JP2006005171A - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP2006005171A
JP2006005171A JP2004180162A JP2004180162A JP2006005171A JP 2006005171 A JP2006005171 A JP 2006005171A JP 2004180162 A JP2004180162 A JP 2004180162A JP 2004180162 A JP2004180162 A JP 2004180162A JP 2006005171 A JP2006005171 A JP 2006005171A
Authority
JP
Japan
Prior art keywords
layer
light emitting
refractive index
compound semiconductor
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004180162A
Other languages
Japanese (ja)
Inventor
Masahito Yamada
雅人 山田
Kazuo Uchida
和男 内田
Shinji Nozaki
眞次 野崎
Hiroshi Morizaki
弘 森崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Nanoteco Corp
Original Assignee
Shin Etsu Handotai Co Ltd
Nanoteco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd, Nanoteco Corp filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2004180162A priority Critical patent/JP2006005171A/en
Publication of JP2006005171A publication Critical patent/JP2006005171A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting element wherein an oxide transparent electrode layer is used as its electrode for light emitting drive, and the internal reflection generated in the boundary surface formed by the oxide transparent electrode layer is suppressed, and resultantly, its light deriving efficiency is made favorable. <P>SOLUTION: The light emitting element 100 has a compound semiconductor layer 50 having a light emitting layer 24 and has an oxide transparent electrode layer 30 laminated on the compound semiconductor layer 50 and for applying a light emitting drive voltage to the light emitting layer 24. The light emitted from the light emitting layer 24 is derived to be transmitted through the oxide transparent electrode layer 30. Between the oxide transparent electrode layer 30 and the compound semiconductor layer 50, intermediate-refractive-index layers 31 are interposed each of which has a refractive-index intermediate between the oxide transparent electrode layer 30 and the compound semiconductor layer 50. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は発光素子に関する。   The present invention relates to a light emitting element.

特開平1−225178号公報JP-A-1-225178 特開平6−188455号公報JP-A-6-188455 特開平8−83927号公報JP-A-8-83927 特開2001−7399号公報JP 2001-7399 A 特開2002−43621号公報JP 2002-43621 A

化合物半導体にて発光層部を形成した半導体発光素子のうち、表示用や照明用などの発光ダイオード光源として用いるものは、発光層部の光取出面側に駆動電圧を印加するための金属電極を形成する。金属電極は遮光体として作用するため、例えば発光層部主表面の中央部のみを覆う形で形成し、その周囲の電極非形成領域から光を取り出すこととなる。しかし、金属電極が遮光体であることに変わりはなく、また、金属電極面積を極端に小さくしすぎると、素子面内の電流拡散が妨げられて、却って光取出量が制限される問題もある。そこで、発光層部の全面を、透明で高導電率のITO(Indium Tin Oxide:酸化インジウム錫)電極層にて覆い、ITO電極層を介した光取出し効率の向上と、電流拡散効果の改善とを同時に図る提案が、例えば特許文献1〜5等に開示されている。   Among semiconductor light-emitting elements in which a light-emitting layer portion is formed of a compound semiconductor, those used as light-emitting diode light sources for display and illumination use a metal electrode for applying a driving voltage to the light extraction surface side of the light-emitting layer portion. Form. Since the metal electrode functions as a light shielding body, for example, it is formed so as to cover only the central portion of the main surface of the light emitting layer portion, and light is extracted from the surrounding electrode non-formation region. However, there is no change in that the metal electrode is a light shield, and if the area of the metal electrode is made extremely small, current diffusion in the element surface is hindered, and the amount of light extraction is restricted. . Therefore, the entire surface of the light emitting layer is covered with a transparent and highly conductive ITO (Indium Tin Oxide) electrode layer, and the light extraction efficiency through the ITO electrode layer is improved, and the current diffusion effect is improved. The proposal which aims at simultaneously is disclosed by patent documents 1-5 etc., for example.

ところで、ITO層は可視光に対して透明であるが、発光素子チップを構成する化合物半導体との屈折率差が大きい。具体的には、ITOの屈折率が1.7〜1.8であるのに対し、III−V族化合物半導体の場合、その多くは屈折率が3以上である。その結果、ITO層と化合物半導体層との界面では、取り出すべき発光光束に対する全反射臨界角度が小さくなり、界面反射で素子内に戻る発光光束の比率が増えるので、光取出し効率の低下を招きやすい問題がある   By the way, the ITO layer is transparent to visible light, but has a large refractive index difference from the compound semiconductor constituting the light emitting element chip. Specifically, while the refractive index of ITO is 1.7 to 1.8, most of the III-V compound semiconductors have a refractive index of 3 or more. As a result, at the interface between the ITO layer and the compound semiconductor layer, the total reflection critical angle with respect to the emitted light beam to be extracted becomes small, and the ratio of the emitted light beam that returns to the inside of the element due to interface reflection increases. There's a problem

