JP2006006211A - Sterilization method and apparatus for feed creature - Google Patents

Sterilization method and apparatus for feed creature Download PDF

Info

Publication number
JP2006006211A
JP2006006211A JP2004188374A JP2004188374A JP2006006211A JP 2006006211 A JP2006006211 A JP 2006006211A JP 2004188374 A JP2004188374 A JP 2004188374A JP 2004188374 A JP2004188374 A JP 2004188374A JP 2006006211 A JP2006006211 A JP 2006006211A
Authority
JP
Japan
Prior art keywords
aqueous solution
storage container
feed
ultraviolet
feed organism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004188374A
Other languages
Japanese (ja)
Other versions
JP3932313B2 (en
Inventor
Hideo Yamanoi
英夫 山野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama Prefectural Government
Original Assignee
Okayama Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama Prefectural Government filed Critical Okayama Prefectural Government
Priority to JP2004188374A priority Critical patent/JP3932313B2/en
Publication of JP2006006211A publication Critical patent/JP2006006211A/en
Application granted granted Critical
Publication of JP3932313B2 publication Critical patent/JP3932313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Feed For Specific Animals (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Fodder In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sterilization method and a sterilization apparatus each sterilizing feed creatures cultured under the natural environment without synthetic antibacterial drug or chemical agent just before giving to seeds of fish and shellfish. <P>SOLUTION: This sterilization apparatus 1 is based on the sterilization method for the feed creatures comprising irradiating ultraviolet rays toward the water surface of an aqueous solution in which the feed creatures float so as to sterilize harmful bacteria which the feed creatures floating in the aqueous solution hold. The sterilization apparatus 1 is composed of a storing container 12 storing an aqueous solution in which the feed creatures float, an ultraviolet ray irradiating part 14 irradiating ultraviolet rays toward the water surface 122 of the aqueous solution 121 which the storing container 12 stores, an apparatus main body 11 holding the storing container 12 and the ultraviolet ray irradiating part 14 in prescribed positional relationship and a control part 16 operating and stopping the ultraviolet ray irradiating part 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、魚介類の種苗生産に用いられる餌料生物を汚染する有害細菌を殺菌する殺菌方法と、前記殺菌方法に用いる殺菌装置とに関する。   The present invention relates to a sterilization method for sterilizing harmful bacteria that contaminate feed organisms used in fish and shellfish seedling production, and a sterilization apparatus used in the sterilization method.

魚介類の種苗生産には、ワムシ又はアルテミア等の餌料生物が用いられる。例えば、餌料生物であるワムシは、108CFU/gに達する有害細菌に汚染されており、種苗に対して病原性細菌の媒介者となる虞れがある。そこで、従来より、餌料生物を汚染する有害細菌の殺菌方法が、種々提案されている。具体的には、冷凍法や各種殺菌剤を用いた殺菌方法が知られている。ここで、冷凍法は餌料生物自体を殺してしまうため、餌料生物の餌料価値を低下させる問題から、あまり普及しておらず、現在は専ら殺菌剤を用いた殺菌方法が多用されている。 Feeding organisms such as rotifers or artemia are used for seedling production of seafood. For example, rotifers, which are feed organisms, are contaminated with harmful bacteria reaching 10 8 CFU / g and may be a vector of pathogenic bacteria to seedlings. Thus, various methods for sterilizing harmful bacteria that contaminate food organisms have been proposed. Specifically, refrigeration methods and sterilization methods using various bactericides are known. Here, since the freezing method kills the feed organism itself, it is not so popular because of the problem of lowering the feed value of the feed organism. Currently, a sterilization method using a bactericidal agent is widely used.

殺菌剤を用いた殺菌方法は、合成抗菌剤であるニフルスチレン酸ナトリウム(NFS)を溶かし込んだ水溶液に餌料生物を浸す方法が広く用いられている。また、特許文献1は、抗生物質でないイソチアゾリン誘導体の存在下で餌料生物を培養することを提案している。すなわち、魚介類の種苗に餌料生物を与えるまで、できるだけ有害細菌に感染しないようにして、餌料生物を通して魚介類の種苗に有害細菌が汚染することを防止している。   As a bactericidal method using a bactericidal agent, a method of immersing a feed organism in an aqueous solution in which sodium niflustyrate (NFS) which is a synthetic antibacterial agent is dissolved is widely used. Patent Document 1 proposes culturing a feed organism in the presence of an isothiazoline derivative that is not an antibiotic. In other words, until the feed organism is fed to the seafood seedling, it is prevented from being infected with harmful bacteria as much as possible to prevent contamination of the seafood seedling through the feed organism.

特表平10-507458号公報(4頁〜9頁、図1)Japanese Patent Publication No. 10-507458 (pages 4-9, Fig. 1)

殺菌剤を用いた餌料生物の殺菌方法には、次のような問題がある。まず、合成抗菌剤であるNFSを日常的に餌料生物に使用することは、餌料生物の合成抗菌剤に対する耐性化をもたらす可能性がある。また、薬事法の規制により、NFSの使用に制限が設けられ、これまでに比べて十分な殺菌効果が望めない状況に至っている。更に、餌料生物に投与されたNFSは、この餌料生物を媒介として種苗に蓄積される問題がある。   There are the following problems in the method of sterilizing feed organisms using a bactericide. First, the daily use of NFS, a synthetic antibacterial agent, in feed organisms may lead to resistance of the feed organism to synthetic antibacterial agents. In addition, due to regulations of the Pharmaceutical Affairs Law, there are restrictions on the use of NFS, leading to a situation where a sufficient bactericidal effect cannot be expected. Furthermore, there is a problem that NFS administered to a feed organism accumulates in seedlings through the feed organism.

この点、合成抗菌剤でないイソチアゾリン誘導体を用いる特許文献1の殺菌方法は、有害細菌の耐性獲得や薬事法の規制による問題のほか、イソチアゾリン誘導体が餌料生物を媒介として種苗に蓄積される問題がある。また、イソチアゾリン誘導体の存在下で餌料生物を培養し続けることは好ましくないが、有効濃度を低下させると有害細菌に耐性を与えてしまう虞れがある。そこで、合成抗菌剤や薬剤を使用しない自然環境下で養殖した餌料生物を、魚介類の種苗に与える寸前に殺菌する殺菌方法として、殺菌剤を用いずに殺菌剤を用いた場合と同等な殺菌効果が得られる殺菌方法及び殺菌装置を開発するため、検討した。   In this regard, the sterilization method of Patent Document 1 using an isothiazoline derivative that is not a synthetic antibacterial agent has problems due to the acquisition of resistance to harmful bacteria and regulations of the Pharmaceutical Affairs Law, and isothiazoline derivatives that accumulate in seedlings through feed organisms. . In addition, it is not preferable to continue culturing a feed organism in the presence of an isothiazoline derivative, but if the effective concentration is lowered, there is a possibility that harmful bacteria are tolerated. Therefore, as a sterilization method for sterilizing prey organisms cultivated in a natural environment that does not use synthetic antibacterial agents or drugs just before giving them to seafood seedlings, sterilization equivalent to the case of using a disinfectant without using a disinfectant In order to develop a sterilizing method and a sterilizing apparatus that can obtain an effect, the present inventors have studied.

検討の結果開発したものが、餌料生物を浮遊させた水溶液の水面に向けて紫外線を照射することにより、この水溶液中に浮遊するこの餌料生物が抱える有害細菌を殺菌する餌料生物の殺菌方法である。紫外線を用いた殺菌は広く知られるところであるが、本発明は、水溶液に浮遊する餌料生物に対して紫外線を照射することにより、この餌料生物が抱える有害細菌のみを殺す、すなわち殺菌する点に特徴を有する。   What has been developed as a result of the study is a method for sterilizing feed organisms that sterilizes harmful bacteria possessed by the feed organisms floating in this aqueous solution by irradiating ultraviolet rays toward the water surface of the aqueous solution in which the feed organisms are suspended. . Although sterilization using ultraviolet rays is widely known, the present invention is characterized in that only harmful bacteria possessed by the feed organism are killed, that is, sterilized by irradiating the feed organism floating in an aqueous solution with ultraviolet rays. Have

紫外線は、水中の透過率が極端に低く、水溶液の水面に向けて照射した紫外線は水面直下の餌料生物にしか作用しないが、餌料生物自身の活動又は後述する攪拌により、水面直下の餌料生物を煩雑に入れ替えて全餌料生物に紫外線の殺菌作用を働かせる。ここで、前記紫外線の殺菌作用は、あくまで水面直下の餌料生物のみに働き、水溶液中大半の餌料生物は紫外線の影響を受けないため、餌料生物の1個体当たりの紫外線料は抑制できる。この結果、餌料生物に紫外線の影響を与えず、有害細菌のみを殺すことができる。殺菌効果は、紫外線強度、紫外線量、水溶液の水量、そして餌料生物の種類及び密度によって変動するが、有害細菌をおよそ1/10〜1/1000の範囲で減らすことができる。   Ultraviolet rays have extremely low transmittance in water, and ultraviolet rays irradiated toward the surface of an aqueous solution only affect food organisms directly below the water surface. It is replaced complicatedly, and the sterilizing action of ultraviolet rays is applied to all feed organisms. Here, the ultraviolet ray bactericidal action works only on the bait organisms just below the water surface, and most bait organisms in the aqueous solution are not affected by the ultraviolet rays, so that the ultraviolet rays per individual bait organism can be suppressed. As a result, only harmful bacteria can be killed without affecting the feed organisms by ultraviolet rays. The bactericidal effect varies depending on the ultraviolet intensity, the amount of ultraviolet light, the amount of water in the aqueous solution, and the type and density of the feed organism, but harmful bacteria can be reduced in the range of about 1/10 to 1/1000.

紫外線は、波長320nm以上400nm未満のA領域紫外線(UV-A)、波長280nm以上320nm未満のB領域紫外線(UV-B)、そして波長280nm未満のC領域紫外線(UV-C)に分類され、本発明の殺菌方法では、いずれの紫外線も利用できる。しかし、一般に殺菌に適した紫外線はC領域紫外線であり、また紫外線の光源となる紫外線ランプは通常253.7nmの紫外線を放射することから、本発明でもC領域紫外線を用いるとよい。このC領域紫外線は、紫外線中最も水中の透過率が低いため、殺菌効果を水面直下の餌料生物のみに働かせることができる利点もある。   Ultraviolet rays are classified into A region ultraviolet rays (UV-A) having a wavelength of 320 nm to less than 400 nm, B region ultraviolet rays (UV-B) having a wavelength of 280 nm to less than 320 nm, and C region ultraviolet rays (UV-C) having a wavelength of less than 280 nm, Any ultraviolet ray can be used in the sterilization method of the present invention. However, generally, ultraviolet rays suitable for sterilization are C region ultraviolet rays, and ultraviolet lamps serving as ultraviolet light sources usually emit ultraviolet rays of 253.7 nm. Therefore, it is preferable to use C region ultraviolet rays in the present invention. Since the C region ultraviolet ray has the lowest transmittance in water in the ultraviolet ray, there is also an advantage that the bactericidal effect can be applied only to the feed organism just below the water surface.

紫外線による殺菌処理は、紫外線強度が有害細菌の殺菌を左右し、紫外線量が餌料生物に対する影響を左右する。本発明は、紫外線の影響は水溶液の水面に留め、餌料生物自身の活動又は攪拌により水面直下の餌料生物を入れ替えることで、全餌料生物を殺菌処理する。これから、本発明に用いる紫外線は、水溶液の水面での紫外線強度が50mW/cm2〜150mW/cm2、好ましくは65mW/cm2〜135mW/cm2であればよい。紫外線強度が50mW/cm2より弱いと水中の餌料生物が抱える有害細菌に十分な殺菌作用を働かせることができず、実用的な殺菌効果が得られない。また、紫外線強度が150mW/cm2より強いと、水面直下より深い水深にまで十分な紫外線が届き、餌料生物に過剰な紫外線量をもたらして殺してしまう虞れがある。前記範囲の紫外線強度であれば、水溶液の水面直下の餌料生物のみに紫外線を働かせることができ、餌料生物に紫外線による悪影響を与えず、有害細菌のみを殺すことができる。 In the sterilization treatment with ultraviolet rays, the intensity of ultraviolet rays influences the sterilization of harmful bacteria, and the amount of ultraviolet rays influences the influence on the feed organism. In the present invention, the effects of ultraviolet rays are kept on the water surface of the aqueous solution, and the whole living organism is sterilized by replacing the living organism just below the water surface by the activity or agitation of the living organism itself. Now, ultraviolet rays used in the present invention, ultraviolet intensity 50mW / cm 2 ~150mW / cm 2 at the water surface of the aqueous solution, preferably may be a 65mW / cm 2 ~135mW / cm 2 . If the UV intensity is weaker than 50 mW / cm 2, it will not be able to exert sufficient bactericidal action against harmful bacteria possessed by underwater feed organisms, and a practical bactericidal effect cannot be obtained. In addition, if the ultraviolet intensity is higher than 150 mW / cm 2 , sufficient ultraviolet rays reach a deeper depth than just below the surface of the water, which may cause an excessive amount of ultraviolet rays to feed organisms and kill them. When the ultraviolet intensity is in the above range, only the living organisms just below the water surface of the aqueous solution can be irradiated with ultraviolet rays, and the harmful organisms are not adversely affected by the ultraviolet rays, and only harmful bacteria can be killed.

紫外線量は、紫外線の餌料生物に対する影響を左右するため、上限値を定める必要がある。具体的には、本発明に用いる紫外線は、餌料生物がワムシである場合に、水溶液の水面での紫外線量が餌料生物の1個体当たりで最大5mJ/cm2とし、餌料生物がアルテミアである場合に、水溶液の水面での紫外線量が餌料生物の1個体当たりで最大625mJ/cm2とするとよい。アルテミアはワムシの最大5倍程度の個体長を有するため、アルテミアに対する紫外線量の上限値は体積比の125倍になっているだけで、体積当たりの紫外線量はワムシに対する紫外線量の上限値と同じである。 Since the amount of ultraviolet rays influences the influence of ultraviolet rays on food organisms, an upper limit value needs to be determined. Specifically, the ultraviolet ray used in the present invention is when the feed organism is a rotifer, the amount of ultraviolet rays on the water surface of the aqueous solution is 5 mJ / cm 2 at maximum per individual feed organism, and the feed organism is Artemia. In addition, the amount of ultraviolet rays on the water surface of the aqueous solution may be set to a maximum of 625 mJ / cm 2 per one food organism. Since Artemia has an individual length of up to about 5 times that of a rotifer, the upper limit of the amount of UV light for Artemia is only 125 times the volume ratio, and the amount of UV light per volume is the same as the upper limit of the amount of UV light for a rotifer. It is.

