエアガンの駆動機構に組み込んで弾丸の発射実験を行い本発明例とした。衝撃緩和機能付き間欠歯車1をエアガンの駆動機構に組み込むに当たり、図6に示すように、その軸を遊動状態で挿入し、玩具本体20に設けた軸受け13間に組み込んだ。エアガンは、電動モータを駆動源とする電動エアガンであり、ピストンのラックは樹脂製である。   An intermittent gear 1 with an impact mitigating function shown in FIGS. 1 and 2 was incorporated in an air gun drive mechanism, and a bullet firing experiment was conducted to obtain an example of the present invention. In assembling the intermittent gear 1 with an impact relaxation function into the air gun drive mechanism, the shaft was inserted in a floating state and assembled between the bearings 13 provided on the toy body 20 as shown in FIG. The air gun is an electric air gun that uses an electric motor as a drive source, and the rack of the piston is made of resin.

無歯部7を形成した歯車2は、30枚の歯のうち14枚を削り落とし、16枚の歯を残した。一方歯車3は、歯数が32枚の平歯車とした。両方の歯車2、3の材質は、鋼製とした。衝撃緩和機構は、歯車2に軸方向に貫通させて形成した内径が7.6mmの断面円形の貫通孔と、該貫通孔に挿入され、歯車3から軸方向に延在させてなる円筒状隙間規制部材5B付き押圧部材5と、衝撃緩衝材4からなる。また衝撃緩衝材4は、呼び径が3mm、外径が7.6mm、内径が3.8mmで、耐熱温度220℃のO−リングを使用した。
O−リングの衝撃緩衝材4は、円筒状隙間規制部材5Bを外装した押圧部材5と、断面円形の貫通孔との間に圧縮状態で挿入した。押圧部材5は、ステンレス製M3mmの皿ねじとした。2段の円筒状隙間規制部材5Aは、一段目の外径が4.0mm、二段目の外径が6.0mmとし、真鍮製とした。隙間Gは0.8mmに規制した。衝撃緩和機能付き間欠歯車1の質量は20gとした。
The gear 2 that formed the edentulous portion 7 scraped off 14 of the 30 teeth, leaving 16 teeth. On the other hand, the gear 3 is a spur gear having 32 teeth. The material of both gears 2 and 3 was made of steel. The impact mitigating mechanism includes a through-hole having a circular cross-section with an inner diameter of 7.6 mm formed by penetrating the gear 2 in the axial direction, and a cylindrical gap inserted into the through-hole and extending from the gear 3 in the axial direction. It consists of a pressing member 5 with a regulating member 5B and an impact buffering material 4. The shock absorbing material 4 was an O-ring having a nominal diameter of 3 mm, an outer diameter of 7.6 mm, an inner diameter of 3.8 mm, and a heat resistant temperature of 220 ° C.
The shock-absorbing material 4 of the O-ring was inserted in a compressed state between the pressing member 5 that covers the cylindrical gap regulating member 5B and the through-hole having a circular cross section. The pressing member 5 was a stainless steel M3 mm countersunk screw. The two-stage cylindrical gap regulating member 5A was made of brass with an outer diameter of the first stage of 4.0 mm and an outer diameter of the second stage of 6.0 mm. The gap G was regulated to 0.8 mm. The mass of the intermittent gear 1 with an impact relaxation function was 20 g.

要するに実施例の場合、使用状態においてギヤ歯6とピストン11に形成したラックの第1歯12Aとの噛み合い開始時での衝撃を緩和する際に、衝撃緩衝材4が隙間G=0.8mmだけ圧縮されるように衝撃緩和機構を構成した。   In short, in the case of the embodiment, when cushioning is started at the start of meshing between the gear teeth 6 and the rack first teeth 12A formed on the piston 11 in use, the shock absorbing material 4 has a gap G = 0.8 mm. An impact mitigation mechanism was configured to be compressed.