本発明の課題は、発光駆動用の電極として酸化物透明電極層を用いるとともに、酸化物透明電極層が形成する境界面での内部反射を抑制し、ひいては光取出し効率の良好な発光素子を提供することにある。   An object of the present invention is to provide a light-emitting element that uses an oxide transparent electrode layer as an electrode for driving light emission, suppresses internal reflection at the boundary surface formed by the oxide transparent electrode layer, and thus has high light extraction efficiency. There is to do.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために本発明の発光素子は、発光層部を有した化合物半導体層と、該化合物半導体層に積層される、発光層部に発光駆動電圧を印加するための酸化物透明電極層とを有し、発光層部からの光を、酸化物透明電極層を透過させる形で取り出すようにした発光素子において、酸化物透明電極層と化合物半導体層との間に、それら酸化物透明電極層と化合物半導体層との中間の屈折率を有する中間屈折率層を配置したことを特徴とする。なお、本明細書において「屈折率」は、いずれも発光素子チップからの発光光束のピーク波長における屈折率を意味するものとする。   In order to solve the above problems, a light-emitting element of the present invention includes a compound semiconductor layer having a light-emitting layer portion, and an oxide transparent layer that is stacked on the compound semiconductor layer and applies a light-emission driving voltage to the light-emitting layer portion. In a light-emitting device having an electrode layer and extracting light from the light-emitting layer portion in a form of transmitting the oxide transparent electrode layer, the oxide between the oxide transparent electrode layer and the compound semiconductor layer An intermediate refractive index layer having an intermediate refractive index between the transparent electrode layer and the compound semiconductor layer is disposed. In this specification, “refractive index” means the refractive index at the peak wavelength of the luminous flux from the light emitting element chip.

上記本発明の発光素子によると、酸化物透明電極層と化合物半導体層との間に中間屈折率層を配置したので、酸化物透明電極層と化合物半導体層とが直接接する従来の素子構造と比較して、酸化物透明電極層が形成する境界面での屈折率差が縮小する。その結果、取り出すべき発光光束に対する全反射臨界角度が増加するので、該境界面での内部反射が抑制され、光取出し効率の良好な発光素子が実現する。   According to the light emitting device of the present invention, since the intermediate refractive index layer is disposed between the oxide transparent electrode layer and the compound semiconductor layer, it is compared with the conventional device structure in which the oxide transparent electrode layer and the compound semiconductor layer are in direct contact with each other. As a result, the refractive index difference at the boundary surface formed by the oxide transparent electrode layer is reduced. As a result, the total reflection critical angle with respect to the luminous flux to be extracted increases, so that internal reflection at the boundary surface is suppressed, and a light emitting element with good light extraction efficiency is realized.

中間屈折率層が絶縁層で構成される場合は、酸化物透明電極層を中間屈折率層を貫通して形成された導通貫通部にて化合物半導体層と導通させることにより、該酸化物透明電極層による発光層部への駆動電圧の印加が可能となる。   When the intermediate refractive index layer is composed of an insulating layer, the oxide transparent electrode layer is electrically connected to the compound semiconductor layer through a conduction penetrating portion formed through the intermediate refractive index layer. The driving voltage can be applied to the light emitting layer by the layer.

該酸化物透明電極層には、ワイヤボンディング等のため、その主表面の一部を覆う形で、発光層部に発光駆動電圧を印加する金属電極を形成することができる。金属電極は遮光体となるため、発光光束は、酸化物透明電極層の主表面のうち、その金属電極の周囲領域を光取出領域とする形で外部に取り出される。この場合、化合物半導体層の主表面のうち、金属電極の投影領域を第一領域とし、それ以外の領域を第二領域として、該第二領域を覆うように中間屈折率層を形成しておけば、光取出領域からの発光光束の取出効率を高めることができる。   A metal electrode for applying a light emission driving voltage to the light emitting layer portion can be formed on the oxide transparent electrode layer so as to cover a part of its main surface for wire bonding or the like. Since the metal electrode serves as a light shield, the emitted luminous flux is extracted outside in the main surface of the oxide transparent electrode layer with the peripheral region of the metal electrode as a light extraction region. In this case, of the main surface of the compound semiconductor layer, the projection region of the metal electrode is the first region and the other region is the second region, and the intermediate refractive index layer is formed so as to cover the second region. Thus, it is possible to increase the extraction efficiency of the luminous flux from the light extraction region.

酸化物透明電極層はシート抵抗が低いので、金属電極から供給される駆動電流を面内に拡散させる役割を果たす。第二領域に形成される中間屈折率層が絶縁層である場合、該第二領域において、中間屈折率層を貫通する導通貫通部を分散形成し、該導通貫通部にて酸化物透明電極層が化合物半導体層と導通させることが望ましい。これにより、酸化物透明電極層にて面内拡散した電流を、発光層部を有する化合物半導体層側に均一に供給することができ、発光層部を面内に均一に発光させることができる。   Since the oxide transparent electrode layer has a low sheet resistance, it plays the role of diffusing the drive current supplied from the metal electrode in the plane. When the intermediate refractive index layer formed in the second region is an insulating layer, conductive through-holes penetrating the intermediate refractive index layer are dispersedly formed in the second region, and the oxide transparent electrode layer is formed in the conductive through-holes. It is desirable to conduct with the compound semiconductor layer. Thereby, the current diffused in the plane by the oxide transparent electrode layer can be supplied uniformly to the compound semiconductor layer side having the light emitting layer portion, and the light emitting layer portion can be caused to emit light uniformly in the plane.