紫外線量は、紫外線強度×照射時間から算出されるため、上記範囲で紫外線強度を設定すると、紫外線量の上限値から紫外線の照射時間も定まることになる。殺菌効果は 、紫外線強度、紫外線量、水溶液の水量、そして餌料生物の密度によって変動することから、実測される紫外線量が上記上限値を超えた場合でも、餌料生物が必ずしも死んでしまうわけではないが、餌料生物に紫外線による悪影響を与えず、有害細菌のみを殺すためには、上記上限値以下の紫外線量で紫外線を照射することが望ましい。また、殺菌効果は紫外線量に依存することから、実際の殺菌処理では、例えば貯留容器に餌料生物を浮遊させた水溶液に対して紫外線を照射するバッチ処理でもよいし、例えば水溶液を循環経路に流し、特定位置で紫外線を照射するリアルタイム処理でもよい。   Since the ultraviolet ray amount is calculated from the ultraviolet ray intensity × irradiation time, when the ultraviolet ray intensity is set within the above range, the ultraviolet ray irradiation time is determined from the upper limit value of the ultraviolet ray amount. Since the bactericidal effect varies depending on the ultraviolet intensity, the amount of ultraviolet light, the amount of water in the aqueous solution, and the density of the feed organism, even if the measured amount of ultraviolet rays exceeds the above upper limit, the feed organism does not necessarily die. However, in order to kill only harmful bacteria without causing adverse effects of ultraviolet rays on the feed organism, it is desirable to irradiate ultraviolet rays with an ultraviolet ray amount equal to or less than the above upper limit value. In addition, since the sterilization effect depends on the amount of ultraviolet rays, the actual sterilization treatment may be, for example, a batch treatment in which ultraviolet light is applied to an aqueous solution in which food organisms are suspended in a storage container. Real-time processing in which ultraviolet rays are irradiated at a specific position may be used.

本発明の殺菌処理は、紫外線は水溶液の水面直下にしか作用せず、餌料生物自身の活動又は攪拌により水面直下の餌料生物が入れ替わることで、全餌料生物に殺菌作用を働かせる。ここで、餌料生物が自身の活動で入れ替わるということは、紫外線の照射時間の間、餌料生物が生存していることを意味する。この餌料生物の生存には、水溶液における餌料生物の密度が重要であり、一度に殺菌処理できる餌料生物は多いほど好ましいが、前記餌料生物の生存との関係から、餌料生物の密度は次の範囲にすることが望ましい。すなわち、本発明の殺菌処理は、餌料生物がワムシの場合、1万個体/mL〜20万個体/mL、好ましくは3万個体/mL〜15万個体/mLの密度で水溶液に浮遊させ、餌料生物がアルテミアの場合、1千個体/mL〜2万個体/mL、好ましくは3千個体/mL〜1万5千個体/mLの密度で水溶液に浮遊させると、紫外線の照射時間の間、餌料生物を生存させ、かつ餌料生物自身の活動で水面直下の餌料生物を入れ替えることができる。   In the sterilization treatment of the present invention, ultraviolet rays act only directly under the water surface of the aqueous solution, and the bait organisms directly under the water surface are replaced by the activity or agitation of the feed organisms themselves, so that all bait organisms are sterilized. Here, the fact that the feed organism is replaced by its own activity means that the feed organism is alive during the irradiation time of ultraviolet rays. The density of the feed organism in the aqueous solution is important for the survival of the feed organism, and the more the feed organism that can be sterilized at a time, the better. However, from the relationship with the survival of the feed organism, the density of the feed organism is in the following range. It is desirable to make it. That is, when the food organism is a rotifer, the sterilization treatment of the present invention is suspended in an aqueous solution at a density of 10,000 / mL to 200,000 / mL, preferably 30,000 / mL to 150,000 / mL. When the organism is Artemia, if it is suspended in an aqueous solution at a density of 1,000 individuals / mL to 20,000 individuals / mL, preferably 3,000 individuals / mL to 15,000 individuals / mL, food will be used for the duration of UV irradiation. Living organisms can survive, and feed organisms under the surface of the water can be replaced by their own activities.

このように大量の餌料生物を一定の照射時間の間、水溶液中に浮遊させておく必要から、できるだけ自然環境下と同じ状態で紫外線を照射できるように、水溶液は海水、又は浸透圧が海水に略等価な食塩水にするとよい。また、水溶液は餌料生物と共に攪拌することにより、紫外線の照射を受ける水面直下の餌料生物を積極的に入れ替えることができる。このほか、水溶液の攪拌は水溶液に酸素を供給する働きを有している。これから、水溶液を攪拌しながら殺菌処理すれば、無攪拌の状態では生存が難しい高密度状態の餌料生物を、紫外線の照射時間の間は生存させることができる。   Since it is necessary to suspend a large amount of prey organisms in the aqueous solution for a certain irradiation time in this way, the aqueous solution can be exposed to seawater or osmotic pressure to seawater so that ultraviolet rays can be irradiated in the same state as in the natural environment as much as possible. A substantially equivalent saline solution may be used. Further, the aqueous solution can be actively replaced with the feed organism just below the water surface that is irradiated with ultraviolet rays by stirring together with the feed organism. In addition, the stirring of the aqueous solution has a function of supplying oxygen to the aqueous solution. From this, if the aqueous solution is sterilized while stirring, a high-density feed organism that is difficult to survive in an unstirred state can survive during the ultraviolet irradiation period.

以上の本発明の殺菌方法を踏まえ、殺菌装置は次のように構成できる。すなわち、餌料生物が抱える有害細菌を殺菌する殺菌装置であって、餌料生物が浮遊する水溶液を貯える貯留容器、この貯留容器が貯える水溶液の水面に向けて紫外線を照射する紫外線照射部と、前記貯留容器及び紫外線照射部を所定位置関係で保持する装置本体と、紫外線照射部を作動及び停止させる制御部とからなる餌料生物の殺菌装置である。   Based on the above sterilization method of the present invention, the sterilizer can be configured as follows. That is, a sterilization apparatus for sterilizing harmful bacteria held by a feed organism, a storage container for storing an aqueous solution in which the feed organism floats, an ultraviolet irradiation unit for irradiating ultraviolet rays toward the water surface of the aqueous solution stored in the storage container, and the storage It is a bait organism sterilizer comprising a device main body that holds a container and an ultraviolet irradiation unit in a predetermined positional relationship, and a control unit that operates and stops the ultraviolet irradiation unit.

紫外線による殺菌は、既述したように、水面直下の餌料生物にしかもたらされないことから、水溶液の水面の形状を決定する貯留容器の開口形状は広いほど殺菌効率を高くできる。また、一度に処理できる餌料生物が多いほど好ましいが、水深が深すぎると水底付近の餌料生物が水面直下の餌料生物と入れ替わることがなくなる虞れがある。これから、貯留容器は、開口が広く、一度に殺菌処理する水溶液の水深が15cm以下、好ましくは10cm以下に留まる浅皿構造であることが望ましい。具体的には、例えば深さ15cm、内径60cmのタライ状貯留容器を示すことができる。   As described above, sterilization with ultraviolet rays is only brought to the bait organisms just below the water surface, so that the wider the opening shape of the storage container that determines the shape of the water surface of the aqueous solution, the higher the sterilization efficiency. Moreover, it is preferable that there are many food organisms that can be treated at one time. However, if the water depth is too deep, there is a possibility that food organisms near the bottom of the water will not be replaced with food organisms immediately below the water surface. From this, it is desirable that the storage container has a shallow dish structure in which the opening is wide and the depth of the aqueous solution to be sterilized at one time is 15 cm or less, preferably 10 cm or less. Specifically, for example, a talai storage container having a depth of 15 cm and an inner diameter of 60 cm can be shown.

貯留容器は装置本体に固定してもよい。この場合、水溶液の排出部を底面に設けた貯留容器であると、水溶液に浮遊させた餌料生物を水溶液と共に貯留容器に流し込み、殺菌処理を終えた餌料生物を水溶液と共に前記貯留容器の排出部から速やかに排出できる。逆に、装置本体に対して着脱自在とした貯留容器であると、貯留容器への水溶液の流し込み、排出がより容易になる。この場合も、貯留容器は排出部を底面に設けておくとよい。   The storage container may be fixed to the apparatus main body. In this case, if the storage container is provided with a discharge part of the aqueous solution on the bottom surface, the feed organism suspended in the aqueous solution is poured into the storage container together with the aqueous solution, and the feed organism that has been sterilized from the discharge part of the storage container together with the aqueous solution It can be discharged quickly. Conversely, when the storage container is detachable from the apparatus main body, the aqueous solution can be poured into and discharged from the storage container more easily. Also in this case, the storage container may be provided with a discharge part on the bottom surface.

紫外線照射部は、殺菌効果を発揮する紫外線を放射する各種光源を用いることができるが、最も簡便には1又は複数の紫外線ランプから構成する。紫外線ランプは、大きく直管形と電球形とに分けることができる。直管形の紫外線ランプを複数用いる場合、貯留容器が貯える水溶液の水面に覆う範囲で各紫外線ランプの向きを揃えて並べ、前記水面を覆う照射範囲を形成するとよい。また、電球形の紫外線ランプを複数用いる場合、貯留容器が貯える水溶液の水面に覆う範囲で各紫外線ランプを格子状に並べ、同じく水面を覆う照射範囲を形成するとよい。   The ultraviolet irradiation unit can use various light sources that emit ultraviolet rays exhibiting a bactericidal effect, but is most simply composed of one or a plurality of ultraviolet lamps. Ultraviolet lamps can be broadly divided into straight tube types and light bulb types. In the case of using a plurality of straight tube type ultraviolet lamps, it is preferable to form the irradiation range covering the water surface by aligning the directions of the ultraviolet lamps in the range covering the water surface of the aqueous solution stored in the storage container. When a plurality of bulb-shaped ultraviolet lamps are used, the ultraviolet lamps may be arranged in a lattice pattern so as to cover the water surface of the aqueous solution stored in the storage container to form an irradiation range that similarly covers the water surface.

貯留容器に貯えた水溶液の水面直下に存在する餌料生物の入れ替わりを促すには、前記水溶液を攪拌できるとよい。この場合、貯留容器自体に攪拌部を設けることも考えられるが、攪拌部は駆動源及び制御部を有するから、貯留容器に攪拌部を設けることは、装置構成を複雑にしかねない。そこで、装置本体は、貯留容器に向けて垂下させた攪拌部を設け、この攪拌部を作動又は停止させる制御部を設けるとよい。   In order to promote replacement of feed organisms existing just below the surface of the aqueous solution stored in the storage container, the aqueous solution may be stirred. In this case, it is conceivable to provide a stirring unit in the storage container itself. However, since the stirring unit has a drive source and a control unit, providing the stirring unit in the storage container may complicate the apparatus configuration. Therefore, the apparatus main body may be provided with a stirring unit that hangs down toward the storage container, and a control unit that operates or stops the stirring unit.

攪拌部は、貯留容器に貯えた水溶液を攪拌できれば構成を問わず、水溶液に対して何らかの運動を加えることができればよい。しかし、水面に対して直交する運動(上下方向の運動)を加えると、貯留容器から水溶液、そして餌料生物を散逸させる可能性があるため、好ましくは水面に対して平行な運動を加えるとよい。より具体的には、攪拌部は水平旋回する長尺部材からなり、貯留容器に貯えた水溶液に前記長尺部材を没入させ、この水溶液を旋回方向に攪拌する構成が好ましい。   The stirrer is not limited to the configuration as long as it can stir the aqueous solution stored in the storage container, and it is only required to be able to apply some motion to the aqueous solution. However, when a motion perpendicular to the water surface (vertical motion) is applied, the aqueous solution and the feed organism may be dissipated from the storage container. Therefore, it is preferable to apply a motion parallel to the water surface. More specifically, the stirring unit is preferably composed of a long member that rotates horizontally, and the long member is immersed in the aqueous solution stored in the storage container, and the aqueous solution is stirred in the swirling direction.

上記水平旋回する長尺部材からなる攪拌部は、長尺部材が水溶液中を水面と平行に移動することで、水溶液を攪拌する。長尺部材の形状は問わず、例えば棒体であってもよいが、好ましくは羽根構造にする。羽根構造の長尺部材からなる攪拌部は、最大120回転/分以下、好ましくは最大100回転/分以下で旋回させるとよい。また、長尺部材の数も自由であり、複数の長尺部材を用いる場合は各長尺部材の位置関係も自由である。長尺部材の位置関係は、各長尺部材の上下方向の高さと、各長尺部材の周方向の間隔と、各長尺部材の旋回軸からの突出方向とから定まる。   The stirring unit composed of the horizontally swirling long member stirs the aqueous solution as the long member moves in parallel with the water surface in the aqueous solution. The shape of the long member is not limited and may be, for example, a rod, but preferably has a blade structure. The stirring unit made of a long member having a blade structure may be swung at a maximum of 120 revolutions / minute or less, preferably at a maximum of 100 revolutions / minute or less. Moreover, the number of long members is also free, and when using a some long member, the positional relationship of each long member is also free. The positional relationship of the long members is determined by the height in the vertical direction of each long member, the interval in the circumferential direction of each long member, and the protruding direction of each long member from the pivot axis.

攪拌部が貯留容器が貯える水溶液中に没入したままであると、貯留容器に水溶液を流し込む又は排出する作業が面倒である。そこで、攪拌部は、貯留容器に対して昇降自在に装置本体に設け、貯留容器は装置本体に対して着脱自在にするとよい。攪拌部の昇降は、装置本体に着脱自在とした貯留容器の搬入及び搬出を容易にする。実際には、水溶液を溜めた貯留容器は重量物となるため、貯留容器の底部に車輪を設け、装置本体に設けた搬入及び搬出方向のレールを利用して、貯留容器を装置本体に着脱自在にするとよい。   If the stirring unit remains immersed in the aqueous solution stored in the storage container, the operation of pouring or discharging the aqueous solution into the storage container is troublesome. Therefore, it is preferable that the stirring unit is provided in the apparatus main body so as to be movable up and down relative to the storage container, and the storage container is detachable from the apparatus main body. The raising and lowering of the agitating unit facilitates the carrying-in and carrying-out of the storage container that is detachable from the apparatus main body. Actually, since the storage container storing the aqueous solution is heavy, a wheel is provided at the bottom of the storage container, and the storage container can be attached to and detached from the apparatus body using rails in the loading and unloading directions provided in the apparatus body. It is good to make it.

