JP2006003184A - Surface normal measurement method and its apparatus - Google Patents

Surface normal measurement method and its apparatus Download PDF

Info

Publication number
JP2006003184A
JP2006003184A JP2004179106A JP2004179106A JP2006003184A JP 2006003184 A JP2006003184 A JP 2006003184A JP 2004179106 A JP2004179106 A JP 2004179106A JP 2004179106 A JP2004179106 A JP 2004179106A JP 2006003184 A JP2006003184 A JP 2006003184A
Authority
JP
Japan
Prior art keywords
normal
light
light beam
parallel
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004179106A
Other languages
Japanese (ja)
Inventor
Naoki Hasegawa
直樹 長谷川
Tokuji Okada
徳次 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Niigata Prefecture
Original Assignee
Niigata University NUC
Niigata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC, Niigata Prefecture filed Critical Niigata University NUC
Priority to JP2004179106A priority Critical patent/JP2006003184A/en
Publication of JP2006003184A publication Critical patent/JP2006003184A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring the surface normal of a small-region object surface being at a separated position. <P>SOLUTION: A beam shift optical system 1 for shifting incident light 91 of a light beam in parallel is formed, by using two wedge prisms 11a, 11b and combining them with their mutual both end faces in parallel so as to have a predetermined gap in the middle. This is integrally rotated with an angle variable actuator 41 to change an irradiation position. The method and apparatus measure the surface normal of the object surface being at the separated position, by computing a normal by a normal computing circuit 51 on the basis of distance data obtained by irradiating at least three points 94a, 94b, 94c in the small region with light beams. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は移動ロボット等の外界認識手段として、離れた位置にある小領域対象面の面法線方向を計測する方法及びその装置に関するものである。 The present invention relates to a method and an apparatus for measuring a surface normal direction of a small area target surface at a distant position as external environment recognition means such as a mobile robot.

レーザー距離計とポリゴンミラー等を組み合わせ、計測点を直線状又は平面状に走査することで計測対象物体の位置、姿勢を計測する手段がある(例えば、非特許文献1参照。)。
伊藤:レーザ測定システム:LMSシリーズ、日本ロボット学会誌、Vol.21、No.1、pp.45−47、2003
There is means for measuring the position and orientation of a measurement target object by combining a laser distance meter and a polygon mirror or the like and scanning a measurement point in a straight line or a plane (see, for example, Non-Patent Document 1).
Ito: Laser measurement system: LMS series, Journal of the Robotics Society of Japan, Vol. 21, no. 1, pp. 45-47, 2003

また、光を2枚の同一楔角を有し互いに反対に回転する光学ウェッジにより直線的に偏向する距離測定装置が提案されている(特許文献1参照。)。
特開平7−218633号広報
In addition, a distance measuring device has been proposed in which light is linearly deflected by two optical wedges having the same wedge angle and rotating in opposite directions (see Patent Document 1).
JP-A-7-218633

しかしながら非特許文献1の手段は構造、制御が複雑であると共に、ポリゴンミラーの回転角制御分解能や距離測定分解能が十分でないため、例えば階段の立ち上がり面等の小領域の面の計測には不向きであるという不都合を有している。また、特許文献1の手段は直線的に広範囲に偏向することを目的にした方法であり、対象面の法線方向を一意に求めることはできないという不都合を有している。更に非特許文献1及び特許文献1の手段を小領域面の計測に適用しようとした場合、計測対象面までの距離の変化に伴い、偏向角を制御する必要があるという不都合を有している。 However, the means of Non-Patent Document 1 is complicated in structure and control, and the rotation angle control resolution and distance measurement resolution of the polygon mirror are not sufficient, so that it is not suitable for measuring a small area surface such as a rising surface of a staircase, for example. It has the disadvantage of being. Further, the means of Patent Document 1 is a method aimed at linearly deflecting over a wide range, and has the disadvantage that the normal direction of the target surface cannot be uniquely determined. Furthermore, when the means of Non-Patent Document 1 and Patent Document 1 are to be applied to measurement of a small area surface, there is a disadvantage that it is necessary to control the deflection angle as the distance to the measurement target surface changes. .

