JP2006003324A - Method of measuring distribution of axial force of lock bolt and method of measuring distribution of axial force of lock bolt and the lock bolt - Google Patents

Method of measuring distribution of axial force of lock bolt and method of measuring distribution of axial force of lock bolt and the lock bolt Download PDF

Info

Publication number
JP2006003324A
JP2006003324A JP2004182929A JP2004182929A JP2006003324A JP 2006003324 A JP2006003324 A JP 2006003324A JP 2004182929 A JP2004182929 A JP 2004182929A JP 2004182929 A JP2004182929 A JP 2004182929A JP 2006003324 A JP2006003324 A JP 2006003324A
Authority
JP
Japan
Prior art keywords
lock bolt
axial force
bolt
force distribution
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004182929A
Other languages
Japanese (ja)
Inventor
Toshikatsu Yoshiara
俊克 吉荒
Hidetoshi Matsuzawa
英俊 松沢
Hiroyuki Tanase
寛之 田名瀬
Takefumi Nakako
武文 仲子
Shigeo Matsubara
茂雄 松原
Shoji Inoue
正二 井上
Toshiharu Kikko
敏晴 橘高
Yasunori Otsuka
康範 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGOYA DORO ENGINEER KK
Nippon Steel Nisshin Co Ltd
Non Destructive Inspection Co Ltd
Oyo Corp
Nippon Steel Nisshin Pipe Co Ltd
Original Assignee
NAGOYA DORO ENGINEER KK
Non Destructive Inspection Co Ltd
Oyo Corp
Nisshin Steel Co Ltd
Nisshin Kokan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGOYA DORO ENGINEER KK, Non Destructive Inspection Co Ltd, Oyo Corp, Nisshin Steel Co Ltd, Nisshin Kokan Co Ltd filed Critical NAGOYA DORO ENGINEER KK
Priority to JP2004182929A priority Critical patent/JP2006003324A/en
Publication of JP2006003324A publication Critical patent/JP2006003324A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the method of measuring distribution of axial force of a lock bolt which is needless of wiring for a strain gauge accordingly, simple in management and moreover capable of surely measuring the axial force, and to provide the lock bolt. <P>SOLUTION: At the time of execution of the solid lock bolt 10, previously the ultrasound measurement is performed in such a way that from the exposed part of the lock bolt 10 i.e. the incident part 11 the ultrasound is transmitted and received for obtaining the receiving time difference between the reference points. Afterward, the ultrasound measurement is performed again and the axial force is calculated from the change of the receiving time difference. The lock bolt is provided with reference points between the incident part 11 and end part 12 for reflecting the ultrasound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ナトム工法などの地盤改良工法に用いるロックボルトの軸力を計測するロックボルト軸力分布計測方法及びこれに用いるロックボルトに関する。   The present invention relates to a lock bolt axial force distribution measuring method for measuring an axial force of a lock bolt used in a ground improvement method such as a natom method, and a lock bolt used therefor.

ロックボルト軸力分布計測方法としては、例えば特許文献1,2に記載の如き発明が知られている。特許文献1に記載の発明では、異形棒鋼型ロックボルトからなる軸力測定計に測定溝を設け、その底面にストレンゲージを貼付し、リード線を測定溝に配設している。また、特許文献2に記載の発明では、鋼管膨張型ロックボルトの表面にストレンゲージを貼付しその周りを防護パイプ、充填材等でストレンゲージ及び入出力ケーブルを保護している。   As a rock bolt axial force distribution measuring method, for example, the inventions described in Patent Documents 1 and 2 are known. In the invention described in Patent Document 1, a measurement groove is provided in an axial force measuring meter made of a deformed steel bar lock bolt, a strain gauge is attached to the bottom surface, and a lead wire is provided in the measurement groove. In the invention described in Patent Document 2, a strain gauge is affixed to the surface of the steel pipe expansion type lock bolt, and the strain gauge and the input / output cable are protected by a protective pipe, a filler, and the like.

いずれの先行発明においても、ストレンゲージを用いて軸力を計測しており、計測部までケーブルを配設しなければならず、トンネル現場での取り扱いは煩雑で測定計としても高価なものとなっていた。   In any of the prior inventions, the axial force is measured using a strain gauge, and a cable must be arranged up to the measuring section. The handling at the tunnel site is complicated and expensive as a measuring meter. It was.