絶縁層からなる中間屈折率層は、金属電極の直下領域をなす第一領域にも形成することができる。この場合、該第一領域において導通貫通部を非形成とすれば、第一領域に形成された中間屈折率層を電流阻止層として機能させることができる。これにより、光取出が妨げられる金属電極直下での発光が抑制されるとともに、その迂回電流が光取出領域側に分配されるので、より多くの電流を光取出領域での発光に費やすことができ、ひいては光取出効率も含めた素子全体の発光輝度を高めることができる。   The intermediate refractive index layer made of an insulating layer can also be formed in the first region that forms the region immediately below the metal electrode. In this case, if the conduction through portion is not formed in the first region, the intermediate refractive index layer formed in the first region can function as a current blocking layer. As a result, light emission directly under the metal electrode that prevents light extraction is suppressed, and the detour current is distributed to the light extraction region side, so that more current can be spent on light emission in the light extraction region. As a result, the emission luminance of the entire device including the light extraction efficiency can be increased.

導通貫通部において酸化物透明電極層を化合物半導体層と接して配置することができる。この場合、化合物半導体層の最表面部に、金属又は発光層部をなす化合物半導体よりもバンドギャップエネルギーの小さい化合物半導体からなるコンタクト層を形成することが、該化合物半導体層との接触抵抗を低減する観点において有効である。コンタクト層は発光光束に対する吸収層として作用するので、導通貫通部に選択的に形成することが望ましい。これにより、光取出に有効寄与する中間屈折率層の領域からはコンタクト層を排除でき、素子全体の光取出し効率をより高めることができる。   The oxide transparent electrode layer can be disposed in contact with the compound semiconductor layer in the conductive through portion. In this case, forming a contact layer made of a compound semiconductor having a lower band gap energy than the compound semiconductor forming the metal or the light emitting layer on the outermost surface portion of the compound semiconductor layer reduces the contact resistance with the compound semiconductor layer. It is effective in terms of Since the contact layer functions as an absorption layer for the emitted light beam, it is desirable to selectively form the contact layer in the conductive through portion. Thereby, the contact layer can be excluded from the region of the intermediate refractive index layer that effectively contributes to the light extraction, and the light extraction efficiency of the entire device can be further increased.

酸化物透明電極層は、具体的にはITO層(Indium-Tin Oxide)又は酸化亜鉛層により構成できる。この場合、中間屈折率層は、窒化珪素、窒化硼素、窒化アルミニウム、酸化チタン、酸化ジルコニウム、酸化セリウム及び酸化タンタルのいずれかにて構成することができる。III−V族化合物半導体にて化合物半導体層を構成し、酸化物透明電極層の材質としてITOを採用する場合は、中間屈折率層として屈折率1.9以上2.5以下のものを用いることが望ましい。また、酸化物透明電極層の材質として酸化亜鉛を採用する場合は、中間屈折率層として屈折率2.1以上2.5以下のものを用いることが望ましい。これら屈折率範囲の下限値を下回る材質を中間屈折率層に採用すると、酸化物透明電極層との屈折率差を縮小する効果が薄れ、上回る材質を採用すると、化合物半導体層との屈折率差を縮小する効果が薄れる。いずれも、中間屈折率層と酸化物透明電極層又は化合物半導体層との境界での内部反射抑制効果が不十分となる惧れがある。   Specifically, the oxide transparent electrode layer can be composed of an ITO layer (Indium-Tin Oxide) or a zinc oxide layer. In this case, the intermediate refractive index layer can be composed of any one of silicon nitride, boron nitride, aluminum nitride, titanium oxide, zirconium oxide, cerium oxide, and tantalum oxide. When the compound semiconductor layer is composed of a III-V group compound semiconductor and ITO is adopted as the material of the oxide transparent electrode layer, an intermediate refractive index layer having a refractive index of 1.9 to 2.5 is used. Is desirable. In addition, when zinc oxide is used as the material of the oxide transparent electrode layer, it is desirable to use an intermediate refractive index layer having a refractive index of 2.1 or more and 2.5 or less. If a material lower than the lower limit of the refractive index range is used for the intermediate refractive index layer, the effect of reducing the refractive index difference from the oxide transparent electrode layer is diminished, and if a higher material is used, the refractive index difference from the compound semiconductor layer is reduced. The effect of reducing the thickness fades. In either case, there is a possibility that the effect of suppressing internal reflection at the boundary between the intermediate refractive index layer and the oxide transparent electrode layer or the compound semiconductor layer is insufficient.

以下、本発明の実施の形態を添付の図面を参照して説明する。
図1は、本発明の発光素子の一実施形態を示すものである。該発光素子100は、発光層部24と、該発光層部24の第一主表面上に形成された電流拡散層20とを有する化合物半導体層50を備える。化合物半導体層50の第一主表面は、発光層部に発光駆動電圧を印加するための酸化物透明電極層30にて覆われている。また、酸化物透明電極層30と化合物半導体層50との間には、それら酸化物透明電極層30と化合物半導体層発光層部50との中間の屈折率を有する中間屈折率層31が設けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows an embodiment of a light emitting device of the present invention. The light emitting element 100 includes a compound semiconductor layer 50 having a light emitting layer portion 24 and a current diffusion layer 20 formed on the first main surface of the light emitting layer portion 24. The first main surface of the compound semiconductor layer 50 is covered with an oxide transparent electrode layer 30 for applying a light emission driving voltage to the light emitting layer portion. Further, an intermediate refractive index layer 31 having an intermediate refractive index between the oxide transparent electrode layer 30 and the compound semiconductor layer light emitting layer portion 50 is provided between the oxide transparent electrode layer 30 and the compound semiconductor layer 50. ing.