本発明はこのような課題を解決することを目的とするもので、請求項1記載の方法の発明は、光ビームを物体へ照射し、前記物体表面で反射した光を受光し、前記物体表面までの距離を測定する原理を用い、前記物体表面の小領域中の少なくとも3点に前記光ビームを平行に照射して得られる複数の距離データを基に、前記物体表面の法線を計測することを特徴とする面法線計測方法にある。また、請求項2記載の発明は、上記の方法において、互いの両端面を平行に組み合わせた2枚のウェッジプリズムと、前記光ビームの照射位置を可変にするための前記2枚のウェッジプリズムの角度を可変にする角度可変手段と、前記複数の距離データから前記物体表面の法線を算出するための演算手段とを用いることを特徴とするものであり、また、請求項3記載の発明は、前記2枚のウェッジプリズムの間に調整可能な空隙を設けて配置することを特徴とするものであり、また、請求項4記載の発明は、前記2枚のウェッジプリズムを前記光ビームの光軸周りに一体で回転させ角度可変とすることを特徴とするものである。 An object of the present invention is to solve such problems, and the invention of the method according to claim 1 irradiates an object with a light beam, receives light reflected by the object surface, and receives the object surface. The normal of the object surface is measured based on a plurality of distance data obtained by irradiating at least three points in a small area of the object surface in parallel with the light beam. It is in the surface normal measurement method characterized by this. According to a second aspect of the present invention, in the above method, there are two wedge prisms in which both end faces are combined in parallel, and the two wedge prisms for changing the irradiation position of the light beam. An angle variable means for changing the angle and an arithmetic means for calculating a normal of the object surface from the plurality of distance data are used, and the invention according to claim 3 is characterized in that: An adjustable gap is provided between the two wedge prisms, and the invention according to claim 4 is characterized in that the two wedge prisms are arranged as light beams of the light beam. The angle is variable by rotating integrally around the axis.

また、請求項5記載の装置の発明は、光ビームを物体へ照射し、前記物体表面で反射した光を受光し、前記物体表面までの距離を測定する原理を用い、前記物体表面の小領域中の少なくとも3点に前記光ビームを平行に照射して得られる複数の距離データを基に、前記物体表面の法線を計測することを特徴とする面法線計測装置にある。また、請求項6記載の発明は、互いの両端面を平行に組み合わせた2枚のウェッジプリズムと、前記光ビームの照射位置を可変にするための前記2枚のウェッジプリズムの角度を可変にする角度可変アクチュエータと、前記複数の距離データから前記物体表面の法線を算出するための演算回路とを備えることを特徴とするものであり、また、請求項7記載の発明は、前記2枚のウェッジプリズムの間に調整可能な空隙を設けて配置することを特徴とするものであり、また、請求項8記載の発明は、前記2枚のウェッジプリズムを前記光ビームの光軸周りに一体で回転させ角度可変とすることを特徴とするものである。   According to a fifth aspect of the present invention, there is provided an apparatus according to claim 5, wherein a light beam is irradiated onto an object, light reflected by the object surface is received, and a distance to the object surface is measured. In the surface normal measurement apparatus, the normal of the object surface is measured based on a plurality of distance data obtained by irradiating at least three points with the light beam in parallel. According to a sixth aspect of the present invention, the angles of the two wedge prisms, which are combined in parallel with each other, and the two wedge prisms for changing the irradiation position of the light beam are made variable. An angle variable actuator, and an arithmetic circuit for calculating a normal line of the object surface from the plurality of distance data, and the invention according to claim 7, An adjustable gap is provided between the wedge prisms, and the invention according to claim 8 is characterized in that the two wedge prisms are integrated around the optical axis of the light beam. The rotation angle is variable.

また、請求項9記載の装置の発明は、請求項1ないし請求項4記載の面法線測定方法を実現する機能を組み込んだことを特徴とする距離測定装置にある。   According to a ninth aspect of the present invention, there is provided a distance measuring apparatus including a function for realizing the surface normal measuring method according to the first to fourth aspects.

本発明によれば、請求項1または請求項5の発明にあっては、物体表面の小領域中の少なくとも3点に光ビームを平行に照射して得られる複数の距離データを基に、物体表面の法線を計測するから、距離によらず同一の手段で物体表面の小領域の面法線を計測することができる。 According to the present invention, in the invention of claim 1 or 5, the object is based on a plurality of distance data obtained by irradiating at least three points in a small area of the object surface in parallel with the light beam. Since the surface normal is measured, the surface normal of a small area of the object surface can be measured by the same means regardless of the distance.

また、請求項2または請求項6の発明にあっては、互いの両端面を平行に組み合わせた2枚のウェッジプリズムと、光ビームの照射位置を可変にするための2枚のウェッジプリズムの角度を可変にする角度可変手段と、複数の距離データから前記物体表面の法線を算出するための演算手段とを用いるから、簡単な構成で光ビームを平行にシフトすることができ、また、照射位置を円滑に変化させることができ、また、法線を自動で計算することができる。   Further, in the invention of claim 2 or claim 6, the angle between two wedge prisms in which both end faces are combined in parallel and two wedge prisms for changing the irradiation position of the light beam. Since the angle variable means for making the variable and the calculation means for calculating the normal of the object surface from a plurality of distance data are used, the light beam can be shifted in parallel with a simple configuration, The position can be changed smoothly, and the normal can be automatically calculated.