また、ロックボルトとは全く技術分野の異なる参考例であるが、特許文献3に記載の如く超音波によるボルト軸力計測法が知られている。同発明は、軸方向の縦波と横波の伝播時間の比を求め、予め既知の軸力下で求めた縦波と横波の伝播時間の比と軸方向の引張応力との関係から、締結されたボルト全体のボルト軸力を求めている。よって、ロックボルトに適用するという点の示唆もその適用時の実現性等についての開示も全く見受けられない。
実開平4−38541号 特開2004−37227号 特開平5−203513号
In addition, although it is a reference example that is completely different from the technical field of the lock bolt, a bolt axial force measurement method using ultrasonic waves is known as described in Patent Document 3. The invention determines the ratio of the propagation time of longitudinal and transverse waves in the axial direction, and is concluded from the relationship between the ratio of propagation time of longitudinal and transverse waves obtained in advance under a known axial force and the tensile stress in the axial direction. The bolt axial force of the entire bolt is obtained. Therefore, there is no suggestion of applying to a rock bolt, and no disclosure about the feasibility at the time of application.
4-38541 JP 2004-37227 A JP-A-5-203513

かかる従来の実情に鑑みて、本発明は、管理が簡易で確実に軸力を計測することの可能なロックボルト軸力分布計測方法及びロックボルトを提供することを目的とする。   In view of such a conventional situation, an object of the present invention is to provide a lock bolt axial force distribution measuring method and a lock bolt that can be easily managed and can reliably measure an axial force.

上記目的を達成するため、本発明に係るロックボルト軸力分布計測方法の特徴は、中空のロックボルトに作用する軸力を計測するロックボルト軸力分布計測方法であって、前記ロックボルトの施工時に予めロックボルトの露出部である入射部から超音波を送信すると共に受信して標点の受信時間差を求める超音波測定を実施し、後に改めて前記超音波測定を実施して受信時間差の変化により前記軸力を算定することにある。   In order to achieve the above object, a feature of the lock bolt axial force distribution measuring method according to the present invention is a lock bolt axial force distribution measuring method for measuring an axial force acting on a hollow lock bolt, wherein the construction of the lock bolt is performed. Sometimes ultrasonic waves are transmitted and received in advance from the incident part, which is the exposed part of the rock bolt, and the ultrasonic measurement is performed to obtain the difference in the reception time of the target point, and later the ultrasonic measurement is performed again due to the change in the reception time difference. It is to calculate the axial force.

同特徴によれば、ストレンゲージを用いることなく、各標点における超音波の受信時間差の変化により軸力を算定することができる。   According to the same feature, the axial force can be calculated from the change in the reception time difference of the ultrasonic wave at each gauge point without using a strain gauge.

また、ロックボルトにおける超音波の前記入射部と終端との間に超音波を反射する標点を設けてもよく、各標点が切欠を含むことが望ましい。   Moreover, you may provide the mark which reflects an ultrasonic wave between the said incident part and termination | terminus of the ultrasonic wave in a rock bolt, and it is desirable for each mark to contain a notch.

さらに、超音波が横波である場合には、ロックボルトの入射部がロックボルトの長手方向に対して傾斜していることが望ましい。   Furthermore, when the ultrasonic wave is a transverse wave, it is desirable that the incident portion of the lock bolt is inclined with respect to the longitudinal direction of the lock bolt.

一方、上記ロックボルト軸力分布計測方法に用いることの可能なロックボルトの特徴は、前記超音波が横波の場合において、前記超音波の入射部がロックボルトの長手方向に対して傾斜していることにある。さらに、当該ロックボルトは、前記標点として複数の切欠を有することが望ましい。   On the other hand, the feature of the lock bolt that can be used in the method for measuring the axial force distribution of the lock bolt is that the ultrasonic wave incident portion is inclined with respect to the longitudinal direction of the lock bolt when the ultrasonic wave is a transverse wave. There is. Further, the lock bolt desirably has a plurality of notches as the mark.

