WO2007074752A1 - Tilt sensor and encoder - Google Patents

Tilt sensor and encoder Download PDF

Info

Publication number
WO2007074752A1
WO2007074752A1 PCT/JP2006/325712 JP2006325712W WO2007074752A1 WO 2007074752 A1 WO2007074752 A1 WO 2007074752A1 JP 2006325712 W JP2006325712 W JP 2006325712W WO 2007074752 A1 WO2007074752 A1 WO 2007074752A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction grating
light
optical unit
tilt sensor
receiving element
Prior art date
Application number
PCT/JP2006/325712
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Imai
Akihiro Watanabe
Original Assignee
Nikon Corporation
Sendai Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation, Sendai Nikon Corporation filed Critical Nikon Corporation
Publication of WO2007074752A1 publication Critical patent/WO2007074752A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Definitions

  • the present invention relates to a tilt sensor and an encoder, and more particularly to a tilt sensor that measures a relative tilt amount between illumination light and a diffraction grating, and an encoder including the tilt sensor.
  • Patent Document 1 Conventionally, for example, an optical encoder described in Patent Document 1 has been used to measure the position of a test object.
  • This optical encoder uses the intensity of illumination light that has passed through both a moving diffraction grating that moves with a moving object and a fixed index diffraction grating as information indicating the relative positional deviation between the two diffraction gratings.
  • This encoder is a so-called diffraction interference encoder.
  • Such an optical encoder can only measure the position in the direction in which the grating is arranged. However, recently, it is considered necessary to measure the rotation of the test object (the tilt direction of the moving grid that moves with the test object with respect to the plane on which the grid is formed).
  • Patent Document 1 JP 2005-55360 A
  • Patent Document 2 U.S. Pat.No. 6,639,686
  • a light source that emits illumination light; a first diffraction grating; and the first diffraction grating, An optical unit having a second diffraction grating arranged in a predetermined positional relationship with respect to the optical path direction of the illumination light. And a light receiving element that receives light interfering with the optical unit and outputs a signal related to a relative angle change between the illumination light and the optical unit.
  • the state of the light that interferes with the first diffraction grating and the second diffraction grating of the optical unit changes according to the relative angle change between the illumination light and the optical unit, and the interference A signal relating to the relative change in angle between the illumination light and the optical unit is output from the light receiving element that has received the light. Therefore, the relative angular relationship between the illumination light and the optical unit can be detected based on the signal.
  • a light source that emits illumination light; an arbitrary light source provided with a diffraction grating on a surface on the light source side, and a reflective film formed on a surface on the opposite side.
  • An optical element having a refractive index after passing through the diffraction grating, receiving the light reflected by the reflection film and passing through the diffraction grating again, and changes the relative angle between the illumination light and the optical element.
  • a light receiving element that outputs a signal related to the second tilt sensor.
  • the state of the light changes, and a signal relating to the relative angle change between the illumination light and the optical unit is output from the light receiving element that receives the light. Therefore, the relative angular relationship between the illumination light and the optical unit can be detected based on the signal.
  • an encoder for irradiating illumination light onto a pattern arranged along a predetermined direction and detecting the pattern, the first diffraction grating, and the first An optical unit having a second diffraction grating disposed in a predetermined positional relationship with respect to the optical path direction of the illumination light; and receiving the illumination light that has passed through the optical unit and entering the optical unit A light-receiving element that outputs a signal related to a relative angle change between the illumination light and the optical unit.
  • the light receiving element force for receiving the light diffracted by the first and second diffraction gratings is output according to the relative angle change between the illumination light incident on the optical unit and the optical unit. Since the signal changes, the relationship between the optical unit and the illumination light can be adjusted according to the signal. Therefore, after adjustment, the position meter using the optical unit that interferes with the illumination light By performing measurement, it becomes possible to perform highly accurate position measurement.
  • the first and second tilt sensors of the present invention are used. It is the 2nd encoder provided with.
  • the encoder that measures the position in the in-plane direction perpendicular to the optical axis of the illumination light detects the relative angular change between the optical unit or optical element having the diffraction grating and the illumination light. Since the first and second tilt sensors of the present invention that can be used are provided, the optical unit or the optical element can be adjusted according to the detected angle change. Therefore, it is possible to perform highly accurate position measurement by performing position measurement after adjustment.
  • FIG. 1 is a schematic diagram showing a tilt sensor according to a first embodiment.
  • FIG. 2 (A) and FIG. 2 (B) are diagrams for explaining the principle of the optical unit of FIG.
  • FIG. 3 is a schematic diagram showing an encoder according to a second embodiment.
  • FIG. 4 is a diagram showing a configuration of the light receiving element in FIG. 3.
  • FIG. 5 (A) and FIG. 5 (B) are diagrams showing modifications of the tilt sensor.
  • FIGS. 1 to 2B a first embodiment of the present invention will be described with reference to FIGS. 1 to 2B.
  • FIG. 1 schematically shows a tilt sensor 100 according to the first embodiment.
  • This tilt sensor 100 has light sources 12 arranged in sequence in the Z-axis direction (up and down direction in FIG. 1).
  • a collimator lens 121, an optical unit 26, and a light receiving element 136 are included.
  • VCSEL surface emitting laser
  • This surface emitting laser is a near-infrared surface emitting semiconductor laser capable of high-speed driving with high uniformity and a large-scale array.
  • the collimator lens 121 converts the laser light emitted from the light source 120 into parallel light.
  • the optical unit 26 comprises a glass plate force that transmits laser light, and measures a tilt amount. Connected to the test object (moving body). On the surface of the glass plate on the light source 120 side, as shown in an enlarged view in FIG. 2A, a light source side grating 127a is provided, and on the back surface (surface on the light receiving element 136 side), the light receiving element side is provided. A grid 127b is provided. These gratings 127a and 127b are line 'and' space patterns in which a plurality of line patterns whose longitudinal direction is the X-axis direction are arranged in the Y-axis direction, and the pitch of the light source side gratings 127a is, for example, 25. For example, the pitch of the light receiving element side grating 127b is 25.6 m.
  • the light receiving element 136 is composed of a multi-part light receiving element.
  • the laser light emitted from the light source 120 is converted into parallel light by the collimator lens 121 and enters the optical unit 26.
  • the laser light incident on the optical unit 26 interferes as follows.
  • FIG. 1 shows a state in which the laser beam is incident on the upper surface of the optical unit 26 perpendicularly!
  • the optical unit 26 generates a plurality of diffracted lights at the light source side grating 127a based on the incident parallel light.
  • Figure 2 (A) shows the ⁇ 1st-order diffracted light generated at the three points (points A, B, and C) of the source-side grating 127a.
  • this + first-order diffracted light further generates a plurality of diffracted lights at the AB point of the light receiving element side grating 127b.
  • Fig. 2 (A) only the ⁇ 1st-order diffracted light is shown (not shown in parentheses).
  • the solid line in Fig. 2 (A) contributes to interference. Described—first-order diffracted light.
  • a plurality of diffracted lights are further generated at the AC point of the light receiving element side grating 127b.
  • Fig. 2 (A) only the ⁇ 1st-order diffracted light is shown (shown without parentheses), but the contribution to interference is shown by the solid line in Fig. 2 (A). It is + first order diffracted light.
  • this first-order diffracted light further generates a plurality of diffracted lights at point AB of the light receiving element side grating 127b.
  • Fig. 2 (A) only ⁇ 1st-order diffracted light is shown (shown in parentheses), but the one that contributes to interference is shown by the solid line in Fig. 2 (A). It is + first order diffracted light.
  • the +1 next-order diffracted light interferes with the first-order diffracted light generated at the AB point of the light receiving element side grating 127b out of the + first-order diffracted light generated at the point A described above.
  • this + first-order diffracted light further generates a plurality of diffracted lights at the AC point of the light receiving element side grating 127b.
  • Fig. 2 (A) only ⁇ 1st-order diffracted light is shown (shown in parentheses), but the one that contributes to interference is shown by the solid line in Fig. 2 (A).
  • This first-order reflected light interferes with the + first-order diffracted light generated at the AC point of the light receiving element side grating 127b among the first-order diffracted light generated at the point A described above.
  • interference fringes are formed on the light receiving element 136 due to the interference of the laser light that has passed through the optical unit 26.
  • FIG. 2B shows a state in which the laser light is incident on the upper surface of the optical unit 26 at an angle slightly inclined from the vertical.
  • FIG. 2 (B) the force that shows the state in which the angle of the optical unit 26 is the same and the laser beam is tilted as compared to FIG. 2 (A) is shown. The same concept can be applied when the optical unit 26 is tilted.
  • the optical unit 26 generates a plurality of diffracted lights at the light source side grating 127a based on the incident parallel light.
  • the light source side grating 127a Only ⁇ 1st order diffracted light generated at 3 points (A, B, D, C, D) is shown.
  • the + first-order diffracted light generated at the point A is diffracted again at the point AB ′ of the light receiving element side grating 127b, and ⁇ 1st-order diffracted light (FIG. 2 (B ) Is shown without parentheses).
  • the first-order diffracted light indicated by the solid line contributes to the interference.
  • the first-order diffracted light generated at point A is diffracted again at point AC ′ of the light-receiving element side grating 127b, and ⁇ 1st-order diffracted light (shown without parentheses in FIG. 2 (B)) appear.
  • the + first-order diffracted light indicated by the solid line contributes to interference.
  • the optical path lengths in the glass plate of the + first-order diffracted light generated at point A and the first-order folded light are different.
  • the first-order diffracted light of the first-order diffracted light generated by diffraction at the B, point of the light source side grating 127a is diffracted again at the AB 'point of the light-receiving element side grating 127a, and ⁇ 1st order diffracted light (Indicated by parentheses).