また、請求項3または請求項7の発明にあっては、2枚のウェッジプリズムの間に調整可能な空隙を設けて配置するから、光ビームの平行シフト量を変更することができ、計測対象面の状況と計測必要精度に応じ、計測する小領域の面積を円滑かつ簡単に調整することができる。   In the invention of claim 3 or claim 7, since the adjustable gap is provided between the two wedge prisms, the parallel shift amount of the light beam can be changed, and the measurement target The area of the small area to be measured can be adjusted smoothly and easily according to the surface condition and the required measurement accuracy.

また、請求項4または請求項8の発明にあっては、2枚のウェッジプリズムを光ビームの光軸周りに一体で回転させ角度可変とするから、照射位置を同一半径で円周上に変化させることができ、単純な動作で三次元的な法線計測が可能になる。   In the invention of claim 4 or claim 8, since the two wedge prisms are integrally rotated around the optical axis of the light beam to make the angle variable, the irradiation position changes on the circumference with the same radius. 3D normal measurement is possible with a simple operation.

また、請求項9の発明にあっては、従来の距離測定装置に面法線計測機能を付加できるから、距離測定装置を固定したまま面法線の計測が可能になり、距離測定装置の機能を向上させることができる。   In the invention of claim 9, since the surface normal measurement function can be added to the conventional distance measuring device, the surface normal can be measured while the distance measuring device is fixed. Can be improved.

以上のように、本発明によれば、構造、制御が簡単で、離れた位置にある小領域面の法線方向を計測する手段を提供することができる。   As described above, according to the present invention, it is possible to provide means for measuring the normal direction of a small area surface which is simple in structure and control and is located at a distance.

以下、本発明の実施の形態を図1〜図5に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明に係る実施例1の説明図である。図1を用いて構成及び動作について説明する。投光器31で投光する光ビームは投光レンズ32で整形されビームシフト光学系1への入射光91となる。ビームシフト光学系1は内側と外側の端面をそれぞれ平行に並べる一対のウェッジプリズム11とそれを収納する筒12よりなり、2枚のウェッジプリズム11a、11bは、この場合円筒形であり、不図示のスペーサ及び押さえ環により間隔を平行に空けて相対位置を保てるようになっている。入射光91はビームシフト光学系1に入射し、照射光93として照射する。つまり、入射光91は第1プリズム11aで屈折し、屈折光92となり、第2プリズム11bへの入射光となる。屈折光92は第2プリズム11bで更に屈折し、照射光93となり測定対象面9の方へ照射する。後で説明する通り照射光93は入射光91と平行にシフトしている。この場合、照射光93aは対象面9上の照射点94aに照射される。照射点94aで反射する反射光95は例えばビームシフト光学系1を通り逆向きに戻り、受光レンズ34を介し受光器33に帰還する。計測制御回路35は、例えばパルス変調光位相差検出を原理とする距離計算回路を構成しており、投光器31、受光器33の投受光制御を行い、基準点から対象面までの距離を計算する。   FIG. 1 is an explanatory diagram of Embodiment 1 according to the present invention. The configuration and operation will be described with reference to FIG. The light beam projected by the projector 31 is shaped by the projector lens 32 and becomes incident light 91 to the beam shift optical system 1. The beam shift optical system 1 includes a pair of wedge prisms 11 in which inner and outer end faces are arranged in parallel and a cylinder 12 for housing the two, and in this case, the two wedge prisms 11a and 11b are cylindrical and are not shown. The spacers and the presser ring can keep the relative positions with a space in parallel. Incident light 91 enters the beam shift optical system 1 and is irradiated as irradiation light 93. That is, the incident light 91 is refracted by the first prism 11a, becomes the refracted light 92, and becomes incident light on the second prism 11b. The refracted light 92 is further refracted by the second prism 11b and becomes irradiated light 93, which is irradiated toward the measurement target surface 9. As will be described later, the irradiation light 93 is shifted in parallel with the incident light 91. In this case, the irradiation light 93 a is applied to the irradiation point 94 a on the target surface 9. The reflected light 95 reflected at the irradiation point 94 a returns to the reverse direction through the beam shift optical system 1, for example, and returns to the light receiver 33 through the light receiving lens 34. The measurement control circuit 35 constitutes a distance calculation circuit based on, for example, detection of a pulse-modulated light phase difference, and performs light projection / reception control of the light projector 31 and the light receiver 33 to calculate the distance from the reference point to the target surface. .