本発明の殺菌装置は、餌料生物が抱える有害細菌を殺菌できればよく、前記殺菌処理は開放された環境下でも、閉鎖された環境下で実施されても構わない。これから、装置本体は、殺菌処理中の紫外線強度が変化しないように、貯留容器に対して紫外線照射部を、又は紫外線照射部に対して貯留容器を所定位置関係に保持する枠体から構成することもできる。しかし、紫外線は人体に対しても影響を及ぼす可能性があるため、装置本体は閉鎖された環境として扉を有する密閉箱体とし、この装置本体内に貯留容器及び紫外線照射部を内蔵した構成にすることが望ましい。   The sterilization apparatus of the present invention only needs to be able to sterilize harmful bacteria possessed by feed organisms, and the sterilization treatment may be performed in an open environment or a closed environment. From now on, the apparatus main body is configured from an ultraviolet irradiation unit with respect to the storage container or a frame body that holds the storage container in a predetermined positional relationship with respect to the ultraviolet irradiation unit so that the ultraviolet intensity during the sterilization treatment does not change. You can also. However, since ultraviolet rays may also affect the human body, the device body is a closed box with a door as a closed environment, and a storage container and an ultraviolet irradiation unit are built in the device body. It is desirable to do.

この閉鎖された環境の装置本体は、貯留容器に向けて垂下させた攪拌部を内蔵し、この攪拌部を作動又は停止させる制御部を設けるとよい。この攪拌部は、上述同様、水平旋回する長尺部材から構成し、貯留容器は前記攪拌部の長尺部材の最外径より大きな内径を有する有底円筒であればよい。この場合、攪拌部は貯留容器に対して昇降自在に装置本体に設け、貯留容器は装置本体に対して着脱自在とする。   The apparatus body in the closed environment may include a stirring unit that hangs down toward the storage container, and a control unit that operates or stops the stirring unit. As described above, the stirring unit is composed of a long member that rotates horizontally, and the storage container may be a bottomed cylinder having an inner diameter larger than the outermost diameter of the long member of the stirring unit. In this case, the stirring unit is provided in the apparatus main body so as to be movable up and down with respect to the storage container, and the storage container is detachable from the apparatus main body.

本発明により、自然環境下で養殖した餌料生物を、魚介類の種苗に与える寸前に殺菌できるようになる。本発明の殺菌方法は、薬剤を用いた殺菌処理と同等な有害細菌を1/10〜1/1000にする殺菌効果を挙げることができるが、殺菌剤のように餌料生物に残存し、魚介類の種苗にまで影響を及ぼす虞れがない。しかも、本発明の殺菌方法は比較的簡単であるため、例えば既存の紫外線ランプを照射する態様で実施できる。このように、本発明は、有効な殺菌効果を安全かつ簡易に実現する餌料生物の殺菌方法を提供する。更に、紫外線を用いる本発明の殺菌処理では、薬剤を用いた殺菌処理に比べ、有害細菌が再び増殖するまでの時間が長い、すなわち殺菌効果の持続性もある。   According to the present invention, it is possible to sterilize food organisms cultivated in a natural environment on the verge of giving them to seafood seedlings. The sterilization method of the present invention can have a bactericidal effect that makes harmful bacteria equivalent to 1/10 to 1/1000 equivalent to a sterilization treatment using a drug, but remains in a feed organism like a bactericide, There is no risk of affecting the seedlings. Moreover, since the sterilization method of the present invention is relatively simple, it can be implemented, for example, by irradiating an existing ultraviolet lamp. Thus, the present invention provides a method for sterilizing a feed organism that realizes an effective sterilization effect safely and easily. Furthermore, in the sterilization treatment of the present invention using ultraviolet rays, the time until harmful bacteria grow again is longer than the sterilization treatment using a drug, that is, the sterilization effect is sustained.

本発明の殺菌装置は、上記殺菌方法をより効率的に実施するための専用装置を提供する。特に、餌料生物を殺すことなく有害細菌だけを殺すことに適切な紫外線強度及び紫外線量の設定を容易にする。これにより、自然環境下で養殖した餌料生物を、魚介類の種苗に与える寸前に容易かつ大量に殺菌できるようになる。このように、本発明は、有効な殺菌効果のみならず、この殺菌効果を実現しながら実用的に使用し得る殺菌装置を提供する効果を有する。   The sterilization apparatus of the present invention provides a dedicated apparatus for more efficiently performing the sterilization method. In particular, it facilitates the setting of the UV intensity and the UV dose appropriate for killing only harmful bacteria without killing the feed organism. This makes it possible to sterilize food organisms cultivated in a natural environment easily and in large quantities immediately before feeding them to seafood seedlings. Thus, the present invention has an effect of providing not only an effective sterilizing effect but also a sterilizing apparatus that can be used practically while realizing this sterilizing effect.

以下、本発明の実施形態である殺菌装置の一例について図を参照しながら説明する。図1は本発明に基づく殺菌装置1の一例を表す正面図、図2は同殺菌装置1の側面図、図3は同殺菌装置1の平面図、図4は攪拌部13による水溶液121を攪拌する状態を表した要部抜粋斜視図であり、そして図5及び図6はそれぞれ別例の攪拌部23,33による水溶液121を攪拌する状態を表した図4相当斜視図である。説明の便宜上、図1では扉111の図示を、図2では側板112の図示をそれぞれ省略している。   Hereinafter, an example of a sterilizer according to an embodiment of the present invention will be described with reference to the drawings. 1 is a front view showing an example of a sterilizer 1 according to the present invention, FIG. 2 is a side view of the sterilizer 1, FIG. 3 is a plan view of the sterilizer 1, and FIG. FIG. 5 and FIG. 6 are perspective views corresponding to FIG. 4 showing a state in which the aqueous solution 121 is stirred by the stirring units 23 and 33 of different examples. For convenience of explanation, the illustration of the door 111 is omitted in FIG. 1, and the illustration of the side plate 112 is omitted in FIG.

本例の殺菌装置1は、図1〜図3に見られるように、略密閉された装置本体11に収めた貯留容器12に、上方から紫外線照射部14により紫外線を照射する構成である。このほか、装置本体11は、下部に支持枠15を構成し、この支持枠15に設けたストッパ付きキャスタ151によって移動自在にしている。本例では、後述するように、貯留容器12は装置本体11から前方へ突出するレール113に従って出し入れする。支持枠15は、装置本体11の位置を高くして、貯留容器12をレール113に載せやすくする。   The sterilizer 1 of this example is a structure which irradiates the storage container 12 accommodated in the substantially sealed apparatus main body 11 by the ultraviolet irradiation part 14 from the upper direction as seen in FIGS. In addition, the apparatus main body 11 includes a support frame 15 in the lower part, and is movable by a caster 151 with a stopper provided on the support frame 15. In this example, as will be described later, the storage container 12 is taken in and out according to a rail 113 protruding forward from the apparatus main body 11. The support frame 15 increases the position of the apparatus main body 11 to make it easier to place the storage container 12 on the rail 113.

装置本体11は、ステンレス鋼板製の直方体状の箱であり、前面に跳ね上げ式の扉111を設けている。扉111には、内部観察用のアクリル小窓114と、開閉を助ける取手115とを設けている。本例が殺菌に使用する紫外線は、後述するように、紫外線ランプ141から照射される波長253.7nmのC領域紫外線であり、人体に対して危険であるから、装置本体11は紫外線放射範囲を囲む略密閉構造が好ましい。前記C領域紫外線は、可視光が透過する素材であっても急激に減衰するため、内部観察程度のアクリル小窓114では外部に紫外線が漏れ出すことはない。この内部観察用のアクリル小窓114は、側板112にも設けてある。装置本体11の上板116は、攪拌部13の駆動部131と、紫外線照射部14及び攪拌部13の制御部16を設けている。   The apparatus main body 11 is a rectangular parallelepiped box made of stainless steel plate, and a flip-up type door 111 is provided on the front surface. The door 111 is provided with an acrylic small window 114 for internal observation and a handle 115 that assists opening and closing. The ultraviolet rays used for sterilization in this example are C region ultraviolet rays having a wavelength of 253.7 nm emitted from the ultraviolet lamp 141 as will be described later, and are dangerous to the human body. Therefore, the apparatus main body 11 surrounds the ultraviolet radiation range. A substantially sealed structure is preferred. The C region ultraviolet rays are rapidly attenuated even if the material transmits visible light. Therefore, the ultraviolet rays do not leak to the outside through the acrylic small window 114 of the internal observation level. The internal observation acrylic window 114 is also provided on the side plate 112. The upper plate 116 of the apparatus main body 11 is provided with a drive unit 131 of the stirring unit 13, an ultraviolet irradiation unit 14, and a control unit 16 of the stirring unit 13.

紫外線照射部14は、ステンレス鋼板製の反射板142を備えた4基の紫外線ランプ141から構成している。装置本体11が、幅約80cm×奥行き約70cmの水平断面であれば、紫外線ランプ141に20W型の汎用品を用いると、図示のように4本〜6本を並べることができ、前記水平断面全域を略均一な照射平面に近似できる。   The ultraviolet irradiation unit 14 includes four ultraviolet lamps 141 provided with a reflector 142 made of a stainless steel plate. If the main body 11 has a horizontal section of about 80 cm in width and about 70 cm in depth, if a 20W general-purpose product is used for the ultraviolet lamp 141, four to six pieces can be arranged as shown in the figure. The entire area can be approximated to a substantially uniform irradiation plane.

反射板142は、紫外線ランプ141から照射される紫外線のうち、上方に向けて照射される紫外線を反射して、貯留容器12が貯える水溶液121の水面122に向けた紫外線量を増やす働きを有している。このため、本例のように、各紫外線ランプ毎に個別の反射板を設けるほか、紫外線ランプ全体に対して1基の反射板を設けてもよし、最も外側に位置する紫外線ランプにはより内向きに曲げた反射板を用いてもよい。   The reflection plate 142 has a function of reflecting the ultraviolet ray irradiated upward from the ultraviolet ray emitted from the ultraviolet lamp 141 and increasing the amount of ultraviolet ray toward the water surface 122 of the aqueous solution 121 stored in the storage container 12. ing. For this reason, as in this example, in addition to providing an individual reflector for each ultraviolet lamp, one reflector may be provided for the entire ultraviolet lamp. A reflector bent in the direction may be used.

全紫外線ランプ141は、装置本体11の水平断面に略等しい平面視外形を有するステンレス鋼板製の基準板17の下面に略等間隔で並べて取り付け、この基準板17を高さ調節自在に装置本体11の上板116の内面から吊り下げることで、各紫外線ランプ141から貯留容器12が貯える水溶液121の水面122までの距離を調節する。本例では、長孔171を設けた基部ブラケット172を装置本体11の上板116の内面から垂下し、この基部ブラケット172の長孔171の任意の位置に蝶ネジ173で締着する吊りブラケット174により基準板17を吊り下げている。これにより、基部ブラケット172に対する吊りブラケット174の締着位置を変更すれば、基準板17の高さ、ひいては紫外線ランプ141の高さが調節できる。   The all ultraviolet lamps 141 are mounted on the lower surface of a reference plate 17 made of stainless steel plate having a plan view outer shape substantially equal to the horizontal cross section of the apparatus main body 11, arranged at substantially equal intervals, and the reference plate 17 can be adjusted in height. By suspending from the inner surface of the upper plate 116, the distance from each ultraviolet lamp 141 to the water surface 122 of the aqueous solution 121 stored in the storage container 12 is adjusted. In this example, a base bracket 172 provided with a long hole 171 is suspended from the inner surface of the upper plate 116 of the apparatus main body 11, and a suspension bracket 174 is fastened with a thumbscrew 173 to an arbitrary position of the long hole 171 of the base bracket 172. Due to this, the reference plate 17 is suspended. Accordingly, if the fastening position of the suspension bracket 174 with respect to the base bracket 172 is changed, the height of the reference plate 17, and consequently the height of the ultraviolet lamp 141 can be adjusted.

紫外線ランプ141の高さは、装置本体11に収めた貯留容器12との距離であり、貯留容器12が貯える水溶液121の水面122における紫外線強度を決定する。これから、一度高さ調節を終えた紫外線ランプ141の高さを調節し直す必要は少なく、むしろ殺菌処理中は紫外線強度が変化しないように、紫外線ランプ141の高さは固定されることが望ましい。仮に、殺菌処理中に紫外線強度を変化させたい場合は、紫外線ランプ自体の照射強度を調節するとよい。こうした紫外線ランプの照射強度の調節は、制御部による紫外線ランプへの印加電圧の調節で実現できる。   The height of the ultraviolet lamp 141 is the distance from the storage container 12 housed in the apparatus main body 11, and determines the ultraviolet intensity at the water surface 122 of the aqueous solution 121 stored in the storage container 12. Therefore, it is not necessary to readjust the height of the ultraviolet lamp 141 once the height adjustment has been completed, and it is desirable that the height of the ultraviolet lamp 141 is fixed so that the ultraviolet intensity does not change during the sterilization process. If it is desired to change the ultraviolet intensity during the sterilization treatment, the irradiation intensity of the ultraviolet lamp itself may be adjusted. Such adjustment of the irradiation intensity of the ultraviolet lamp can be realized by adjusting the voltage applied to the ultraviolet lamp by the control unit.