  • the + next-fold light shown by the solid line interferes with the first-order diffracted light generated via points A and AB 'described above.
  • the + first-order diffracted light of the first-order diffracted light generated by diffraction at the point C at the light source side grating 127a is diffracted again at the AC 'point of the light-receiving element side grating 127a, and ⁇ 1 (Shown in parentheses).
  • the first-order diffracted light indicated by the solid line interferes with the + first-order diffracted light generated via points A and AC 'described above.
  • the relative angle between the optical axis of the laser beam and the optical unit 26 varies, so that the corresponding interference light Is shifted in the Y-axis direction (Y direction in this embodiment), that is, the interference intensity of the interference fringes changes.
  • the light receiving element 136 detects the interference intensity of the generated interference fringes and outputs a signal including the amount of movement of the interference fringes on the light receiving surface to a control device (not shown).
  • the origin of measurement does not exist, but in the initial adjustment, the optical unit 26 is in a desired state (for example, as shown in FIG.
  • the position of the interference fringes when it is set to the vertical incident state) is regarded as the origin, and a deviation from the origin is detected.
  • the light source side grating 127a is regarded as an index scale and the light receiving element side grating 127b is regarded as a moving scale.
  • the moving scale is tilted and the light beam exit position changes by 1 pitch (25.6 m)
  • the propagation angle inside the glass is 0 '
  • the glass thickness is t
  • the lattice pitch is p. It becomes a relationship like Formula (1).
  • the lattice pitch is 25.6 / ⁇ ⁇ and the glass thickness is 3 mm
  • the optical path length difference between the ⁇ 1st order diffracted lights does not occur due to the inclination, so that the initial condition of Talbot (Talbot) interference is maintained even if the inclination occurs It is possible to perform stable tilt measurement without changing.
  • the optical unit 26 includes the light source side grating 127a and the light source side grating 127a with respect to the Z-axis direction.
  • the light receiving element side grating 127b provided at a distance is provided, and the light source side grating 127a of the optical unit 26 and the light receiving element are changed according to a relative angle change between the laser beam and the optical unit 26. Since the intensity of the interference fringes diffracted by the side grating 127b changes, the relative angular relationship between the laser beam and the optical unit 26 can be measured by detecting the interference fringes with the light receiving element 136. It becomes.
  • the interval (pitch) of interference fringes is increased.
  • the pitch of the light source side grating 127a is 25.0 m and the pitch of the light receiving element side grating 127b is 25.6 ⁇ m as in the present embodiment
  • the interference fringes with a pitch of about 0.8 mm are used. Will occur. Therefore, since the pitch of the interference fringes used for tilt measurement is large, a change in the intensity of the interference fringes (movement of the interference fringes on the light receiving surface of the light receiving element 136) can be accurately detected. Thereby, it is possible to improve the tilt measurement accuracy.
  • FIG. 3 shows a schematic configuration of the encoder 17 of the second embodiment.
  • the encoder 17 includes a scale 18 that extends in the Y-axis direction, and a probe unit 19 that emits a beam probe.
  • the scale 18 is formed with a reflective diffraction grating (grating 1) having periodicity in the Y-axis direction. As shown in Fig. 3, this diffraction grating is an uneven surface type diffraction grating.
  • the pitch (cycle) is the same in all sections.
  • the probe unit 19 includes a laser diode 20, a bending mirror 22 disposed on the + Y side of the laser diode 20, and an optical element disposed on the + Z side of the bending mirror 22 in sequence.
  • Unit 26 beam splitter 28, objective lens 30, lens 32 and optical sensor 34 disposed on the + Y side of beam splitter 28, and light receiving element 36 disposed on the Y side of beam splitter 28 .
  • the laser diode 20 emits laser light having a wavelength of 640 nm, for example.
  • the bending mirror 22 has a function as a vibrating mirror that is vibrated by a driving device 24 including, for example, a piezo element, and the angle of the bending mirror 22 can be adjusted by the driving device 24.
  • a control device (not shown) adjusts the angle of the reflecting surface of the mirror 22 with respect to the laser light emitted from the laser diode 20 via the driving device 24 to a desired angle.
  • the optical unit 26 has the same force as that of the optical unit in the tilt sensor 100 described above.
  • the light source side grating has a main beam of 0th-order diffracted light and ⁇ 1 based on the incident laser light. Generates two sub-beams of next diffracted light.
  • the relationship between the main beam and the two sub-beams is the relationship in which the main beam is positioned between the two sub-beams along the grating arrangement direction when these beams are irradiated onto the scale. .
  • the optical sensor 34 is composed of a CCD or the like, and the light receiving element 36 is the same as the light receiving element 136 of the tilt sensor 100 described above, and outputs a detection signal to a control device (not shown).
  • the laser light emitted from the laser diode 20 is reflected by the folding mirror 22 by approximately 90 °, enters the optical unit 26, and the optical unit 26 After being split into two sub-beams, the beam passes through the beam splitter 28 and reaches the grating 1 on the scale 18 by the objective lens 30. Then, the laser light reflected on the grating 1 passes through the objective lens 30, is reflected by the beam splitter 28, and is received by the optical sensor 34 via the lens 32. A signal from the optical sensor 34 is sent to a control device (not shown).
  • the principle and circuit configuration of signal detection in this control device are disclosed in detail in Japanese Patent Publication No. 2000-511634 and US Pat. No. 6,639,686. To the extent permitted by national legislation in the designated country (or selected selected country) designated in this international application, the disclosure in the above US patent specification is incorporated and made a part of this description.
  • the optical sensor 34 has two sub-beams, a main beam of 0th order diffracted light and a first order diffracted light. Light is received in a state of being divided into frames. Therefore, when such a probe unit is adopted, as the optical sensor 34, as shown in FIG. 4, a four-part optical sensor 34 for main beam detection and two sensors 34, 34 for sub-beam detection Can be used.
  • the result of adding the phase detection value is detected as the measurement value of the encoder, and the result of subtraction is detected as the drift amount of the beam probe due to laser diode position drift.
  • each sensor of the quadrant optical sensor 34 is a, b, c, d
  • the detection result of the main beam indicates that two signals (a + b + c + d, a + c— b— d) can be created. Since these two signals have a phase difference of 90 degrees, these two signals are sent to the control device and used for focus control between the objective lens 30 and the grating 1.
  • the probe unit 19 outputs laser light toward the scale 18, the laser light (beam probe) reflected on the grating 1 of the scale 18 is received by the optical sensor 34, and the light reception result is obtained. The corresponding signal is output.
  • the laser light that passes through the optical unit 26 and is reflected by the beam splitter 28 is incident on the light receiving element 36. Therefore, in the probe unit 19 of the encoder 17 in FIG. 3, the laser diode 20 corresponds to the light source 120 of the tilt sensor 100 in FIG. 1, the light receiving element 36 corresponds to the light receiving element 136 in FIG. Since this is the same as the optical unit 26 of the tilt sensor 100, the tilt sensor 100 ′ having the same function as the tilt sensor 100 of FIG. From the tilt sensor 100, the relative angle between the optical unit 26 and the laser beam incident on the optical unit 26 can be detected.
  • the control device adjusts the angle of the laser light incident on the optical unit 26 by adjusting the angle of the bending mirror 22 via the drive device 24 based on the detection result by the tilt sensor 100 ′.
  • the laser light can be incident on the optical unit 26 at an ideal angle, so that the measurement by the encoder 17 can be performed with high accuracy.
  • the relative angle of these beam forces may be obtained, or one of the three beams is used. V, you can also find the relative angle!
  • the tilt sensor 100 'capable of measuring the relative angular relationship between the laser beam and the optical unit 26 is included.
  • the angular relationship between the laser beam and the optical unit 26 can be adjusted based on the detection result by the sensor 100 ′.
  • position measurement by the encoder can be performed accurately over a long period of time.
  • the optical unit 26 force provided in the probe unit 19 of the encoder 17 has a function for measuring the inclination of the optical unit 26, the number of parts can be reduced. Therefore, the enlargement of the encoder itself can be suppressed.
  • a reflection type diffraction grating is used as the scale 18.
  • the present invention is not limited to this, and a transmission type diffraction grating may be used.
  • the lens 32 and the optical sensor 34 are arranged on the + Z side of the scale 18.
  • the encoder of the second embodiment can also be employed in a diffraction interference type or shadow picture type encoder.
  • optical unit 26 of the second embodiment can be used as the scale 18 of the encoder.
  • the force of using a glass plate as the optical unit 26 is not limited to this, and any material having an arbitrary refractive index is not limited to glass. Absent.
  • a diffraction grating may be formed in a semiconductor or the like.
  • the present invention is not limited to this, and both gratings may have the same pitch.
  • the present invention is not limited to this.
  • the optical unit 26 can be fixed to the object to be measured, for example.
  • this optical unit 26 ' also has a glass plate force
  • Diffraction grating 127 'force is provided on the + Z side surface, and reflective film 129 is provided on the Z side surface
  • the optical unit 26 ′ configured in this manner, the obliquely incident laser light is diffracted by the diffraction grating 127, and ⁇ 1st order diffracted light is generated. These ⁇ 1st-order diffracted light and 0th-order light are totally reflected by the reflection film 129 and diffracted again by the diffraction grating 127 ′.
  • the light shown by the solid line in FIG. 5 (A) contributes to the interference.
  • the diffracted light of the laser light diffracted at other points (diffracted by the diffraction grating 127 ′, and then reflected by the reflective film 129, Interference fringes are formed on a light receiving element (not shown) provided behind the optical path.
  • the position of the interference fringe on the light receiving element changes when the incident angle of the laser beam to the optical unit changes.
  • it is possible to detect the incident angle of the laser beam with respect to the optical unit.
  • the tilt sensor of the present invention is suitable for measuring the relative angle between the illumination light and the optical unit.
  • the encoder of the present invention is suitable for pattern detection.