発光層部24は、(AlGa1−xIn1−yP(但し、0≦x≦1,0≦y≦1:AlGaInP)又はInGaAl1−x−yN(0≦x≦1,0≦y≦1,x+y≦1:InGaAlN)にて構成できる。本実施形態においては、ノンドープ(AlGa1−xIn1−yP(ただし、0≦x≦0.55,0.45≦y≦0.55)混晶からなる活性層5を、p型(AlGa1−zIn1−yP(ただしx<z≦1)からなるp型クラッド層6と、n型(AlGa1−zIn1−yP(ただしx<z≦1)からなるn型クラッド層4とにより挟んだ構造を有し、活性層5の組成に応じて、発光波長を、黄緑色から赤色領域(発光波長(ピーク発光波長)が550nm以上670nm以下)にて調整できる。また、電流拡散層20は、AlGaAs、GaP又はGaInPなど、活性層5よりもバンドギャップエネルギーの大きい(つまり、発光光束に対して透明な)III−V族化合物半導体からなる。これらは周知のMOVPE法により、GaAsからなる素子基板7上にGaAsバッファ層2を介してエピタキシャル成長されたものである。発光層部24及び電流拡散層20をなすIII−V族化合物半導体(AlGaInP、AlGaAs、GaPあるいはGaInP)の屈折率は、上記発光波長域にて3.2〜3.5である。 The light emitting layer portion 24 is made of (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1: AlGaInP) or In x Ga y Al 1-xy N ( 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1: InGaAlN). In the present embodiment, the active layer 5 made of a non-doped (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 0.55, 0.45 ≦ y ≦ 0.55) mixed crystal is used. , P-type (Al z Ga 1-z ) y In 1-y P (where x <z ≦ 1) and n-type (Al z Ga 1-z ) y In 1-y P It has a structure sandwiched between n-type clad layers 4 (x <z ≦ 1), and the emission wavelength is changed from yellow-green to red region (emission wavelength (peak emission wavelength)) depending on the composition of the active layer 5 550 nm to 670 nm). The current spreading layer 20 is made of a III-V group compound semiconductor, such as AlGaAs, GaP, or GaInP, that has a larger band gap energy than the active layer 5 (that is, is transparent to the luminous flux). These are epitaxially grown on the element substrate 7 made of GaAs via the GaAs buffer layer 2 by a well-known MOVPE method. The refractive index of the group III-V compound semiconductor (AlGaInP, AlGaAs, GaP, or GaInP) forming the light emitting layer portion 24 and the current spreading layer 20 is 3.2 to 3.5 in the above emission wavelength region.

酸化物透明電極層30はITO(屈折率:1.7〜1.8)もしくは酸化亜鉛(屈折率:2.0)からなり、本実施形態ではITOが採用されている。ITOは、酸化スズをドープした酸化インジウム膜であり、酸化スズの含有量を1〜9質量%とすることで抵抗率を5×10−4Ω・cm以下の十分低い値とすることができる。中間屈折率層31は、窒化珪素(屈折率:1.8〜2.5)、窒化硼素(屈折率:2.0)、窒化アルミニウム(屈折率:2.2)、酸化チタン(屈折率:2.5)、酸化ジルコニウム(屈折率:2.1)、酸化セリウム(屈折率:2.2)及び酸化タンタル(屈折率:2.1)のいずれかからなり、本実施形態では窒化珪素が採用されている。これらは、いずれもスパッタリングやCVD(Chemical Vapor Deposition)で成膜され、それぞれ厚さは、例えば400nm以上3μm以下である。なお、窒化珪素は、特公平6−85448号公報に開示されているごとく、SiとNとの組成比によって屈折率を1.8〜2.5の範囲で調整可能である。図6は、Si/N比と屈折率との関係を示すものである。 The oxide transparent electrode layer 30 is made of ITO (refractive index: 1.7 to 1.8) or zinc oxide (refractive index: 2.0). In this embodiment, ITO is adopted. ITO is an indium oxide film doped with tin oxide, and the resistivity can be set to a sufficiently low value of 5 × 10 −4 Ω · cm or less by setting the content of tin oxide to 1 to 9 mass%. . The intermediate refractive index layer 31 includes silicon nitride (refractive index: 1.8 to 2.5), boron nitride (refractive index: 2.0), aluminum nitride (refractive index: 2.2), titanium oxide (refractive index: 2.5), zirconium oxide (refractive index: 2.1), cerium oxide (refractive index: 2.2), and tantalum oxide (refractive index: 2.1). In this embodiment, silicon nitride is used. It has been adopted. These are all formed by sputtering or CVD (Chemical Vapor Deposition), and each has a thickness of, for example, not less than 400 nm and not more than 3 μm. As disclosed in Japanese Patent Publication No. 6-85448, the refractive index of silicon nitride can be adjusted in the range of 1.8 to 2.5 depending on the composition ratio of Si and N. FIG. 6 shows the relationship between the Si / N ratio and the refractive index.

上記例示した中間屈折率層31はいずれも絶縁層であり、酸化物透明電極層30は、中間屈折率層31を貫通して形成された導通貫通部31hにて化合物半導体層50と導通している。酸化物透明電極層30には、ワイヤボンディング等のため、その主表面の一部を覆う形で、発光層部24に発光駆動電圧を印加する金属電極(例えばAu電極)9が形成されている。素子基板7はn型であり、その第二主表面は、AuGeNi合金等からなるコンタクト層16を介して、Au電極等からなる裏面電極15により覆われている。   The above-exemplified intermediate refractive index layers 31 are all insulating layers, and the oxide transparent electrode layer 30 is electrically connected to the compound semiconductor layer 50 through a conductive through-hole 31h formed through the intermediate refractive index layer 31. Yes. A metal electrode (for example, an Au electrode) 9 for applying a light emission driving voltage to the light emitting layer portion 24 is formed on the oxide transparent electrode layer 30 so as to cover a part of the main surface thereof for wire bonding or the like. . The element substrate 7 is n-type, and its second main surface is covered with a back electrode 15 made of an Au electrode or the like via a contact layer 16 made of AuGeNi alloy or the like.