なお電動モーターの回転子から衝撃緩和機能付き玩具用歯車1までの合計質量は84g、衝撃緩和機能付き玩具用歯車1までの最終減速比は18.7/1である。   In addition, the total mass from the rotor of the electric motor to the toy gear 1 with an impact relaxation function is 84 g, and the final reduction ratio to the toy gear 1 with an impact relaxation function is 18.7 / 1.

発射実験は、発射エネルギー1J、1500発/分(=25発/秒)の競技用のサバイバルゲームを模した条件で行った。比較例としては図11に示したような平歯車108A、108B同士が軸方向に打ち込んだ連結ピン108Cによって一体とされているピストン駆動用歯車108を組み込んであるエアガンを用い、本発明例と同じ発射条件で発射実験を行った。   The launch experiment was performed under conditions that simulated a survival game for competition with a launch energy of 1 J and 1500 shots / minute (= 25 shots / second). As a comparative example, an air gun incorporating a piston driving gear 108 integrated with a connecting pin 108C in which spur gears 108A and 108B are driven in the axial direction as shown in FIG. A launch experiment was conducted under launch conditions.

その結果、従来のエアガンの場合には、競技用のサバイバルゲームを模した条件において3000発発射するとピストン103に形成したラックの第1歯105Aに損傷が生じてピストンの機能を果たせなくなった。これに対し、実施例のエアガンの場合には、競技用のサバイバルゲームを模した条件で従来のエアガンの寿命限界発射数の10倍である30000発発射してもピストン11に形成したラックの第1歯12Aにその機能を果たせなくなるような損傷は見られず、さらなる使用も可能であることが確認された。   As a result, in the case of a conventional air gun, if 3000 shots were made under conditions simulating a survival game for competition, the first teeth 105A of the rack formed on the piston 103 were damaged and the piston function could not be performed. On the other hand, in the case of the air gun of the embodiment, the rack No. 1 formed on the piston 11 even if it fires 30000 shots, which is 10 times the life limit firing number of the conventional air gun under the conditions simulating a survival game for competition. It was confirmed that the 1 tooth 12A was not damaged so as not to perform its function and could be used further.

第1実施の形態にかかる衝撃緩和機能付き間欠歯車を示す概略平面図である。It is a schematic plan view which shows the intermittent gear with an impact relaxation function concerning 1st Embodiment. 図1のX−X断面図である。It is XX sectional drawing of FIG. 第1実施の形態にかかる衝撃緩和機能付き間欠歯車の作用を説明する図である。It is a figure explaining the effect | action of the intermittent gear with an impact relaxation function concerning 1st Embodiment. 第2実施の形態にかかる衝撃緩和機能付き間欠歯車を示す概略平面図である。It is a schematic plan view which shows the intermittent gear with an impact relaxation function concerning 2nd Embodiment. 図4のY−Y断面図である。It is YY sectional drawing of FIG. 本発明にかかる玩具用歯車の軸方向隙間調整機構を説明する断面図である。It is sectional drawing explaining the axial direction clearance adjusting mechanism of the gear for toys concerning this invention. 従来の玩具用歯車の軸方向隙間調整機構を説明する断面図である。It is sectional drawing explaining the axial direction clearance gap adjustment mechanism of the conventional toy gear. エアガンの駆動機構を説明する図である。It is a figure explaining the drive mechanism of an air gun. エアガンの駆動機構を説明する他の図である。It is another figure explaining the drive mechanism of an air gun. 従来のピストン駆動用歯車の問題点を説明する図である。It is a figure explaining the problem of the conventional gear for driving a piston. 従来のピストン駆動用歯車の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional gear for driving a piston.