Abstract

An optical unit (26) is provided with a first diffraction grating (127a) and a second diffraction grating (127b) which is arranged at a position at a prescribed distance from the first diffraction grating in a Z axis direction. The status of light interfered by both the first diffraction grating and the second diffraction grating of the optical unit change corresponding to relative angle change of illuminating light projected from a light source and the optical unit. Therefore, relative angle relationship between the illuminating light and the optical unit can be measured by receiving the interference light by a light receiving element.

Description

明 細 書  Specification
チノレトセンサ及びェンコーダ  Chino Reto Sensor and Encoder
技術分野  Technical field
[0001] 本発明はチルトセンサ及びエンコーダに係り、更に詳しくは、照明光と回折格子と の相対的なチルト量を計測するチルトセンサ及び該チルトセンサを備えるエンコーダ に関する。  The present invention relates to a tilt sensor and an encoder, and more particularly to a tilt sensor that measures a relative tilt amount between illumination light and a diffraction grating, and an encoder including the tilt sensor.
背景技術  Background art
[0002] 従来より、被検物体の位置を計測するために、例えば、特許文献 1に記載されて 、 るような光学式エンコーダが用いられて 、た。  Conventionally, for example, an optical encoder described in Patent Document 1 has been used to measure the position of a test object.
[0003] この光学式エンコーダは、移動体とともに移動する移動回折格子と、固定のインデ ックス回折格子との両方を経由した照明光の強度を、両者の回折格子の相対位置ず れを示す情報として検出するエンコーダであり、いわゆる回折干渉方式のエンコーダ と呼ばれている。 [0003] This optical encoder uses the intensity of illumination light that has passed through both a moving diffraction grating that moves with a moving object and a fixed index diffraction grating as information indicating the relative positional deviation between the two diffraction gratings. This encoder is a so-called diffraction interference encoder.
[0004] このような光学式エンコーダは、格子の配列方向についての位置計測のみが可能 である。しかるに、最近では、被検物体の回転 (被検物体とともに移動する移動格子 の格子が形成された面に対する傾斜方向)についても計測することが必要と考えられ ている。  [0004] Such an optical encoder can only measure the position in the direction in which the grating is arranged. However, recently, it is considered necessary to measure the rotation of the test object (the tilt direction of the moving grid that moves with the test object with respect to the plane on which the grid is formed).
[0005] また、例えば特許文献 2に記載されて 、る、変調方式エンコーダの 3ビーム生成用 の回折格子に入射する光の入射角についても計測できれば、変調方式エンコーダ による正確な位置計測を実現することが可能となる。  [0005] Also, for example, as described in Patent Document 2, if the incident angle of light incident on a diffraction grating for generating three beams of a modulation encoder can also be measured, accurate position measurement by the modulation encoder is realized. It becomes possible.
[0006] 特許文献 1 :特開 2005— 55360号公報  [0006] Patent Document 1: JP 2005-55360 A
特許文献 2 :米国特許第 6, 639, 686号明細書  Patent Document 2: U.S. Pat.No. 6,639,686
発明の開示  Disclosure of the invention
課題を解決するための手段  Means for solving the problem
[0007] 本発明は、上述した事情の下になされたものであり、第 1の観点力 すると、照明光 を出射する光源と;第 1の回折格子と、前記第 1の回折格子に対し、前記照明光の光 路方向に関して所定の位置関係で配置された第 2の回折格子とを有する光学ュニッ トと;前記光学ユニットで干渉した光を受光し、前記照明光と前記光学ユニットとの相 対的な角度変化に関する信号を出力する受光素子と;を備える第 1のチルトセンサで ある。 [0007] The present invention has been made under the circumstances described above. From the first viewpoint, a light source that emits illumination light; a first diffraction grating; and the first diffraction grating, An optical unit having a second diffraction grating arranged in a predetermined positional relationship with respect to the optical path direction of the illumination light. And a light receiving element that receives light interfering with the optical unit and outputs a signal related to a relative angle change between the illumination light and the optical unit.
[0008] これによれば、照明光と光学ユニットとの相対的な角度変化に応じて、光学ユニット の第 1の回折格子と第 2の回折格子で干渉する光の状態が変化し、その干渉光を受 光した受光素子から、照明光と光学ユニットとの相対的な角度変化に関する信号が 出力される。したがって、該信号に基づいて、照明光と光学ユニットとの相対的な角 度関係を検出することが可能となる。  [0008] According to this, the state of the light that interferes with the first diffraction grating and the second diffraction grating of the optical unit changes according to the relative angle change between the illumination light and the optical unit, and the interference A signal relating to the relative change in angle between the illumination light and the optical unit is output from the light receiving element that has received the light. Therefore, the relative angular relationship between the illumination light and the optical unit can be detected based on the signal.
[0009] 本発明は、第 2の観点力 すると、照明光を出射する光源と;前記光源側の面に回 折格子が設けられ、これと反対側の面に反射膜が形成された任意の屈折率を有する 光学素子と;前記回折格子を通過した後、前記反射膜で反射され、前記回折格子を 再度通過した光を受光し、前記照明光と前記光学素子との相対的な角度変化に関 する信号を出力する受光素子と;を備える第 2のチルトセンサである。  [0009] According to a second aspect of the present invention, there is provided a light source that emits illumination light; an arbitrary light source provided with a diffraction grating on a surface on the light source side, and a reflective film formed on a surface on the opposite side. An optical element having a refractive index; after passing through the diffraction grating, receiving the light reflected by the reflection film and passing through the diffraction grating again, and changes the relative angle between the illumination light and the optical element. And a light receiving element that outputs a signal related to the second tilt sensor.
[0010] これによれば、光学素子に入射する照明光と光学素子との相対的な角度変化に応 じて、回折格子を通過した後、反射膜で反射され、再度回折格子を通過した光の状 態が変化し、その光を受光した受光素子から、照明光と光学ユニットとの相対的な角 度変化に関する信号が出力される。したがって、該信号に基づいて、照明光と光学 ユニットとの相対的な角度関係を検出することが可能となる。  [0010] According to this, the light that has passed through the diffraction grating, reflected by the reflective film, and again passed through the diffraction grating in accordance with the relative angle change between the illumination light incident on the optical element and the optical element. The state of the light changes, and a signal relating to the relative angle change between the illumination light and the optical unit is output from the light receiving element that receives the light. Therefore, the relative angular relationship between the illumination light and the optical unit can be detected based on the signal.
[0011] 本発明は、第 3の観点力 すると、所定方向に沿って配列されたパターンに照明光 を照射し、前記パターンを検出するエンコーダであって、第 1の回折格子と、前記第 1 の回折格子に対し、前記照明光の光路方向に関して所定の位置関係で配置された 第 2の回折格子とを有する光学ユニットと;前記光学ユニットを経由した照明光を受光 し、前記光学ユニットに入射する照明光と前記光学ユニットとの相対的な角度変化に 関する信号を出力する受光素子と;を備える第 1のエンコーダである。  [0011] According to a third aspect of the present invention, there is provided an encoder for irradiating illumination light onto a pattern arranged along a predetermined direction and detecting the pattern, the first diffraction grating, and the first An optical unit having a second diffraction grating disposed in a predetermined positional relationship with respect to the optical path direction of the illumination light; and receiving the illumination light that has passed through the optical unit and entering the optical unit A light-receiving element that outputs a signal related to a relative angle change between the illumination light and the optical unit.
[0012] これによれば、光学ユニットに入射する照明光と光学ユニットとの相対的な角度変 化に応じて、第 1、第 2の回折格子で回折した光を受光する受光素子力 出力される 信号が変化するので、該信号に応じて光学ユニットと照明光との関係を調整すること ができる。したがって、調整後に、照明光を干渉させる光学ユニットを用いた位置計 測を行うことにより、高精度な位置計測を行うことが可能となる。 [0012] According to this, the light receiving element force for receiving the light diffracted by the first and second diffraction gratings is output according to the relative angle change between the illumination light incident on the optical unit and the optical unit. Since the signal changes, the relationship between the optical unit and the illumination light can be adjusted according to the signal. Therefore, after adjustment, the position meter using the optical unit that interferes with the illumination light By performing measurement, it becomes possible to perform highly accurate position measurement.
[0013] 本発明は、第 4の観点力 すると、所定方向に沿って配列されたパターンに照明光 を照射し、前記パターンを検出するエンコーダにおいて、本発明の第 1、第 2のチルト センサを備えることを特徴とする第 2のエンコーダである。  According to the fourth aspect of the present invention, in the encoder that irradiates illumination light to a pattern arranged along a predetermined direction and detects the pattern, the first and second tilt sensors of the present invention are used. It is the 2nd encoder provided with.