また、ビームシフト光学系1には不図示の回転ガイドが設けられ、角度可変アクチュエータであるモータ41の軸に設けられた回転力伝達手段42と当接し、モータ41と連動して回転可能になっている。計測制御回路35はモータ41の回転角を制御でき、従ってビームシフト光学系1の回転角を所定の角度に制御可能になっている。 In addition, the beam shift optical system 1 is provided with a rotation guide (not shown), abuts on the rotational force transmitting means 42 provided on the shaft of the motor 41 that is a variable angle actuator, and can rotate in conjunction with the motor 41. ing. The measurement control circuit 35 can control the rotation angle of the motor 41, so that the rotation angle of the beam shift optical system 1 can be controlled to a predetermined angle.

計測制御回路35は、モータ41を介し、少なくとも3つの角度にビームシフト光学系1の回転角度を制御し、照射光を93a、93b、93cと変え、対象面9の照射点94a、94b、94cまでの距離計測を行う。その回転角情報と距離計測結果を法線を算出するための法線演算回路51に送る。法線演算回路51は前記回転角情報と距離計測結果から後で説明する方法で対象面の法線を計算し、表示器52に表示する。表示器52には、必要に応じ、対象面9までの距離を表示しても良い。また、計測された法線方向を吟味し、例えば予め設定された座標軸周りの回転角として表示しても良い。 The measurement control circuit 35 controls the rotation angle of the beam shift optical system 1 to at least three angles via the motor 41, changes the irradiation light to 93a, 93b, and 93c, and changes the irradiation points 94a, 94b, and 94c on the target surface 9. Measure the distance up to. The rotation angle information and the distance measurement result are sent to the normal calculation circuit 51 for calculating the normal. The normal calculation circuit 51 calculates the normal of the target surface from the rotation angle information and the distance measurement result, and displays the normal on the display 52. You may display the distance to the target surface 9 on the display 52 as needed. Further, the measured normal direction may be examined and displayed as a rotation angle around a preset coordinate axis, for example.

ビームシフト光学系1は図1の構成に限らず、例えば図2に示す光学系2として構成しても良い。この場合、ビームシフト光学系2は内外端面が互いに平行な一対のウェッジプリズム21とそれを収納する筒22によりなり、2枚のウェッジプリズム21a、21bは不図示のスペーサ及び押さえ環により間隔を空けて相対位置を保てるようになっている。入射光91はビームシフト光学系2に入射し、照射光93として照射する。つまり、入射光91は第1プリズム21aで屈折し、屈折光92となり、第2プリズム21bに入射する。屈折光92は第2プリズム21bで更に屈折し、照射光93となり測定対象面9の方へ照射する。この場合も照射光93は入射光91と平行にシフトする。 The beam shift optical system 1 is not limited to the configuration shown in FIG. 1, and may be configured as the optical system 2 shown in FIG. In this case, the beam shift optical system 2 is composed of a pair of wedge prisms 21 whose inner and outer end surfaces are parallel to each other and a cylinder 22 for housing the wedge prisms 21a and 21b. The two wedge prisms 21a and 21b are spaced apart by a spacer and a holding ring (not shown). The relative position can be maintained. Incident light 91 enters the beam shift optical system 2 and is irradiated as irradiation light 93. That is, the incident light 91 is refracted by the first prism 21a, becomes the refracted light 92, and enters the second prism 21b. The refracted light 92 is further refracted by the second prism 21b and becomes irradiated light 93, which is irradiated toward the measurement target surface 9. Also in this case, the irradiation light 93 is shifted in parallel with the incident light 91.

次に図3を用いて本発明に係る面法線計測原理を説明する。距離測定の基準点を原点O、距離測定方向をz、設置基準面をxとする座標系を定義する。入射光軸81を基準とした照射光83aの平行シフト量をr、シフト角をθ、対象物表面85の法線をNとする。前記のビームシフト光学系1により、照射開始点は82aに移動したものと見なせる。θを変え、少なくとも3点84a、84b、84cまでの距離を計測すれば3光路が平行のためこの座標系における3点の座標、それぞれP1、P2、P3が定まり、(1)式によって計測点84a、84b、84cを含む単位法線ベクトルNを計算できる。 Next, the principle of surface normal measurement according to the present invention will be described with reference to FIG. A coordinate system is defined in which the reference point for distance measurement is the origin O, the distance measurement direction is z, and the installation reference plane is x. Assume that the parallel shift amount of the irradiation light 83a with respect to the incident optical axis 81 is r, the shift angle is θ, and the normal line of the object surface 85 is N. By the beam shift optical system 1, the irradiation start point can be regarded as having moved to 82a. If θ is changed and the distance to at least three points 84a, 84b, and 84c is measured, the three optical paths are parallel, so the coordinates of the three points in this coordinate system, P1, P2, and P3, respectively, are determined. A unit normal vector N including 84a, 84b, 84c can be calculated.