符号の説明Explanation of symbols

1、10 衝撃緩和機能付き間欠歯車
2、3 歯車
4 衝撃緩衝材
5 押圧部材
5A 締結ボルト
5B 円筒状隙間規制部材
6 ギヤ歯
6A 第1歯
7 無歯部
8 ギヤ歯
9 軸芯
G 隙間
11 ピストン
12A 第1歯
13 軸受け
14 隙間調整リング(シム)
15 ブッシュ
16 圧縮ばね
17 減速歯車
18 小歯車
19 大歯車
20 エアガン本体
21 圧縮ばね
101 噴出口
102 シリンダ
103 ピストン
104 圧縮ばね
105 ラック歯
105A 第1歯
106 ギヤ歯
106A 第1歯
107 無歯部
108 ピストン駆動用歯車
108A、108B 歯車
108C 連結ピン
109 減速歯車
110 モータ(駆動源)
111 スピンドル
112 O−リング
120 エアガン本体
121 弾丸
DESCRIPTION OF SYMBOLS 1, 10 Intermittent gear 2 with impact relaxation function 2, 3 gear 4 Shock absorbing material 5 Pressing member 5A Fastening bolt 5B Cylindrical clearance regulating member 6 Gear tooth 6A First tooth
7 toothless part 8 gear tooth 9 shaft core G gap 11 piston 12A first tooth 13 bearing 14 gap adjustment ring (shim)
DESCRIPTION OF SYMBOLS 15 Bush 16 Compression spring 17 Reduction gear 18 Small gear 19 Large gear 20 Air gun main body 21 Compression spring 101 Jet port 102 Cylinder 103 Piston 104 Compression spring 105 Rack tooth 105A 1st tooth 106 Gear tooth 106A 1st tooth 107 Toothless part 108 Piston Drive gear 108A, 108B Gear 108C Connecting pin
109 Reduction gear 110 Motor (drive source)
111 Spindle 112 O-ring 120 Air gun body 121 Bullet

Claims (6)

玩具の駆動機構に組み込んで、駆動源からの動力を被駆動側に間欠的に伝達するために使用する玩具用歯車であって、無歯部を有する一方の歯車と他方の歯車が同軸に重ね合わされ、軸方向に介在させた衝撃緩和機構により連結されてなることを特徴とする玩具用歯車。   A toy gear incorporated in a toy drive mechanism and used to intermittently transmit power from a drive source to the driven side, with one gear having a toothless part and the other gear coaxially overlapped And a toy gear which is connected by an impact relaxation mechanism interposed in the axial direction. 玩具の駆動機構に組み込んで、駆動用歯車として使用する玩具用歯車であって、
一方の歯車と他方の歯車が同軸に重ね合わされ、軸方向に介在させた衝撃緩和機構により連結されてなることを特徴とする玩具用歯車。
A toy gear incorporated in a toy drive mechanism and used as a drive gear,
A toy gear characterized in that one gear and the other gear are coaxially overlapped and connected by an impact relaxation mechanism interposed in the axial direction.
請求項1または2に記載の玩具用歯車を玩具の駆動機構に駆動用歯車として組み込むに当たり、その軸を遊動状態で挿入し、かつその軸に圧縮ばねを装着した状態で玩具本体に設けた軸受け間に組み込んでなることを特徴とする玩具用歯車の軸方向隙間調整機構。   3. A bearing provided in a toy main body with the shaft inserted in a floating state and a compression spring attached to the shaft when the toy gear according to claim 1 is incorporated in a toy drive mechanism as a drive gear. A toy gear axial clearance adjusting mechanism characterized by being incorporated in between. 請求項1に記載の玩具用歯車をピストン駆動用歯車として組み込むに当たり、その軸を遊動状態で挿入し、玩具本体に設けた軸受け間に組み込んだことを特徴とするエアガン用ピストンの駆動機構。   When the toy gear according to claim 1 is incorporated as a piston driving gear, the shaft of the toy body is inserted in a floating state and incorporated between bearings provided on the toy main body. 請求項2に記載の玩具用歯車を、その軸を遊動状態で挿入し、動力源からピストン駆動用歯車に至る経路途中の玩具本体に設けた軸受け間に組み込んだことを特徴とするエアガン用ピストンの駆動機構。   A toy gear according to claim 2, wherein said toy gear is inserted between bearings provided in a toy body in the middle of a path from a power source to a piston driving gear, with said shaft inserted in a floating state. Drive mechanism. 請求項1に記載の玩具用歯車をピストン駆動用歯車として組み込むに当たり、その軸を遊動状態で挿入し、玩具本体に設けた軸受け間に組み込むと共に、
請求項4に記載の玩具用歯車を、その軸を遊動状態で挿入し、動力源からピストン駆動用歯車に至る経路途中の玩具本体に設けた軸受け間に組み込んだことを特徴とするエアガン用ピストンの駆動機構。
In assembling the toy gear according to claim 1 as a piston driving gear, the shaft is inserted in a floating state, and is incorporated between bearings provided on the toy body,
5. A toy gear according to claim 4, wherein the toy gear is inserted between bearings provided in a toy body in the middle of a path from the power source to the piston driving gear, with the shaft inserted in a floating state. Drive mechanism.
JP2004187366A 2004-06-25 2004-06-25 Gear for toy with cushioning function and gap adjusting mechanism in axial direction thereof Pending JP2006006588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004187366A JP2006006588A (en) 2004-06-25 2004-06-25 Gear for toy with cushioning function and gap adjusting mechanism in axial direction thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004187366A JP2006006588A (en) 2004-06-25 2004-06-25 Gear for toy with cushioning function and gap adjusting mechanism in axial direction thereof