[0014] これによれば、照明光の光軸に垂直な面内方向に関する位置を計測するェンコ一 ダが、回折格子を有する光学ユニット又は光学素子と照明光との相対的な角度変化 を検出することが可能な本発明の第 1、第 2のチルトセンサを備えているので、該検 出された角度変化に応じて、光学ユニット又は光学素子を調整することができる。し たがって、調整後に位置計測を行うことにより、高精度な位置計測を行うことが可能と なる。  [0014] According to this, the encoder that measures the position in the in-plane direction perpendicular to the optical axis of the illumination light detects the relative angular change between the optical unit or optical element having the diffraction grating and the illumination light. Since the first and second tilt sensors of the present invention that can be used are provided, the optical unit or the optical element can be adjusted according to the detected angle change. Therefore, it is possible to perform highly accurate position measurement by performing position measurement after adjustment.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]第 1の実施形態に係るチルトセンサを示す概略図である。 FIG. 1 is a schematic diagram showing a tilt sensor according to a first embodiment.
[図 2]図 2(A)、図 2 (B)は、図 1の光学ユニットの原理を説明するための図である。  2] FIG. 2 (A) and FIG. 2 (B) are diagrams for explaining the principle of the optical unit of FIG.
[図 3]第 2の実施形態に係るエンコーダを示す概略図である。  FIG. 3 is a schematic diagram showing an encoder according to a second embodiment.
[図 4]図 3の受光素子の構成を示す図である。  4 is a diagram showing a configuration of the light receiving element in FIG. 3.
[図 5]図 5 (A)、図 5 (B)は、チルトセンサの変形例を示す図である。  FIG. 5 (A) and FIG. 5 (B) are diagrams showing modifications of the tilt sensor.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 《第 1の実施形態》 [0016] First Embodiment
以下、本発明の第 1の実施形態を図 1〜図 2 (B)に基づいて説明する。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 2B.
[0017] 図 1には、本第 1の実施形態に係るチルトセンサ 100が概略的に示されている。こ のチルトセンサ 100は、 Z軸方向(図 1の紙面上下方向)に順次配列された、光源 12FIG. 1 schematically shows a tilt sensor 100 according to the first embodiment. This tilt sensor 100 has light sources 12 arranged in sequence in the Z-axis direction (up and down direction in FIG. 1).
0と、コリメータレンズ 121と、光学ユニット 26と、受光素子 136とを含んでいる。 0, a collimator lens 121, an optical unit 26, and a light receiving element 136 are included.
[0018] 前記光源 120としては、例えば短波長帯 VCSEL (面発光レーザ)を採用することが できる。この面発光レーザは、均一性が高ぐ高速駆動及び大規模アレイ化が可能な 近赤外面発光型半導体レーザである。 As the light source 120, for example, a short wavelength band VCSEL (surface emitting laser) can be employed. This surface emitting laser is a near-infrared surface emitting semiconductor laser capable of high-speed driving with high uniformity and a large-scale array.
[0019] 前記コリメータレンズ 121は、前記光源 120から出射されたレーザ光を平行光に変 換する。 The collimator lens 121 converts the laser light emitted from the light source 120 into parallel light.
[0020] 前記光学ユニット 26は、レーザ光を透過するガラス板力 成り、チルト量を計測する 被検物体 (移動体)に接続されている。このガラス板の光源 120側の面には、図 2 (A )に拡大して示されるように、光源側格子 127aが設けられ、その裏面 (受光素子 136 側の面)には、受光素子側格子 127bが設けられている。これらの格子 127a, 127b は、 X軸方向を長手方向とする複数のラインパターンが Y軸方向に配列されて成るラ イン 'アンド'スペースパターンであり、光源側格子 127aのピッチは、例えば 25. Ο μ mであり、受光素子側格子 127bのピッチは、例えば 25. 6 mである。 [0020] The optical unit 26 comprises a glass plate force that transmits laser light, and measures a tilt amount. Connected to the test object (moving body). On the surface of the glass plate on the light source 120 side, as shown in an enlarged view in FIG. 2A, a light source side grating 127a is provided, and on the back surface (surface on the light receiving element 136 side), the light receiving element side is provided. A grid 127b is provided. These gratings 127a and 127b are line 'and' space patterns in which a plurality of line patterns whose longitudinal direction is the X-axis direction are arranged in the Y-axis direction, and the pitch of the light source side gratings 127a is, for example, 25. For example, the pitch of the light receiving element side grating 127b is 25.6 m.
[0021] 図 1に戻り、前記受光素子 136は、多分割受光素子から構成されている。  Returning to FIG. 1, the light receiving element 136 is composed of a multi-part light receiving element.
[0022] このように構成されるチルトセンサ 100によると、光源 120から出射されたレーザ光 は、コリメータレンズ 121で平行光に変換されて、光学ユニット 26に入射する。この光 学ユニット 26に入射したレーザ光は、以下のように干渉する。  According to the tilt sensor 100 configured as described above, the laser light emitted from the light source 120 is converted into parallel light by the collimator lens 121 and enters the optical unit 26. The laser light incident on the optical unit 26 interferes as follows.
[0023] 02 (A)には、レーザ光が光学ユニット 26の上面に対して垂直に入射して!/、る状態 が示されている。この場合、光学ユニット 26では入射した平行光に基づいて複数の 回折光を光源側格子 127aで発生させる。図 2 (A)では、それらの回折光のうち、光 源側格子 127aの 3点 (A点, B点, C点)で発生した ± 1次回折光が示されている。  [0023] 02 (A) shows a state in which the laser beam is incident on the upper surface of the optical unit 26 perpendicularly! In this case, the optical unit 26 generates a plurality of diffracted lights at the light source side grating 127a based on the incident parallel light. Figure 2 (A) shows the ± 1st-order diffracted light generated at the three points (points A, B, and C) of the source-side grating 127a.
[0024] このうち、 A点で発生した + 1次回折光に着目すると、この + 1次回折光は、受光素 子側格子 127bの AB点において更に複数の回折光を発生させる。ここで、図 2 (A) では、 ± 1次回折光のみを示している(括弧を付さずに示している)が、そのうちで干 渉に寄与するのは、図 2 (A)に実線で記載されている— 1次回折光である。一方、 A 点で発生した 1次回折光については、受光素子側格子 127bの AC点で更に複数 の回折光を発生させる。ここで、図 2 (A)では、 ± 1次回折光のみを示している (括弧 を付さずに示している)が、そのうちで干渉に寄与するのは、図 2 (A)に実線で示され ている + 1次回折光である。  [0024] Of these, paying attention to the + first-order diffracted light generated at point A, this + first-order diffracted light further generates a plurality of diffracted lights at the AB point of the light receiving element side grating 127b. Here, in Fig. 2 (A), only the ± 1st-order diffracted light is shown (not shown in parentheses). Of these, the solid line in Fig. 2 (A) contributes to interference. Described—first-order diffracted light. On the other hand, for the first-order diffracted light generated at point A, a plurality of diffracted lights are further generated at the AC point of the light receiving element side grating 127b. Here, in Fig. 2 (A), only the ± 1st-order diffracted light is shown (shown without parentheses), but the contribution to interference is shown by the solid line in Fig. 2 (A). It is + first order diffracted light.
[0025] 次いで、 B点で発生した 1次回折光に着目すると、この 1次回折光は受光素子 側格子 127bの AB点において更に複数の回折光を発生させる。ここで、図 2 (A)で は、 ± 1次回折光のみを示している(括弧を付して示している)が、そのうちで干渉に 寄与するのは、図 2 (A)に実線で記載されている + 1次回折光である。この + 1次回 折光は、前述した、 A点で発生した + 1次回折光のうち受光素子側格子 127bの AB 点において発生した 1次回折光と干渉する。 [0026] 次に、 C点で発生した + 1次回折光に着目すると、この + 1次回折光は、受光素子 側格子 127bの AC点において更に複数の回折光を発生させる。ここで、図 2 (A)で は、 ± 1次回折光のみを示している(括弧を付して示している)が、そのうちで干渉に 寄与するのは、図 2 (A)に実線で記載されている— 1次回折光である。この— 1次回 折光は、前述した、 A点で発生した 1次回折光のうち受光素子側格子 127bの AC 点において発生した + 1次回折光と干渉する。 Next, paying attention to the first-order diffracted light generated at point B, this first-order diffracted light further generates a plurality of diffracted lights at point AB of the light receiving element side grating 127b. Here, in Fig. 2 (A), only ± 1st-order diffracted light is shown (shown in parentheses), but the one that contributes to interference is shown by the solid line in Fig. 2 (A). It is + first order diffracted light. The +1 next-order diffracted light interferes with the first-order diffracted light generated at the AB point of the light receiving element side grating 127b out of the + first-order diffracted light generated at the point A described above. Next, focusing on the + first-order diffracted light generated at point C, this + first-order diffracted light further generates a plurality of diffracted lights at the AC point of the light receiving element side grating 127b. Here, in Fig. 2 (A), only ± 1st-order diffracted light is shown (shown in parentheses), but the one that contributes to interference is shown by the solid line in Fig. 2 (A). Has been the first-order diffracted light. This first-order reflected light interferes with the + first-order diffracted light generated at the AC point of the light receiving element side grating 127b among the first-order diffracted light generated at the point A described above.
[0027] このようにして、光学ユニット 26を経由したレーザ光の干渉により、受光素子 136上 に干渉縞が形成されるようになって!/ヽる。  In this way, interference fringes are formed on the light receiving element 136 due to the interference of the laser light that has passed through the optical unit 26.