上記本発明に係るロックボルト軸力分布計測方法の特徴によれば、超音波を用いることでストレンゲージの配線等が不要で管理が簡素であり、しかも、確実に軸力を計測することの可能なロックボルト軸力分布計測方法及びロックボルトを提供するに至った。   According to the characteristics of the rock bolt axial force distribution measuring method according to the present invention described above, the use of ultrasonic waves eliminates the need for strain gauge wiring and the like, simplifies management, and allows the axial force to be reliably measured. To provide a rock bolt axial force distribution measuring method and a lock bolt.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。図1は本発明の軸力分布計測に用いるロックボルト10と軸力分布計測装置1とを示す。軸力分布計測装置1は、超音波をロックボルト10へ送受信する探触子2と、超音波を発信及び受信するパルサー・レシーバー3と、信号を制御すると共に受信信号を処理・表示するPC(パーソナルコンピュータ)4及びモニター5を備えている。   Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate. FIG. 1 shows a lock bolt 10 and an axial force distribution measuring device 1 used for measuring an axial force distribution according to the present invention. The axial force distribution measuring apparatus 1 includes a probe 2 that transmits / receives ultrasonic waves to / from the rock bolt 10, a pulsar / receiver 3 that transmits / receives ultrasonic waves, and a PC (that controls and displays received signals). A personal computer 4 and a monitor 5 are provided.

ロックボルト10は、異形管20の両端に注水側スリーブ30,封止側スリーブ40を溶着してなる。異形管20は図2に示すように、溶融メッキ鋼管を扁平にすると共に略C字型に形成したものであり、各断面位置で扁平度合いが異なっている。全長の端部では同図(b)(c)に示すように管外面21,管内面22が近接しており、同図(d)の位置では管内部23が膨大し中央部26が縮小している。管内部23への注水時に開口部25を介して管内面22が同図(e)の如く膨大する。   The lock bolt 10 is formed by welding a water injection side sleeve 30 and a sealing side sleeve 40 to both ends of the deformed pipe 20. As shown in FIG. 2, the deformed pipe 20 is formed by flattening a hot-dip plated steel pipe and forming a substantially C shape, and the degree of flatness is different at each cross-sectional position. As shown in FIGS. 2B and 2C, the pipe outer surface 21 and the pipe inner surface 22 are close to each other at the end of the entire length. At the position shown in FIG. ing. When water is injected into the pipe interior 23, the pipe inner surface 22 becomes enormous as shown in FIG.

略C字型の異形管20先端は注水側スリーブ30の孔に挿入され、その先端部において溶接部24で注水側スリーブ30に固着される。異形管20の他端も封止側スリーブ40に対して同様に溶着される。注水側スリーブ30のスリーブ側部32及び管外面21には注水孔27が貫通形成され、外部から水がこの注水孔27を通じて管内部23に供給される。   The distal end of the substantially C-shaped deformed pipe 20 is inserted into the hole of the water injection side sleeve 30, and is fixed to the water injection side sleeve 30 by the welded portion 24 at the front end portion thereof. The other end of the deformed tube 20 is also welded to the sealing sleeve 40 in the same manner. A water injection hole 27 is formed through the sleeve side portion 32 and the pipe outer surface 21 of the water injection side sleeve 30, and water is supplied from the outside to the pipe interior 23 through the water injection hole 27.

注水側スリーブ30のスリーブ先端31は、図3に示すように切欠部33において斜めに削り込まれ、溶接部24の一部と共に超音波の入射部11となる斜面34を形成している。この斜面34に探触子2が接触し、超音波が異形管20内に向けて送受信される。斜面34は異形管20全体の軸線に対して略45度程度傾斜し、探触子2から横波の超音波が送信される。スリーブ先端31は切欠部33において中心から遠ざかるほど深くなるように削り込むのが加工上便宜である。なお、縦波を入射させる場合には、図5に示すように一部を平坦に削り込み、平坦面に探触子2を接触させるとよい。   As shown in FIG. 3, the sleeve tip 31 of the water injection side sleeve 30 is cut obliquely at a notch 33, and forms a slope 34 that becomes the ultrasonic incident portion 11 together with a part of the welded portion 24. The probe 2 comes into contact with the slope 34 and ultrasonic waves are transmitted and received toward the deformed tube 20. The inclined surface 34 is inclined by about 45 degrees with respect to the entire axis of the deformed tube 20, and a transverse wave ultrasonic wave is transmitted from the probe 2. It is convenient for machining to cut the sleeve tip 31 so as to become deeper as the distance from the center becomes larger at the notch 33. In addition, when making a longitudinal wave enter, it is good to cut a part flatly as shown in FIG. 5, and to make the probe 2 contact a flat surface.