化合物半導体層50の主表面のうち、金属電極9の投影領域を第一領域とし、それ以外の領域を第二領域として中間屈折率層31は、第二領域を覆う本体層部31wと、第一領域を覆う電流阻止層部31bとからなる。図2及び図3に示すように、第二領域を覆う本体層部31wにおいて、導通貫通部31hが分散形成されている。他方、電流阻止層部31bには導通貫通部が形成されていない。   Of the main surface of the compound semiconductor layer 50, the intermediate refractive index layer 31 includes a main body layer portion 31w covering the second region, the projection region of the metal electrode 9 as the first region, and the other region as the second region, The current blocking layer portion 31b covers one region. As shown in FIG.2 and FIG.3, the conduction | electrical_connection penetration part 31h is distributedly formed in the main body layer part 31w which covers a 2nd area | region. On the other hand, no conduction through portion is formed in the current blocking layer portion 31b.

図1に戻り、化合物半導体層50の最表面部には、発光層部24(活性層5)をなす化合物半導体(ここではAlGaInP)よりもバンドギャップエネルギーの小さい化合物半導体からなるコンタクト層32が形成されている。コンタクト層32は、具体的にはGaAsやInGaAsで構成される。コンタクト層32は発光光束に対する吸収層として作用するので、導通貫通部31hに選択的に形成されている(つまり、中間屈折率層31と電流拡散層20との間には、コンタクト層32が形成されておらず、両層31,20が直接接している)。図2は、コンタクト層32(ひいては導通貫通部31h)を、第一領域を取り囲む第一部分32sと、第一領域から放射状に伸びる第二部分32rとの組み合わせにより、第二領域に分散形成した例である。また、図3は、コンタクト層32(ひいては導通貫通部31h)を第二領域に散点状に分散形成した例である。なお、コンタクト層32は金属にて構成することもできる。本実施形態では、コンタクト層32が接する電流拡散層20がp型であり、金属コンタクト層を例えばAuBe合金等で構成することがでできる(電流拡散層20がn型の場合は、金属コンタクト層を例えばAuGeNi合金等で構成することがでできる)。   Returning to FIG. 1, a contact layer 32 made of a compound semiconductor having a band gap energy smaller than that of the compound semiconductor (here, AlGaInP) forming the light emitting layer portion 24 (active layer 5) is formed on the outermost surface portion of the compound semiconductor layer 50. Has been. Specifically, the contact layer 32 is made of GaAs or InGaAs. Since the contact layer 32 acts as an absorption layer for the luminous flux, the contact layer 32 is selectively formed in the conduction through portion 31h (that is, the contact layer 32 is formed between the intermediate refractive index layer 31 and the current diffusion layer 20). The two layers 31 and 20 are in direct contact with each other). FIG. 2 shows an example in which the contact layer 32 (and thus the conductive through-hole 31h) is distributed and formed in the second region by a combination of the first portion 32s surrounding the first region and the second portion 32r extending radially from the first region. It is. FIG. 3 shows an example in which the contact layer 32 (and hence the conductive through-hole 31h) is dispersedly formed in the second region in the form of dots. The contact layer 32 can also be made of metal. In the present embodiment, the current diffusion layer 20 in contact with the contact layer 32 is p-type, and the metal contact layer can be made of, for example, an AuBe alloy (in the case where the current diffusion layer 20 is n-type, the metal contact layer). For example, an AuGeNi alloy).

上記の発光素子100は、金属電極9と裏面電極15との間で順方向に電圧を印加することにより、発光層部24が活性層5のバンドギャップエネルギーに応じた波長にて発光する。その発光光束LBは、中間屈折率層31及び酸化物透明電極層30を経て、金属電極9の周囲をなす光取出領域PAから外部に取り出される。酸化物透明電極層30と化合物半導体層50との間に、両者の中間の屈折率を有する中間屈折率層31を配置したので、酸化物透明電極層30と化合物半導体層50とが直接接する構造と比較して、酸化物透明電極層が形成する境界面での屈折率差が縮小し、取り出すべき発光光束LBに対する全反射臨界角度が増加するので、該境界面での内部反射が抑制され、光取出し効率を改善できる。   The light emitting element 100 emits light at a wavelength corresponding to the band gap energy of the active layer 5 by applying a voltage in the forward direction between the metal electrode 9 and the back electrode 15. The emitted light beam LB passes through the intermediate refractive index layer 31 and the oxide transparent electrode layer 30 and is extracted to the outside from the light extraction area PA that forms the periphery of the metal electrode 9. Since the intermediate refractive index layer 31 having an intermediate refractive index between the oxide transparent electrode layer 30 and the compound semiconductor layer 50 is disposed, the structure in which the oxide transparent electrode layer 30 and the compound semiconductor layer 50 are in direct contact with each other. Compared with the above, the refractive index difference at the boundary surface formed by the oxide transparent electrode layer is reduced and the total reflection critical angle with respect to the emitted light beam LB to be extracted is increased, so that internal reflection at the boundary surface is suppressed, The light extraction efficiency can be improved.