[0028] 図 2 (B)には、レーザ光が光学ユニット 26の上面に対して垂直からやや傾斜した角 度で入射する状態が示されている。なお、この図 2 (B)では、図 2 (A)と比較して光学 ユニット 26の角度が同一でレーザ光が傾いた状態が示されている力 これとは逆に レーザ光の光路が同一で光学ユニット 26が傾いた場合についても同様の考え方が できる。  FIG. 2B shows a state in which the laser light is incident on the upper surface of the optical unit 26 at an angle slightly inclined from the vertical. In FIG. 2 (B), the force that shows the state in which the angle of the optical unit 26 is the same and the laser beam is tilted as compared to FIG. 2 (A) is shown. The same concept can be applied when the optical unit 26 is tilted.
[0029] この場合、光学ユニット 26では入射した平行光に基づいて複数の回折光を光源側 格子 127aで発生させるが、図 2 (B)では、それらの回折光のうち、光源側格子 127a の 3点 (A点, B,点, C,点)で発生した ± 1次回折光のみが示されている。  In this case, the optical unit 26 generates a plurality of diffracted lights at the light source side grating 127a based on the incident parallel light. In FIG. 2B, among the diffracted lights, the light source side grating 127a Only ± 1st order diffracted light generated at 3 points (A, B, D, C, D) is shown.
[0030] この図 2 (B)に示されるように、 A点において発生した + 1次回折光は、受光素子側 格子 127bの AB'点において、再度回折し、 ± 1次回折光(図 2 (B)において括弧を 付さずに示している)を発生する。この場合、実線で示される— 1次回折光が干渉に 寄与する。一方、 A点において発生した 1次回折光は、受光素子側格子 127bの A C'点において、再度回折し、 ± 1次回折光(図 2 (B)において括弧を付さずに示して いる)を発生する。この場合、実線で示される + 1次回折光が干渉に寄与する。  As shown in FIG. 2 (B), the + first-order diffracted light generated at the point A is diffracted again at the point AB ′ of the light receiving element side grating 127b, and ± 1st-order diffracted light (FIG. 2 (B ) Is shown without parentheses). In this case, the first-order diffracted light indicated by the solid line contributes to the interference. On the other hand, the first-order diffracted light generated at point A is diffracted again at point AC ′ of the light-receiving element side grating 127b, and ± 1st-order diffracted light (shown without parentheses in FIG. 2 (B)) appear. In this case, the + first-order diffracted light indicated by the solid line contributes to interference.
[0031] なお、図 2 (B)からもわ力るように、 A点において発生した + 1次回折光と 1次回 折光の、ガラス板内での光路長は異なっている。  [0031] As can be seen from FIG. 2B, the optical path lengths in the glass plate of the + first-order diffracted light generated at point A and the first-order folded light are different.
[0032] 同様に、光源側格子 127aの B,点における回折により発生した士 1次回折光のうち の 1次回折光は、受光素子側格子 127aの AB'点において再度回折され、 ± 1次 回折光 (括弧を付して示して ヽる)を発生させる。このうちの実線で示される + 1次回 折光が上述した A点、 AB'点を経由して発生する 1次回折光と干渉する。 [0033] 一方、光源側格子 127aの C,点における回折により発生した士 1次回折光のうちの + 1次回折光は、受光素子側格子 127aの AC'点において再度回折され、 ± 1次回 折光 (括弧を付して示して ヽる)を発生させる。このうちの実線で示される 1次回折 光が上述した A点、 AC'点を経由して発生する + 1次回折光と干渉する。 [0032] Similarly, the first-order diffracted light of the first-order diffracted light generated by diffraction at the B, point of the light source side grating 127a is diffracted again at the AB 'point of the light-receiving element side grating 127a, and ± 1st order diffracted light (Indicated by parentheses). Of these, the + next-fold light shown by the solid line interferes with the first-order diffracted light generated via points A and AB 'described above. [0033] On the other hand, the + first-order diffracted light of the first-order diffracted light generated by diffraction at the point C at the light source side grating 127a is diffracted again at the AC 'point of the light-receiving element side grating 127a, and ± 1 (Shown in parentheses). Of these, the first-order diffracted light indicated by the solid line interferes with the + first-order diffracted light generated via points A and AC 'described above.
[0034] この場合、 02 (A)と図 2 (B)とを比較するとわ力るように、レーザ光の光軸と光学ュ ニット 26との相対角度が変動することにより、対応する干渉光が Y軸方向(本実施形 態では— Y方向)にずれている、すなわち、干渉縞の干渉強度が変化する。受光素 子 136では、発生した干渉縞の干渉強度を検出し、受光面上における干渉縞の移 動量を含む信号を不図示の制御装置に出力する。なお、本実施形態のチルトセンサ 100では、計測の原点が存在しないが、初期調整において、光学ユニット 26が所望 の状態 (例えば図 2 (A)に示されるようにレーザ光が光学ユニットに対して垂直に入 射する状態)に設定されたときの干渉縞の位置を原点とみなして、該原点からのずれ を検出することとする。  In this case, as compared with 02 (A) and FIG. 2 (B), the relative angle between the optical axis of the laser beam and the optical unit 26 varies, so that the corresponding interference light Is shifted in the Y-axis direction (Y direction in this embodiment), that is, the interference intensity of the interference fringes changes. The light receiving element 136 detects the interference intensity of the generated interference fringes and outputs a signal including the amount of movement of the interference fringes on the light receiving surface to a control device (not shown). In the tilt sensor 100 of this embodiment, the origin of measurement does not exist, but in the initial adjustment, the optical unit 26 is in a desired state (for example, as shown in FIG. The position of the interference fringes when it is set to the vertical incident state) is regarded as the origin, and a deviation from the origin is detected.
[0035] ここで、本実施形態のように、ガラス板の表裏面に格子が配置されるスケールを採 用する場合、光源側格子 127aをインデックススケール、受光素子側格子 127bを移 動スケールとみなして考えることができる。すなわち、移動スケールが傾いて、光ビー ム出射位置が 1ピッチ(25. 6 m)変化したとすると、ガラス内部の伝播角を 0 '、ガ ラスの厚みを t、格子ピッチを pとして、次式(1)のような関係になる。  [0035] Here, as in the present embodiment, when a scale in which a grating is arranged on the front and back surfaces of a glass plate is employed, the light source side grating 127a is regarded as an index scale and the light receiving element side grating 127b is regarded as a moving scale. Can think. That is, if the moving scale is tilted and the light beam exit position changes by 1 pitch (25.6 m), the propagation angle inside the glass is 0 ', the glass thickness is t, and the lattice pitch is p. It becomes a relationship like Formula (1).
[0036] tan Θ ' =p/t …ひ)  [0036] tan Θ '= p / t… hi)
上式(1)は、ガラス内部に関する式であるので、屈折率を 1. 5、実際の光学ユニット 26の傾斜を Θとすると、次式(2)のようになる。  Since the above equation (1) relates to the inside of the glass, if the refractive index is 1.5 and the actual inclination of the optical unit 26 is Θ, the following equation (2) is obtained.
[0037] sin Θ /sin θ ' = 1. 5  [0037] sin Θ / sin θ '= 1.5
sin 0 = 1. 5sin[tan— 1 (p/t) ] · · · (2) sin 0 = 1.5 sin [tan— 1 (p / t)] · · · (2)
ここで、格子ピッチを 25. 6 /ζ πι、ガラス厚を 3mmとすると、 Θ =44 (分)となる。した がって、干渉縞の 1周期が 44分に相当することから、受光素子 136の内挿数を 512と すると分解能は、 44 X 607512=約 5. 16 (秒)となる。また、受光素子 136として多 分割受光素子を採用しているので、 90° 位相の異なる点の値を検出することにより、 2相信号が得られ、傾斜の方向も計測することが可能となる。 [0038] なお、本実施形態の方式を用いることにより、傾斜に伴う ± 1次回折光同士の光路 長差変動が発生しな 、ので、傾斜が生じてもタルボ(トールボット)干渉の初期条件が 変わることがなぐ安定したチルト計測を行うことが可能である。 Here, if the lattice pitch is 25.6 / ζ πι and the glass thickness is 3 mm, Θ = 44 (min). Therefore, since one cycle of the interference fringes corresponds to 44 minutes, the resolution is 44 X 607512 = approximately 5.16 (seconds) when the number of interpolations of the light receiving element 136 is 512. Further, since a multi-segment light receiving element is adopted as the light receiving element 136, a two-phase signal can be obtained by detecting values of points having different 90 ° phases, and the inclination direction can also be measured. [0038] It should be noted that, by using the method of this embodiment, the optical path length difference between the ± 1st order diffracted lights does not occur due to the inclination, so that the initial condition of Talbot (Talbot) interference is maintained even if the inclination occurs It is possible to perform stable tilt measurement without changing.
[0039] 以上詳細に説明したように、本第 1の実施形態のチルトセンサによると、光学ュ-ッ ト 26に、光源側格子 127aと、該光源側格子 127aに対し、 Z軸方向に関して所定距 離離れた位置に設けられた受光素子側格子 127bとが設けられており、レーザ光と光 学ユニット 26との相対的な角度変化に応じて、光学ユニット 26の光源側格子 127aと 受光素子側格子 127bで回折し形成される干渉縞の強度が変化するので、該干渉縞 を受光素子 136で検出することにより、レーザ光と光学ユニット 26との相対的な角度 関係を計測することが可能となる。  [0039] As described above in detail, according to the tilt sensor of the first embodiment, the optical unit 26 includes the light source side grating 127a and the light source side grating 127a with respect to the Z-axis direction. The light receiving element side grating 127b provided at a distance is provided, and the light source side grating 127a of the optical unit 26 and the light receiving element are changed according to a relative angle change between the laser beam and the optical unit 26. Since the intensity of the interference fringes diffracted by the side grating 127b changes, the relative angular relationship between the laser beam and the optical unit 26 can be measured by detecting the interference fringes with the light receiving element 136. It becomes.