異形管20の適宜箇所には図4(a)、(b)に示すように標点として複数の切欠N1−5が形成されている。各切欠N1−5は、それぞれがロックボルト10の周部に沿うように可能な範囲で設けられ、異なる長手方向位置において位相が同じ位置に配置されている。なお、各切欠N1−5は図4(c)のように異なる長手方向位置において位相が異なるように配置してもよく、この場合、超音波が中間部の切欠N1−5及び端部12のものをより確実に検出することができる。なお、端部切欠N5と端部12とはいずれか一方の信号のみ用いるようにしてもよい。   As shown in FIGS. 4A and 4B, a plurality of notches N1-5 are formed as reference points at appropriate portions of the deformed tube 20. Each notch N1-5 is provided in a possible range so as to be along the peripheral portion of the lock bolt 10, and is arranged at the same phase in different longitudinal positions. In addition, each notch N1-5 may be arrange | positioned so that a phase may differ in a different longitudinal direction position like FIG.4 (c), In this case, an ultrasonic wave is notch N1-5 of the intermediate part, and the edge part 12. Things can be detected more reliably. Note that only one of the signals of the end notch N5 and the end 12 may be used.

ところで、各切欠N1−5の内部に異形管20の材料と音響インピーダンスの近い材料が浸入すると、各切欠N1−5からの反射信号が低減する場合も考えられる。したがって、図4(d)に示すように、各切欠N1−5には異形管20の材料と音響インピーダンスの異なる材料、例えば、合成樹脂等、超音波の伝播率が低い材料よりなる挿入体16を充填等により各切欠N1−5の内部に介在させてもよい。   By the way, when a material having a similar acoustic impedance to the material of the deformed tube 20 enters each notch N1-5, the reflected signal from each notch N1-5 may be reduced. Therefore, as shown in FIG. 4D, each notch N1-5 has an insert 16 made of a material having a low acoustic wave propagation rate, such as a material having a different acoustic impedance from the material of the deformed tube 20, such as a synthetic resin. May be inserted inside each notch N1-5 by filling or the like.

実験によると、特に横波を入射する場合は、表面に多くの凹凸が存在すると、表面が平滑な場合に比べて超音波の減衰が大きいことが確認されたので、異形管20の表面は切欠以外超音波の反射に影響しない程度に平坦となっている。なお、標点は切欠以外に凹部や突起でもよいが、切欠が超音波の反射を最も明瞭に検出することができる。   According to the experiment, especially when a transverse wave is incident, it is confirmed that if there are many irregularities on the surface, the attenuation of the ultrasonic wave is larger than when the surface is smooth. It is flat enough not to affect the reflection of ultrasonic waves. The mark may be a recess or a protrusion other than the notch, but the notch can most clearly detect the reflection of the ultrasonic wave.

設置に際しては、トンネル壁 100の適宜箇所に形成された挿入孔101にロックボルト10を挿入する。挿入時は図2(d)の如く、挿入孔101と異形管20との間に隙間103が残存している。その後、注水側スリーブ30にシールヘッドを取り付けて水を注水孔27から管内部23内に加圧注水する。この注水により異形管20は図1の一点鎖線20’及び図2(e)の如く膨張し、隙間103は殆ど無くなって挿入孔101に異形管20外面が密着することになり、これにより摩擦力が作用してロックボルト10の挿入孔101への定着が完了する。注水側スリーブ30の近傍にはベアリングプレート15が介挿され、実質的にトンネル壁100を支持する。   At the time of installation, the lock bolt 10 is inserted into the insertion hole 101 formed at an appropriate location on the tunnel wall 100. At the time of insertion, a gap 103 remains between the insertion hole 101 and the deformed tube 20 as shown in FIG. Thereafter, a seal head is attached to the water injection side sleeve 30, and water is pressurized and injected from the water injection hole 27 into the pipe interior 23. Due to this water injection, the deformed tube 20 expands as shown by the alternate long and short dash line 20 'in FIG. 1 and FIG. Acts to complete the fixing of the lock bolt 10 to the insertion hole 101. A bearing plate 15 is inserted in the vicinity of the water injection side sleeve 30 to substantially support the tunnel wall 100.

計測に際しては、図3のように斜面34(入射部11)に探触子2を接触媒質を介して接触させ、超音波を入射すると共に受信する。図5の場合は平坦な入射部11に探触子2を接触させる。   At the time of measurement, the probe 2 is brought into contact with the inclined surface 34 (incident part 11) through a contact medium as shown in FIG. 3, and ultrasonic waves are incident and received. In the case of FIG. 5, the probe 2 is brought into contact with the flat incident portion 11.