貯留容器12は、平面視円形で、開口縁には持ち運び用の取手123を点対称に一対設け、底面124には平行に4基の樹脂製車輪125を取り付けている。本例は、開口の直径を60cm、一度に殺菌処理する水溶液121の水深が10cm以下に留まるように深さ15cmとしたタライ状貯留容器12を図示している。装置本体11は、前記車輪125に対応するレール113を扉111の下縁に沿って前方へ突出しており、貯留容器12は前記レール113に車輪125を載せて装置本体11に容易に出し入れできる。貯留容器を装置本体内に固定する場合、前記レールは必要ない。また、貯留容器12の底面124は、中心に向けて下り勾配を有するすり鉢状とし、前記中心に排出コックを排出部126として設けている。殺菌処理を終えた餌料生物は、水溶液121と共に排出部126から排出し、回収する。   The storage container 12 has a circular shape in plan view, and a pair of carrying handles 123 are provided symmetrically on the opening edge, and four resin wheels 125 are attached to the bottom surface 124 in parallel. This example illustrates a talai-like storage container 12 having an opening diameter of 60 cm and a depth of 15 cm so that the water depth of the aqueous solution 121 to be sterilized at one time is 10 cm or less. The apparatus main body 11 has a rail 113 corresponding to the wheel 125 protruding forward along the lower edge of the door 111, and the storage container 12 can be easily put in and out of the apparatus main body 11 with the wheel 125 mounted on the rail 113. When the storage container is fixed in the apparatus main body, the rail is not necessary. Further, the bottom surface 124 of the storage container 12 is formed in a mortar shape having a downward slope toward the center, and a discharge cock is provided as a discharge portion 126 at the center. The feed organism that has been sterilized is discharged from the discharge section 126 together with the aqueous solution 121 and collected.

貯留容器12を載せる装置本体11のレール113は、貯留容器12の車輪125に前方から係合する脱落防止突起117を先端に、貯留容器12の車輪125に後方から係合する位置決め突起118を装置本体11内の特定位置に、それぞれ設けている。本例は、更に、車輪125が位置決め突起118に当たった状態で貯留容器12を位置固定するため、貯留容器12の中心を挟んで位置決め突起118と反対位置に、固定レバー18を装置本体11に設けている。固定レバー18は、装置本体11の底面119から立設した基部181と、この基部181に軸着して起立及び傾倒自在なL字状のレバー板182からなる。このレバー板182は、図2に見られる傾倒状態でレール113に従った貯留容器12の移動を妨げず、図1に見られる起立状態で装置本体11に搬入した貯留容器12の外面に当たり、位置決め突起118と共に貯留容器12を挟持して、位置固定する。この貯留容器12の位置固定は、攪拌部13の作動により攪拌される水溶液121の運動によって貯留容器12が位置ずれすることを防止する。   The rail 113 of the apparatus main body 11 on which the storage container 12 is placed has a drop-off prevention protrusion 117 that engages with the wheel 125 of the storage container 12 from the front, and a positioning protrusion 118 that engages with the wheel 125 of the storage container 12 from the rear. They are provided at specific positions in the main body 11, respectively. Furthermore, in this example, in order to fix the position of the storage container 12 with the wheel 125 hitting the positioning protrusion 118, the fixing lever 18 is attached to the apparatus main body 11 at a position opposite to the positioning protrusion 118 across the center of the storage container 12. Provided. The fixed lever 18 includes a base portion 181 erected from the bottom surface 119 of the apparatus main body 11 and an L-shaped lever plate 182 that is pivotally attached to the base portion 181 and can be raised and tilted. This lever plate 182 does not hinder the movement of the storage container 12 according to the rail 113 in the tilted state shown in FIG. 2, and hits the outer surface of the storage container 12 carried into the apparatus main body 11 in the standing state shown in FIG. The storage container 12 is clamped together with the protrusion 118 to fix the position. The fixed position of the storage container 12 prevents the storage container 12 from being displaced due to the movement of the aqueous solution 121 stirred by the operation of the stirring unit 13.

攪拌部13は、装置本体11に収めた貯留容器12に対し、上方から下降し、貯留容器12が貯える水溶液121中に没してこの水溶液121を旋回によって攪拌する。本例の攪拌部13は、装置本体11の上板116に設けた駆動部131から上板116、そして基準板17を貫通して垂下する回転軸132から点対称に突出した一対の長尺部材である羽根133からなる。この攪拌部13は、例えば図4に見られるように、水溶液121を水面122から水底に向けて押し下げる仰角の羽根133を左旋回させる。貯留容器12が貯える水溶液121は、水中で運動する羽根133によって攪拌されるほか、前記羽根133が引き起こす水面122から水底に向けての押し下げによっても攪拌される。これにより、水溶液121に浮遊する餌料生物も攪拌され、特に水面直下の餌料生物の入れ替わりが促される。   The agitating unit 13 descends from above with respect to the storage container 12 housed in the apparatus main body 11 and is immersed in the aqueous solution 121 stored in the storage container 12 to stir the aqueous solution 121 by swirling. The stirring unit 13 of this example is a pair of long members that project point-symmetrically from a rotating shaft 132 that passes through the upper plate 116 and the reference plate 17 from the driving unit 131 provided on the upper plate 116 of the apparatus main body 11. It consists of the feather 133 which is. For example, as shown in FIG. 4, the stirring unit 13 turns the blade 133 at an elevation angle to push the aqueous solution 121 downward from the water surface 122 toward the bottom of the water. The aqueous solution 121 stored in the storage container 12 is agitated not only by the blade 133 moving in the water but also by being pushed down from the water surface 122 to the water bottom caused by the blade 133. As a result, the feed organism floating in the aqueous solution 121 is also agitated, and in particular, the replacement of the feed organism just below the water surface is promoted.

ここで、羽根133等の長尺部材からなる攪拌部13が水平に旋回すると、長尺部材の先端の軌跡は円形となり、例えば貯留容器が平面視四角形であると、各角部に澱みが生ずる虞れがある。これから、羽根133等の長尺部材を水平旋回させる攪拌部13に対しては、本例のように外形が円形であるタライ状貯留容器12が好ましく、外形が平面視多角形の場合は、内角が90度より大きな5角形以上とする。   Here, when the stirring unit 13 made of a long member such as the blade 133 turns horizontally, the locus of the tip of the long member becomes circular. For example, if the storage container is square in plan view, stagnation occurs at each corner. There is a fear. From this, for the stirring unit 13 that horizontally swivels the long member such as the blade 133, the talai-shaped storage container 12 having a circular outer shape as in this example is preferable, and when the outer shape is a polygon in plan view, Is a pentagon or larger than 90 degrees.

駆動部131は電動モータであり、装置本体11の上板116に立設した案内シャフト134に従って昇降自在なテーブル135に取り付けている。駆動部131の作動又は停止や出力する回転数の制御は、同じく装置本体11の上板に設けた制御部16による。駆動部131が出力する回転数は、水溶液121の水深や攪拌部13の最大外径により適宜設定できるように幅のあることが望ましく、例えば外径約40cmとなる一対の羽根133からなる攪拌部13の場合、最大100回転/分させる回転数を出力できるとよい。前記最大回転数は、攪拌部の仕様、貯留容器に溜めた水溶液の量、そして餌料生物の密度の関係から、攪拌中に水溶液が貯留容器から飛散しない限度で決定する。   The drive unit 131 is an electric motor, and is attached to a table 135 that can be raised and lowered according to a guide shaft 134 erected on the upper plate 116 of the apparatus body 11. The operation of the drive unit 131 or the stop and control of the output rotation speed are also performed by the control unit 16 provided on the upper plate of the apparatus main body 11. The number of rotations output by the drive unit 131 is desirably wide so that it can be set as appropriate depending on the water depth of the aqueous solution 121 and the maximum outer diameter of the stirring unit 13, for example, a stirring unit comprising a pair of blades 133 having an outer diameter of about 40 cm In the case of 13, it is good to be able to output the number of rotations at a maximum of 100 rpm. The maximum number of revolutions is determined as long as the aqueous solution does not scatter from the storage container during the stirring, based on the specifications of the stirring unit, the amount of the aqueous solution stored in the storage container, and the density of the feed organism.

駆動部131を支持するテーブル135は、ハンドル136を設けたボールネジ137を螺合させており、前記ハンドル136の操作によりボールネジ137に対して昇降する。すなわち、ハンドル136の操作により駆動部131を昇降させ、駆動部131と回転軸132で結ばれた攪拌部13を昇降させることができる。この攪拌部131の昇降により、貯留容器12を装置本体11に搬入する際、攪拌部13を上方へ待避させることができる。攪拌部の昇降は、例えばボールネジを電動モータにより駆動し、自動化することもできる。   A table 135 that supports the drive unit 131 is screwed with a ball screw 137 provided with a handle 136, and moves up and down with respect to the ball screw 137 by operating the handle 136. That is, by operating the handle 136, the drive unit 131 can be moved up and down, and the stirring unit 13 connected by the drive unit 131 and the rotating shaft 132 can be moved up and down. By raising and lowering the stirring unit 131, the stirring unit 13 can be retracted upward when the storage container 12 is carried into the apparatus main body 11. The raising and lowering of the stirring unit can be automated by driving a ball screw with an electric motor, for example.

本例の攪拌部13は、点対称に突出した一対の羽根133から構成しているが、別段揚力を生み出すことが目的ではなく、水溶液121を攪拌できればよいため、羽根の枚数は自由である。例えば1枚の羽根で攪拌部を構成してもよいし、図5に見られるように、周方向等間隔に突出する4枚の羽根231から攪拌部を構成してもよい。また、本発明の攪拌部は、水溶液中を運動する物体であれば、水溶液を攪拌し、水面直下の餌料生物の入れ替わりを促すことができる。これから、図6に見られるように、羽根に代えて点対称に突出する一対の棒331から攪拌部33を構成してもよい。   The stirring unit 13 of the present example is composed of a pair of blades 133 projecting point-symmetrically. However, the purpose is not to generate a separate lifting force, and the number of blades is arbitrary as long as the aqueous solution 121 can be stirred. For example, the stirring unit may be configured with one blade, or as illustrated in FIG. 5, the stirring unit may be configured with four blades 231 protruding at equal intervals in the circumferential direction. Moreover, if the stirring part of this invention is an object which moves in the aqueous solution, it can stir the aqueous solution and can promote the replacement of food organisms immediately below the water surface. From this point, as shown in FIG. 6, the stirring unit 33 may be constituted by a pair of rods 331 protruding symmetrically in place of the blades.

本例の殺菌装置1に従って、殺菌処理の手順について説明する。まず、餌料生物を浮遊させた水溶液(海水)121を満たした貯留容器12を、扉111を持ち上げて開いた装置本体11のレール113に載せる。予めレール113上に載せた貯留容器12に、別の容器から水溶液121を投入してもよい。この段階では、ハンドル136の操作により駆動部131を上昇させ、攪拌部13を紫外線照射部14近傍に待避させておく。これから、装置本体11内には何ら障害物がないため、貯留容器12を押し込むように装置本体11に搬入できる。そして、貯留容器12の車輪125が位置決め突起118に当たった段階で、固定レバー18のレバー板182を起こして貯留容器12を位置固定し、その後扉111を閉じ、攪拌部13を降ろして貯留容器12が貯える水溶液121中に没入させる。このとき、貯留容器12と攪拌部13とが完全に同心とならなくても構わないが、本例ではレール113上の位置決め突起118に車輪125を当てることにより、攪拌部13と貯留容器12との同心が確保されている。これにより、攪拌部13による水溶液121の攪拌に偏りが生じず、貯留容器12全体にわたって水溶液121の攪拌ができる。   The procedure of the sterilization process will be described according to the sterilization apparatus 1 of this example. First, the storage container 12 filled with the aqueous solution (seawater) 121 in which the feed organism is suspended is placed on the rail 113 of the apparatus main body 11 opened by lifting the door 111. The aqueous solution 121 may be put into the storage container 12 previously placed on the rail 113 from another container. At this stage, the drive unit 131 is raised by operating the handle 136, and the stirring unit 13 is retracted in the vicinity of the ultraviolet irradiation unit 14. Since there is no obstacle in the apparatus main body 11, the storage container 12 can be loaded into the apparatus main body 11 so as to be pushed in. Then, when the wheel 125 of the storage container 12 hits the positioning protrusion 118, the lever plate 182 of the fixing lever 18 is raised to fix the position of the storage container 12, and then the door 111 is closed, the stirring unit 13 is lowered, and the storage container is lowered. Immerse in the aqueous solution 121 in which 12 is stored. At this time, the storage container 12 and the stirring unit 13 may not be completely concentric, but in this example, by applying the wheel 125 to the positioning projection 118 on the rail 113, the stirring unit 13 and the storage container 12 Are concentric. Thereby, the stirring of the aqueous solution 121 by the stirring unit 13 is not biased, and the aqueous solution 121 can be stirred over the entire storage container 12.

扉111を閉じて攪拌部13を貯留容器12の水溶液121中に没入させれば、次に紫外線照射部14を作動させ、併せて攪拌部13を水平旋回させて、殺菌処理を始める。紫外線照射部14及び攪拌部13は独立して作動又は停止させても、一体に作動又は停止させてもよい。紫外線照射部14又は攪拌部13の作動時間は、それぞれタイマーにより設定できるようにするとよい。ここで、紫外線照射部14は、殺菌処理の処理時間の間だけ作動すればよく、むしろ過剰な紫外線照射をしないため、所定の処理時間経過後タイマーにより自動的に停止できることが望ましい。これに対し、攪拌部13は、水面直下の餌料生物を入れ替える働きのほか、水溶液121中に酸素を取り込み、高密度状態にある餌料生物が死ぬ虞れを防止する働きもあるため、紫外線照射部14の停止後も作動する方が好ましい。これから、紫外線照射部14及び攪拌部13は同時に作動させてもよいが、紫外線照射部14をタイマーにより停止させた後も、攪拌部13は停止させずに、貯留容器12を取り出すまでは作動させておくとよい。   If the door 111 is closed and the stirring unit 13 is immersed in the aqueous solution 121 of the storage container 12, then the ultraviolet irradiation unit 14 is operated, and the stirring unit 13 is swung horizontally to start sterilization. The ultraviolet irradiation unit 14 and the stirring unit 13 may be operated or stopped independently, or may be operated or stopped integrally. The operation time of the ultraviolet irradiation unit 14 or the stirring unit 13 may be set by a timer. Here, the ultraviolet irradiation unit 14 only needs to operate during the processing time of the sterilization process, but rather does not perform excessive ultraviolet irradiation, so it is desirable that it can be automatically stopped by a timer after a predetermined processing time has elapsed. On the other hand, the stirring unit 13 has the function of replacing the feed organisms directly below the water surface, and also has the function of taking oxygen into the aqueous solution 121 and preventing the death of the feed organisms in a high density state. It is preferable to operate after 14 stops. From this point, the ultraviolet irradiation unit 14 and the stirring unit 13 may be operated at the same time, but after the ultraviolet irradiation unit 14 is stopped by the timer, the stirring unit 13 is not stopped until the storage container 12 is taken out. It is good to keep.