[0040] また、本実施形態では、光源側格子 127aと受光素子側格子 127bのピッチを異な らせているので、干渉縞の間隔 (ピッチ)が大きくなる。例えば、本実施形態のように、 光源側格子 127aのピッチを 25. 0 m、受光素子側格子 127bのピッチを 25. 6 μ mとした場合には、約 0. 8mm程度のピッチの干渉縞が発生することになる。したがつ て、チルト計測に用いられる干渉縞のピッチが大きいことから、干渉縞の強度変化( 受光素子 136の受光面における干渉縞の移動)を精度良く検出することができる。こ れにより、チルト計測精度を向上することが可能である。  In the present embodiment, since the pitches of the light source side grating 127a and the light receiving element side grating 127b are different, the interval (pitch) of interference fringes is increased. For example, when the pitch of the light source side grating 127a is 25.0 m and the pitch of the light receiving element side grating 127b is 25.6 μm as in the present embodiment, the interference fringes with a pitch of about 0.8 mm are used. Will occur. Therefore, since the pitch of the interference fringes used for tilt measurement is large, a change in the intensity of the interference fringes (movement of the interference fringes on the light receiving surface of the light receiving element 136) can be accurately detected. Thereby, it is possible to improve the tilt measurement accuracy.
[0041] 《第 2の実施形態》  [0041] << Second Embodiment >>
次に、本発明の第 2の実施形態に係るエンコーダについて図 3及び図 4に基づいて 説明する。図 3には、本第 2の実施形態のエンコーダ 17の概略的な構成が示されて いる。  Next, an encoder according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 shows a schematic configuration of the encoder 17 of the second embodiment.
[0042] このエンコーダ 17は、 Y軸方向に延びるスケール 18と、ビームプローブを射出する プローブ部 19とを含む。スケール 18には、 Y軸方向に周期性を有する反射型の回 折格子 (グレーティング 1)が形成されている。図 3に示されるように、この回折格子は 凹凸面型の回折格子である。また、そのピッチ (周期)は、全区間で同一となっている  The encoder 17 includes a scale 18 that extends in the Y-axis direction, and a probe unit 19 that emits a beam probe. The scale 18 is formed with a reflective diffraction grating (grating 1) having periodicity in the Y-axis direction. As shown in Fig. 3, this diffraction grating is an uneven surface type diffraction grating. The pitch (cycle) is the same in all sections.
[0043] 前記プローブ部 19は、レーザダイオード 20と、該レーザダイオード 20の +Y側に 配置された折り曲げミラー 22と、該折り曲げミラー 22の +Z側に順次配置された光学 ユニット 26、ビームスプリッタ 28、及び対物レンズ 30と、ビームスプリッタ 28の +Y側 に配置されたレンズ 32及び光センサ 34と、ビームスプリッタ 28の Y側に配置された 受光素子 36とを含んでいる。 The probe unit 19 includes a laser diode 20, a bending mirror 22 disposed on the + Y side of the laser diode 20, and an optical element disposed on the + Z side of the bending mirror 22 in sequence. Unit 26, beam splitter 28, objective lens 30, lens 32 and optical sensor 34 disposed on the + Y side of beam splitter 28, and light receiving element 36 disposed on the Y side of beam splitter 28 .
[0044] 前記レーザダイオード 20は、例えば、波長 640nmのレーザ光を射出する。  The laser diode 20 emits laser light having a wavelength of 640 nm, for example.
[0045] 前記折り曲げミラー 22は、例えばピエゾ素子などを含む駆動装置 24により振動さ れる振動ミラーとしての機能を有するとともに、駆動装置 24によって角度調整可能と されている。不図示の制御装置は、駆動装置 24を介してレーザダイオード 20から出 射されるレーザ光に対するミラー 22の反射面の角度を所望の角度に調整する。  The bending mirror 22 has a function as a vibrating mirror that is vibrated by a driving device 24 including, for example, a piezo element, and the angle of the bending mirror 22 can be adjusted by the driving device 24. A control device (not shown) adjusts the angle of the reflecting surface of the mirror 22 with respect to the laser light emitted from the laser diode 20 via the driving device 24 to a desired angle.
[0046] 前記光学ユニット 26は、前述したチルトセンサ 100における光学ユニットと同様であ る力 ここでは、光源側格子は、入射したレーザ光に基づいて、 0次回折光のメインビ ームと、 ± 1次回折光の 2つのサブビームを発生する。メインビームと、 2つのサブビ ームとの配置関係は、これらのビームがスケール上に照射されたときに、格子の配列 方向に沿って 2つのサブビームの間にメインビームが配置される関係にある。  [0046] The optical unit 26 has the same force as that of the optical unit in the tilt sensor 100 described above. Here, the light source side grating has a main beam of 0th-order diffracted light and ± 1 based on the incident laser light. Generates two sub-beams of next diffracted light. The relationship between the main beam and the two sub-beams is the relationship in which the main beam is positioned between the two sub-beams along the grating arrangement direction when these beams are irradiated onto the scale. .
[0047] 前記光センサ 34は CCD等から構成されており、前記受光素子 36は、前述したチ ルトセンサ 100の受光素子 136と同様であり、不図示の制御装置に検出信号を出力 する。  The optical sensor 34 is composed of a CCD or the like, and the light receiving element 36 is the same as the light receiving element 136 of the tilt sensor 100 described above, and outputs a detection signal to a control device (not shown).
[0048] このように構成されるエンコーダ 17では、レーザダイオード 20から射出されたレー ザ光は、折り曲げミラー 22でほぼ 90° 反射され、光学ユニット 26に入射し、光学ュ ニット 26で、メインビームと 2つのサブビームとに分離された後、ビームスプリッタ 28を 通過して、対物レンズ 30によってスケール 18上のグレーティング 1上に到達する。そ して、グレーティング 1上で反射したレーザ光は、対物レンズ 30を通過して、ビームス プリッタ 28で反射し、レンズ 32を経由して、光センサ 34で受光される。光センサ 34か らの信号は、不図示の制御装置へ送られる。なお、この制御装置における信号検出 の原理及び回路構成は、特表 2000— 511634号公報及び米国特許第 6, 639, 68 6号明細書等に詳細に開示されている。本国際出願で指定した指定国 (又は選択し た選択国)の国内法令が許す限りにおいて、上記米国特許明細書における開示を援 用して本明細書の記載の一部とする。  [0048] In the encoder 17 configured as described above, the laser light emitted from the laser diode 20 is reflected by the folding mirror 22 by approximately 90 °, enters the optical unit 26, and the optical unit 26 After being split into two sub-beams, the beam passes through the beam splitter 28 and reaches the grating 1 on the scale 18 by the objective lens 30. Then, the laser light reflected on the grating 1 passes through the objective lens 30, is reflected by the beam splitter 28, and is received by the optical sensor 34 via the lens 32. A signal from the optical sensor 34 is sent to a control device (not shown). The principle and circuit configuration of signal detection in this control device are disclosed in detail in Japanese Patent Publication No. 2000-511634 and US Pat. No. 6,639,686. To the extent permitted by national legislation in the designated country (or selected selected country) designated in this international application, the disclosure in the above US patent specification is incorporated and made a part of this description.
[0049] なお、光センサ 34では、 0次回折光のメインビームと、士 1次回折光の 2つのサブビ ームとに分割された状態で受光される。したがって、このようなプローブ部を採用した 場合、光センサ 34としては、図 4に示されるように、メインビーム検出用の 4分割の光 センサ 34と、サブビーム検出用の 2つのセンサ 34、 34とを用いることができる。 [0049] It should be noted that the optical sensor 34 has two sub-beams, a main beam of 0th order diffracted light and a first order diffracted light. Light is received in a state of being divided into frames. Therefore, when such a probe unit is adopted, as the optical sensor 34, as shown in FIG. 4, a four-part optical sensor 34 for main beam detection and two sensors 34, 34 for sub-beam detection Can be used.
3 1 2  3 1 2
[0050] 2つのサブビームの受光結果、すなわち光センサ 34、 34力もの検出信号のいず  [0050] The result of receiving two sub-beams, that is, the detection signal of the optical sensor 34, 34 force
1 2  1 2
れか一方からは、グレーティング 1の峰と、ビームプローブの振動中心との相対距離 を検出することが可能である。光センサ 34、 34力もの信号力も検出された振幅及び  From either one, it is possible to detect the relative distance between the peak of grating 1 and the vibration center of the beam probe. Light sensor 34, 34 signal force is also detected amplitude and
1 2  1 2
位相の検出値を加算した結果をエンコーダの計測値として検出し、減算した結果を レーザダイオードの位置ドリフトなどによるビームプローブのドリフト量として検出して いる。  The result of adding the phase detection value is detected as the measurement value of the encoder, and the result of subtraction is detected as the drift amount of the beam probe due to laser diode position drift.
[0051] なお、 4分割の光センサ 34の各センサの出力を例えば a, b, c, dとすると、メインビ ームの検出結果からは、 2つの信号(a + b + c + d、 a + c— b— d)を作成することがで きる。この 2つの信号は、 90度の位相差を有しているので、この 2つの信号は、制御 装置へ送られ、対物レンズ 30とグレーティング 1とのフォーカス制御に用いられる。  [0051] If the output of each sensor of the quadrant optical sensor 34 is a, b, c, d, for example, the detection result of the main beam indicates that two signals (a + b + c + d, a + c— b— d) can be created. Since these two signals have a phase difference of 90 degrees, these two signals are sent to the control device and used for focus control between the objective lens 30 and the grating 1.