Figure 2006003184
Figure 2006003184

次に図4を用いて本発明に係る光ビーム平行シフト法の詳細を説明する。照射位置を可変にするため、2枚のウェッジプリズム11a、11bを用いる。向き合うウェッジ面が平行になるように隙間を空けて配置する。左側の第1プリズム11aに垂直に入射した光91は屈折しその右側に屈折光92として出射する。そして、屈折光92は第2プリズム11bで更に屈折し、その右側に照射光93として出射する。2枚のプリズム11a、11bが屈折率、ウェッジ角とも同一、あるいは光学的に同一性能であれば、入射光91と照射光93は平行となる。この時の入射光軸と照射光93との間隔をビームシフト量rと呼んでいる。ここで、プリズム11a、11bのウェッジ角θw、屈折率n及び2枚のプリズムの間隔Lを可変とすることにより、適宜ビームシフト量rを調整できる。第1プリズム11aからの屈折光92の屈折角θdは(2)式、ビームシフト量rは(3)式から求められる。   Next, details of the light beam parallel shift method according to the present invention will be described with reference to FIG. In order to change the irradiation position, two wedge prisms 11a and 11b are used. Arrange them so that the wedge surfaces facing each other are parallel. The light 91 incident perpendicularly to the left first prism 11a is refracted and emitted as refracted light 92 to the right. Then, the refracted light 92 is further refracted by the second prism 11 b and emitted as irradiation light 93 to the right side thereof. If the two prisms 11a and 11b have the same refractive index and wedge angle or optically the same performance, the incident light 91 and the irradiation light 93 are parallel. The distance between the incident optical axis and the irradiation light 93 at this time is called a beam shift amount r. Here, by changing the wedge angle θw, the refractive index n, and the interval L between the two prisms of the prisms 11a and 11b, the beam shift amount r can be appropriately adjusted. The refraction angle θd of the refracted light 92 from the first prism 11a is obtained from equation (2), and the beam shift amount r is obtained from equation (3).

Figure 2006003184
Figure 2006003184

このプリズム11a、11bの相対関係を保ったまま一体で回転させれば、半径rの円周上に照射光93を平行に可変にでき、従って計測対象面に対し入射光軸91と平行に照射光をrだけ平行移動して照射できる。   If the prisms 11a and 11b are rotated together while maintaining the relative relationship of the prisms 11a and 11b, the irradiation light 93 can be changed in parallel on the circumference of the radius r, so that the measurement target surface is irradiated in parallel with the incident optical axis 91. Light can be irradiated while being translated by r.

なお、前記光ビーム平行シフト法においては、第1プリズム11aに対する第2プリズム11bの両端面の平行度誤差が照射光の平行ずれとなる。特に長距離計測に適用する場合、上記の誤差が距離計測誤差及び面法線計測誤差の増大を招く大きな要因であることがわかっている。計測精度を維持するためにビームシフト光学系1の設計、製造には留意が必要である。   In the light beam parallel shift method, the parallelism error of the both end faces of the second prism 11b with respect to the first prism 11a becomes the parallel shift of the irradiation light. In particular, when applied to long distance measurement, it has been found that the above error is a major factor that causes an increase in distance measurement error and surface normal measurement error. Care must be taken in designing and manufacturing the beam shift optical system 1 in order to maintain measurement accuracy.

以上により、ビームシフト光学系1の効果により、構造、制御が簡単で、対象面9の法線方向Nを円滑に計測する手段を提供できる。 As described above, due to the effect of the beam shift optical system 1, it is possible to provide means for easily measuring the normal direction N of the target surface 9 with a simple structure and control.

なお、距離計測精度を向上するために、ビームシフト光学系挿入による光路長の補正を行うと良い。また、面法線計測精度を向上するために、照射点を3点ではなく、より多数点とすると良い。また、対象面が平面でない場合、多数の照射点群の中から部分的な法線を計測し、形状認識の手段としても良い。 In order to improve the distance measurement accuracy, the optical path length may be corrected by inserting a beam shift optical system. Further, in order to improve the surface normal measurement accuracy, it is preferable that the number of irradiation points is not three but more. In addition, when the target surface is not a flat surface, a partial normal line may be measured from a large number of irradiation point groups and used as a shape recognition means.