餌料生物を殺さず、有害細菌のみを殺すのに適切な紫外線強度は、紫外線照射部14から貯留容器12に貯えた水溶液121の水面122までの距離、餌料生物に悪影響を及ぼさない紫外線量は前記紫外線強度の照射時間により決定される。紫外線強度は、殺菌装置の使用に先立って、貯留容器12の水面122に相当する高さで測定し、適切な強度となるように紫外線照射部14の高さを予め調節しておくとよい。ここで、貯留容器12に貯える水溶液121の量を増減すると、結果として水面122の高さが変化し、実際の殺菌処理における紫外線強度を微調節することもできる。紫外線量は、紫外線の照射時間から演繹的に算出できる。こうして決定された照射時間に従い、紫外線照射部14はタイマーに従って所定時間だけ紫外線を照射する。   The UV intensity suitable for killing only harmful bacteria without killing the feed organism is the distance from the UV irradiation unit 14 to the water surface 122 of the aqueous solution 121 stored in the storage container 12, and the UV amount that does not adversely affect the feed organism It is determined by the irradiation time of ultraviolet intensity. Prior to the use of the sterilizer, the ultraviolet intensity is measured at a height corresponding to the water surface 122 of the storage container 12, and the height of the ultraviolet irradiation unit 14 may be adjusted in advance so as to obtain an appropriate intensity. Here, when the amount of the aqueous solution 121 stored in the storage container 12 is increased or decreased, the height of the water surface 122 changes as a result, and the ultraviolet intensity in the actual sterilization treatment can be finely adjusted. The amount of ultraviolet rays can be calculated a priori from the irradiation time of ultraviolet rays. According to the irradiation time determined in this way, the ultraviolet irradiation unit 14 irradiates ultraviolet rays for a predetermined time according to a timer.

タイマーにより、所定の作動時間経過後に制御部16が紫外線照射部14を停止させると、殺菌処理が終了する。この殺菌処理の終了は、例えば制御部16に設けた紫外線照射部14の作動ランプの消灯や停止ランプの点灯のほか、扉111又は側板112に設けたアクリル小窓114から装置本体11内の紫外線ランプ141の消灯を見ることで、確認できる。攪拌部13は、餌料生物の回収まで酸素の供給を継続するために作動させておくとよい。後述するように、本発明に基づく殺菌処理では、有害細菌が再び増殖するまでの時間が長い、すなわち殺菌効果の持続時間が長いため、殺菌処理後直ちに餌料生物を回収する必要がない。これは、殺菌処理に作業者を付きっきりにしなくて済む利点である。   When the control unit 16 stops the ultraviolet irradiation unit 14 after a predetermined operating time has elapsed by the timer, the sterilization process ends. The end of this sterilization process is, for example, turning off the operation lamp of the ultraviolet irradiation unit 14 provided in the control unit 16 or turning on the stop lamp, as well as the ultraviolet rays in the apparatus body 11 from the acrylic small window 114 provided in the door 111 or the side plate 112. This can be confirmed by watching the lamp 141 turn off. The agitation unit 13 is preferably operated in order to continue supplying oxygen until the feed organism is recovered. As will be described later, in the sterilization treatment according to the present invention, it is not necessary to collect the feed organism immediately after the sterilization treatment because the time until the harmful bacteria grow again is long, that is, the duration of the sterilization effect is long. This is an advantage in that it is not necessary to keep an operator involved in the sterilization process.

餌料生物は、まず攪拌部13を停止させ、今度はハンドル136の操作により攪拌部13を上昇させて貯留容器12から待避させた後、扉111を開いて搬出した貯留容器12から回収する。本例の貯留容器12は、底面124に排出部126として排出コックを設けているので、例えばレール113上に引き出した貯留容器12から、直接別の容器へと排出部から水溶液と共に餌料生物を回収してもよい。これは、貯留容器を交換することなく、繰り返し使用する場合である。また、貯留容器12をそのまま運び出し、餌料生物を回収してもよい。これは、貯留容器が複数あり、先の殺菌処理が終了すれば直ちに次の殺菌処理を実施する場合に適している。   The feed organism first stops the agitation unit 13 and then raises the agitation unit 13 by operating the handle 136 to retract from the storage container 12, and then collects it from the storage container 12 that has been opened by opening the door 111. Since the storage container 12 of this example is provided with a discharge cock as the discharge part 126 on the bottom surface 124, for example, from the storage container 12 pulled out on the rail 113, the feed organism is collected together with the aqueous solution from the discharge part to another container. May be. This is a case where the storage container is used repeatedly without replacement. Further, the storage container 12 may be carried out as it is to collect the feed organism. This is suitable for a case where there are a plurality of storage containers and the next sterilization process is performed immediately after the previous sterilization process is completed.

本例の殺菌装置で一度に殺菌処理できる量は、水溶液の量と餌料生物の密度とにより決定される。例えば、直径60cm×深さ15cmの上記タライ状貯留容器12に、水深10cmの水溶液121を溜め、餌料生物としてワムシを10万個体/mLの密度で前記水溶液121中に浮遊させた場合、(水溶液の量:30cm×30cm×π×10cm=28274mL)×(ワムシの密度=10万個体/mL)=28億2740万個体、すなわち約30億個体について、有害細菌を1/10〜1/1000程度に減らす殺菌処理を施すことができる。これは、小中規模の養殖場で1日に必要なワムシの量に匹敵する。   The amount that can be sterilized at once by the sterilization apparatus of this example is determined by the amount of the aqueous solution and the density of the feed organism. For example, when the aqueous solution 121 having a depth of 10 cm is stored in the above-mentioned talai-shaped storage container 12 having a diameter of 60 cm and a depth of 15 cm, rotifers as a feed organism are suspended in the aqueous solution 121 at a density of 100,000 individuals / mL. Quantity: 30cm x 30cm x π x 10cm = 28274mL) x (Rotifer density = 100,000 individuals / mL) = 2,827.4 million individuals, ie about 3 billion individuals, about 1/10 to 1/1000 harmful bacteria Can be sterilized. This is comparable to the amount of rotifer needed per day in small to medium sized farms.

本発明による餌料生物の殺菌処理の有効性を確認するため、代表的な餌料生物としてワムシについて、次に挙げる実験を実施した。   In order to confirm the effectiveness of the sterilization treatment of the feed organism according to the present invention, the following experiment was conducted on a rotifer as a typical feed organism.

実験1:ワムシに対する紫外線の影響
紫外線を照射することにより、ワムシ自身が殺されてしまっては意味がないため、まずワムシにどの程度紫外線が照射されれば、ワムシが死んでしまうかについて、すなわち紫外線量の上限値について確認した。実験条件は、次の通りである。貯留容器である内径90mmのプラスチック製浅型シャーレに、水溶液である海水(水温20℃)を水深3mmで満たし、この水溶液にワムシを100個体/mLの密度で浮遊させた。水溶液の水深は、ワムシ自身の活動が十分に保証され、水面直下のワムシが入れ替わることのできる深さである。この実験1では、水溶液は攪拌していない。
Experiment 1: Effect of ultraviolet rays on rotifers It is meaningless if rotifers themselves are killed by irradiating them with ultraviolet rays. First, how much ultraviolet rays are irradiated to rotifers, It confirmed about the upper limit of the amount of ultraviolet rays. The experimental conditions are as follows. A plastic shallow petri dish with an inner diameter of 90 mm, which is a storage container, was filled with seawater (water temperature 20 ° C.) as an aqueous solution at a depth of 3 mm, and rotifers were suspended in this aqueous solution at a density of 100 individuals / mL. The water depth of the aqueous solution is a depth at which the activity of the rotifer itself is sufficiently guaranteed and the rotifer just below the water surface can be replaced. In Experiment 1, the aqueous solution was not stirred.

紫外線は、15W型紫外線ランプ(東芝製CL-15)を2本用い、前記水溶液の水面までの距離を19.5cmに設定している。この紫外線ランプはC領域紫外線を照射し、水溶液の水面における紫外線強度は65.1mW/cm2であった。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。 As the ultraviolet rays, two 15W ultraviolet lamps (CL-15 manufactured by Toshiba) were used, and the distance to the water surface of the aqueous solution was set to 19.5 cm. This ultraviolet lamp was irradiated with C region ultraviolet rays, and the ultraviolet intensity at the water surface of the aqueous solution was 65.1 mW / cm 2 . The ultraviolet intensity is a value measured with an ultraviolet intensity meter (UVR-254, manufactured by Tokyo Optical Machinery Co., Ltd.) at a position away from the ultraviolet lamp in accordance with the distance from the ultraviolet lamp to the water surface.

ワムシに対する紫外線の影響は、紫外線の照射開始からのワムシの観察による。紫外線照射開始後から2分が経過するまではわずかに死んだワムシが見られたものの、生存するワムシ自体の活動は紫外線照射開始直後と変わらなかった。ここで、ワムシの死亡は、水溶液中の酸素濃度等も関係するため、紫外線の影響と断定することはできない。しかし、紫外線照射開始後から3分が経過するに至り、活動するワムシの数が激減し、目視によればおよそ8割が死亡が確認された。これは、明らかに紫外線照射の影響と考えられる。   The effect of ultraviolet rays on rotifers is due to the observation of rotifers from the start of ultraviolet irradiation. Although a slightly dead rotifer was observed until 2 minutes after the start of UV irradiation, the activity of the surviving rotifer itself was not different from that immediately after the start of UV irradiation. Here, the death of a rotifer is also related to the oxygen concentration in the aqueous solution, and cannot be determined as the influence of ultraviolet rays. However, 3 minutes have passed since the start of ultraviolet irradiation, and the number of active rotifers has drastically decreased. According to visual observation, approximately 80% of deaths have been confirmed. This is clearly considered to be the effect of ultraviolet irradiation.

実験1では、ワムシが浮遊する水深3mmの水溶液の水面に紫外線強度65.1 mW/cm2の紫外線を照射し、2分照射では安全性が確認され、3分照射ではワムシが殺されることが確認された。ここで、2分照射の場合、ワムシ1個体当たりの紫外線量は65.1mW/cm2×120秒/(4.5cm×4.5cm×π×0.3cm×100個体/mL)=4.1mJ/cm2である。また、3分照射の場合、ワムシ1個体当たりの紫外線量は65.1mW/cm2× 120秒/(4.5cm×4.5cm×π×0.3cm×100個体/mL)=6.1mJ/cm2である。 In Experiment 1, the surface of an aqueous solution with a depth of 3 mm in which the rotifer floats was irradiated with ultraviolet light with an ultraviolet intensity of 65.1 mW / cm 2 , and safety was confirmed with 2 minutes irradiation, and it was confirmed that rotifer was killed with 3 minutes irradiation. It was. In the case of 2 minutes irradiation, ultraviolet amount per rotifers one individual in 65.1mW / cm 2 × 120 seconds /(4.5cm×4.5cm×π×0.3cm×100 individual /ML)=4.1MJ/cm 2 is there. In addition, in the case of 3 min irradiation, ultraviolet amount per rotifers one individual is a 65.1mW / cm 2 × 120 seconds /(4.5cm×4.5cm×π×0.3cm×100 individual /ML)=6.1MJ/cm 2 .

これから、本発明の殺菌方法で利用しうる紫外線の紫外線量は、ワムシ1個体当たりの紫外線量は5mJ/cm2であると考えられる。ワムシと同じ主要な餌料生物であるアルテミアは、ワムシの最大5倍程度の個体長を有しているから、アルテミアに対する紫外線量の上限値は、前記体積比の125倍、すなわち625mJ/cm2になると考えられる。ワムシは、最も利用され、かつ個体長の小さな餌料生物であるから、このワムシに対する紫外線の影響を確認することで、およそすべての餌料生物に、体積比に応じた同様な紫外線量の上限を当てはめることができると考えられる。以後の実験は、この実験1で確認された紫外線量、すなわちワムシの場合は1個体当たり5mJ/cm2を、アルテミアの場合は625mJ/cm2を超えない範囲で実施した。 From this, it is considered that the amount of ultraviolet rays that can be used in the sterilization method of the present invention is 5 mJ / cm 2 per individual rotifer. Artemia, which is the same prey organism as rotifers, has an individual length that is up to about 5 times that of rotifers. Therefore, the upper limit of the amount of ultraviolet light for Artemia is 125 times the volume ratio, that is, 625 mJ / cm 2 . It is considered to be. Since rotifers are the most utilized and small-sized feed organisms, by confirming the effects of ultraviolet rays on these rotifers, almost the same upper limit of the amount of ultraviolet rays according to the volume ratio is applied to all feed organisms. It is considered possible. Subsequent experiments UV dose was confirmed in this experiment 1, namely the one individual per 5 mJ / cm 2 in the case of rotifers, in the case of Artemia was performed in a range not exceeding 625mJ / cm 2.

実験2:紫外線によるワムシが抱える有害細菌の殺菌
次に、ワムシに対する紫外線量を上記上限値以内で紫外線を照射し、ワムシが抱える有害細菌を実用的な程度に殺菌できるかを確認するため、紫外線の照射時間と殺菌効果との関係について調べてみることにした。実験条件は、実験1とほぼ同じである。貯留容器である内径90mmのプラスチック製浅型シャーレに、水溶液である海水(水温20℃)を水深3mmで満たし、この水溶液にワムシを2万個体/mLの密度で浮遊させた。実験1よりワムシの密度を高めた理由は、より実用的な殺菌処理の場面を想定したからである。この実験2でも、ワムシ自身の活動により水面直下のワムシが入れ替わるものとして、水溶液は攪拌していない。
Experiment 2: Sterilization of harmful bacteria possessed by rotifers by ultraviolet rays Next, ultraviolet rays are irradiated within the above upper limit for the amount of ultraviolet rays to rotifers, and ultraviolet rays are used to confirm whether harmful bacteria possessed by rotifers can be sterilized to a practical level. I decided to investigate the relationship between the irradiation time and the bactericidal effect. The experimental conditions are almost the same as in Experiment 1. A plastic shallow petri dish with an inner diameter of 90 mm, which is a storage container, was filled with seawater (water temperature 20 ° C.) as an aqueous solution at a depth of 3 mm, and rotifers were suspended in this aqueous solution at a density of 20,000 individuals / mL. The reason why the density of the rotifer was increased from Experiment 1 was that a more practical sterilization scene was assumed. In this experiment 2 as well, the rotifer just below the water surface is replaced by the activity of the rotifer itself, and the aqueous solution is not stirred.