[0052] このように、プローブ部 19は、スケール 18に向けてレーザ光を出力し、スケール 18 のグレーティング 1上で反射したレーザ光(ビームプローブ)を光センサ 34で受光し、 その受光結果に相当する信号を出力している。  [0052] In this manner, the probe unit 19 outputs laser light toward the scale 18, the laser light (beam probe) reflected on the grating 1 of the scale 18 is received by the optical sensor 34, and the light reception result is obtained. The corresponding signal is output.
[0053] ところで、図 3からわかるように、光学ユニット 26を通過し、ビームスプリッタ 28で反 射されたレーザ光は、受光素子 36に入射する。したがって、図 3のエンコーダ 17の プローブ部 19においては、レーザダイオード 20は、図 1のチルトセンサ 100の光源 1 20に対応し、受光素子 36は図 1の受光素子 136に対応し、光学ユニット 26はチルト センサ 100の光学ユニット 26と同一であるので、これらと、折り曲げミラー 22とにより、 図 1のチルトセンサ 100と同一の機能を有するチルトセンサ 100'が構成されているこ とになる。このチルトセンサ 100,〖こより、光学ユニット 26と、光学ユニット 26に入射す るレーザ光との相対角度を検出することができる。したがって、制御装置では、このチ ルトセンサ 100'による検出結果に基づいて駆動装置 24を介して折り曲げミラー 22 の角度を調整することにより、光学ユニット 26に入射するレーザ光の角度を調整する 。これにより、レーザ光を光学ユニット 26に理想的な角度で入射させることができるの で、エンコーダ 17による計測を精度良く行うことが可能となる。 [0054] なお、光学ユニット 26からはメインビームと 2つのサブビームが発生しているので、こ れらのビーム力も相対角度を求めても良いし、 3つのビームのうち、いずれか 1つを用 V、て相対角度を求めても良!、。 Incidentally, as can be seen from FIG. 3, the laser light that passes through the optical unit 26 and is reflected by the beam splitter 28 is incident on the light receiving element 36. Therefore, in the probe unit 19 of the encoder 17 in FIG. 3, the laser diode 20 corresponds to the light source 120 of the tilt sensor 100 in FIG. 1, the light receiving element 36 corresponds to the light receiving element 136 in FIG. Since this is the same as the optical unit 26 of the tilt sensor 100, the tilt sensor 100 ′ having the same function as the tilt sensor 100 of FIG. From the tilt sensor 100, the relative angle between the optical unit 26 and the laser beam incident on the optical unit 26 can be detected. Therefore, the control device adjusts the angle of the laser light incident on the optical unit 26 by adjusting the angle of the bending mirror 22 via the drive device 24 based on the detection result by the tilt sensor 100 ′. As a result, the laser light can be incident on the optical unit 26 at an ideal angle, so that the measurement by the encoder 17 can be performed with high accuracy. [0054] Since a main beam and two sub beams are generated from the optical unit 26, the relative angle of these beam forces may be obtained, or one of the three beams is used. V, you can also find the relative angle!
[0055] 以上説明したように、本実施形態のエンコーダによると、レーザ光と光学ユニット 26 との相対的な角度関係を計測することが可能なチルトセンサ 100'を含んでいること から、このチルトセンサ 100'による検出結果に基づいて、レーザ光と光学ユニット 26 との角度関係を調整することができる。これにより、エンコーダによる位置計測を長期 に渡って精度良く行うことが可能となる。  [0055] As described above, according to the encoder of the present embodiment, the tilt sensor 100 'capable of measuring the relative angular relationship between the laser beam and the optical unit 26 is included. The angular relationship between the laser beam and the optical unit 26 can be adjusted based on the detection result by the sensor 100 ′. As a result, position measurement by the encoder can be performed accurately over a long period of time.
[0056] また、本実施形態によると、エンコーダ 17のプローブ部 19に設けた光学ユニット 26 力 光学ユニット 26の傾斜を計測するための機能を備えているので、部品点数を少 なくすることができるので、エンコーダ自体の大型化を抑制することができる。 [0056] Further, according to the present embodiment, since the optical unit 26 force provided in the probe unit 19 of the encoder 17 has a function for measuring the inclination of the optical unit 26, the number of parts can be reduced. Therefore, the enlargement of the encoder itself can be suppressed.
[0057] なお、上記第 2の実施形態では、スケール 18として反射型の回折格子を用いること としたが、これに限らず、透過型の回折格子を用いることとしても良い。この場合、レン ズ 32及び光センサ 34は、スケール 18の +Z側に配置されることとなる。 In the second embodiment, a reflection type diffraction grating is used as the scale 18. However, the present invention is not limited to this, and a transmission type diffraction grating may be used. In this case, the lens 32 and the optical sensor 34 are arranged on the + Z side of the scale 18.
[0058] なお、上記第 2の実施形態のエンコーダは、回折干渉方式、影絵方式のェンコ一 ダにも採用することが可能である。 It should be noted that the encoder of the second embodiment can also be employed in a diffraction interference type or shadow picture type encoder.
[0059] 更に、上記第 2の実施形態の光学ユニット 26を、エンコーダのスケール 18として用 いることも可能である。 Furthermore, the optical unit 26 of the second embodiment can be used as the scale 18 of the encoder.
[0060] なお、上記各実施形態では、光学ユニット 26として、ガラス板を用いることとした力 これに限らず、任意の屈折率を有する部材であれば、その素材がガラスに限られるも のではない。例えば、半導体などに回折格子を形成することとしても良い。  [0060] In each of the above embodiments, the force of using a glass plate as the optical unit 26 is not limited to this, and any material having an arbitrary refractive index is not limited to glass. Absent. For example, a diffraction grating may be formed in a semiconductor or the like.
[0061] また、上記各実施形態では、光学ユニット 26に設けられた光源側格子 127aと受光 素子側格子 127bの格子ピッチが僅かに異なる(25. 0 mと 25. 6 m)場合につい て説明したが、本発明がこれに限られるものではなぐ両格子が同一ピッチであって も良い。  In each of the above embodiments, the case where the grating pitch of the light source side grating 127a and the light receiving element side grating 127b provided in the optical unit 26 is slightly different (25.0 m and 25.6 m) will be described. However, the present invention is not limited to this, and both gratings may have the same pitch.
[0062] なお、上記各実施形態では、ガラス板の表裏面それぞれに光源側格子 127aと受 光素子側格子 127bとを設ける場合について説明したが、これに限られるものではな い。例えば、図 5 (A)に示される構成の光学ユニット 26'を採用することも可能である 。この場合、光学ユニット 26を、例えば、被測定物に固定することとすることができる。 In each of the above embodiments, the case where the light source side grating 127a and the light receiving element side grating 127b are provided on the front and back surfaces of the glass plate has been described, but the present invention is not limited to this. For example, it is possible to adopt an optical unit 26 ′ having the configuration shown in FIG. . In this case, the optical unit 26 can be fixed to the object to be measured, for example.
[0063] この光学ユニット 26'は、図 5 (A)に示されるように、ガラス板力も成り、該ガラス板の [0063] As shown in Fig. 5 (A), this optical unit 26 'also has a glass plate force,
+Z側の面に回折格子 127'力設けられ、 Z側の面に反射膜 129が設けられている  Diffraction grating 127 'force is provided on the + Z side surface, and reflective film 129 is provided on the Z side surface
[0064] このように構成される光学ユニット 26 'によると、斜めに入射したレーザ光は、回折 格子 127,において、回折し、 ± 1次回折光を発生する。これら ± 1次回折光、及び 0 次光はそれぞれ反射膜 129で全反射し、回折格子 127'で再度回折を受ける。ここ で、干渉に寄与するのは、図 5 (A)において実線で示される光である。 According to the optical unit 26 ′ configured in this manner, the obliquely incident laser light is diffracted by the diffraction grating 127, and ± 1st order diffracted light is generated. These ± 1st-order diffracted light and 0th-order light are totally reflected by the reflection film 129 and diffracted again by the diffraction grating 127 ′. Here, the light shown by the solid line in FIG. 5 (A) contributes to the interference.
[0065] ここで、反射面を基準として展開した状態を示す図 5 (B)と、図 2 (A) ,図 2 (B)とを 比較すると原理は同様であるので、この変形例を採用した場合であっても、上記実施 形態と同様の干渉が生じることが明らかである。  [0065] Here, the principle is the same when comparing Fig. 5 (B), which shows the unfolded state with respect to the reflecting surface, and Fig. 2 (A), Fig. 2 (B). Even in this case, it is clear that the same interference as in the above embodiment occurs.
[0066] したがって、図 2 (A)、図 2 (B)の場合と同様に、その他の点で回折するレーザ光の 回折光(回折格子 127'で回折し、その後反射膜 129で反射し、再度回折格子 127' で回折した光)と干渉するので、光路後方に設けられた受光素子 (不図示)上に、干 渉縞が形成される。  Therefore, as in FIGS. 2A and 2B, the diffracted light of the laser light diffracted at other points (diffracted by the diffraction grating 127 ′, and then reflected by the reflective film 129, Interference fringes are formed on a light receiving element (not shown) provided behind the optical path.
[0067] この場合も上述した実施形態と同様に、レーザ光の光学ユニットへの入射角度が異 なると、干渉縞の受光素子上での位置が変化するので、干渉縞の位置を検出するこ とにより、レーザ光の光学ユニットに対する入射角度を検出することが可能である。 産業上の利用可能性  [0067] In this case as well, as in the above-described embodiment, the position of the interference fringe on the light receiving element changes when the incident angle of the laser beam to the optical unit changes. Thus, it is possible to detect the incident angle of the laser beam with respect to the optical unit. Industrial applicability
[0068] 以上説明したように、本発明のチルトセンサは、照明光と光学ユニットとの相対角度 を計測するのに適している。また、本発明のエンコーダは、パターンの検出に適して いる。 [0068] As described above, the tilt sensor of the present invention is suitable for measuring the relative angle between the illumination light and the optical unit. The encoder of the present invention is suitable for pattern detection.