なお、酸化物透明電極層30はシート抵抗が低いので、金属電極9から供給される駆動電流を面内に均一に拡散できる。中間屈折率層31は絶縁層であるが、光取出領域PAに対応した本体層部31wには導通貫通部31hが分散形成されているので、発光層部24に対しこれら導通貫通部31hを介して発光駆動電流を均一に分配できる。他方、金属電極9の直下に位置する電流阻止層部31bは導通貫通部が非形成であり、光取出が妨げられる金属電極9の直下での発光が抑制される。また、その迂回電流が光取出領域側に分配されるので、同じ駆動電圧でより多くの電流を光取出領域での発光に費やすことができる。さらに、光吸収性のコンタクト層32は導通貫通部31hに選択的に形成されているから、中間屈折率層31が形成されている領域ではコンタクト層32による吸収損失もなく、光取出し効率の一層の向上が図られている。   Since the oxide transparent electrode layer 30 has a low sheet resistance, the driving current supplied from the metal electrode 9 can be uniformly diffused in the plane. Although the intermediate refractive index layer 31 is an insulating layer, since the conductive through portions 31h are dispersedly formed in the main body layer portion 31w corresponding to the light extraction area PA, the intermediate refractive index layer 31 is interposed between the conductive through portions 31h with respect to the light emitting layer portion 24. The light emission drive current can be evenly distributed. On the other hand, the current blocking layer portion 31b located immediately below the metal electrode 9 has no conduction through portion, and light emission immediately below the metal electrode 9 that prevents light extraction is suppressed. Further, since the bypass current is distributed to the light extraction region side, a larger amount of current can be consumed for light emission in the light extraction region with the same drive voltage. Further, since the light-absorbing contact layer 32 is selectively formed in the conduction through portion 31h, there is no absorption loss due to the contact layer 32 in the region where the intermediate refractive index layer 31 is formed, and the light extraction efficiency is further increased. Improvements are being made.

発光素子100はチップの周囲を高分子材料からなるモールド60で覆うことができる。このモールド60は、例えばエポキシ樹脂にて構成できる。エポキシ樹脂の屈折率は1.5〜1.6であり、酸化物透明電極層30をITO及び酸化亜鉛のいずれで構成する場合も、発光光束の取出経路に沿って、化合物半導体層50→中間屈折率層31→酸化物透明電極層30→モールド60→大気の順で屈折率が一方向的に小さくなり、発光光束の境界反射を効果的に抑制できる構造が実現する。特に、酸化物透明電極層30をITOで構成した場合、エポキシ樹脂からなるモールド60との屈折率がほとんど同じになり、酸化物透明電極層30とモールド60との境界での反射をほとんど生じない利点がある。   The light emitting device 100 can cover the periphery of the chip with a mold 60 made of a polymer material. The mold 60 can be made of, for example, an epoxy resin. The refractive index of the epoxy resin is 1.5 to 1.6. When the oxide transparent electrode layer 30 is made of either ITO or zinc oxide, the compound semiconductor layer 50 → intermediate along the extraction path of the luminous flux. The refractive index decreases unidirectionally in the order of the refractive index layer 31 → the oxide transparent electrode layer 30 → the mold 60 → the atmosphere, and a structure capable of effectively suppressing the boundary reflection of the emitted light flux is realized. In particular, when the oxide transparent electrode layer 30 is made of ITO, the refractive index is almost the same as that of the mold 60 made of an epoxy resin, and reflection at the boundary between the oxide transparent electrode layer 30 and the mold 60 hardly occurs. There are advantages.

以下、本発明の発光素子の変形例について説明する(図1の発光素子100と共通の部分には同一の符号を付与して詳細な説明は省略する)。図4の発光素子200は、中間屈折率層を屈折率の異なる複数層31a,32bの積層体で形成した例である。この場合、これら複数の層は、化合物半導体層50側から酸化物透明電極層30側に向けて屈折率が順次減少するように配置することが、境界での反射を抑制する観点において望ましい。なお、複数層31a,32bは、特にSi/N組成比の異なる窒化珪素で構成すると、隣接する層同士の屈折率差をより縮小でき、境界反射抑制の効果をより顕著なものとすることができる。層数を増やせば屈折率を層厚方向に実質的に連続変化させることも可能である。   Hereinafter, modified examples of the light-emitting element of the present invention will be described (the same reference numerals are given to portions common to the light-emitting element 100 of FIG. 1 and detailed description thereof will be omitted). The light emitting element 200 of FIG. 4 is an example in which an intermediate refractive index layer is formed of a stacked body of a plurality of layers 31a and 32b having different refractive indexes. In this case, it is desirable from the viewpoint of suppressing reflection at the boundary that the plurality of layers are arranged so that the refractive index decreases sequentially from the compound semiconductor layer 50 side toward the oxide transparent electrode layer 30 side. In addition, when the multiple layers 31a and 32b are made of silicon nitride having different Si / N composition ratios in particular, the difference in refractive index between adjacent layers can be further reduced, and the effect of suppressing boundary reflection can be made more remarkable. it can. If the number of layers is increased, the refractive index can be substantially continuously changed in the layer thickness direction.