紫外線は、15W型紫外線ランプ(東芝製CL-15)を2本用い前記水溶液の水面までの距離を19.5cmに設定している。この紫外線ランプはC領域紫外線を照射し、水溶液の水面における紫外線強度は65.1mW/cm2であった。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。 For the ultraviolet rays, two 15W ultraviolet lamps (CL-15 manufactured by Toshiba) were used, and the distance to the water surface of the aqueous solution was set to 19.5 cm. This ultraviolet lamp was irradiated with C region ultraviolet rays, and the ultraviolet intensity at the water surface of the aqueous solution was 65.1 mW / cm 2 . The ultraviolet intensity is a value measured with an ultraviolet intensity meter (UVR-254, manufactured by Tokyo Optical Machinery Co., Ltd.) at a position away from the ultraviolet lamp in accordance with the distance from the ultraviolet lamp to the water surface.

殺菌効果は、紫外線照射前(照射時間0分)の有害細菌の数と、紫外線照射開始から1分、2分、4分、そして6分照射した段階での各有害細菌の数とを測定し、紫外線照射前(照射時間0分)の有害細菌の数からの減少程度で評価した。有害細菌は、魚介類の種苗生産で問題となるビブリオ属細菌(培地との関係から、以下ではTCBS細菌と表記)と、その他の一般細菌とに分けて、それぞれ平板培地で培養し、各培地に生育したコロニー数から、ワムシ1g当たりの細菌数(CFU/g)を算出した。   The bactericidal effect is determined by measuring the number of harmful bacteria before ultraviolet irradiation (irradiation time 0 minutes) and the number of harmful bacteria at the stage of irradiation for 1, 2, 4, and 6 minutes from the start of ultraviolet irradiation. Evaluation was based on the degree of decrease from the number of harmful bacteria before ultraviolet irradiation (irradiation time 0 minutes). Harmful bacteria are divided into Vibrio bacteria (hereinafter referred to as TCBS bacteria from the relationship with the medium) and other general bacteria, which are problematic in the production of seafood seedlings, and cultured on a plate medium. The number of bacteria per 1 g of rotifer (CFU / g) was calculated from the number of colonies grown on the plant.

具体的な細菌数の算出は、次の手順による。照射前、1分照射及び2分照射の各ワムシを、目合い42μmのプランクトンネットに水溶液ごと移して海水で洗浄後、前記プランクトンネットの裏側から濾紙等を用いて余分な水分を取り除く。次に、ガラスホモジナイザにプランクトンネットに付着したワムシの一部(0.1〜0.2g)を取り、正確に秤量後、2.0mLの滅菌海水と共によく磨砕する。この磨砕したワムシを滅菌海水を希釈水として10倍段階希釈し、それぞれの希釈段階から平板培地に1枚当たり0.1mLを接種する。培地は、ビブリオ属細菌の選択培地であるTCBS寒天培地(栄研製)と、海水又は海洋性細菌の分離培養用に一般的に用いられるZoBell2216e寒天培地とを用いている。各培地を25℃で2日間培養した後、適当な希釈段階で生育してきたコロニー数を計数し、前記計数結果と、当初の秤量値及び希釈倍率とからワムシ1gに含まれた細菌数を求める。   The specific number of bacteria is calculated according to the following procedure. Before irradiation, each 1-minute and 2-minute irradiated rotifer is transferred together with the aqueous solution to a plankton net having a mesh size of 42 μm, washed with seawater, and excess water is removed from the back side of the plankton net using filter paper or the like. Next, a part of the rotifer (0.1 to 0.2 g) adhering to the plankton net is taken to a glass homogenizer, accurately weighed, and then well ground with 2.0 mL of sterilized seawater. This ground rotifer is diluted 10-fold using sterilized seawater as dilution water, and 0.1 mL per plate is inoculated into the plate medium from each dilution stage. As the medium, TCBS agar medium (produced by Eiken), which is a selective medium for Vibrio bacteria, and ZoBell2216e agar medium generally used for separation culture of seawater or marine bacteria are used. After culturing each medium at 25 ° C. for 2 days, the number of colonies grown at an appropriate dilution stage is counted, and the number of bacteria contained in 1 g of rotifer is determined from the counting result, the initial weighing value and the dilution rate. .

実験2の結果を図7に示す。実験結果のグラフは、一般細菌(白抜き丸線)及びTCBS細菌(黒塗り丸線)について、それぞれCFU/gの値を対数値で表している。まず、照射前に107オーダの細菌数が確認されたTCBS細菌は、1分照射した段階で1/100程度の105オーダに、2分照射の段階で1/1000程度の104オーダ以下、そして4分照射及び6分照射の段階でも1/1000程度の104オーダ以下の細菌数になることが確認された。また、照射前に109オーダの細菌数が確認された一般細菌は、1分照射した段階で1/10程度の108オーダに、2分照射の段階で1/100程度の107オーダ強に、4分照射の段階で1/100程度の107オーダに、そして6分照射の段階で1/1000程度の106オーダの細菌数になることが確認された。ここで、ワムシ1個体当たりの紫外線量は、1分照射で0.01mJ/cm2、2分照射で0.02mJ/cm2、4分照射で0.04mJ/cm2、そして6分照射で0.06mJ/cm2で、いずれも実験1で求めた紫外線量の上限値(5mJ/cm2)を大きく下回る数値であり、実際にワムシの死亡は確認されなかった。細菌数が1/1000以下になる殺菌効果は、従来の薬液による殺菌処理と比べて同等以上の殺菌効果である。これから、本発明による紫外線照射による殺菌処理は、従来の薬液による殺菌処理に代えて使用しうるに十分な殺菌効果があると言える。 The result of Experiment 2 is shown in FIG. The graph of the experimental results represents the CFU / g value as a logarithmic value for each of general bacteria (open circles) and TCBS bacteria (black circles). First, TCBS bacteria bacteria count was confirmed in 107 order before irradiation, the 1/100 10 5 order at the stage of irradiation 1 minute, about 1/1000 of 10 4 orders less at the stage of 2 minutes irradiation It was confirmed that the number of bacteria was about 1/1000 or less than the order of 10 4 even at 4 minutes and 6 minutes. In addition, general bacteria whose number of bacteria was confirmed to be on the order of 10 9 prior to irradiation were about 1/10 of 10 8 when irradiated for 1 minute, and about 10 7 of about 1/100 when irradiated for 2 minutes. a, 4 minutes 10 7 order stage of about 1/100 of the irradiation, and it was confirmed that at the stage of 6 minutes irradiation of 10 6 bacteria count on the order of about 1/1000. Here, the UV dose per rotifers 1 individual, 0.06MJ 1 minute 0.01 mJ / cm 2, 2 minutes irradiation with irradiation 0.02mJ / cm 2, 0.04mJ / cm 2 in 4 minutes irradiation, and 6 minutes irradiation / cm 2 , both of which are much lower than the upper limit (5 mJ / cm 2 ) of the amount of ultraviolet light obtained in Experiment 1, and actually the death of a rotifer was not confirmed. The bactericidal effect at which the number of bacteria is 1/1000 or less is equivalent to or better than the conventional bactericidal treatment. From this, it can be said that the sterilization treatment by ultraviolet irradiation according to the present invention has a sufficient sterilization effect that can be used in place of the conventional sterilization treatment with a chemical solution.

実験3:殺菌効果の持続性
上記実験1及び実験2から、紫外線による殺菌処理は、従来の薬剤による殺菌処理と同等以上の殺菌効果を有することが確認された。ここで、薬剤による殺菌処理は、殺菌処理後、2時間程度で殺菌効果が薄れ、有害細菌が再増殖することが知られている。そこで、紫外線による殺菌処理の殺菌効果が殺菌処理後どの程度持続するか、すなわち殺菌処理後の有害細菌の再増殖の程度により、殺菌効果の持続性について調べることにした。
Experiment 3: Sustainability of bactericidal effect From the above Experiment 1 and Experiment 2, it was confirmed that the bactericidal treatment with ultraviolet rays has a bactericidal effect equivalent to or higher than that of the conventional bactericidal treatment. Here, it is known that the sterilization treatment with a medicine loses the sterilization effect in about 2 hours after the sterilization treatment, and harmful bacteria re-grow. Therefore, it was decided to examine the persistence of the bactericidal effect according to how long the bactericidal effect of the bactericidal treatment with ultraviolet rays lasts after the bactericidal treatment, that is, the degree of regrowth of harmful bacteria after the bactericidal treatment.

実験条件は、実験2と同じである。貯留容器である内径90mmのプラスチック製浅型シャーレに、水溶液である海水(水温20℃)を水深3mmで満たし、この水溶液中ワムシを2万個体/mLの密度で浮遊させた。紫外線は、15W型紫外線ランプ(東芝製CL-15)を2本用い前記水溶液の水面までの距離を19.5cmに設定している。この紫外線ランプはC領域紫外線を照射し、水溶液の水面における紫外線強度は65.1mW/cm2であった。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。 The experimental conditions are the same as in Experiment 2. A plastic shallow petri dish with an inner diameter of 90 mm as a storage container was filled with seawater (water temperature 20 ° C.) as an aqueous solution at a depth of 3 mm, and rotifers in this aqueous solution were suspended at a density of 20,000 individuals / mL. For the ultraviolet rays, two 15W ultraviolet lamps (CL-15 manufactured by Toshiba) were used, and the distance to the water surface of the aqueous solution was set to 19.5 cm. This ultraviolet lamp was irradiated with C region ultraviolet rays, and the ultraviolet intensity at the water surface of the aqueous solution was 65.1 mW / cm 2 . The ultraviolet intensity is a value measured with an ultraviolet intensity meter (UVR-254, manufactured by Tokyo Optical Machinery Co., Ltd.) at a position away from the ultraviolet lamp in accordance with the distance from the ultraviolet lamp to the water surface.

殺菌効果の持続性は、紫外線の2分照射したワムシにおける有害細菌の数を予め測定しておき、殺菌処理後に海水へ戻した前記ワムシの2時間後、4時間後、そして6時間後における細菌数を測定して、有害細菌の増加傾向を確認することで評価した。殺菌処理を終えてから最後の殺菌数を測定する6時間経過後まで、海水は25.3℃〜26.6℃の範囲で変化したが、これは外気温に連動した通常の変化である。有害細菌は、魚介類の種苗生産で問題となるTCBS細菌と、その他細菌とであり、測定方法は実験2同様、それぞれ平板培地で培養し、各培地に生育したコロニー数から細菌数を算出した。   The persistence of the bactericidal effect is determined by measuring the number of harmful bacteria in a rotifer irradiated with ultraviolet rays for 2 minutes in advance, and the bacteria after 2 hours, 4 hours and 6 hours after returning to seawater after sterilization treatment. It was evaluated by measuring the number and confirming the increasing tendency of harmful bacteria. From the end of the sterilization treatment until 6 hours after the final sterilization count, the seawater changed in the range of 25.3 ° C to 26.6 ° C, which is a normal change linked to the outside air temperature. The harmful bacteria are TCBS bacteria and other bacteria that are a problem in the production of seafood seedlings, and the measurement method was the same as in Experiment 2, and each was cultured on a plate medium, and the number of bacteria was calculated from the number of colonies grown on each medium. .

実験3の結果を図8に示す。実験結果のグラフは、一般細菌(白抜き丸線)及びTCBS細菌(黒塗り丸線)について、それぞれCFU/gの値を対数値で表している。実験2同様の実験条件であるため、殺菌処理前に107オーダであったTCBS細菌は、紫外線の2分照射により1/100程度の105オーダに、また殺菌処理前に109オーダであった一般細菌は1/10程度の108オーダに減少する殺菌効果が得られている。この殺菌効果は、2時間経過後、4時間経過後、そして6時間経過後の各細菌数がほとんど増加していないことから、少なくとも6時間の持続性を有することが確認された。殺菌処理を終えた餌料生物は、撒き餌後すべてが直ちに魚介類の種苗に食べられるわけではなく、およそ6時間程度かけて食べられる。これから、この実験3で確認された殺菌効果の持続性は、魚介類の種苗に有害細菌が取り込まれにくい非常に有効な殺菌処理であると考えることができる。 The result of Experiment 3 is shown in FIG. The graph of the experimental results represents the CFU / g value as a logarithmic value for each of general bacteria (open circles) and TCBS bacteria (black circles). Because of the same experimental conditions as in Experiment 2, TCBS bacteria, which were on the order of 10 7 before the sterilization treatment, were on the order of 10 5, about 1/100 by 2 minutes of UV irradiation, and on the order of 10 9 before the sterilization treatment. In addition, general bacteria have a bactericidal effect that is reduced to the order of 10 8 of about 1/10. This bactericidal effect was confirmed to have a persistence of at least 6 hours since the number of bacteria after 2 hours, 4 hours and 6 hours had hardly increased. The food organisms that have been sterilized are not all eaten immediately by the seafood seedlings after sowing, but can be eaten over about 6 hours. From this, it can be considered that the persistence of the bactericidal effect confirmed in Experiment 3 is a very effective bactericidal treatment in which harmful bacteria are less likely to be taken into the seafood seedlings.

このように、本発明による殺菌処理の殺菌効果が持続する理由は、次のように考えることができる。すなわち、薬剤による殺菌処理の殺菌効果は、薬剤により直接有害細菌を殺すばかりではなく、薬剤の存在によって有害細菌の増殖を抑制する働きがある。これに対し、紫外線による殺菌処理の殺菌効果は、紫外線により直接有害細菌を殺すばかりではなく、紫外線が有害細菌のDNAを破損し、再増殖を抑制する又は再増殖に手間取らせる働きがあると考えられる。すなわち、前記DNAの破損が、殺菌効果の持続性に結びついているわけである。このため紫外線による殺菌処理では、有害細菌の再増殖をより抑制しやすいわけである。   Thus, the reason why the sterilization effect of the sterilization treatment according to the present invention is sustained can be considered as follows. That is, the bactericidal effect of the bactericidal treatment with the drug not only kills harmful bacteria directly with the drug, but also has a function of suppressing the growth of harmful bacteria due to the presence of the drug. On the other hand, the sterilization effect of the sterilization treatment by ultraviolet rays not only kills harmful bacteria directly by ultraviolet rays, but also has the function that ultraviolet rays damage harmful bacteria's DNA and suppress regrowth or take time to regrowth. Conceivable. That is, the DNA breakage is linked to the persistence of the bactericidal effect. For this reason, the germicidal treatment with ultraviolet rays makes it easier to suppress the regrowth of harmful bacteria.