図5は投光器、受光器、及び計測制御回路の一部を一体化して製品化されている距離計を用いる場合の本発明に係る実施例2の説明図である。距離測定を行うために、例えば通信機能を持ち、パルス変調光位相差検出を原理とする距離計6を用いる。距離計の出射光91を実施例1と同様にビームシフト光学系1で平行にシフトし、照射光93として照射する。測定対象面からの反射光を距離計6で受光し、距離計6で算出された距離計測結果を通信制御回路7で受け取る。通信制御回路7は距離計6を制御すると共に、実施例1と同様に少なくとも3つの角度にビームシフト光学系1の回転角度を制御するため、モータ41の回転角度を制御する。その回転角情報と距離計測結果を法線演算回路51に送り、法線演算回路51はその結果から対象面の法線Nを計算し、表示器52に表示する。なお、本実施例2のその他の構成、動作については実施例1と同様であるため、詳細な説明を省略する。 FIG. 5 is an explanatory diagram of a second embodiment according to the present invention in the case of using a distance meter that is manufactured by integrating a projector, a light receiver, and a part of a measurement control circuit. In order to perform distance measurement, for example, a distance meter 6 having a communication function and based on the principle of pulse-modulated optical phase difference detection is used. The emitted light 91 of the distance meter is shifted in parallel by the beam shift optical system 1 in the same manner as in the first embodiment, and is irradiated as the irradiation light 93. Reflected light from the surface to be measured is received by the distance meter 6, and the distance measurement result calculated by the distance meter 6 is received by the communication control circuit 7. The communication control circuit 7 controls the distance meter 6 and controls the rotation angle of the motor 41 in order to control the rotation angle of the beam shift optical system 1 to at least three angles as in the first embodiment. The rotation angle information and the distance measurement result are sent to the normal calculation circuit 51, and the normal calculation circuit 51 calculates the normal N of the target surface from the result and displays it on the display 52. Since other configurations and operations of the second embodiment are the same as those of the first embodiment, detailed description thereof is omitted.

以上により、ビームシフト光学系1の効果により、構造、制御が簡単で、距離計本体を固定したまま対象面の法線方向を簡単に計測する手段を提供できる。 As described above, due to the effect of the beam shift optical system 1, it is possible to provide means for easily measuring the normal direction of the target surface while the structure and control are simple and the distance meter main body is fixed.

本発明は移動ロボット等の外界認識手段として利用できる。また、例えば、壁面、階段等構造物の傾きを簡易に測る手段としても利用可能である。 The present invention can be used as external environment recognition means such as a mobile robot. For example, it can be used as means for easily measuring the inclination of a structure such as a wall surface or a staircase.

本発明の実施例1の説明図Explanatory drawing of Example 1 of this invention 他の光ビーム平行シフト光学系の説明図Illustration of other light beam parallel shift optical system 面法線計測原理の説明図Illustration of surface normal measurement principle 光ビーム平行シフトの説明図Illustration of light beam parallel shift 本発明の実施例2の説明図Explanatory drawing of Example 2 of this invention

符号の説明Explanation of symbols

1 ビームシフト光学系
11 一対のウェッジプリズム
11a、11b ウェッジプリズム
12 筒
2 他のビームシフト光学系
21 一対のウェッジプリズム
21a、21b ウェッジプリズム
22 筒
31 投光器
32 投光レンズ
33 受光器
34 受光レンズ
35 計測制御回路
41 モータ
42 回転力伝達手段
51 法線演算回路
52 表示器
6 距離計
7 通信制御回路
81 入射光軸
82a 照射開始点
83a 照射光
84a、84b、84c 照射点
85 法線計測対象中心点
9 法線計測対象面
91 入射光
92 屈折光
93、93a、93b、93c 照射光
94a、94b、94c 照射位置
95 反射光
DESCRIPTION OF SYMBOLS 1 Beam shift optical system 11 A pair of wedge prism 11a, 11b Wedge prism 12 Cylinder 2 Another beam shift optical system 21 A pair of wedge prism 21a, 21b Wedge prism 22 Cylinder 31 Light projector 32 Light projection lens 33 Light receiver 34 Light reception lens 35 Measurement Control circuit 41 Motor 42 Rotational force transmission means 51 Normal calculation circuit 52 Display 6 Distance meter 7 Communication control circuit 81 Incident optical axis 82a Irradiation start point 83a Irradiation light 84a, 84b, 84c Irradiation point 85 Normal measurement target center point 9 Normal measurement target surface 91 Incident light 92 Refracted light 93, 93a, 93b, 93c Irradiated light 94a, 94b, 94c Irradiated position 95 Reflected light