図5の発光素子300は、、中間屈折率層31の本体層部31wを、第二領域に散点状に分散形成した例を示している(つまり、図3の本体層部とコンタクト層との形成関係を逆転させたものに相当する)。散点状の本体層部31wの表面をそれぞれ球面状に形成すると、境界反射がより起こりにくくなり、光取出し効率を高めることができる。   The light emitting element 300 in FIG. 5 shows an example in which the main body layer portion 31w of the intermediate refractive index layer 31 is dispersedly formed in the second region in the form of dots (that is, the main body layer portion and the contact layer in FIG. 3). Is equivalent to the reversed formation relationship). When the surface of the scattered main body layer portion 31w is formed in a spherical shape, boundary reflection is less likely to occur, and the light extraction efficiency can be increased.

図1、図4及び図5の構成では、いずれも発光層部24をエピタキシャル成長するためのGaAs基板を素子基板7として残留させていたが、研削やエッチングによりGaAs基板を除去し、その除去面にGaP基板等の透明半導体基板を貼り合わせたり、あるいは除去面を反射金属層で覆うこともできる。これにより、素子裏面側に向かう発光光束も外部に効果的に取り出せるようになり、素子の光取出し効率を一層向上できる。   In all of the configurations of FIGS. 1, 4 and 5, the GaAs substrate for epitaxial growth of the light emitting layer portion 24 is left as the element substrate 7. However, the GaAs substrate is removed by grinding or etching, and the removed surface is removed. A transparent semiconductor substrate such as a GaP substrate can be bonded together, or the removal surface can be covered with a reflective metal layer. As a result, the luminous flux directed toward the back side of the element can be effectively extracted outside, and the light extraction efficiency of the element can be further improved.

本発明の発光素子の第一実施形態を模式的に示す断面模式図。The cross-sectional schematic diagram which shows typically 1st embodiment of the light emitting element of this invention. 本発明の発光素子における中間屈折率層の形成形態の第一例を示す平面図。The top view which shows the 1st example of the formation form of the intermediate refractive index layer in the light emitting element of this invention. 本発明の発光素子における中間屈折率層の形成形態の第二例を示す平面図。The top view which shows the 2nd example of the formation form of the intermediate refractive index layer in the light emitting element of this invention. 本発明の発光素子の第二実施形態を模式的に示す断面模式図。The cross-sectional schematic diagram which shows typically 2nd embodiment of the light emitting element of this invention. 本発明の発光素子の第三実施形態を模式的に示す断面模式図。The cross-sectional schematic diagram which shows typically 3rd embodiment of the light emitting element of this invention. 中間屈折率層を構成する窒化珪素の屈折率と、Si/N組成比との関係を示すグラフ。The graph which shows the relationship between the refractive index of the silicon nitride which comprises an intermediate | middle refractive index layer, and Si / N composition ratio.

符号の説明Explanation of symbols

100,200,300 発光素子
9 金属電極
24 発光層部
30 酸化物透明電極層
31 中間屈折率層
31h 導通貫通部
32 コンタクト層
50 化合物半導体層
100, 200, 300 Light-emitting element 9 Metal electrode 24 Light-emitting layer part 30 Oxide transparent electrode layer 31 Intermediate refractive index layer 31h Conducting through-hole 32 Contact layer 50 Compound semiconductor layer

Claims (8)