まずは、超音波の発信時刻と図4に示す各標点(N1−5)から反射してくる反射波の受信時刻の差から伝播時間Ti(iは区間番号)が求められる。次に、隣接する区間の伝播時間の差Ti−Ti-1から区間伝播時間が算出できる。上記の手順に基づいて、ロックボルト打設直後に各標点区間SC1〜5の各区間伝播時間を初期値として計測する。打設後随時に各区間伝播時間を同様に計測して、それぞれ初期値に対する変化率(区間伝播時間変化率dD)を求める。予め求めておいた軸力と区間伝播時間変化率dDとの相関関係から、各区間の軸力が算定できる。 First, the propagation time T i (i is the section number) is obtained from the difference between the transmission time of the ultrasonic wave and the reception time of the reflected wave reflected from each of the reference points (N1-5) shown in FIG. Next, the section propagation time can be calculated from the difference T i −T i−1 in the propagation time between adjacent sections. Based on the above procedure, the section propagation times of the respective mark sections SC1 to SC5 are measured as initial values immediately after the rock bolt is placed. Each section propagation time is similarly measured at any time after placement, and a change rate (section propagation time change rate dD) with respect to the initial value is obtained. The axial force of each section can be calculated from the correlation between the axial force obtained in advance and the section propagation time change rate dD.

発明者らの実験によれば、鋼材試験体を伸長させることによる軸力Fと、標点間の伸長の程度に相当する伝播時間変化率dDとは一定の相関関係にあることが判明した。横波の場合は軸力Fと伝播時間変化率dDとはほぼ比例し、縦波の場合はこれらの比例係数dD/Fが横波の場合よりも大きくなっていた。軸力Fによる試験体の伸長に加え、超音波の伝播速度が軸力Fにより低下する影響が積算されている。そして、これらの相関と上記測定した伝播時間変化率dDとを用いることで、ロックボルト10の軸力Fを実質的に求めることが可能である点、実験により確認がなされた。また、図3に示す横波の場合は1MHz〜2MHz程度の周波数領域で反射波検出がより良好であったが、図5に示す縦波の場合は5MHz程度の周波数領域で反射波検出がより良好となることが判明した。   According to the experiments by the inventors, it has been found that the axial force F caused by extending the steel specimen and the propagation time change rate dD corresponding to the degree of extension between the gauge points have a certain correlation. In the case of a transverse wave, the axial force F and the propagation time change rate dD are substantially proportional, and in the case of a longitudinal wave, these proportional coefficients dD / F are larger than those in the case of a transverse wave. In addition to the extension of the test body due to the axial force F, the influence that the propagation speed of the ultrasonic wave decreases due to the axial force F is integrated. And it was confirmed by experiment that the axial force F of the lock bolt 10 can be substantially obtained by using these correlations and the measured propagation time change rate dD. Further, in the case of the transverse wave shown in FIG. 3, the reflected wave detection is better in the frequency region of about 1 MHz to 2 MHz, but in the case of the longitudinal wave shown in FIG. 5, the reflected wave detection is better in the frequency region of about 5 MHz. Turned out to be.

次に、本発明のさらに別の実施形態について説明する。
上記実施形態では、中空の鋼管膨張型ロックボルト10を用いた。しかし、ロックボルトとしては、例えば図6に断面を示す自穿孔ロックボルト51(10)を用いても構わない。この自穿孔ロックボルト51は中央を圧搾水が通過する管体をなすロッド52の先端に孔掘削用のビット53を有している。そして、トンネル壁100に挿入孔101を自穿孔しながら挿入されていく構造となっている。このようなロッド52に上述の標点を設けるとよい。ロッド52表面にはねじ溝が形成されているため、縦波を用いて計測することがより好適である。
Next, still another embodiment of the present invention will be described.
In the above embodiment, the hollow steel pipe expansion type rock bolt 10 is used. However, as the lock bolt, for example, a self-piercing lock bolt 51 (10) whose cross section is shown in FIG. 6 may be used. This self-drilling lock bolt 51 has a bit 53 for excavating a hole at the tip of a rod 52 that forms a tube through which compressed water passes in the center. The tunnel wall 100 is inserted into the tunnel wall 100 while self-drilling. Such a rod 52 may be provided with the above-mentioned mark. Since a thread groove is formed on the surface of the rod 52, it is more preferable to measure using a longitudinal wave.

