JP2006003323A - Method of measuring distribution of axial force of lock bolt and the lock bolt - Google Patents

Method of measuring distribution of axial force of lock bolt and the lock bolt Download PDF

Info

Publication number
JP2006003323A
JP2006003323A JP2004182928A JP2004182928A JP2006003323A JP 2006003323 A JP2006003323 A JP 2006003323A JP 2004182928 A JP2004182928 A JP 2004182928A JP 2004182928 A JP2004182928 A JP 2004182928A JP 2006003323 A JP2006003323 A JP 2006003323A
Authority
JP
Japan
Prior art keywords
lock bolt
axial force
bolt
ultrasonic
rock bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004182928A
Other languages
Japanese (ja)
Inventor
Toshikatsu Yoshiara
俊克 吉荒
Hidetoshi Matsuzawa
英俊 松沢
Hiroyuki Tanase
寛之 田名瀬
Takefumi Nakako
武文 仲子
Shigeo Matsubara
茂雄 松原
Shoji Inoue
正二 井上
Toshiharu Kikko
敏晴 橘高
Yasunori Otsuka
康範 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGOYA DORO ENGINEER KK
Nippon Steel Nisshin Co Ltd
Non Destructive Inspection Co Ltd
Oyo Corp
Nippon Steel Nisshin Pipe Co Ltd
Original Assignee
NAGOYA DORO ENGINEER KK
Non Destructive Inspection Co Ltd
Oyo Corp
Nisshin Steel Co Ltd
Nisshin Kokan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGOYA DORO ENGINEER KK, Non Destructive Inspection Co Ltd, Oyo Corp, Nisshin Steel Co Ltd, Nisshin Kokan Co Ltd filed Critical NAGOYA DORO ENGINEER KK
Priority to JP2004182928A priority Critical patent/JP2006003323A/en
Publication of JP2006003323A publication Critical patent/JP2006003323A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the method of measuring distribution of axial force of a lock bolt capable of surely measuring the axial force with easy management; and to provide the lock bolt. <P>SOLUTION: At the time of execution of the solid lock bolt 10, the ultrasonic measurement is previously performed such that from the input part 11 being an exposed part of the lock bolt 10, the ultrasound is transmitted and received for measuring the receiving time difference between the reference points. Afterward, the ultrasonic measurement is performed again, for calculating the axial force from the change of the received time difference. The lock bolt is provided with reference points between the ultrasound incident part 11 and the end part 12, for reflecting the ultrasound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ナトム工法などの地盤改良工法に用いるロックボルトの軸力を計測するロックボルト軸力分布計測方法及びこれに用いるロックボルトに関する。   The present invention relates to a lock bolt axial force distribution measuring method for measuring an axial force of a lock bolt used in a ground improvement method such as a natom method, and a lock bolt used therefor.

ロックボルト軸力分布計測方法としては、例えば特許文献1,2に記載の如き発明が知られている。特許文献1に記載の発明では、異形棒鋼型ロックボルトからなる軸力測定計に測定溝を設け、その底面にストレンゲージを貼付し、リード線を測定溝に配設している。また、特許文献2に記載の発明では、鋼管膨張型ロックボルトの表面にストレンゲージを貼付しその周りを防護パイプ、充填材等でストレンゲージ及び入出力ケーブルを保護している。   As a rock bolt axial force distribution measuring method, for example, the inventions described in Patent Documents 1 and 2 are known. In the invention described in Patent Document 1, a measurement groove is provided in an axial force measuring meter made of a deformed steel bar lock bolt, a strain gauge is attached to the bottom surface, and a lead wire is provided in the measurement groove. In the invention described in Patent Document 2, a strain gauge is affixed to the surface of the steel pipe expansion type lock bolt, and the strain gauge and the input / output cable are protected by a protective pipe, a filler, and the like.

いずれの先行発明においても、ストレンゲージを用いて軸力を計測しており、計測部までケーブルを配設しなければならず、トンネル現場での取り扱いは煩雑で測定計としても高価なものとなっていた。   In any of the prior inventions, the axial force is measured using a strain gauge, and a cable must be arranged up to the measuring section. The handling at the tunnel site is complicated and expensive as a measuring meter. It was.

また、ロックボルトとは全く技術分野の異なる参考例であるが、特許文献3に記載の如く超音波によるボルト軸力計測法が知られている。同発明は、軸方向の縦波と横波の伝播時間の比を求め、予め既知の軸力下で求めた縦波と横波の伝播時間の比と軸方向の引張応力との関係から、締結されたボルト全体のボルト軸力を求めている。よって、ロックボルトに適用するという点の示唆もその適用時の実現性等についての開示も全く見受けられない。
実開平4−38541号 特開2004−37227号 特開平5−203513号
In addition, although it is a reference example that is completely different from the technical field of the lock bolt, a bolt axial force measurement method using ultrasonic waves is known as described in Patent Document 3. The invention determines the ratio of the propagation time of longitudinal and transverse waves in the axial direction, and is concluded from the relationship between the ratio of propagation time of longitudinal and transverse waves obtained in advance under a known axial force and the tensile stress in the axial direction. The bolt axial force of the entire bolt is obtained. Therefore, there is no suggestion of applying to a rock bolt, and no disclosure about the feasibility at the time of application.
4-38541 JP 2004-37227 A JP-A-5-203513

かかる従来の実情に鑑みて、本発明は、管理が簡易で確実に軸力を計測することの可能なロックボルト軸力分布計測方法及びロックボルトを提供することを目的とする。   In view of such a conventional situation, an object of the present invention is to provide a lock bolt axial force distribution measuring method and a lock bolt that can be easily managed and can reliably measure an axial force.

上記目的を達成するため、本発明に係るロックボルト軸力分布計測方法の特徴は、中実のロックボルトに作用する軸力を計測するロックボルト軸力分布計測方法であって、前記ロックボルトの施工時に予めロックボルトの露出部である入射部から超音波を送信すると共に受信して標点間の受信時間差を求める超音波測定を実施し、後に改めて超音波測定を実施して受信時間差の変化により前記軸力を算定することにある。   In order to achieve the above object, a feature of the lock bolt axial force distribution measuring method according to the present invention is a lock bolt axial force distribution measuring method for measuring an axial force acting on a solid lock bolt, wherein At the time of construction, ultrasonic waves are transmitted and received in advance from the incident part, which is the exposed part of the rock bolt, and the ultrasonic measurement is performed to obtain the reception time difference between the gauge points, and then the ultrasonic measurement is performed again to change the reception time difference. To calculate the axial force.

同特徴によれば、ストレンゲージを用いることなく、各標点における超音波の受信時間差の変化により軸力を算定することができる。   According to the same feature, the axial force can be calculated from the change in the reception time difference of the ultrasonic wave at each gauge point without using a strain gauge.

また、ロックボルトにおける超音波の前記入射部と終端との間に超音波を反射する標点を設けてもよく、各標点が切欠であってもよい。   Moreover, a gage that reflects the ultrasonic wave may be provided between the incident part and the end of the ultrasonic wave in the rock bolt, and each gage may be a notch.

さらに、超音波が横波である場合には、ロックボルトの入射部がロックボルトの長手方向に対して傾斜していることが望ましい。   Furthermore, when the ultrasonic wave is a transverse wave, it is desirable that the incident portion of the lock bolt is inclined with respect to the longitudinal direction of the lock bolt.

一方、上記ロックボルト軸力分布計測方法に用いることの可能なロックボルトの特徴は、前記超音波が横波である場合において、前記超音波の入射部がロックボルトの長手方向に対して傾斜していることにある。また、超音波の入射部と終端との間に超音波を反射する複数の標点を設けてもよく、表面が平滑で丸断面形状となるようにロックボルトを形成してもよい。   On the other hand, the feature of the lock bolt that can be used in the method for measuring the axial force distribution of the lock bolt is that when the ultrasonic wave is a transverse wave, the ultrasonic wave incident portion is inclined with respect to the longitudinal direction of the lock bolt. There is to be. Further, a plurality of reference points that reflect the ultrasonic waves may be provided between the ultrasonic incident part and the terminal, and the lock bolt may be formed so that the surface is smooth and has a round cross-sectional shape.

上記本発明に係るロックボルト軸力分布計測方法の特徴によれば、超音波を用いることでストレンゲージの配線等が不要で管理が簡素であり、しかも、確実に軸力を計測することが可能なロックボルト軸力分布計測方法及びロックボルトを提供するに至った。   According to the above-described characteristics of the rock bolt axial force distribution measuring method according to the present invention, the use of ultrasonic waves eliminates the need for strain gage wiring and the like, simplifies management, and enables reliable axial force measurement. To provide a rock bolt axial force distribution measuring method and a lock bolt.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。図1(a)は本発明の軸力計測に用いるロックボルト10と軸力分布計測装置1とを示す。軸力分布計測装置1は、超音波をロックボルト10へ送受信する探触子2と、超音波を発信及び受信するパルサー・レシーバー3と、信号を制御すると共に受信信号を処理・表示するPC(パーソナルコンピュータ)4及びモニター5を備えている。   Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate. FIG. 1A shows a lock bolt 10 and an axial force distribution measuring device 1 used for measuring an axial force according to the present invention. The axial force distribution measuring apparatus 1 includes a probe 2 that transmits / receives ultrasonic waves to / from the rock bolt 10, a pulsar / receiver 3 that transmits / receives ultrasonic waves, and a PC (that controls and displays received signals). A personal computer 4 and a monitor 5 are provided.

ロックボルト10は、超音波を入射させる入射部11と、先端をテーパー状に尖らせた他方の端部12とを備えている。露出部となる入射部11は、縦波を入射させる場合、図1(a)に示すようにロックボルト10の一部を平坦に削り込み、平坦面を形成している。この平坦面に探触子2を接触させ、超音波がロックボルト10内に向けて送受信される。一方、横波を入射させる場合には、図3(b)に示すように、露出部となる入射部11は、ロックボルト10を斜めに削り込み、斜面を形成している。この斜面に探触子2が接触し、超音波がロックボルト10内に向けて送受信される。この斜面はロックボルト10全体の軸線に対して略45度程度傾斜し、探触子2から横波の超音波が送信される。端部12は、先端がテーパー状に尖った終端12bまで鋼材等で一体成形する他、ロックボルト10の終端12aに先端の尖った樹脂製キャップ等12bを接着させるようにしてもよい。   The rock bolt 10 includes an incident portion 11 for allowing ultrasonic waves to enter and the other end portion 12 having a tapered tip. As shown in FIG. 1A, the incident portion 11 serving as an exposed portion is formed by flattening a part of the lock bolt 10 as shown in FIG. The probe 2 is brought into contact with this flat surface, and ultrasonic waves are transmitted and received toward the lock bolt 10. On the other hand, when a transverse wave is incident, as shown in FIG. 3B, the incident portion 11 serving as an exposed portion is formed by obliquely shaving the lock bolt 10 to form a slope. The probe 2 comes into contact with this slope, and ultrasonic waves are transmitted and received toward the lock bolt 10. This inclined surface is inclined approximately 45 degrees with respect to the entire axis of the lock bolt 10, and a transverse wave ultrasonic wave is transmitted from the probe 2. The end portion 12 may be integrally formed with a steel material or the like up to a terminal end 12b with a tapered tip, or a resin cap 12b with a sharp tip may be bonded to the terminal 12a of the lock bolt 10.

ロックボルト10の適宜箇所には図2(a)(b)に示すように標点として複数の切欠N1−5が形成されている。   As shown in FIGS. 2 (a) and 2 (b), a plurality of notches N1-5 are formed as reference points at appropriate portions of the lock bolt 10.

各切欠N1−5は、それぞれがロックボルト10の周部にボルト長手方向に垂直に切り込むように可能な範囲で設けられ、異なる長手方向位置において位相が同じ位置に配置されている。また、端部12はテーパー状で適正な信号が反射されにくいことから、端部12近傍の切欠N5は他の切欠N1−4よりも深く切り込んで、信号の反射が確実となるように構成してある。   Each of the notches N1-5 is provided in a possible range so as to be cut in the periphery of the lock bolt 10 perpendicularly to the longitudinal direction of the bolt, and is arranged at the same phase at different longitudinal positions. Further, since the end portion 12 is tapered and an appropriate signal is not easily reflected, the notch N5 in the vicinity of the end portion 12 is cut deeper than the other notches N1-4 so that signal reflection is ensured. It is.

ところで、各切欠N1−5の内部にロックボルト10の材料と音響インピーダンスの近い材料が浸入すると、各切欠N1−5からの反射信号が低減する場合も考えられる。したがって、図2(c)に示すように、各切欠N1−5にはロックボルト10の材料と音響インピーダンスの異なる材料、例えば、合成樹脂等、超音波の伝播率が低い材料よりなる挿入体16を充填等により各切欠N1−5の内部に介在させてもよい。   By the way, when a material close to the acoustic impedance of the material of the rock bolt 10 enters each notch N1-5, the reflected signal from each notch N1-5 may be reduced. Therefore, as shown in FIG. 2C, each notch N1-5 has an insert 16 made of a material having a low acoustic wave propagation rate, such as a material having a different acoustic impedance from that of the rock bolt 10 such as a synthetic resin. May be inserted inside each notch N1-5 by filling or the like.

各切欠N1−4は図2(d)のように異なる長手方向位置において位相が異なるように配置してもよく、この場合、超音波が中間部の切欠N1−4及び端部12のものをより確実に検出することができる。なお、標点は切欠以外に凹部や突起でもよいが、切欠が超音波の反射を最も明瞭に検出することができる。また、ロックボルト10の強度と後続の切欠からの反射に重大な影響を与えない範囲内で、図2(e)に示すように、ロックボルト10の外周に切欠N1−5として全周溝を形成してもよい。   Each notch N1-4 may be arranged so as to have different phases at different longitudinal positions as shown in FIG. 2 (d). In this case, the ultrasonic waves are those of the notch N1-4 and the end portion 12 at the intermediate portion. It can be detected more reliably. The mark may be a recess or a protrusion other than the notch, but the notch can most clearly detect the reflection of the ultrasonic wave. Further, as shown in FIG. 2 (e), as long as the strength of the lock bolt 10 and the reflection from the subsequent notch are not seriously affected, an entire circumferential groove is formed as a notch N1-5 on the outer periphery of the lock bolt 10. It may be formed.

設置に際しては、トンネル壁100の適宜箇所に形成された挿入孔101にセメントミルク、グラウト等の充填材102を充填する。充填後、図1(a)の如く充填材102が充填された挿入孔101にロックボルト10を挿入することにより、ロックボルト10の挿入孔101への定着が完了する。挿入孔101にロックボルト10を挿入した後、モルタル等の充填材102を充填してもよい。入射部11の近傍にはベアリングプレートが介挿され、実質的にトンネル壁100を支持する。   At the time of installation, a filler 102 such as cement milk or grout is filled into an insertion hole 101 formed at an appropriate location on the tunnel wall 100. After the filling, the lock bolt 10 is inserted into the insertion hole 101 filled with the filler 102 as shown in FIG. 1A, whereby the fixing of the lock bolt 10 to the insertion hole 101 is completed. After inserting the lock bolt 10 into the insertion hole 101, a filler 102 such as mortar may be filled. A bearing plate is inserted in the vicinity of the incident portion 11 to substantially support the tunnel wall 100.

計測に際しては、図1(a)のように入射部11の面に探触子2を接触媒質を介して接触させ、超音波を入射すると共に受信する。図3(b)の場合は斜面に形成した入射部11に探触子2を接触させる。   In measurement, as shown in FIG. 1A, the probe 2 is brought into contact with the surface of the incident portion 11 via a contact medium, and ultrasonic waves are incident and received. In the case of FIG.3 (b), the probe 2 is made to contact the incident part 11 formed in the slope.

まずは、超音波の発信時刻と図1(b)に示す各標点(N1−5)から反射してくる反射波の受信時刻の差から伝播時間Ti(iは区間番号)が求められる。次に、隣接する区間の伝播時間の差Ti−Ti-1から区間伝播時間が算出できる。上記の手順に基づいて、ロックボルト打設直後に各標点区間SC1〜5の各区間伝播時間を初期値として計測する。打設後随時に各区間伝播時間を同様に計測して、それぞれ初期値に対する変化率(区間伝播時間変化率dD)を求める。予め求めておいた軸力と区間伝播時間変化率dDとの相関関係から、各区間の軸力が算定できる。 First, the propagation time T i (i is a section number) is obtained from the difference between the transmission time of the ultrasonic wave and the reception time of the reflected wave reflected from each target point (N1-5) shown in FIG. Next, the section propagation time can be calculated from the difference T i −T i−1 in the propagation time between adjacent sections. Based on the above procedure, the section propagation times of the respective mark sections SC1 to SC5 are measured as initial values immediately after the rock bolt is placed. Each section propagation time is similarly measured at any time after placement, and a change rate (section propagation time change rate dD) with respect to the initial value is obtained. The axial force of each section can be calculated from the correlation between the axial force obtained in advance and the section propagation time change rate dD.

発明者らの実験によれば、鋼材試験体を伸長させることによる軸力Fと、標点間の伸長の程度に相当する伝播時間変化率dDとは一定の相関関係にあることが判明した。縦波の場合はこれらの比例係数dD/Fが横波の場合よりも大きくなり、横波の場合は軸力Fと伝播時間変化率dDとはほぼ比例していた。縦波の場合には、軸力Fによる試験体の伸長に加え、超音波の伝播速度が軸力Fにより低下する影響が積算されている。そして、これらの相関と上記測定した伝播時間変化率dDとを用いることで、ロックボルト10の軸力Fを実質的に求めることが可能である点、実験により確認がなされた。また、図1(a)に示す縦波の場合は5MHz程度の周波数領域で反射波検出がより良好であったが、図3(b)に示す横波の場合は1MHz〜2MHz程度の周波数領域で反射波検出がより良好となることが判明した。   According to the experiments by the inventors, it has been found that the axial force F caused by extending the steel specimen and the propagation time change rate dD corresponding to the degree of extension between the gauge points have a certain correlation. In the case of the longitudinal wave, these proportional coefficients dD / F are larger than those in the case of the transverse wave, and in the case of the transverse wave, the axial force F and the propagation time change rate dD are substantially proportional. In the case of the longitudinal wave, in addition to the extension of the test body due to the axial force F, the influence that the propagation speed of the ultrasonic wave decreases due to the axial force F is integrated. And it was confirmed by experiment that the axial force F of the lock bolt 10 can be substantially obtained by using these correlations and the measured propagation time change rate dD. Further, in the case of the longitudinal wave shown in FIG. 1A, the reflected wave detection was better in the frequency region of about 5 MHz, but in the case of the transverse wave shown in FIG. 3B, in the frequency region of about 1 MHz to 2 MHz. It has been found that reflected wave detection is better.

なお、上記実施形態では、本発明をロックボルトの軸力分布計測方法として表現したが、本発明はロックボルトの伸長分布計測方法とも表現することができる。   In the above-described embodiment, the present invention is expressed as a method for measuring the axial force distribution of a rock bolt. However, the present invention can also be expressed as a method for measuring an extension distribution of a lock bolt.

本発明では、横波と縦波との双方を使用でき、また、ロックボルト10も図3(a)の如く表面に凹凸が存在するものと図1(a)の如く凹凸がほとんど存在しないものとの双方を使用できる。したがって、本発明には波の種類が2種類と表面の凹凸状態が2種類の合計4種類の組み合わせが考えられる。ただし、表面に凹凸が存在するものでも反射波の計測は可能であるが、図1(a)、図3(b)のように、丸棒のような表面に凹凸がほとんど存在しないものの方が、超音波の減衰が少ないため、長尺ロックボルトの軸力分布計測にはより好適である。   In the present invention, both a transverse wave and a longitudinal wave can be used, and the lock bolt 10 has an uneven surface as shown in FIG. 3 (a) and an uneven surface as shown in FIG. 1 (a). Both can be used. Therefore, the present invention contemplates a total of four combinations of two types of waves and two types of surface irregularities. However, it is possible to measure the reflected wave even if there is unevenness on the surface, but the one with almost no unevenness on the surface, such as a round bar, as shown in FIGS. 1 (a) and 3 (b). Since the attenuation of the ultrasonic wave is small, it is more suitable for measuring the axial force distribution of the long rock bolt.

なお、上記実施形態において、ロックボルト10に標点として5カ所の切欠N1−5を形成したが、標点の数は5カ所に限られるものではなく、ロックボルト10の強度に影響を与えない範囲内で任意に設定することができる。   In the above-described embodiment, five notches N1-5 are formed as the reference points on the lock bolt 10. However, the number of reference points is not limited to five, and the strength of the lock bolt 10 is not affected. It can be set arbitrarily within the range.

本発明は、トンネル施工法の一種である所謂ナトム工法に用いられるロックボルトの軸力を計測するロックボルト軸力分布計測方法として利用することができる。また、トンネル以外の地盤改良のためのロックボルトの軸力分布計測方法にも用いることが可能である。   INDUSTRIAL APPLICABILITY The present invention can be used as a rock bolt axial force distribution measuring method for measuring the axial force of a lock bolt used in a so-called natom method that is a kind of tunnel construction method. It can also be used in a method for measuring the axial force distribution of rock bolts for ground improvement other than tunnels.

(a)はロックボルトの破砕図及び軸力分布計測装置のブロック図、(b)はロックボルトの全長における切欠位置を示す図である。(A) is a fracture view of a lock bolt and a block diagram of an axial force distribution measuring device, (b) is a diagram showing a notch position in the entire length of the lock bolt. (a)はロックボルトと切欠との関係を示すボルト軸方向に垂直な平面での断面図、(b)は(a)の別実施形態を示す図、(c)はロックボルトと切欠との関係を示すボルト軸方向に沿った断面図、(d)は(a)のさらに別の実施形態を示す図、(e)は(a)のさらに別の実施形態を示す図である。(A) is sectional drawing in the plane perpendicular | vertical to the volt | bolt axial direction which shows the relationship between a lock bolt and a notch, (b) is a figure which shows another embodiment of (a), (c) is a lock bolt and a notch. Sectional drawing along the volt | bolt axial direction which shows a relationship, (d) is a figure which shows another embodiment of (a), (e) is a figure which shows another embodiment of (a). (a)(b)はロックボルトのさらに別の実施形態を示す破砕図及び軸力分布計測装置のブロック図である。(A) and (b) are the crush figure which shows another embodiment of a rock bolt, and the block diagram of an axial force distribution measuring device.

符号の説明Explanation of symbols

1:軸力測定装置、2:探触子、3:パルサー・レシーバー、4:PC、5:モニター、10:ロックボルト、11:入射部、12:端部、12a,12b:終端、16:挿入体、100:トンネル壁 、101:挿入孔、102:充填材、N1−5:標点(切欠)、SC1−5:標点区間、Da:伝播時間、Db:区間伝播時間、dD:伝播時間変化率

1: axial force measuring device, 2: probe, 3: pulser / receiver, 4: PC, 5: monitor, 10: lock bolt, 11: incident part, 12: end, 12a, 12b: terminal, 16: Insert: 100: Tunnel wall, 101: Insert hole, 102: Filler, N1-5: Mark (notch), SC1-5: Mark section, Da: Propagation time, Db: Section propagation time, dD: Propagation Time change rate

Claims (7)

中実のロックボルト(10)に作用する軸力を計測するロックボルト軸力分布計測方法であって、前記ロックボルトの施工時に予めロックボルトの露出部である入射部(11)から超音波を送信すると共に受信して標点の受信時間差を求める超音波測定を実施し、後に改めて前記超音波測定を実施して受信時間差の変化により前記軸力を算定することを特徴とするロックボルト軸力分布計測方法。 A lock bolt axial force distribution measuring method for measuring an axial force acting on a solid rock bolt (10), wherein an ultrasonic wave is previously applied from an incident portion (11) which is an exposed portion of the lock bolt when the lock bolt is applied. A rock bolt axial force characterized by performing ultrasonic measurement to obtain a difference in reception time of a reference point by transmitting and receiving, and performing the ultrasonic measurement again afterwards to calculate the axial force by a change in the reception time difference Distribution measurement method. 前記ロックボルトにおける超音波の前記入射部(11)と終端(12)との間に超音波を反射する標点を設けたことを特徴とする請求項1記載のロックボルト軸力分布計測方法。 The rock bolt axial force distribution measuring method according to claim 1, wherein a gauge point for reflecting the ultrasonic wave is provided between the incident part (11) and the terminal end (12) of the ultrasonic wave in the rock bolt. 前記標点が切欠を含むことを特徴とする請求項1又は2記載のロックボルト軸力分布計測方法。 The rock bolt axial force distribution measuring method according to claim 1 or 2, wherein the mark includes a notch. 前記超音波が横波であり、前記ロックボルトの入射部(11)がロックボルトの長手方向に対して傾斜していることを特徴とする請求項1〜3のいずれかに記載のロックボルト軸力分布計測方法。 The lock bolt axial force according to any one of claims 1 to 3, wherein the ultrasonic wave is a transverse wave, and an incident portion (11) of the lock bolt is inclined with respect to a longitudinal direction of the lock bolt. Distribution measurement method. 請求項1〜4のいずれかに記載のロックボルト軸力分布計測方法に用いることの可能なロックボルトであって、前記超音波の入射部(11)がロックボルトの長手方向に対して傾斜していることを特徴とするロックボルト。 It is a lock bolt which can be used for the rock bolt axial force distribution measuring method in any one of Claims 1-4, Comprising: The said ultrasonic incident part (11) inclines with respect to the longitudinal direction of a lock bolt. A rock bolt characterized by 請求項1〜4のいずれかに記載のロックボルト軸力分布計測方法に用いることの可能なロックボルトであって、超音波の入射部(11)と終端(12)との間に超音波を反射する複数の標点を設けたことを特徴とするロックボルト。 It is a rock bolt which can be used for the rock bolt axial force distribution measuring method in any one of Claims 1-4, Comprising: An ultrasonic wave is injected between the ultrasonic incident part (11) and termination | terminus (12). A rock bolt characterized by providing a plurality of reflecting marks. 請求項1〜4のいずれかに記載のロックボルト軸力分布計測方法に用いることの可能なロックボルトであって、表面が平滑で丸断面形状を有することを特徴とするロックボルト。
It is a lock bolt which can be used for the lock bolt axial force distribution measuring method in any one of Claims 1-4, Comprising: The surface is smooth and has a round cross-sectional shape, The lock bolt characterized by the above-mentioned.
JP2004182928A 2004-06-21 2004-06-21 Method of measuring distribution of axial force of lock bolt and the lock bolt Withdrawn JP2006003323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182928A JP2006003323A (en) 2004-06-21 2004-06-21 Method of measuring distribution of axial force of lock bolt and the lock bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182928A JP2006003323A (en) 2004-06-21 2004-06-21 Method of measuring distribution of axial force of lock bolt and the lock bolt

Publications (1)

Publication Number Publication Date
JP2006003323A true JP2006003323A (en) 2006-01-05

Family

ID=35771823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182928A Withdrawn JP2006003323A (en) 2004-06-21 2004-06-21 Method of measuring distribution of axial force of lock bolt and the lock bolt

Country Status (1)

Country Link
JP (1) JP2006003323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308990A (en) * 2006-05-19 2007-11-29 Oyo Corp Tunnel construction method and tunnel where the method is implemented
JP2007308991A (en) * 2006-05-19 2007-11-29 Non-Destructive Inspection Co Ltd Ultrasonic axial force measuring rock-bolt and rock-bolt axial force measuring method
JP2007322401A (en) * 2006-06-05 2007-12-13 Aoki Asunaro Kensetsu Kk Method for evaluating soundness of anchor
US20190203599A1 (en) * 2016-08-16 2019-07-04 National Research Council Of Canada Methods and systems for ultrasonic rock bolt condition monitoring
WO2020098350A1 (en) * 2018-11-12 2020-05-22 北京工业大学 Test device for researching propagation characteristic of elastic longitudinal waves in joint rock mass
US20230120870A1 (en) * 2021-10-18 2023-04-20 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Dual Channel Nondestructive Testing Method for Rock Bolt and Related Devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308990A (en) * 2006-05-19 2007-11-29 Oyo Corp Tunnel construction method and tunnel where the method is implemented
JP2007308991A (en) * 2006-05-19 2007-11-29 Non-Destructive Inspection Co Ltd Ultrasonic axial force measuring rock-bolt and rock-bolt axial force measuring method
JP2007322401A (en) * 2006-06-05 2007-12-13 Aoki Asunaro Kensetsu Kk Method for evaluating soundness of anchor
US20190203599A1 (en) * 2016-08-16 2019-07-04 National Research Council Of Canada Methods and systems for ultrasonic rock bolt condition monitoring
US11619132B2 (en) * 2016-08-16 2023-04-04 National Research Council Of Canada Methods and systems for ultrasonic rock bolt condition monitoring
WO2020098350A1 (en) * 2018-11-12 2020-05-22 北京工业大学 Test device for researching propagation characteristic of elastic longitudinal waves in joint rock mass
US20230120870A1 (en) * 2021-10-18 2023-04-20 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Dual Channel Nondestructive Testing Method for Rock Bolt and Related Devices
US11796513B2 (en) * 2021-10-18 2023-10-24 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Dual channel nondestructive testing method for rock bolt and related devices

Similar Documents

Publication Publication Date Title
JP4667228B2 (en) Pile inspection method and sensor crimping device
CN108918660B (en) Nondestructive detection method for sleeve grouting fullness of steel bar sleeve grouting connection joint
US20150300909A1 (en) Method and system for the continuous remote monitoring of deformations in a pressurized pipeline
JP5403976B2 (en) Concrete structure quality inspection method
CN108802187B (en) Grouting fullness detection method and system based on sleeve surface ultrasound
CN101929167A (en) Ultrasonic side-hole detection method for detecting pile length
JP2017083276A (en) Measuring tool for measuring interval between threaded reinforcing bars inside coupler, and measuring method using the same
CN109470769A (en) Method and system for detecting grouting fullness of sleeve by ultrasonic reflection method
US20220170888A1 (en) Evaluation Method for Reflected Wave
JP2006003323A (en) Method of measuring distribution of axial force of lock bolt and the lock bolt
JP2006292482A (en) Rock bolt and method for measuring axial force of the same
JP2006292483A (en) Rock bolt and method for measuring axial force of the same
JP3198840U (en) Prop road boundary inspection system
JP5761686B2 (en) PC cable breakage detection method for PC structures
JP2006003324A (en) Method of measuring distribution of axial force of lock bolt and method of measuring distribution of axial force of lock bolt and the lock bolt
JP2007308990A (en) Tunnel construction method and tunnel where the method is implemented
JP7206539B2 (en) Concrete filling management method
US20180059063A1 (en) Method for detecting a defect in a metal wire of a set of metal wires, in particular for an anchoring area of a civil engineering structure
JP6128432B2 (en) Anchor soundness inspection device and anchor soundness inspection method
JP2011185892A (en) Nondestructive inspection method and nondestructive inspection apparatus for determining degree of grout filling
CN111156936B (en) Method for measuring insertion length of steel bar in sleeve based on dry coupling ultrasonic detection technology
JP3729686B2 (en) Defect detection method for piping
JP4160601B2 (en) Defect detection method for cable connections
JP4834458B2 (en) Ultrasonic axial force measurement lock bolt and lock bolt axial force measurement method
JP2000002692A (en) Method for searching defect in concrete structure or behind the structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904