発光層部を有した化合物半導体層と、該化合物半導体層に積層される、前記発光層部に発光駆動電圧を印加するための酸化物透明電極層とを有し、前記発光層部からの光を、前記酸化物透明電極層を透過させる形で取り出すようにした発光素子において、前記酸化物透明電極層と前記化合物半導体層との間に、それら酸化物透明電極層と化合物半導体層との中間の屈折率を有する中間屈折率層を配置したことを特徴とする発光素子。 A compound semiconductor layer having a light emitting layer portion; and an oxide transparent electrode layer that is laminated on the compound semiconductor layer and applies a light emission driving voltage to the light emitting layer portion. In the light emitting device in which the oxide transparent electrode layer is taken out in the form of transmitting, between the oxide transparent electrode layer and the compound semiconductor layer, between the oxide transparent electrode layer and the compound semiconductor layer An intermediate refractive index layer having a refractive index of 5 is disposed. 前記中間屈折率層が絶縁層であり、前記酸化物透明電極層は前記中間屈折率層を貫通して形成された導通貫通部にて前記化合物半導体層と導通してなることを特徴とする請求項1記載の発光素子。 The intermediate refractive index layer is an insulating layer, and the transparent oxide electrode layer is electrically connected to the compound semiconductor layer through a conductive through portion formed through the intermediate refractive index layer. Item 2. A light emitting device according to Item 1. 前記酸化物透明電極層の主表面の一部を覆う形で前記発光層部に発光駆動電圧を印加する金属電極が形成され、前記化合物半導体層の主表面のうち、前記金属電極の投影領域を第一領域とし、それ以外の領域を第二領域として、前記中間屈折率層が前記第二領域を覆うように形成されていることを特徴とする請求項1又は請求項2に記載の発光素子。 A metal electrode for applying a light emission driving voltage to the light emitting layer portion is formed so as to cover a part of the main surface of the oxide transparent electrode layer, and a projection region of the metal electrode is formed on the main surface of the compound semiconductor layer. 3. The light-emitting element according to claim 1, wherein the intermediate refractive index layer is formed so as to cover the second region, with the first region being the first region and the other region being the second region. . 前記第二領域に形成される前記中間屈折率層が絶縁層であり、該第二領域において、前記中間屈折率層を貫通する導通貫通部が分散形成され、該導通貫通部にて前記酸化物透明電極層が前記化合物半導体層と導通してなることを特徴とする請求項3記載の発光素子。 The intermediate refractive index layer formed in the second region is an insulating layer, and in the second region, conductive through portions penetrating the intermediate refractive index layer are formed and dispersed in the conductive through portion. 4. The light emitting device according to claim 3, wherein a transparent electrode layer is electrically connected to the compound semiconductor layer. 前記絶縁層からなる前記中間屈折率層が前記第一領域にも形成されるとともに、該第一領域には前記導通貫通部が非形成となっていることを特徴とする請求項4記載の発光素子。 5. The light emitting device according to claim 4, wherein the intermediate refractive index layer made of the insulating layer is also formed in the first region, and the conductive through portion is not formed in the first region. element. 前記導通貫通部において前記酸化物透明電極層は前記化合物半導体層と接して配置されるとともに、該化合物半導体層との接触抵抗を低減するために、前記化合物半導体層の最表面部に、金属又は前記発光層部をなす化合物半導体よりもバンドギャップエネルギーの小さい化合物半導体からなるコンタクト層が形成されてなることを特徴とする請求項2ないし請求項5のいずれか1項に記載の発光素子。 The oxide transparent electrode layer is disposed in contact with the compound semiconductor layer in the conduction penetrating portion, and in order to reduce contact resistance with the compound semiconductor layer, a metal or an 6. The light emitting element according to claim 2, wherein a contact layer made of a compound semiconductor having a band gap energy smaller than that of the compound semiconductor forming the light emitting layer portion is formed. 前記コンタクト層が前記導通貫通部に選択的に形成されてなることを特徴とする請求項6記載の発光素子。 The light emitting device according to claim 6, wherein the contact layer is selectively formed in the conduction through portion. 前記酸化物透明電極層がITO層又は酸化亜鉛層であり、前記中間屈折率層が窒化珪素、窒化硼素、窒化アルミニウム、酸化チタン、酸化ジルコニウム、酸化セリウム及び酸化タンタルのいずれかからなることを特徴とする請求項1ないし請求項7のいずれか1項に記載の発光素子。 The oxide transparent electrode layer is an ITO layer or a zinc oxide layer, and the intermediate refractive index layer is made of any one of silicon nitride, boron nitride, aluminum nitride, titanium oxide, zirconium oxide, cerium oxide, and tantalum oxide. The light-emitting element according to claim 1.
JP2004180162A 2004-06-17 2004-06-17 Light emitting element Pending JP2006005171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004180162A JP2006005171A (en) 2004-06-17 2004-06-17 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004180162A JP2006005171A (en) 2004-06-17 2004-06-17 Light emitting element

Publications (1)

Publication Number Publication Date
JP2006005171A true JP2006005171A (en) 2006-01-05

Family

ID=35773284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004180162A Pending JP2006005171A (en) 2004-06-17 2004-06-17 Light emitting element

Country Status (1)

Country Link
JP (1) JP2006005171A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220970A (en) * 2006-02-17 2007-08-30 Showa Denko Kk Light-emitting element, manufacturing method thereof, and lamp
KR100862505B1 (en) * 2006-02-01 2008-10-08 삼성전기주식회사 Light emitting diode and method of manufacturing the same
JP2010027824A (en) * 2008-07-18 2010-02-04 Toyoda Gosei Co Ltd Light-emitting element
JP2016157975A (en) * 2016-05-02 2016-09-01 ローム株式会社 Semiconductor light-emitting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862505B1 (en) * 2006-02-01 2008-10-08 삼성전기주식회사 Light emitting diode and method of manufacturing the same
JP2007220970A (en) * 2006-02-17 2007-08-30 Showa Denko Kk Light-emitting element, manufacturing method thereof, and lamp
JP2010027824A (en) * 2008-07-18 2010-02-04 Toyoda Gosei Co Ltd Light-emitting element
JP2016157975A (en) * 2016-05-02 2016-09-01 ローム株式会社 Semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
JP4899825B2 (en) Semiconductor light emitting device, light emitting device
KR102027301B1 (en) Enhancement in the light extraction efficiencies of Light Emitting Diode by adoption of reflection layer
US8314431B2 (en) LED semiconductor element having increased luminance
JP5971090B2 (en) Semiconductor light emitting element and light emitting device
KR20130024852A (en) Semiconductor light emitting device including metal reflecting layer
US8067783B2 (en) Radiation-emitting chip comprising at least one semiconductor body
JP5900284B2 (en) Semiconductor light emitting element and light emitting device
US9054276B2 (en) Semiconductor light-emitting device
JP2008218878A (en) GaN BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
JP2006210730A (en) Light emitting element
US8829558B2 (en) Semiconductor light-emitting device
JP6149878B2 (en) Light emitting element
JP2010541218A (en) Thin film LED having mirror layer and method of manufacturing the same
JP5731731B2 (en) Light emitting device
JP2005175462A (en) Semiconductor luminous element and manufacturing method of the same
JP5165254B2 (en) Flip chip type light emitting device
US20230026786A1 (en) Light emitting device
JP3979378B2 (en) Semiconductor light emitting device
TWI653769B (en) Point source light-emitting diode
JP2005276899A (en) Light-emitting element
US20060180819A1 (en) Reflective electrode and compound semiconductor light emitting device including the same
JP2006005171A (en) Light emitting element
US11276801B2 (en) Light-emitting element
JP2019075547A (en) Semiconductor light-emitting device
KR101643688B1 (en) Semiconductor light emitting device