また、上記実施形態では、異形管20の両端に注水側スリーブ30,封止側スリーブ40を溶着したロックボルト10を用いた。しかし、ロックボルトとしては、図7に示すように、注水側スリーブ30を突出させた状態で固着後に切断して、異形管20の切り口11に探触子2を接触させ、ロックボルトに作用する軸力を計測しても構わない。   Moreover, in the said embodiment, the lock bolt 10 which welded the water injection side sleeve 30 and the sealing side sleeve 40 to the both ends of the deformed pipe 20 was used. However, as shown in FIG. 7, the lock bolt is cut after being fixed in a state where the water injection side sleeve 30 is protruded, and the probe 2 is brought into contact with the cut end 11 of the deformed tube 20 to act on the lock bolt. Axial force may be measured.

上記実施形態において、異形管20には標点として5カ所の切欠N1−5を形成した。しかし、標点の数は5カ所に限られるものではなく、任意に設定することができる。   In the above-described embodiment, the notch N1-5 is formed in the deformed pipe 20 as five marks. However, the number of reference points is not limited to five, and can be arbitrarily set.

上記実施形態では、本発明をロックボルトの軸力分布計測方法として表現したが、本発明はロックボルトの伸長分布計測方法とも表現することができる。   In the above embodiment, the present invention is expressed as a method for measuring the axial force distribution of a rock bolt, but the present invention can also be expressed as a method for measuring an extension distribution of a lock bolt.

本発明は、トンネル施工法の一種である所謂ナトム工法に用いられるロックボルトの軸力を計測するロックボルト軸力分布計測方法として利用することができる。また、トンネル以外の地盤改良のためのロックボルトの軸力分布計測方法にも用いることが可能である。   INDUSTRIAL APPLICABILITY The present invention can be used as a rock bolt axial force distribution measuring method for measuring the axial force of a lock bolt used in a so-called natom method that is a kind of tunnel construction method. It can also be used in a method for measuring the axial force distribution of rock bolts for ground improvement other than tunnels.

ロックボルトの破砕図及び軸力分布計測装置のブロック図である。It is a crush figure of a rock bolt, and a block diagram of an axial force distribution measuring device. ロックボルトの図1における断面図等であり、(a)はA方向視図、(b)はB−B断面図、(c)はC−C断面図、(d)はD−D断面図、(e)は膨張後のD−D断面図である。FIG. 2 is a cross-sectional view of the lock bolt in FIG. 1, where (a) is a view in the A direction, (b) is a cross-sectional view along BB, (c) is a cross-sectional view along CC, and (d) is a cross-sectional view along DD. (E) is DD sectional drawing after expansion | swelling. ロックボルトの頭部破砕図である。It is a crushing figure of the head of a lock bolt. (a)はロックボルトと切欠との関係を示すボルト軸方向に垂直な平面での断面図、(b)はロックボルトの全長における切欠位置を示す図、(c)はロックボルトと切欠との別の関係を示す(a)相当図、(d)はロックボルトと切欠との関係を示すボルト軸方向に沿った断面図である。(A) is a sectional view in a plane perpendicular to the bolt axial direction showing the relationship between the lock bolt and the notch, (b) is a diagram showing the notch position in the entire length of the lock bolt, and (c) is a diagram showing the relationship between the lock bolt and the notch. (A) Equivalent figure which shows another relationship, (d) is sectional drawing along the volt | bolt axial direction which shows the relationship between a lock bolt and a notch. ロックボルトの別の実施形態を示す頭部破砕図である。It is a head fragmentary figure which shows another embodiment of a rock bolt. ロックボルトのさらに別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of a rock bolt. ロックボルトのさらに別の実施形態を示す破砕図及び軸力分布計測装置のブロック図である。It is a crush figure which shows another embodiment of a rock bolt, and a block diagram of an axial force distribution measuring device.