Claims

請求の範囲 The scope of the claims
[1] 照明光を出射する光源と;  [1] a light source that emits illumination light;
第 1の回折格子と、前記第 1の回折格子に対し、前記照明光の光路方向に関して 所定の位置関係で配置された第 2の回折格子と、を有する光学ユニットと;  An optical unit comprising: a first diffraction grating; and a second diffraction grating disposed in a predetermined positional relationship with respect to the first diffraction grating in the optical path direction of the illumination light;
前記光学ユニットで干渉した光を受光し、前記照明光と前記光学ユニットとの相対 的な角度変化に関する信号を出力する受光素子と;を備えるチルトセンサ。  A tilt sensor comprising: a light receiving element that receives light that has interfered with the optical unit and outputs a signal related to a relative angle change between the illumination light and the optical unit.
[2] 請求項 1に記載のチルトセンサにおいて、 [2] In the tilt sensor according to claim 1,
前記光学ユニットは、任意の屈折率を有する部材を有し、該部材に前記第 1の回折 格子及び前記第 2の回折格子が形成されているチルトセンサ。  The optical unit includes a member having an arbitrary refractive index, and the first diffraction grating and the second diffraction grating are formed on the member.
[3] 請求項 2に記載のチルトセンサにおいて、 [3] In the tilt sensor according to claim 2,
前記部材は前記照明光を透過可能な板状部材であり、  The member is a plate-like member capable of transmitting the illumination light,
前記第 1の回折格子は、前記板状部材の前記光源側の面に形成され、 前記第 2の回折格子は、前記板状部材の前記光源側と反対側の面に形成されて いるチノレトセンサ。  The first diffraction grating is formed on a surface of the plate-like member on the light source side, and the second diffraction grating is formed on a surface of the plate-like member opposite to the light source side.
[4] 請求項 3に記載のチルトセンサにおいて、 [4] The tilt sensor according to claim 3,
前記第 1の回折格子の格子ピッチ及び前記第 2の回折格子の格子ピッチは、同一 又は僅かに異なるチルトセンサ。  A tilt sensor in which the grating pitch of the first diffraction grating and the grating pitch of the second diffraction grating are the same or slightly different.
[5] 請求項 3に記載のチルトセンサにおいて、 [5] The tilt sensor according to claim 3,
前記第 1の回折格子及び前記第 2の回折格子の格子ピッチは同一であり、 前記受光素子は、前記光学ユニットに対する前記照明光の入射角度の変化を検 出するチルトセンサ。  The first diffraction grating and the second diffraction grating have the same grating pitch, and the light receiving element detects a change in the incident angle of the illumination light with respect to the optical unit.
[6] 請求項 2に記載のチルトセンサにおいて、 [6] In the tilt sensor according to claim 2,
前記部材は、ガラスから成るチルトセンサ。  The member is a tilt sensor made of glass.
[7] 請求項 1に記載のチルトセンサにおいて、 [7] The tilt sensor according to claim 1,
前記受光素子は、多分割受光素子であるチルトセンサ。  The light receiving element is a tilt sensor which is a multi-part light receiving element.
[8] 照明光を出射する光源と; [8] a light source that emits illumination light;
前記光源側の面に回折格子が設けられ、これと反対側の面に反射膜が形成された 任意の屈折率を有する光学素子と; 前記回折格子を通過した後、前記反射膜で反射され、前記回折格子を再度通過し た光を受光し、前記照明光と前記光学素子との相対的な角度変化に関する信号を 出力する受光素子と;を備えるチルトセンサ。 An optical element having an arbitrary refractive index, in which a diffraction grating is provided on the surface on the light source side, and a reflective film is formed on the surface on the opposite side; A light receiving element that receives the light reflected by the reflective film after passing through the diffraction grating and again passed through the diffraction grating, and that outputs a signal relating to a relative angle change between the illumination light and the optical element; A tilt sensor.
[9] 請求項 8に記載のチルトセンサにおいて、  [9] The tilt sensor according to claim 8,
前記受光素子は、多分割受光素子であるチルトセンサ。  The light receiving element is a tilt sensor which is a multi-part light receiving element.
[10] 所定方向に沿って配列されたパターンに照明光を照射し、前記パターンを検出す るエンコーダであって、 [10] An encoder for irradiating illumination light to a pattern arranged along a predetermined direction and detecting the pattern,
請求項 1〜9のいずれか一項に記載のチルトセンサを備えるエンコーダ。  An encoder comprising the tilt sensor according to any one of claims 1 to 9.
[11] 請求項 10に記載のエンコーダにおいて、 [11] The encoder according to claim 10,
前記チルトセンサを構成する光学ユニットの回折格子を被検物体の位置を計測す る回折格子として用いるエンコーダ。  An encoder that uses a diffraction grating of an optical unit constituting the tilt sensor as a diffraction grating for measuring the position of a test object.
[12] 所定方向に沿って配列されたパターンに照明光を照射し、前記パターンを検出す るエンコーダであって、 [12] An encoder for irradiating illumination light onto a pattern arranged along a predetermined direction and detecting the pattern,
第 1の回折格子と、前記第 1の回折格子に対し、前記照明光の光路方向に関して 所定の位置関係で配置された第 2の回折格子とを有する光学ユニットと;  An optical unit comprising: a first diffraction grating; and a second diffraction grating arranged in a predetermined positional relationship with respect to the optical path direction of the illumination light with respect to the first diffraction grating;
前記光学ユニットを経由した照明光を受光し、前記光学ユニットに入射する照明光 と前記光学ユニットとの相対的な角度変化に関する信号を出力する受光素子と;を備 えるエンコーダ。  An encoder comprising: a light receiving element that receives illumination light that has passed through the optical unit, and that outputs a signal relating to a relative angle change between the illumination light incident on the optical unit and the optical unit.
[13] 請求項 12に記載のエンコーダにおいて、  [13] The encoder according to claim 12,
前記光学ユニットは、前記第 1の回折格子と前記第 2の回折格子とが形成された板 状部材を有し、  The optical unit has a plate-like member on which the first diffraction grating and the second diffraction grating are formed,
前記パターンは前記板状部材に形成されるエンコーダ。  The pattern is an encoder formed on the plate-like member.
PCT/JP2006/325712 2005-12-28 2006-12-25 Tilt sensor and encoder WO2007074752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-377647 2005-12-28
JP2005377647A JP2007178281A (en) 2005-12-28 2005-12-28 Tilt sensor and encoder

Publications (1)

Publication Number Publication Date
WO2007074752A1 true WO2007074752A1 (en) 2007-07-05

Family

ID=38217972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325712 WO2007074752A1 (en) 2005-12-28 2006-12-25 Tilt sensor and encoder

Country Status (2)

Country Link
JP (1) JP2007178281A (en)
WO (1) WO2007074752A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529823B2 (en) 2009-09-29 2013-09-10 Asml Netherlands B.V. Imprint lithography
CN113250916A (en) * 2021-06-29 2021-08-13 中国华能集团清洁能源技术研究院有限公司 Fan tower barrel inclination monitoring device and method based on light interference

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1036080A1 (en) 2007-11-01 2009-05-07 Asml Netherlands Bv Position measurement system and Lithographic Apparatus.
JP5558768B2 (en) * 2008-10-24 2014-07-23 キヤノン株式会社 Measuring device, light source device, interference measuring device, exposure apparatus, and device manufacturing method
JP2016136165A (en) * 2013-05-08 2016-07-28 カラーリンク・ジャパン 株式会社 Optical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390719A (en) * 1986-10-03 1988-04-21 Sony Corp Optical encoder
JPH05240613A (en) * 1990-11-16 1993-09-17 Canon Inc Instrument and method for measuring displacement
JP2005106627A (en) * 2003-09-30 2005-04-21 Ricoh Co Ltd Inclination sensor, inclination measuring device, optical pickup device and optical disk device
WO2005106385A1 (en) * 2004-04-27 2005-11-10 Sumitomo Heavy Industries, Ltd. Detector and stage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390719A (en) * 1986-10-03 1988-04-21 Sony Corp Optical encoder
JPH05240613A (en) * 1990-11-16 1993-09-17 Canon Inc Instrument and method for measuring displacement
JP2005106627A (en) * 2003-09-30 2005-04-21 Ricoh Co Ltd Inclination sensor, inclination measuring device, optical pickup device and optical disk device
WO2005106385A1 (en) * 2004-04-27 2005-11-10 Sumitomo Heavy Industries, Ltd. Detector and stage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529823B2 (en) 2009-09-29 2013-09-10 Asml Netherlands B.V. Imprint lithography
CN113250916A (en) * 2021-06-29 2021-08-13 中国华能集团清洁能源技术研究院有限公司 Fan tower barrel inclination monitoring device and method based on light interference
CN113250916B (en) * 2021-06-29 2022-08-30 中国华能集团清洁能源技术研究院有限公司 Device and method for monitoring inclination of fan tower based on optical interference

Also Published As

Publication number Publication date
JP2007178281A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5147367B2 (en) Encoder
KR101876816B1 (en) Displacement detecting device
US7601947B2 (en) Encoder that optically detects positional information of a scale
US9766098B2 (en) Optical position measuring instrument
JP2007040994A (en) Interference measuring system
US8710425B2 (en) Encoder that optically detects positional information of a moving body from different optical paths lengths
JP5147368B2 (en) Encoder
US9175987B2 (en) Displacement detecting device
JP4924884B2 (en) Encoder
KR101142947B1 (en) Interferometer
JP4827857B2 (en) Encoder
WO2007074752A1 (en) Tilt sensor and encoder
KR100531458B1 (en) Optical displacement measurement system
JP5695478B2 (en) Optical displacement measuring device
JP4936980B2 (en) Optical encoder
JPH1038517A (en) Optical displacement measuring instrument
JP3548275B2 (en) Displacement information measuring device
JP5235554B2 (en) Optical displacement measuring device
TW200734600A (en) Optical measurement unit for real-time measuring angular error of platform and the method thereof
JP4880519B2 (en) Interference measurement device
JP6111852B2 (en) Encoder device
JP6161870B2 (en) Position detection device
Dobosz Application of a focused laser beam in a grating interferometer for high-resolution displacement measurements
JP2020012784A (en) Optical angle sensor
JPH11166809A (en) Relative position detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06835159

Country of ref document: EP

Kind code of ref document: A1