実験4:攪拌による殺菌効果
次に、紫外線による殺菌処理が実用的であるか否かを確認するため、一度にどれぐらいの餌料生物が紫外線により殺菌処理できるかを実験してみた。餌料生物は、魚介類の種苗に与える前に殺菌処理されるのであり、前記種苗に与える餌料生物の量は大変多いため、できるだけ短い時間で大量の餌料生物を殺菌処理できることが望ましい。そのため、この実験4では上記実験2に比べて格段に大量のワムシを、実験2相当の殺菌効果が得られる照射時間を目安に殺菌処理してみた。
Experiment 4: Sterilization effect by stirring Next, in order to confirm whether or not the sterilization treatment by ultraviolet rays is practical, it was tested how many food organisms could be sterilized by ultraviolet rays at a time. The feed organisms are sterilized before being given to the seafood seedlings. Since the amount of feed organisms given to the seedlings is very large, it is desirable that a large amount of feed organisms can be sterilized in as short a time as possible. Therefore, in this experiment 4, a much larger amount of rotifer was sterilized by using the irradiation time for obtaining the sterilization effect equivalent to that of experiment 2 as a guide.

実験条件は、餌料生物の量を増やすため、水溶液の量を増やし、餌料生物の密度を上げたほかは、実験2とほぼ同じである。貯留容器である内径107mmのガラス製深型シャーレに、水溶液である海水(水温25.7℃)を水深45mmで満たし、この水溶液中ワムシを4万5千個体/mLの密度で浮遊させた。これから、実験4で一度に殺菌処理するワムシの量は、実験2又は実験3の約38万個体に対し、30倍以上の約1200万個体である。殺菌処理するワムシが増えたことから、15W型紫外線ランプ(東芝製CL-15)を2本用いた点は同じであるが、水溶液の水面までの距離を12cmまでに短くして、水溶液の水面における紫外線強度を111.6mW/cm2に高めた。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。また、この実験4では、(攪拌手段)によって殺菌処理中の水溶液を攪拌して、水面直下のワムシの入れ替わりを促すことにした。 The experimental conditions are almost the same as in Experiment 2 except that the amount of aqueous solution is increased to increase the density of the feed organism in order to increase the amount of the feed organism. A glass deep petri dish having an inner diameter of 107 mm, which is a storage container, was filled with seawater (water temperature 25.7 ° C.) as an aqueous solution at a water depth of 45 mm, and rotifers in this aqueous solution were suspended at a density of 45,000 individuals / mL. From this, the amount of rotifers to be sterilized at a time in Experiment 4 is about 12 million individuals, which is 30 times or more of about 380,000 individuals in Experiment 2 or Experiment 3. Since the number of rotifers to be sterilized has increased, the use of two 15W UV lamps (Toshiba CL-15) is the same, but the distance to the water surface of the aqueous solution is shortened to 12 cm and the water surface of the aqueous solution is reduced. The UV intensity at 101.6 mW / cm 2 was increased. The ultraviolet intensity is a value measured with an ultraviolet intensity meter (UVR-254, manufactured by Tokyo Optical Machinery Co., Ltd.) at a position away from the ultraviolet lamp in accordance with the distance from the ultraviolet lamp to the water surface. Further, in Experiment 4, the aqueous solution being sterilized by (stirring means) was stirred to promote replacement of the rotifer just below the water surface.

この実験4では、水深が実験1〜実験3の3mmに対して45mmと15倍に増えたことから、上述の通り紫外線強度を高めてはいるが、実験2相当の殺菌効果を挙げるに必要な紫外線量を確保するには照射時間が長くなることが予想される。そこで、紫外線照射開始から5分照射、10分照射、15分照射、そして20分照射の各段階における有害細菌の細菌数を調べた。ワムシ1個体当たりの紫外線量は、5分照射で0.00188mJ/cm2、10分照射で0.00375mJ/cm2、15分照射で0.00563mJ/cm2、そして20分照射で0.00750mJ/cm2で、いずれも実験1で求めた紫外線量の上限値(5mJ/cm2)を大きく下回る数値であり、実際にワムシの死亡は確認されなかった。 In Experiment 4, the water depth increased by 15 mm to 45 mm compared to 3 mm in Experiments 1 to 3, so that the UV intensity was increased as described above, but it was necessary to achieve the bactericidal effect equivalent to Experiment 2. It is expected that the irradiation time will be longer to ensure the amount of ultraviolet rays. Therefore, the number of harmful bacteria at each stage of irradiation for 5 minutes, 10 minutes, 15 minutes, and 20 minutes from the start of ultraviolet irradiation was examined. Ultraviolet quantity of rotifers per individual is a 5-minute irradiation with 0.00188mJ / cm 2, 10 min irradiation 0.00375mJ / cm 2, 0.00563mJ / cm 2 in 15 minutes irradiation, and in 20 minutes irradiation at 0.00750mJ / cm 2 These values are much lower than the upper limit (5 mJ / cm 2 ) of the amount of ultraviolet light obtained in Experiment 1, and no rotifer death was actually confirmed.

実験4の結果を図9に示す。実験結果のグラフは、一般細菌(白抜き丸線)及びTCBS細菌(黒塗り丸線)について、それぞれCFU/gの値を対数値で表している。まず、TCBS細菌については、5分照射の段階で、実験2の1分照射と同等の殺菌効果、すなわち1/100程度の減菌を達成している。そして、以後照射時間が増加するにつれて殺菌効果は徐々に高まり、20分照射の段階では実験2の2分照射と同等の殺菌効果、すなわち1/1000程度の減菌を達成している。ここで、この実験4では、実験2に比べてワムシ1個体当たりの紫外線量が極めて少ないが、紫外線の照射時間が長いことと、攪拌により水面直下の餌料生物を積極的に入れ替えていることから、ワムシ1個体当たりの紫外線量は、実験2相当に確保されていると考えられる。   The result of Experiment 4 is shown in FIG. The graph of the experimental results represents the CFU / g value as a logarithmic value for each of general bacteria (open circles) and TCBS bacteria (black circles). First, TCBS bacteria achieved a bactericidal effect equivalent to 1-minute irradiation in Experiment 2, that is, about 1/100 sterilization at the stage of 5-minute irradiation. Then, the sterilization effect gradually increases as the irradiation time increases, and at the stage of 20-minute irradiation, the sterilization effect equivalent to the 2-minute irradiation of Experiment 2, that is, about 1/1000 sterilization is achieved. Here, in this experiment 4, the amount of ultraviolet rays per individual rotifer is very small compared to experiment 2, but the irradiation time of ultraviolet rays is long and the feed organisms directly below the water surface are actively replaced by stirring. It is considered that the amount of ultraviolet rays per individual rotifer is secured to be equivalent to Experiment 2.

一般細菌については、15分照射の段階に至って、ようやく実験2の1分照射と同等の殺菌効果、すなわち1/10程度の減菌を達成している。この結果について、実験2及び実験4を比較すれば、殺菌処理の条件によってTCBS細菌と一般細菌との殺菌効果に差を生ずることがあると考えられる。また、実験2では、一般細菌に比べてTCBS細菌の減菌割合が大きく、同様な傾向はこの実験4にも見られる。これから、一般細菌とTCBS細菌とでは、TCBS細菌のほうが紫外線の影響を受けやすく、本発明の殺菌処理は特にTCBS細菌に有効であると考えられる。すなわち、TCBS細菌を殺菌対象とした場合、本発明は実用上有効な殺菌方法を提供できることがわかった。   For general bacteria, the 15-minute irradiation stage was reached, and finally the bactericidal effect equivalent to 1-minute irradiation in Experiment 2, that is, about 1/10 sterilization was achieved. Comparing Experiment 2 and Experiment 4 with this result, it is considered that there may be a difference in sterilization effect between TCBS bacteria and general bacteria depending on the conditions of sterilization treatment. Moreover, in Experiment 2, the sterilization rate of TCBS bacteria is larger than that of general bacteria, and the same tendency can be seen in Experiment 4. From this, it is considered that TCBS bacteria are more susceptible to ultraviolet rays than general bacteria and TCBS bacteria, and the bactericidal treatment of the present invention is particularly effective for TCBS bacteria. That is, it was found that when TCBS bacteria are targeted for sterilization, the present invention can provide a practically effective sterilization method.

実験5:本発明の実証
最後に、上記図示により説明した殺菌装置を作成し、より大量の餌料生物を殺菌処理して、本発明の実証を試みた。実験条件は、次の通りである。貯留容器は内径60cmのタライ状でステンレス製容器を用い、水溶液である海水(水温21.1〜24.7℃)を水深10cmで満たし、この水溶液にワムシを低密度(10万個体/mL=30億個体/30L)又は高密度(15万個体/mL=30億個体/20L)で浮遊させた場合と、この水溶液中アルテミアを3,300個体/mL=1億個体/30Lの密度で浮遊させた場合とを実験した。アルテミアは、ワムシの数倍程度の個体長であり、密度は個体長比よりも少なめに設定した。これから、例えば実験5で一度に殺菌処理するワムシは、実験2又は実験3の約38万個体に対し、740倍〜1100倍以上の約28億個体〜約42億個体である。
Experiment 5: Demonstration of the present invention Finally, the sterilization apparatus described with reference to the above illustration was created, and a larger amount of feed organisms were sterilized to try to demonstrate the present invention. The experimental conditions are as follows. The storage container uses a stainless steel container with an inner diameter of 60 cm, filled with seawater (water temperature 21.1 to 24.7 ° C), which is an aqueous solution, at a depth of 10 cm, and low density (100,000 / mL = 3 billion / 30L) or high density (150,000 individuals / mL = 3 billion individuals / 20L) and experiments with Artemia in this aqueous solution suspended at a density of 3,300 individuals / mL = 100 million individuals / 30L did. Artemia is about several times as long as the rotifer, and the density was set to be lower than the individual length ratio. From this, for example, the number of rotifers to be sterilized at a time in Experiment 5 is about 2.8 to 1,100 times or more from about 2.8 billion to about 4.2 billion, compared to about 380,000 in Experiment 2 or Experiment 3.

紫外線は、20W型紫外線ランプ(ナショナル製GL-20)を4本用い、水溶液の水面までの距離を11cmにして、水溶液の水面における紫外線強度を121.6mW/cm2とした。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。紫外線の照射時間は、実験4に比べてより多くのワムシ又はアルテミアを殺菌処理することから、紫外線の照射時間を30分間としている。また、この実験5では、外径40cmの一対の羽根からなる攪拌部によって殺菌処理中の水溶液を攪拌して、水面直下のワムシの入れ替わりを促すことにした。 As the ultraviolet rays, four 20W type ultraviolet lamps (GL-20 manufactured by National) were used, the distance to the water surface of the aqueous solution was 11 cm, and the ultraviolet intensity at the water surface of the aqueous solution was 121.6 mW / cm 2 . The ultraviolet intensity is a value measured with an ultraviolet intensity meter (UVR-254, manufactured by Tokyo Optical Machinery Co., Ltd.) at a position away from the ultraviolet lamp in accordance with the distance from the ultraviolet lamp to the water surface. The irradiation time of ultraviolet rays is 30 minutes because the irradiation time of ultraviolet rays is more sterilized than in Experiment 4 because rotifer or artemia is sterilized. Further, in Experiment 5, the aqueous solution being sterilized was stirred by a stirring unit composed of a pair of blades having an outer diameter of 40 cm to promote replacement of the rotifer just below the water surface.

低密度ワムシについての実験結果を図10に、高密度ワムシについての実験結果を図11に、そしてアルテミアについての実験結果を図12に示す。各実験結果のグラフは、低密度ワムシ及びアルテミアについては一般細菌(白抜き丸線)及びTCBS細菌(黒塗り丸線)について、高密度ワムシについてはTCBS細菌(黒塗り丸線)についてのみ、それぞれCFU/gの値を対数値で表している。まずワムシについて見ると、密度の差を問わず、一般細菌及びTCBS細菌がそれぞれ1/10〜1/100程度減少しており、実用的な殺菌効果が得られていることが分かる。また、同じ殺菌装置を用いたアルテミアの殺菌処理でも、有害細菌が1/10以上に減少していることから、同じく実用的な殺菌処理ができていると言える。このように、本発明による餌料生物の殺菌方法は、薬液に代えて十分実用的な殺菌方法であることが実証された。   FIG. 10 shows the experimental results for the low density rotifer, FIG. 11 shows the experimental results for the high density rotifer, and FIG. 12 shows the experimental results for Artemia. The graph of each experimental result shows that for low density rotifers and artemia, only general bacteria (open circles) and TCBS bacteria (black circles), and for high density rotifers only for TCBS bacteria (black circles), respectively. The value of CFU / g is expressed as a logarithmic value. First, regarding rotifers, it can be seen that, regardless of the density difference, general bacteria and TCBS bacteria are reduced by about 1/10 to 1/100, respectively, and a practical bactericidal effect is obtained. In addition, even with Artemia sterilization using the same sterilization device, harmful bacteria are reduced to 1/10 or more, so it can be said that practical sterilization is also possible. Thus, it was demonstrated that the method for sterilizing a feed organism according to the present invention is a sufficiently practical sterilization method instead of a chemical solution.

ここで、実験5における紫外線量は、低密度ワムシ1個体当たりは7.53×10-10mJ/cm2、高密度ワムシ1個体当たりは5.02×10-10mJ/cm2、そしてアルテミア1個体当たりは2.26×10-8mJ/cm2であり、いずれも実験1で確認した上限値(ワムシ1個体当たりの紫外線量は5mJ/cm2、アルテミア1個体当たりの紫外線量は625mJ/cm2)内に収まっている。目視によっても、ワムシ又はアルテミアが死んだことを確認できていない。むしろ、各紫外線量はいずれも上限値に対して余裕があるため、例えば紫外線強度を高めて照射時間を短縮しながら実験5同等の殺菌効果を挙げることも考えられる。 Here, the amount of ultraviolet rays in Experiment 5 is 7.53 × 10 −10 mJ / cm 2 per low-density rotifer, 5.02 × 10 −10 mJ / cm 2 per high-density rotifer, and per Artemia. 2.26 × 10 -8 mJ / cm 2 , both of which are within the upper limits confirmed in Experiment 1 (the amount of ultraviolet light per rotifer is 5 mJ / cm 2 and the amount of ultraviolet light per individual Artemia is 625 mJ / cm 2 ) It is settled. Even by visual observation, it cannot be confirmed that the rotifer or Artemia has died. Rather, since each ultraviolet ray amount has a margin with respect to the upper limit value, for example, it is conceivable that the sterilizing effect equivalent to that of Experiment 5 is obtained while increasing the ultraviolet ray intensity and shortening the irradiation time.