符号の説明Explanation of symbols

1:軸力分布計測装置、2:探触子、3:パルサー・レシーバー、4:PC、5:モニター、10:ロックボルト、11:入射部、12:端部、15:ベアリングプレート、16:挿入体、20,20’:異形管、21:管外面、22:管内面、23:管内部、24:溶接部、25:開口部、26:中央部、27:注水孔、30:注水側スリーブ、31:スリーブ先端、32:スリーブ側部、33:切欠部、34:斜面、40:封止側スリーブ、51:自穿孔ロックボルト、52:ロッド、53:ビット、100:トンネル壁 、101:挿入孔、103:隙間、N1−5:標点(切欠)、SC1−5:標点区間、Da:伝播時間、Db:区間伝播時間、dD:伝播時間変化率

1: Axial force distribution measuring device, 2: probe, 3: pulser / receiver, 4: PC, 5: monitor, 10: lock bolt, 11: incident part, 12: end, 15: bearing plate, 16: Insert, 20, 20 ′: Deformed pipe, 21: Pipe outer surface, 22: Pipe inner surface, 23: Pipe inside, 24: Welded part, 25: Opening part, 26: Center part, 27: Water injection hole, 30: Water injection side Sleeve: 31: Sleeve tip, 32: Sleeve side, 33: Notch, 34: Slope, 40: Sealing sleeve, 51: Self-drilling lock bolt, 52: Rod, 53: Bit, 100: Tunnel wall, 101 : Insertion hole, 103: gap, N1-5: gauge point (notch), SC1-5: gauge section, Da: propagation time, Db: section propagation time, dD: propagation time change rate

Claims (6)

中空のロックボルト(10)に作用する軸力を計測するロックボルト軸力分布計測方法であって、前記ロックボルトの施工時に予めロックボルトの露出部である入射部(11)から超音波を送信すると共に受信して標点の受信時間差を求める超音波測定を実施し、後に改めて前記超音波測定を実施して受信時間差の変化により前記軸力を算定することを特徴とするロックボルト軸力分布計測方法。 A lock bolt axial force distribution measuring method for measuring an axial force acting on a hollow lock bolt (10), wherein an ultrasonic wave is transmitted in advance from an incident portion (11) which is an exposed portion of the lock bolt when the lock bolt is applied. Then, an ultrasonic measurement is performed to obtain a difference in reception time of the target by receiving, and after that, the ultrasonic measurement is performed again to calculate the axial force according to a change in the reception time difference. Measurement method. 前記ロックボルトにおける超音波の前記入射部(11)と終端(12)との間に超音波を反射する標点を設けたことを特徴とする請求項1記載のロックボルト軸力分布計測方法。 The rock bolt axial force distribution measuring method according to claim 1, wherein a gauge point for reflecting the ultrasonic wave is provided between the incident part (11) and the terminal end (12) of the ultrasonic wave in the rock bolt. 前記標点が切欠を含むことを特徴とする請求項1又は2記載のロックボルト軸力分布計測方法。 The rock bolt axial force distribution measuring method according to claim 1 or 2, wherein the mark includes a notch. 前記超音波が横波であり、前記ロックボルトの入射部(11、34)がロックボルトの長手方向に対して傾斜していることを特徴とする請求項1〜3のいずれかに記載のロックボルト軸力分布計測方法。 The lock bolt according to any one of claims 1 to 3, wherein the ultrasonic wave is a transverse wave, and an incident portion (11, 34) of the lock bolt is inclined with respect to a longitudinal direction of the lock bolt. Axial force distribution measurement method. 請求項1〜4のいずれかに記載のロックボルト軸力分布計測方法に用いることの可能なロックボルトであって、前記超音波の入射部(11)がロックボルトの長手方向に対して傾斜していることを特徴とするロックボルト。 It is a lock bolt which can be used for the rock bolt axial force distribution measuring method in any one of Claims 1-4, Comprising: The said ultrasonic incident part (11) inclines with respect to the longitudinal direction of a lock bolt. A rock bolt characterized by 請求項1〜4のいずれかに記載のロックボルト軸力分布計測方法に用いることの可能なロックボルトであって、前記標点として複数の切欠を有することを特徴とするロックボルト。
It is a lock bolt which can be used for the lock bolt axial force distribution measuring method in any one of Claims 1-4, Comprising: It has a some notch as the said mark, The lock bolt characterized by the above-mentioned.
JP2004182929A 2004-06-21 2004-06-21 Method of measuring distribution of axial force of lock bolt and method of measuring distribution of axial force of lock bolt and the lock bolt Withdrawn JP2006003324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182929A JP2006003324A (en) 2004-06-21 2004-06-21 Method of measuring distribution of axial force of lock bolt and method of measuring distribution of axial force of lock bolt and the lock bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182929A JP2006003324A (en) 2004-06-21 2004-06-21 Method of measuring distribution of axial force of lock bolt and method of measuring distribution of axial force of lock bolt and the lock bolt

Publications (1)

Publication Number Publication Date
JP2006003324A true JP2006003324A (en) 2006-01-05