Publications (1)

Publication Number Publication Date
JP2006006588A true JP2006006588A (en) 2006-01-12

Family

ID=35774462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187366A Pending JP2006006588A (en) 2004-06-25 2004-06-25 Gear for toy with cushioning function and gap adjusting mechanism in axial direction thereof

Country Status (1)

Country Link
JP (1) JP2006006588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185514A (en) * 2010-03-08 2011-09-22 Cheng Li Te Operation method for toy gun and operation mechanism of the same
CN110302550A (en) * 2019-08-05 2019-10-08 武汉木奇灵动漫科技有限公司 One kind can body-building meteor big gun toy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185514A (en) * 2010-03-08 2011-09-22 Cheng Li Te Operation method for toy gun and operation mechanism of the same
CN110302550A (en) * 2019-08-05 2019-10-08 武汉木奇灵动漫科技有限公司 One kind can body-building meteor big gun toy

Similar Documents

Publication Publication Date Title
JP4584795B2 (en) Recoil shock device for toy guns
EP2219005B1 (en) Recoil impulse generator for a weapon simulator
US10003240B2 (en) Methods for generating power from miniature electrical generators and power sources
JPH0353498B2 (en)
KR20170074287A (en) Play gun
JP5517380B1 (en) Electric toy gun
CN113108652B (en) Missile rudder surface rotary folding and retracting structure
EP1586766A3 (en) Gear system having a gear installed with shock absorber means in model engine starter
JP2006006588A (en) Gear for toy with cushioning function and gap adjusting mechanism in axial direction thereof
CN102120323A (en) Primer mixture free caseless pin driver
JP6318319B2 (en) Simulated gun recoil shock system
CN105757130B (en) A kind of engine turbine connect torsion transmitter with compressor rotor
CN214582791U (en) Mechanical mechanism for single shot shooting of water bullet gun
CN210414410U (en) Mute type nail shooter launching tube and nail shooter
RU2582829C1 (en) Nut runner operation method and device therefor
CN106837650B (en) Starter and assembling method of driving gear structure therein
CN2147184Y (en) Air cannon dumper
TWM558343U (en) Bullet pushing linkage device of toy gun
CN219655126U (en) Unidirectional output clutch structure of electric tool and electric tool
CN109341410A (en) Reduce the mechanism of firearms recoil sense
CN111306996A (en) Ammunition flight resistance device
CN202002556U (en) Toy gun recoil transfering structure
CN219655213U (en) Steering engine with stable structure
CN213578936U (en) Laser shooting training device and system
JP7485319B1 (en) Electric airsoft gun