本発明に基づく殺菌装置の一例を表す正面図である。It is a front view showing an example of the sterilizer based on this invention. 図1の殺菌装置の側面図である。It is a side view of the sterilizer of FIG. 図1の殺菌装置の平面図である。It is a top view of the sterilizer of FIG. 攪拌部による水溶液を攪拌する状態を表した要部抜粋斜視図である。It is the principal part excerpt perspective view showing the state which stirs the aqueous solution by a stirring part. 別例の攪拌部による水溶液を攪拌する状態を表した図4相当斜視図である。FIG. 5 is a perspective view corresponding to FIG. 4 illustrating a state in which an aqueous solution is stirred by another stirring unit. 別例の攪拌部による水溶液を攪拌する状態を表した図4相当斜視図である。FIG. 5 is a perspective view corresponding to FIG. 4 illustrating a state in which an aqueous solution is stirred by another stirring unit. 実験2における実験結果を表すグラフである。10 is a graph showing an experimental result in Experiment 2. 実験3における実験結果を表すグラフである。10 is a graph showing an experimental result in Experiment 3. 実験4における実験結果を表すグラフである。10 is a graph showing an experimental result in Experiment 4. 実験5における低密度ワムシについての実験結果を表すグラフである。It is a graph showing the experimental result about the low density rotifer in Experiment 5. FIG. 実験5における高密度ワムシについての実験結果を表すグラフである。It is a graph showing the experimental result about the high-density rotifer in Experiment 5. 実験5におけるアルテミアについての実験結果を表すグラフである。10 is a graph showing experimental results for Artemia in Experiment 5.

符号の説明Explanation of symbols

1 殺菌装置
11 装置本体
111 扉
113 レール
114 アクリル小窓
117 脱落防止突起
118 位置決め突起
12 貯留容器
121 水溶液
122 水面
125 樹脂製車輪
126 排出部
13 攪拌部
131 駆動部
132 回転軸
133 羽根
134 案内シャフト
14 紫外線照射部
141 紫外線ランプ
142 反射板
16 制御部
17 基準板
18 固定レバー
23 別例の攪拌部
33 別例の攪拌部
1 Sterilizer
11 Main unit
111 door
113 rails
114 acrylic small window
117 Protrusion prevention protrusion
118 Positioning protrusion
12 Reservoir
121 aqueous solution
122 Water surface
125 resin wheels
126 Discharge section
13 Stirrer
131 Drive unit
132 Rotation axis
133 feathers
134 Guide shaft
14 UV irradiation unit
141 UV lamp
142 reflector
16 Control unit
17 Reference plate
18 Fixing lever
23 Another stirrer
33 Another stirrer

Claims (18)

餌料生物を浮遊させた水溶液の水面に向けて紫外線を照射することにより、前記餌料生物が抱える有害細菌を殺菌する餌料生物の殺菌方法。 A method for sterilizing a feed organism, which sterilizes harmful bacteria possessed by the feed organism by irradiating ultraviolet rays toward the water surface of an aqueous solution in which the feed organism is suspended. 紫外線は、C領域紫外線である請求項1記載の餌料生物の殺菌方法。 The method according to claim 1, wherein the ultraviolet rays are C region ultraviolet rays. 紫外線は、水溶液の水面での紫外線強度が50mW/cm2〜150mW/cm2である請求項1記載の餌料生物の殺菌方法。 UV, bait biological methods germicidal UV intensity at the water surface of the aqueous solution according to claim 1, which is a 50mW / cm 2 ~150mW / cm 2 . 紫外線は、餌料生物がワムシである場合に、水溶液の水面での紫外線量が餌料生物の1個体当たりで最大5mJ/cm2である請求項1記載の餌料生物の殺菌方法。 2. The method for sterilizing a feed organism according to claim 1, wherein when the feed organism is a rotifer, the amount of ultraviolet rays on the water surface of the aqueous solution is 5 mJ / cm 2 at maximum per individual feed organism. 紫外線は、餌料生物がアルテミアである場合に、水溶液の水面での紫外線量が餌料生物の1個体当たりで最大625mJ/cm2である請求項1記載の餌料生物の殺菌方法。 The method for sterilizing a feed organism according to claim 1, wherein when the feed organism is Artemia, the amount of ultraviolet rays on the water surface of the aqueous solution is 625 mJ / cm 2 at maximum per individual organism. 餌料生物は、1万個体/mL〜20万個体/mLの密度で水溶液に浮遊させたワムシである請求項1記載の餌料生物の殺菌方法。 2. The method for sterilizing a feed organism according to claim 1, wherein the feed organism is a rotifer suspended in an aqueous solution at a density of 10,000 individuals / mL to 200,000 individuals / mL. 餌料生物は、1千個体/mL〜2万個体/mLの密度で水溶液に浮遊させたアルテミアである請求項1記載の餌料生物の殺菌方法。 The method for sterilizing a feed organism according to claim 1, wherein the feed organism is Artemia suspended in an aqueous solution at a density of 1,000 individuals / mL to 20,000 individuals / mL. 水溶液は、海水である請求項1記載の餌料生物の殺菌方法。 The method according to claim 1, wherein the aqueous solution is seawater. 水溶液は、浸透圧が海水に略等価な食塩水である請求項1記載の餌料生物の殺菌方法。 The method for sterilizing a feed organism according to claim 1, wherein the aqueous solution is a saline solution having an osmotic pressure substantially equivalent to seawater. 水溶液は、餌料生物と共に攪拌する請求項1記載の餌料生物の殺菌方法。 The method for sterilizing a feed organism according to claim 1, wherein the aqueous solution is stirred together with the feed organism. 餌料生物が抱える有害細菌を殺菌する殺菌装置であって、餌料生物が浮遊する水溶液を貯える貯留容器、該貯留容器が貯える水溶液の水面に向けて紫外線を照射する紫外線照射部と、前記貯留容器及び紫外線照射部を所定位置関係で保持する装置本体と、紫外線照射部を作動及び停止させる制御部とからなる餌料生物の殺菌装置。 A sterilization apparatus for sterilizing harmful bacteria held by a feed organism, a storage container for storing an aqueous solution in which the feed organism floats, an ultraviolet irradiation unit for irradiating ultraviolet rays toward the water surface of the aqueous solution stored in the storage container, the storage container, A sterilizing apparatus for food organisms comprising an apparatus main body that holds an ultraviolet irradiation unit in a predetermined positional relationship and a control unit that operates and stops the ultraviolet irradiation unit. 装置本体は、貯留容器に向けて垂下させた攪拌部を設け、該攪拌部を作動又は停止させる制御部を設けてなる請求項11記載の餌料生物の殺菌装置。 12. The apparatus according to claim 11, wherein the apparatus main body is provided with a stirring unit that hangs down toward the storage container, and a control unit that operates or stops the stirring unit. 攪拌部は、水平旋回する長尺部材からなり、貯留容器に貯えた水溶液に前記長尺部材を没入させ、該水溶液を旋回方向に攪拌する請求項12記載の餌料生物の殺菌装置。 13. The sterilization apparatus for food organisms according to claim 12, wherein the agitation unit is composed of a long member that swirls horizontally, the long member is immersed in the aqueous solution stored in the storage container, and the aqueous solution is stirred in the swirl direction. 攪拌部は、貯留容器に対して昇降自在に装置本体に設け、貯留容器は装置本体に対して着脱自在とした請求項12記載の餌料生物の殺菌装置。 13. The apparatus for sterilizing a feed organism according to claim 12, wherein the agitation unit is provided in the apparatus main body so as to be movable up and down with respect to the storage container, and the storage container is detachable from the apparatus main body. 装置本体は、扉を有する密閉箱体であり、該装置本体内に貯留容器及び紫外線照射部を内蔵した請求項12記載の餌料生物の殺菌装置。 13. The device for sterilizing a feed organism according to claim 12, wherein the device main body is a sealed box having a door, and a storage container and an ultraviolet irradiation unit are built in the device main body. 装置本体は、貯留容器に向けて垂下させた攪拌部を内蔵し、該攪拌部を作動又は停止させる制御部を設けてなる請求項15記載の餌料生物の殺菌装置。 16. The apparatus for sterilizing a feed organism according to claim 15, wherein the apparatus main body includes a stirring unit that hangs down toward the storage container, and a control unit that operates or stops the stirring unit. 攪拌部は、水平旋回する長尺部材からなり、貯留容器は前記攪拌部の長尺部材の最大旋回半径より大きな内径を有する有底円筒である請求項15記載の餌料生物の殺菌装置。 16. The apparatus for sterilizing a feed organism according to claim 15, wherein the agitation part is composed of a long member that horizontally turns, and the storage container is a bottomed cylinder having an inner diameter larger than the maximum turning radius of the long member of the agitation part. 攪拌部は、貯留容器に対して昇降自在に装置本体に設け、貯留容器は装置本体に対して着脱自在とした請求項15記載の餌料生物の殺菌装置。 16. The apparatus for sterilizing a feed organism according to claim 15, wherein the agitation unit is provided in the apparatus main body so as to be movable up and down with respect to the storage container, and the storage container is detachable from the apparatus main body.
JP2004188374A 2004-06-25 2004-06-25 Sterilizing method and sterilizing apparatus for prey organisms Expired - Fee Related JP3932313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188374A JP3932313B2 (en) 2004-06-25 2004-06-25 Sterilizing method and sterilizing apparatus for prey organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188374A JP3932313B2 (en) 2004-06-25 2004-06-25 Sterilizing method and sterilizing apparatus for prey organisms

Publications (2)

Publication Number Publication Date
JP2006006211A true JP2006006211A (en) 2006-01-12
JP3932313B2 JP3932313B2 (en) 2007-06-20

Family

ID=35774120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188374A Expired - Fee Related JP3932313B2 (en) 2004-06-25 2004-06-25 Sterilizing method and sterilizing apparatus for prey organisms

Country Status (1)

Country Link
JP (1) JP3932313B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1836901A1 (en) * 2006-03-23 2007-09-26 INVE Technologies NV Method for producing a feed comprising Artemia nauplii
WO2008084487A1 (en) * 2007-01-11 2008-07-17 Atlantium Technologies Ltd. Method and system for selective ultraviolet disinfection
JP2009296911A (en) * 2008-06-11 2009-12-24 Hiroshima Pref Gov Method for culturing diatom having sterilization effect
CN103583417A (en) * 2012-08-14 2014-02-19 虞文豪 Aquaculture sterilizing device and application thereof
KR101703091B1 (en) * 2015-07-29 2017-02-22 한국식품연구원 Food mixing apparatus comprising a sterilizing function
CN112806296A (en) * 2021-02-03 2021-05-18 王军 Feed scattering device for aquaculture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827563B1 (en) * 2016-03-16 2018-02-09 신한산기(주) Fermented feed production device having a Washing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1836901A1 (en) * 2006-03-23 2007-09-26 INVE Technologies NV Method for producing a feed comprising Artemia nauplii
WO2007107583A2 (en) * 2006-03-23 2007-09-27 Inve Technologies Nv Method for producing a feed comprising artemia nauplii
WO2007107583A3 (en) * 2006-03-23 2007-11-22 Inve Technologies Nv Method for producing a feed comprising artemia nauplii
WO2008084487A1 (en) * 2007-01-11 2008-07-17 Atlantium Technologies Ltd. Method and system for selective ultraviolet disinfection
US8475714B2 (en) 2007-01-11 2013-07-02 Atlantium Technologies Ltd. Method and system for selective ultraviolet disinfection
JP2009296911A (en) * 2008-06-11 2009-12-24 Hiroshima Pref Gov Method for culturing diatom having sterilization effect
CN103583417A (en) * 2012-08-14 2014-02-19 虞文豪 Aquaculture sterilizing device and application thereof
KR101703091B1 (en) * 2015-07-29 2017-02-22 한국식품연구원 Food mixing apparatus comprising a sterilizing function
CN112806296A (en) * 2021-02-03 2021-05-18 王军 Feed scattering device for aquaculture
CN112806296B (en) * 2021-02-03 2023-08-04 广东恒业高新技术有限公司 Feed scattering device for aquaculture

Also Published As

Publication number Publication date
JP3932313B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
US20190070323A1 (en) Inactivation of pathogens in ex vivo blood products in storage bags using visible light
JP3932313B2 (en) Sterilizing method and sterilizing apparatus for prey organisms
JP4888782B2 (en) How to kill parasite eggs in cultured fish
CN210170509U (en) Agricultural is bred and uses liquid medicine spraying device
WO2011141559A1 (en) Apparatus for incubating eggs and/or embryos of aquatic organisms and a method thereof
KR20110129727A (en) A meat food sterilizing device using ultra violet rays
Blidariu et al. Evaluation of phosphorus level in green lettuce conventional grown under natural conditions and aquaponic system.
JPS588811B2 (en) Method for suppressing and removing green algae growth
KR101128924B1 (en) The prodution system of functional vegetables
KR20180071787A (en) Method for dehiscing ginseng seed
CN113038831B (en) Device for producing improved animal numbers
JP2003339270A (en) Method for growing organism by sterilization and activation of water and treating apparatus therefor
CN212490850U (en) Degassing unit is used in biological prevention and cure of vector
JP2020110132A (en) Mobile soil agitating disinfection device using near-ultraviolet ray led
CN213911493U (en) Nutrient soil sterilization equipment
CN110124071B (en) Ultrasonic probe sterilizer
CN215270344U (en) Sterilizing fresh-keeping cover
JP2019075994A (en) Culture fluid sterilization method and culture fluid sterilization device
KR102603993B1 (en) Integrated production system enabling the co-culture of shellfish larvae and dinoflagellates controlling parasite ciliates
JP2023056155A (en) Inactivation device and inactivation method
CN219271688U (en) Sterilizing machine for cultivation
KR101459331B1 (en) Preparation method of abalone mutant which grows faster
CN219461979U (en) Poultry hatching is with device that kills
CN214485135U (en) A no dead angle sterilization apparatus for raising chickens house
WO2023210298A1 (en) Uv irradiation device and uv irradiation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees