JP2006003290A - Laser interference type displacement measuring device - Google Patents

Laser interference type displacement measuring device Download PDF

Info

Publication number
JP2006003290A
JP2006003290A JP2004182121A JP2004182121A JP2006003290A JP 2006003290 A JP2006003290 A JP 2006003290A JP 2004182121 A JP2004182121 A JP 2004182121A JP 2004182121 A JP2004182121 A JP 2004182121A JP 2006003290 A JP2006003290 A JP 2006003290A
Authority
JP
Japan
Prior art keywords
light
optical path
measuring
path length
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004182121A
Other languages
Japanese (ja)
Inventor
Kiyoshi Hino
清 日野
Shinichiro Yanaka
慎一郎 谷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2004182121A priority Critical patent/JP2006003290A/en
Publication of JP2006003290A publication Critical patent/JP2006003290A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To adjust a detection signal system easily and highly accurately, even when measuring a fine displacement based on an interference signal of laser light. <P>SOLUTION: In this laser interference type displacement measuring device, an incident laser beam is divided so that one is reference light L2 wherein the optical path length is not changed and that the other is measuring light L1 wherein the optical path length is changed according to the distance to the surface by being reflected by the surface of a measuring body 5, and the displacement of the measuring body surface is measured based on a sine wave signal acquired from interference light between the measuring light L1 and the reference light L2. In the device, a PZT (piezoelectric element) 49 for advancing or retreating in the same direction a reflecting mirror 46 for reflecting the measuring light on a standard position in the measuring body direction is installed as an optical path length changing means for changing forcibly the optical path length of the measuring light L1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザ干渉式変位測定装置に係り、特にレーザ干渉を利用して被測定体表面の波長以下の微小な変位を非接触で検出するレーザ干渉式平面度測定装置、あるいは略平行な関係にある2つの被測定体表面間の微小な平行度を非接触で計測するレーザ干渉式ギャップ測定装置等に適用して好適な、レーザ干渉式変位測定装置に関する。   The present invention relates to a laser interferometric displacement measuring apparatus, and more particularly, a laser interferometric flatness measuring apparatus that uses a laser interference to detect a minute displacement below the wavelength of the surface of the object to be measured in a non-contact manner, or a substantially parallel relationship. The present invention relates to a laser interference type displacement measuring apparatus suitable for being applied to a laser interference type gap measuring apparatus or the like that measures a minute parallelism between two measured object surfaces in a non-contact manner.

従来より、入射されるレーザ光線を分割し、一方を光路長が変化しない参照光とし、他方を被測定体の表面で反射させることにより該表面までの距離に応じて光路長が変化する測定光とすると共に、該測定光と前記参照光を合波した際の干渉光を光電変換して取得される正弦波信号に基づいて、前記被測定体表面までの変位(距離)を測定するレーザ干渉式変位測定装置が用いられている(例えば、特許文献1参照)。   Conventionally, measurement light whose optical path length changes according to the distance to the surface by splitting the incident laser beam and using one as reference light whose optical path length does not change and reflecting the other on the surface of the object to be measured And laser interference for measuring the displacement (distance) to the surface of the object to be measured based on a sine wave signal obtained by photoelectric conversion of the interference light when the measurement light and the reference light are combined. A type displacement measuring device is used (for example, see Patent Document 1).

このような変位測定装置では、被測定体を測定光の光路方向に走査する場合、十分な大きさの変位が得られることから、走査測定時には、干渉信号として図3(A)に示すような90°位相差の正弦波信号V 1 、V2が出力される。即ち、変位が十分大きい場合には、干渉信号は周期的に変化するため、出力信号としては1周期以上のcos成分及びsin成分が得られることになる。 In such a displacement measuring apparatus, when the object to be measured is scanned in the direction of the optical path of the measuring light, a sufficiently large displacement can be obtained. Therefore, as shown in FIG. Sine wave signals V 1 and V 2 having a phase difference of 90 ° are output. That is, when the displacement is sufficiently large, the interference signal changes periodically, so that a cos component and a sin component of one cycle or more are obtained as an output signal.

ところで、対象とする被測定体の反射率がその都度異なる場合には、測定の度毎に検出系の調整が必要であるが、この図(A)に示されるように、数波長分の正弦波信号が出力される場合には、この信号から振幅:A、DCオフセット:D、及び位相差を知ることができるので、信号の補正は容易であり、従って検出系の調整も容易である。   By the way, if the reflectance of the object to be measured is different each time, the detection system needs to be adjusted for each measurement. As shown in FIG. When a wave signal is output, the amplitude: A, the DC offset: D, and the phase difference can be known from this signal, so that the correction of the signal is easy, and the adjustment of the detection system is also easy.

ところが、同様の機能を有する変位測定装置を、被測定体の表面に沿って走査して平面度(平坦度)を測定する場合のように(例えば、後述する図1を参照)、測定対象の変位に微小な変化しか期待できない場合には、十分な変位を測定するリニアスケール等の場合の検出信号のように、90°位相差の正弦波信号が短い周期で繰り返し検出されることはないので、前のデータ(例えば1サイクル前の信号)を利用して検出信号の歪みを補正することは難しいため、その調整作業は煩雑である。   However, a displacement measuring device having a similar function is scanned along the surface of the object to be measured to measure flatness (flatness) (for example, see FIG. 1 described later). When only a minute change can be expected in the displacement, a 90 ° phase difference sine wave signal is not repeatedly detected in a short cycle unlike the detection signal in the case of a linear scale or the like that measures a sufficient displacement. Since it is difficult to correct the distortion of the detection signal using the previous data (for example, the signal before one cycle), the adjustment work is complicated.

即ち、前記図3(A)と同一の調整条件下で、被測定体表面を走査測定した際に出力される信号を同図(B)に示すように、干渉信号の変化は検出できるものの、途中で変位が戻ってしまう等の理由により、変位が大きければ同図(A)のような信号が得られるところ、あたかも波形歪みが生じたり、あるいはDCオフセットが生じたような波形となっている。しかも、この信号は干渉信号を周期的に検出しているように見えるが、変位が途中で戻ってしまうための現象であり、周期的な干渉縞を検出している訳ではない。   That is, although the change in the interference signal can be detected as shown in FIG. 5B, the signal output when the surface of the object to be measured is scanned and measured under the same adjustment conditions as in FIG. If the displacement is large, a signal such as that shown in FIG. 5A can be obtained if the displacement is returned midway. The waveform is as if waveform distortion or DC offset has occurred. . Moreover, this signal seems to detect the interference signal periodically, but this is a phenomenon that the displacement returns in the middle, and does not detect periodic interference fringes.

従って、この信号を頼りに調整を行なってしまうと、誤った調整をしてしまうことになり、正しい測定ができないことになる。信号調整のためには干渉縞の周期を正確に検出するだけの変位を与える必要があるが、被測定体の平面度、設置状態が良いほど、干渉縞の周期的検出が難しくなるので調整作業は難航することになる。   Therefore, if the adjustment is performed using this signal, incorrect adjustment will be performed, and correct measurement cannot be performed. In order to adjust the signal, it is necessary to give enough displacement to accurately detect the period of the interference fringes. However, the better the flatness and installation state of the measured object, the more difficult it is to detect the interference fringes periodically. Will be difficult.

以上のように、レーザ干渉を利用する変位測定装置により、被測定体表面の平面度等を走査測定する場合には、前のデータを利用して検出信号の歪みを補正して、正確な内挿分割信号を得ることは不可能であった。   As described above, when scanning and measuring the flatness of the surface of the object to be measured by a displacement measuring device using laser interference, the distortion of the detection signal is corrected using the previous data, and the accurate internal It was impossible to obtain an interpolated signal.

そのため、従来は、検出系の調整を、例えば測定装置の設定時に調整に必要な信号を得るために被測定体を叩く等により、測定距離(変位)を強制的に変化させて繰返し性のある信号を発生させ、この信号の発生を繰り返すことにより、検出信号系の調整を試行錯誤で行なっていた。   For this reason, conventionally, the detection system has a repeatability by forcibly changing the measurement distance (displacement) by, for example, tapping the measured object in order to obtain a signal necessary for the adjustment when setting the measuring device. The detection signal system is adjusted by trial and error by generating a signal and repeating the generation of this signal.

特開2003−202203号公報JP 2003-202203 A

しかしながら、前記のように静止状態にある被測定体を叩く等により強制的に測定距離を変化させて繰返し性のある信号を取得することは、ほとんど静止状態に近い変位の変化しか期待できない測定装置の調整のためには止むを得ない作業ではあるとしても、このようにして行なう測定装置の調整作業は、時間がかかる上に正確性に欠けるという問題があった。   However, as described above, it is possible to expect a change of the displacement almost close to the stationary state to acquire a repeatable signal by forcibly changing the measurement distance by hitting the measurement object in the stationary state as described above. Even though this is an unavoidable task for the adjustment, there is a problem that the adjustment operation of the measuring apparatus performed in this way takes time and lacks accuracy.

本発明は、前記従来の問題点を解決するべくなされたもので、レーザ光の干渉信号に基づいて平面度等の微小変位を測定する場合でも、測定装置の調整を容易且つ高精度に実現することができるレーザ干渉式変位測定装置を提供することを課題とする。   The present invention has been made to solve the above-described conventional problems, and can easily and accurately adjust the measurement apparatus even when measuring a minute displacement such as flatness based on an interference signal of a laser beam. It is an object of the present invention to provide a laser interference type displacement measuring apparatus capable of performing the above.

本発明は、入射されるレーザ光線を分割し、一方を光路長が変化しない参照光とし、他方を被測定体の表面で反射させることにより該表面までの距離に応じて光路長が変化する測定光とすると共に、該測定光と前記参照光との干渉光から取得される正弦波信号に基づいて、前記被測定体表面の変位を測定するレーザ干渉式変位測定装置において、前記測定光の光路長を強制的に変化させる光路長変更手段を備えたことにより、前記課題を解決したものである。   The present invention divides an incident laser beam, uses one as reference light whose optical path length does not change, and reflects the other at the surface of the object to be measured, thereby changing the optical path length according to the distance to the surface. In a laser interference displacement measuring apparatus that measures the displacement of the surface of the object to be measured based on a sine wave signal obtained from interference light between the measurement light and the reference light, an optical path of the measurement light By providing an optical path length changing means for forcibly changing the length, the above-mentioned problem is solved.

本発明は、又、前記光路長変更手段が、前記測定光を、基準位置で被測定体方向に反射させる反射鏡を、同方向に進退動させる駆動手段であるようにしたものであり、又、この駆動手段が、前記反射鏡に固定された圧電素子であるようにしたものである。   In the invention, it is preferable that the optical path length changing means is a driving means for moving a reflecting mirror that reflects the measurement light in the direction of the measured object at a reference position in the same direction. The driving means is a piezoelectric element fixed to the reflecting mirror.

本発明によれば、被測定体が静止した状態で、前記光路長変更手段により、センサによる検出信号を調整あるいは補正するのに必要な正弦波信号を発生することが可能となるので、平面度の変化がほとんど無い状態でも検出信号系の歪みを補正することが可能となる。その結果、変位の変化がほとんど無いか、緩やかな変化の信号しか得られない計測でも、検出信号の補正が可能となるので、検出信号を内挿分割しても誤差を最小限に抑えることが可能となり、変位測定装置の測定精度を向上させることが可能となる。   According to the present invention, it is possible to generate a sine wave signal necessary for adjusting or correcting the detection signal by the sensor by the optical path length changing means while the measured object is stationary. It is possible to correct the distortion of the detection signal system even in a state where there is almost no change. As a result, even in measurements where there is almost no change in displacement or only a signal with a gradual change can be obtained, the detection signal can be corrected, so that errors can be minimized even if the detection signal is interpolated. Thus, the measurement accuracy of the displacement measuring device can be improved.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

最初に、図1に示す基本構造を有するレーザ干渉式平面度測定装置の概要を説明する。   First, an outline of a laser interference type flatness measuring apparatus having the basic structure shown in FIG. 1 will be described.

レーザ光源1から出力された直線偏光レーザは、集光レンズ2と偏波面保存光ファイバ3を介してセンサ本体4に導かれる。このセンサ本体4において、前記光ファイバ3の後端から出射されたレーザ光線は、コリメートレンズ41で平行光にされた後、プリズムミラー42で直交する方向に曲げられ、(1/2)λ板43で測定光L1と参照光L2の比率が調整された後、測定用のPBS(偏光ビームスプリッタ)44に導かれ、ここで測定光(例えば、S偏光)L1と参照光(例えば、P偏光)L2に分割される。分割後の参照光L2はPBS44を通過して4相信号検出器48に導かれる。   The linearly polarized laser beam output from the laser light source 1 is guided to the sensor body 4 via the condenser lens 2 and the polarization plane preserving optical fiber 3. In this sensor body 4, the laser beam emitted from the rear end of the optical fiber 3 is converted into parallel light by the collimating lens 41, and then bent in a direction orthogonal to the prism mirror 42, and (1/2) λ plate After the ratio of the measurement light L1 and the reference light L2 is adjusted in 43, the light is guided to a measurement PBS (polarization beam splitter) 44, where the measurement light (for example, S polarization) L1 and the reference light (for example, P polarization). ) Divided into L2. The divided reference light L 2 passes through the PBS 44 and is guided to the four-phase signal detector 48.

一方、分割後の測定光L1は、PBS44で直交方向に反射され、(1/4)λ板45を通過して基準位置が設定されている反射鏡(図中、ミラー)46に照射されて、反対方向に反射され、再び(1/4)λ板45を通過してP偏光として前記PBS44に戻る。   On the other hand, the divided measurement light L1 is reflected by the PBS 44 in the orthogonal direction, passes through the (1/4) λ plate 45, and is applied to a reflecting mirror (mirror in the figure) 46 whose reference position is set. The light is reflected in the opposite direction, passes through the (1/4) λ plate 45 again, and returns to the PBS 44 as P-polarized light.

次いで、測定光L1はPBS44を通過して、別な(1/4)λ板47を通過して被測定体5に照射されると共に、この表面で反射されて再び(1/4)λ板47を通過し、S偏光としてPBS44に戻る。   Next, the measurement light L1 passes through the PBS 44, passes through another (1/4) λ plate 47, and is irradiated on the measured object 5, and is reflected by this surface and again (1/4) λ plate. 47 and returns to PBS 44 as S-polarized light.

その後、この測定光L1は、前記PBS44で直交方向に反射されると同時に、前記参照光L2と合波されて同方向に進み、前記4相信号検出器48に導かれる。その結果、この検出器48で測定光L1と参照光L2とが干渉して生成される4相の干渉信号が電気信号に変換されると共に、該電気信号はケーブル6を介して信号処理回路7に入力され、該処理回路7において電気信号に変換された90°位相差の正弦波信号に基づいて、前記センサ本体4から被測定体5の表面までの距離(変位)が検出されるようになっている。   Thereafter, the measurement light L 1 is reflected in the orthogonal direction by the PBS 44, and simultaneously combined with the reference light L 2 and travels in the same direction, and is guided to the four-phase signal detector 48. As a result, the detector 48 converts the four-phase interference signal generated by the interference between the measurement light L 1 and the reference light L 2 into an electrical signal, and the electrical signal is converted into a signal processing circuit 7 via the cable 6. The distance (displacement) from the sensor body 4 to the surface of the measured object 5 is detected based on a 90 ° phase difference sine wave signal input to the processing circuit 7 and converted into an electrical signal by the processing circuit 7. It has become.

なお、ここで4相信号検出器48を使用して±sinθ、±cosθの4相信号を検出する理由は、DC成分を打ち消すためである。即ち、いま振幅をAn、DC成分をDとすると、4相の各信号:Vは以下の式で表わされる。 Here, the reason why the four-phase signals of ± sin θ and ± cos θ are detected using the four-phase signal detector 48 is to cancel the DC component. That is, the amplitude A n Now, when the DC component is D n, the signals of four phases: V n is expressed by the following equation.

1=+A1sinθ+D1
2=−A2sinθ+D2
3=+A3cosθ+D3
4=−A4cosθ+D4
V 1 = + A 1 sin θ + D 1
V 2 = −A 2 sin θ + D 2
V 3 = + A 3 cos θ + D 3
V 4 = −A 4 cos θ + D 4

各式で、A1=A2=A3=A4、D1=D2=D3=D4と仮定すると、V1−V2=2Asinθとなり、DC成分を除去することができる。 Assuming that A 1 = A 2 = A 3 = A 4 and D 1 = D 2 = D 3 = D 4 in each equation, V 1 −V 2 = 2A sin θ, and the DC component can be removed.

最終的にsinとcosの信号が得られればよいので、特に4相検出でなく、2相検出でもよいが、DC成分を除去し易いために、この検出器48を採用している。   Since it is only necessary to finally obtain sin and cos signals, two-phase detection may be used instead of four-phase detection, but this detector 48 is employed because the DC component can be easily removed.

以上のような原理に基づいて被測定体5の表面までの距離を測定する変位測定装置において、センサ本体4を被測定体5の表面に沿った矢印方向に相対移動させて、該被測定体5の表面の平面度を走査測定する場合、平面度が良好であるほど検出器48で検出される信号の変化は極めて僅かであり、全く変化しないことも有り得る。従って、この走査測定時に検出される電気信号に基づいて90°位相差の正弦波信号を調整することは前述した如く事実上不可能である。   In the displacement measuring apparatus for measuring the distance to the surface of the measured object 5 based on the principle as described above, the sensor main body 4 is relatively moved in the direction of the arrow along the surface of the measured object 5 to thereby measure the measured object. When the flatness of the surface of 5 is measured by scanning, the better the flatness, the change of the signal detected by the detector 48 is very slight and may not change at all. Therefore, as described above, it is virtually impossible to adjust the 90 ° phase difference sine wave signal based on the electrical signal detected during the scanning measurement.

そのため、前述した如く現状は走査測定前に、被測定体5を叩く等して強制的に変位を発生させて信号を調整する、根気がいる調整作業を行なう方法を採っている。   Therefore, as described above, at present, a method of performing a persevering adjustment operation is adopted in which the signal is adjusted by forcibly generating displacement by hitting the measured object 5 before scanning measurement.

図2には、このような不都合を改善した本実施形態のレーザ干渉式微小変位測定装置の概要を示す。ここでは、図1と同一の部材には同一の符号を使用し、その詳細な説明を省略する。   FIG. 2 shows an outline of the laser interference type minute displacement measuring apparatus of the present embodiment in which such inconvenience is improved. Here, the same members as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態の変位測定装置は、センサ本体4の内部に測定光L1の光路長を強制的に変化させて1波長以上の90°位相差の検出信号を発生させる機構を追加した点が異なるが、基本原理は前記図1の装置と実質的に同一である。   The displacement measuring apparatus according to this embodiment is different in that a mechanism for forcibly changing the optical path length of the measuring light L1 and generating a detection signal having a 90 ° phase difference of one wavelength or more is added to the inside of the sensor body 4. The basic principle is substantially the same as the apparatus of FIG.

具体的には、センサ本体4を構成する筐体の天部に形成した凸部に、駆動手段としてPZT(圧電素子)49を付設し、該PZT49に測定光L1を基準位置で被測定体5の方向に反射する反射鏡46を固定すると共に、ケーブル8を介してPZT駆動回路9によりPZT49に所定電圧を印加することにより、該PZT49を測定光L1の進行方向に強制的に数μm程度進退動可能とし、測定光L1の光路長を1波長分以上変化させることを可能とした。   Specifically, a PZT (piezoelectric element) 49 is attached as a driving means to a convex portion formed on the top of the casing constituting the sensor main body 4, and the measurement object L 1 is measured on the PZT 49 at the reference position. The reflecting mirror 46 that reflects in the direction is fixed, and a predetermined voltage is applied to the PZT 49 by the PZT drive circuit 9 via the cable 8 to forcibly advance and retract the PZT 49 in the traveling direction of the measuring light L1 by about several μm. The optical path length of the measuring light L1 can be changed by one wavelength or more.

その結果、被測定体5を静止した状態のままで、前記図3(A)に示したような数サイクル分の90°位相差の正弦波信号を確実に発生させることが可能となり、その信号を用いて波長長さ以上のリニアな変位を測定する場合と同様に、前記信号処理回路7において検出された信号の振幅、DCオフセット及び位相の調整を行なうことにより、検出信号の歪みを補正して検出信号系を調整することが可能となる。   As a result, it is possible to reliably generate a sine wave signal having a phase difference of 90 ° for several cycles as shown in FIG. As in the case of measuring a linear displacement that is longer than the wavelength length by using, the amplitude of the signal detected by the signal processing circuit 7, the DC offset, and the phase are adjusted to correct the distortion of the detected signal. Thus, the detection signal system can be adjusted.

又、前記PZT49に対する電圧印加を解除して無電圧にすれば、前記反射鏡46は自ずと基準位置に戻るため、測定には全く影響しない。   Further, if the voltage application to the PZT 49 is canceled to make no voltage, the reflecting mirror 46 naturally returns to the reference position, so that the measurement is not affected at all.

従って、本実施形態によれば、測定開始前の信号調整時に、PZT49に印加する電圧をリニアに変化させて光路長を数μm変化させることにより、検出信号を調整することが可能となり、その後走査測定することにより、平面度を高精度で測定することが可能となる。   Therefore, according to the present embodiment, it is possible to adjust the detection signal by changing the optical path length by several μm by linearly changing the voltage applied to the PZT 49 at the time of signal adjustment before the start of measurement, and then performing scanning. By measuring, flatness can be measured with high accuracy.

以上説明したとおり、本発明によれば、被測定体を静止した状態で測定装置のキャリブレーションを行なうことができるため、本発明は、レーザ干渉式平面測定装置は言うに及ばず、本出願人が特願2003−143843号により既に提案しているレーザ干渉式ギャップ測定装置にも有効に適用でき、更には被測定体によって表面の反射状態が変化する等のために、測定以外にキャリブレーションを行なう必要がある任意の測定装置に適用することにより、測定時間の大幅な短縮を図ることが可能となる。   As described above, according to the present invention, since the measurement apparatus can be calibrated with the measurement object stationary, the present invention is not limited to the laser interference type flat surface measurement apparatus, but the applicant of the present invention. Can be effectively applied to the laser interference type gap measuring device already proposed by Japanese Patent Application No. 2003-143843, and furthermore, since the reflection state of the surface changes depending on the object to be measured, calibration is performed in addition to the measurement. By applying it to any measuring device that needs to be performed, it is possible to significantly reduce the measuring time.

本発明に係るレーザ干渉式変位測定装置の基本原理を示す模式図Schematic diagram showing the basic principle of the laser interference type displacement measuring apparatus according to the present invention. 本発明に係るレーザ干渉式変位測定装置の特徴を示す模式図The schematic diagram which shows the characteristic of the laser interference type displacement measuring apparatus which concerns on this invention 変位測定装置から出力される出力信号の例を示す線図Diagram showing examples of output signals output from the displacement measuring device

符号の説明Explanation of symbols

1…レーザ光源
2…集光レンズ
3…光ファイバ
4…センサ本体
5…被測定体
6、8…ケーブル
7…信号処理回路
9… PZT駆動回路
41…コリメートレンズ
42…プリズムミラー
43…(1/2)λ板
44…PBS(偏光ビームスプリッタ)
45、47…(1/4)λ板
46…反射鏡
48…検出器
49…PZT(圧電素子)
DESCRIPTION OF SYMBOLS 1 ... Laser light source 2 ... Condensing lens 3 ... Optical fiber 4 ... Sensor main body 5 ... To-be-measured object 6, 8 ... Cable 7 ... Signal processing circuit 9 ... PZT drive circuit 41 ... Collimating lens 42 ... Prism mirror 43 ... (1 / 2) Lambda plate 44 ... PBS (polarization beam splitter)
45, 47 (1/4) λ plate 46 ... Reflector 48 ... Detector 49 ... PZT (piezoelectric element)

Claims (3)

入射されるレーザ光線を分割し、一方を光路長が変化しない参照光とし、他方を被測定体の表面で反射させることにより該表面までの距離に応じて光路長が変化する測定光とすると共に、
該測定光と前記参照光との干渉光から取得される正弦波信号に基づいて、前記被測定体表面の変位を測定するレーザ干渉式変位測定装置において、
前記測定光の光路長を強制的に変化させる光路長変更手段を備えたことを特徴とするレーザ干渉式変位測定装置。
While splitting the incident laser beam, one is used as a reference light whose optical path length does not change, and the other is reflected from the surface of the object to be measured, thereby obtaining a measuring light whose optical path length changes according to the distance to the surface. ,
In a laser interference displacement measuring apparatus that measures the displacement of the surface of the object to be measured based on a sine wave signal acquired from the interference light between the measurement light and the reference light,
A laser interference type displacement measuring apparatus comprising an optical path length changing means for forcibly changing the optical path length of the measuring light.
前記光路長変更手段が、前記測定光を基準位置で被測定体方向に反射させる反射鏡を、同方向に進退動させる駆動手段であることを特徴とする請求項1に記載のレーザ干渉式変位測定装置。   2. The laser interference displacement according to claim 1, wherein the optical path length changing unit is a driving unit that moves a reflecting mirror that reflects the measurement light in a direction toward the measurement object at a reference position in the same direction. 3. measuring device. 前記駆動手段が、前記反射鏡に固定された圧電素子であることを特徴とする請求項2に記載のレーザ干渉式変位測定装置。   3. The laser interference displacement measuring apparatus according to claim 2, wherein the driving means is a piezoelectric element fixed to the reflecting mirror.
JP2004182121A 2004-06-21 2004-06-21 Laser interference type displacement measuring device Pending JP2006003290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182121A JP2006003290A (en) 2004-06-21 2004-06-21 Laser interference type displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182121A JP2006003290A (en) 2004-06-21 2004-06-21 Laser interference type displacement measuring device

Publications (1)

Publication Number Publication Date
JP2006003290A true JP2006003290A (en) 2006-01-05

Family

ID=35771793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182121A Pending JP2006003290A (en) 2004-06-21 2004-06-21 Laser interference type displacement measuring device

Country Status (1)

Country Link
JP (1) JP2006003290A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008150A (en) * 2008-06-25 2010-01-14 Kobe Steel Ltd Shape measuring apparatus
CN104634459A (en) * 2013-11-07 2015-05-20 南京理工大学 Phase-shifting and phase-tilting switchable dual-mode interference measuring device and measuring method thereof
CN106989678A (en) * 2017-06-14 2017-07-28 山东同其智能科技有限公司 A kind of device of utilization laser interferometry displacement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008150A (en) * 2008-06-25 2010-01-14 Kobe Steel Ltd Shape measuring apparatus
CN104634459A (en) * 2013-11-07 2015-05-20 南京理工大学 Phase-shifting and phase-tilting switchable dual-mode interference measuring device and measuring method thereof
CN104634459B (en) * 2013-11-07 2017-09-22 南京理工大学 Phase shift and mutually incline changeable double mode interferometric measuring means and its measuring method
CN106989678A (en) * 2017-06-14 2017-07-28 山东同其智能科技有限公司 A kind of device of utilization laser interferometry displacement

Similar Documents

Publication Publication Date Title
US7292347B2 (en) Dual laser high precision interferometer
US20060262320A1 (en) Interferometer and shape measuring method
US8345260B2 (en) Method of detecting a movement of a measuring probe and measuring instrument
US6992778B2 (en) Method and apparatus for self-calibration of a tunable-source phase shifting interferometer
GB2252155A (en) Optical diffraction grating position detector using polarisation rotation to remove the effects of unwanted fluctuations
CN112567196B (en) Interferometer moving mirror position measuring device and Fourier transform infrared spectrospectrometer
WO2015085694A1 (en) Double-frequency laser displacement and angle interferometer
JP5198418B2 (en) Shape measuring device and shape measuring method
JPH0379642B2 (en)
TWI579525B (en) An optical system and measuring methods for simultanuous absolute positioning distance and tilting angular measurements of a moving object
CN108627084B (en) Laser instrument wavelength calibration system based on static michelson interferometer
JP2006003290A (en) Laser interference type displacement measuring device
JPH03146822A (en) Encoder
WO2007074752A1 (en) Tilt sensor and encoder
JP4843789B2 (en) Nanometer displacement measuring method and apparatus by laser speckle
JPH095059A (en) Flatness measuring device
JP5704150B2 (en) White interference device and position and displacement measuring method of white interference device
JPH11271149A (en) Method and apparatus for interference for measurement of phase transition between two light beams coming from polarized incident light source
US7876449B2 (en) Laser interferometer
WO2016084195A1 (en) White light interference device and method of detecting position and displacement by means of white light interference device
JP2009069075A (en) Oblique incidence interferometer and method for calibrating the same
JP2004245634A (en) Rotation angle measuring device
JP5100248B2 (en) Atomic force microscope
JP2003287403A (en) Shape measuring apparatus using heterodyne interferometer, method of adjusting optical path length of the shape measuring apparatus using the heterodyne interferometer, and method of measuring shape using the heterodyne interferometer
JPH02298804A (en) Interferometer