Claims (9)

光ビームを物体へ照射し、前記物体表面で反射した光を受光し、前記物体表面までの距離を測定する原理を用い、前記物体表面の小領域中の少なくとも3点に前記光ビームを平行に照射して得られる複数の距離データを基に、前記物体表面の法線を計測することを特徴とする面法線計測方法。 Using the principle of irradiating an object with a light beam, receiving light reflected from the object surface, and measuring the distance to the object surface, the light beam is parallel to at least three points in a small area of the object surface. A surface normal measurement method, comprising: measuring a normal of the object surface based on a plurality of distance data obtained by irradiation. 上記請求項1の方法において、互いの両端面を平行に組み合わせた2枚のウェッジプリズムと、前記光ビームの照射位置を可変にするための前記2枚のウェッジプリズムの角度を可変にする角度可変手段と、前記複数の距離データから前記物体表面の法線を算出するための演算手段とを用いることを特徴とする面法線計測方法。 2. The method according to claim 1, wherein the angle of the two wedge prisms in which both end faces are combined in parallel and the angle of the two wedge prisms for making the irradiation position of the light beam variable is variable. And a surface normal measurement method characterized by using means for calculating the normal of the object surface from the plurality of distance data. 上記請求項2の方法において、前記2枚のウェッジプリズムの間に調整可能な空隙を設けて配置することを特徴とする面法線計測方法。 3. The surface normal measurement method according to claim 2, wherein an adjustable gap is provided between the two wedge prisms. 上記請求項2または請求項3の方法において、前記2枚のウェッジプリズムを前記光ビームの光軸周りに一体で回転させ角度可変とすることを特徴とする面法線計測方法。 4. The surface normal measurement method according to claim 2, wherein the two wedge prisms are integrally rotated around the optical axis of the light beam to change the angle. 光ビームを物体へ照射し、前記物体表面で反射した光を受光し、前記物体表面までの距離を測定する原理を用い、前記物体表面の小領域中の少なくとも3点に前記光ビームを平行に照射して得られる複数の距離データを基に、前記物体表面の法線を計測することを特徴とする面法線計測装置。 Using the principle of irradiating an object with a light beam, receiving light reflected from the object surface, and measuring the distance to the object surface, the light beam is parallel to at least three points in a small area of the object surface. A surface normal measurement device that measures a normal of the object surface based on a plurality of distance data obtained by irradiation. 上記請求項5の装置において、互いの両端面を平行に組み合わせた2枚のウェッジプリズムと、前記光ビームの照射位置を可変にするための前記2枚のウェッジプリズムの角度を可変にする角度可変アクチュエータと、前記複数の距離データから前記物体表面の法線を算出するための演算回路とを備えることを特徴とする面法線計測装置。 6. The apparatus according to claim 5, wherein the angle of the two wedge prisms in which both end faces are combined in parallel and the angle of the two wedge prisms for making the irradiation position of the light beam variable is variable. A surface normal measuring apparatus comprising: an actuator; and an arithmetic circuit for calculating a normal of the object surface from the plurality of distance data. 上記請求項6の装置において、前記2枚のウェッジプリズムの間に調整可能な空隙を設けて配置することを特徴とする面法線計測装置。 7. The surface normal measuring apparatus according to claim 6, wherein an adjustable gap is provided between the two wedge prisms. 上記請求項6または請求項7の装置において、前記2枚のウェッジプリズムを前記光ビームの光軸周りに一体で回転させ角度可変とすることを特徴とする面法線計測装置。 8. The surface normal measuring device according to claim 6, wherein the two wedge prisms are integrally rotated around the optical axis of the light beam to change the angle. 前記請求項1ないし請求項4記載の面法線測定方法を実現する機能を組み込んだことを特徴とする距離測定装置。
5. A distance measuring apparatus incorporating a function for realizing the surface normal measuring method according to claim 1.
JP2004179106A 2004-06-17 2004-06-17 Surface normal measurement method and its apparatus Pending JP2006003184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179106A JP2006003184A (en) 2004-06-17 2004-06-17 Surface normal measurement method and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179106A JP2006003184A (en) 2004-06-17 2004-06-17 Surface normal measurement method and its apparatus

Publications (1)

Publication Number Publication Date
JP2006003184A true JP2006003184A (en) 2006-01-05