Family

ID=35771824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182929A Withdrawn JP2006003324A (en) 2004-06-21 2004-06-21 Method of measuring distribution of axial force of lock bolt and method of measuring distribution of axial force of lock bolt and the lock bolt

Country Status (1)

Country Link
JP (1) JP2006003324A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308990A (en) * 2006-05-19 2007-11-29 Oyo Corp Tunnel construction method and tunnel where the method is implemented
JP2007308991A (en) * 2006-05-19 2007-11-29 Non-Destructive Inspection Co Ltd Ultrasonic axial force measuring rock-bolt and rock-bolt axial force measuring method
WO2007137466A1 (en) * 2006-06-01 2007-12-06 China University Of Mining And Technology A random, nondestructiv and dynamic testing apparatus and method of the stressed state of a roof bolt
CN102967653A (en) * 2012-09-28 2013-03-13 中国水电顾问集团贵阳勘测设计研究院 Nondestructive detection method and device for anchor rod
US20190203599A1 (en) * 2016-08-16 2019-07-04 National Research Council Of Canada Methods and systems for ultrasonic rock bolt condition monitoring
US20230120870A1 (en) * 2021-10-18 2023-04-20 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Dual Channel Nondestructive Testing Method for Rock Bolt and Related Devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308990A (en) * 2006-05-19 2007-11-29 Oyo Corp Tunnel construction method and tunnel where the method is implemented
JP2007308991A (en) * 2006-05-19 2007-11-29 Non-Destructive Inspection Co Ltd Ultrasonic axial force measuring rock-bolt and rock-bolt axial force measuring method
WO2007137466A1 (en) * 2006-06-01 2007-12-06 China University Of Mining And Technology A random, nondestructiv and dynamic testing apparatus and method of the stressed state of a roof bolt
CN102967653A (en) * 2012-09-28 2013-03-13 中国水电顾问集团贵阳勘测设计研究院 Nondestructive detection method and device for anchor rod
US20190203599A1 (en) * 2016-08-16 2019-07-04 National Research Council Of Canada Methods and systems for ultrasonic rock bolt condition monitoring
US11619132B2 (en) * 2016-08-16 2023-04-04 National Research Council Of Canada Methods and systems for ultrasonic rock bolt condition monitoring
US20230120870A1 (en) * 2021-10-18 2023-04-20 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Dual Channel Nondestructive Testing Method for Rock Bolt and Related Devices
US11796513B2 (en) * 2021-10-18 2023-10-24 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Dual channel nondestructive testing method for rock bolt and related devices

Similar Documents

Publication Publication Date Title
CA2496370C (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP4667228B2 (en) Pile inspection method and sensor crimping device
CN103969341B (en) The extraordinary probe of Austenitic stainless steel pipe butt girth welding seam ultrasound examination
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JP2004003996A (en) Ultrasonic flaw detection inspecting method and system for tube
AU2004288099C1 (en) Method for checking a weld between two metal pipelines
JP2006003324A (en) Method of measuring distribution of axial force of lock bolt and method of measuring distribution of axial force of lock bolt and the lock bolt
JP2006292482A (en) Rock bolt and method for measuring axial force of the same
JP2007309838A (en) Conduit inspection method and conduit inspection device used therefor
JP7216884B2 (en) Reflected wave evaluation method
EP3985387A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP2006003323A (en) Method of measuring distribution of axial force of lock bolt and the lock bolt
JP2007308990A (en) Tunnel construction method and tunnel where the method is implemented
JP4144703B2 (en) Tube inspection method using SH waves
JP2006292483A (en) Rock bolt and method for measuring axial force of the same
JP4329773B2 (en) Ultrasonic inspection method for fluororesin inspection object
JP4834458B2 (en) Ultrasonic axial force measurement lock bolt and lock bolt axial force measurement method
JP7252698B2 (en) Fixed state determination device and fixed state determination method for J-type anchor bolt
CN111156936B (en) Method for measuring insertion length of steel bar in sleeve based on dry coupling ultrasonic detection technology
JP4339159B2 (en) Tubular ultrasonic inspection method
WO2017219468A1 (en) Ultrasonic detection method for crack propagation in ship body of unmanned ship
JP2000002692A (en) Method for searching defect in concrete structure or behind the structure
JP3729686B2 (en) Defect detection method for piping
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP2005337890A (en) Inspection method and diagnosis device of porcelain insulator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904