Family

ID=35771695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179106A Pending JP2006003184A (en) 2004-06-17 2004-06-17 Surface normal measurement method and its apparatus

Country Status (1)

Country Link
JP (1) JP2006003184A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198841A (en) * 2006-01-25 2007-08-09 Soatec Inc Optical measuring method and apparatus
JP2014072506A (en) * 2012-10-02 2014-04-21 Canon Inc Laser device and photoacoustic device
CN104006786A (en) * 2014-06-18 2014-08-27 清华大学 Curved surface normal vector measurement device
JP2017183758A (en) * 2017-07-04 2017-10-05 キヤノン株式会社 Laser device and photoacoustic device
JP2019056661A (en) * 2017-09-22 2019-04-11 株式会社トプコン Method for correcting errors of measured polarized light distance of laser scanner using leslie prism and apparatus therefor
WO2022050394A1 (en) * 2020-09-04 2022-03-10 株式会社小糸製作所 Sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260113A (en) * 1985-05-15 1986-11-18 Matsushita Electric Works Ltd Detector for tilt angle of plane
JPS63225109A (en) * 1987-03-16 1988-09-20 Toyota Motor Corp Distance and inclination measuring instrument
JPS63314403A (en) * 1987-06-18 1988-12-22 Komatsu Ltd Detecting apparatus for inclination and distance of flat surface
JP2001091891A (en) * 1999-09-24 2001-04-06 Mitsubishi Precision Co Ltd Irradiation position control method and device for wedge prism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260113A (en) * 1985-05-15 1986-11-18 Matsushita Electric Works Ltd Detector for tilt angle of plane
JPS63225109A (en) * 1987-03-16 1988-09-20 Toyota Motor Corp Distance and inclination measuring instrument
JPS63314403A (en) * 1987-06-18 1988-12-22 Komatsu Ltd Detecting apparatus for inclination and distance of flat surface
JP2001091891A (en) * 1999-09-24 2001-04-06 Mitsubishi Precision Co Ltd Irradiation position control method and device for wedge prism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198841A (en) * 2006-01-25 2007-08-09 Soatec Inc Optical measuring method and apparatus
JP2014072506A (en) * 2012-10-02 2014-04-21 Canon Inc Laser device and photoacoustic device
CN104006786A (en) * 2014-06-18 2014-08-27 清华大学 Curved surface normal vector measurement device
JP2017183758A (en) * 2017-07-04 2017-10-05 キヤノン株式会社 Laser device and photoacoustic device
JP2019056661A (en) * 2017-09-22 2019-04-11 株式会社トプコン Method for correcting errors of measured polarized light distance of laser scanner using leslie prism and apparatus therefor
WO2022050394A1 (en) * 2020-09-04 2022-03-10 株式会社小糸製作所 Sensor device

Similar Documents

Publication Publication Date Title
EP3619498B1 (en) Triangulation scanner having flat geometry and projecting uncoded spots
JP5797282B2 (en) Target apparatus and method
CN111580072B (en) Surveying instrument and method of calibrating a surveying instrument
WO2007032136A1 (en) Optical device, and method of measuring the dimension of object using optical device
CN102538679B (en) Image correlation displacement sensor
JP6877845B2 (en) Laser scanner measurement value correction method and equipment for that
JP5998324B2 (en) Deformation measuring device and deformation measuring method
JPWO2009031550A1 (en) Ranging device
JP2019124649A (en) Light radiation device, object information detector, method for adjusting optical path, method for detecting object information, and optical modulation unit
EP2793042B1 (en) Positioning device comprising a light beam
JP2018518708A (en) Scanning apparatus and scanning method
JP2009069151A (en) Means and method for determining space position of transfer element in coordinate measuring device
JP2008268024A (en) Method and device for measuring by tracking laser interferometer
US11148245B2 (en) Multi-degree-of-freedom error measurement system for rotary axes and method thereof
JP2006003184A (en) Surface normal measurement method and its apparatus
US11409199B2 (en) Pattern drawing device
JP3600763B2 (en) Method and apparatus for controlling irradiation position of wedge prism
US6822732B2 (en) Surveying instrument having an auto-collimating function and a distance measuring function
JPH10267624A (en) Measuring apparatus for three-dimensional shape
US20040104338A1 (en) Calibration and error correction method for an oscillating scanning device
JP2008196970A (en) Shape measurement method and instrument
US20190079191A1 (en) Optical base station
JP3176734B2 (en) Optical position measuring device
JP2005003667A (en) Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system
JP2014145684A (en) Measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Effective date: 20100316

Free format text: JAPANESE INTERMEDIATE CODE: A02