WO2022050394A1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
WO2022050394A1
WO2022050394A1 PCT/JP2021/032528 JP2021032528W WO2022050394A1 WO 2022050394 A1 WO2022050394 A1 WO 2022050394A1 JP 2021032528 W JP2021032528 W JP 2021032528W WO 2022050394 A1 WO2022050394 A1 WO 2022050394A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
light
resin cover
correction member
path correction
Prior art date
Application number
PCT/JP2021/032528
Other languages
French (fr)
Japanese (ja)
Inventor
宙 井上
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2022546991A priority Critical patent/JPWO2022050394A1/ja
Publication of WO2022050394A1 publication Critical patent/WO2022050394A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • This disclosure relates to a sensor device mounted on a monitoring device.
  • Patent Document 1 discloses a radar as an example of a sensor for detecting information outside the vehicle as an example of a monitoring device.
  • the radar is arranged in the lighting room of the lamp device that illuminates the outside of the vehicle. That is, the radar is covered by a cover that partitions the light room and allows the passage of illumination light.
  • the cover forms part of the outer surface of the vehicle and also allows the detection light to pass through for the radar to detect external information.
  • One aspect of the present disclosure that may be provided to meet the above requirements is a sensor device mounted on a monitoring device.
  • a resin cover that forms a part of the outer surface of the monitoring device and partitions the accommodation space,
  • a light emitting unit that is arranged in the accommodation space and emits detection light to a detection area located outside the monitoring device, and a light emitting unit.
  • a light receiving unit that is arranged in the accommodation space and outputs a detection signal based on the detection light returned from the detection area.
  • An optical path correction member arranged at a position closer to the inner surface of the resin cover than the light emitting portion in the accommodation space.
  • Equipped with The shape and refractive index of the optical path correction member are the detection light when the optical path of the detected light that has passed through the optical path correction member and the resin cover does not pass through the optical path correction member and is not refracted by the resin cover. It is set to approach the optical path of.
  • the detected light emitted from the light source passes through the resin cover without being refracted.
  • the resin cover forms a part of the outer surface of the monitoring device, so that design and functionality are prioritized. Therefore, the detected light emitted from the light emitting unit with the intention of detecting information in a specific direction is reflected by an object located in a direction deviated by the amount of refraction by the resin cover.
  • the optical path correction member can take a path as if the detection light passed through the resin cover without being refracted before the detection light emitted from the light emitting unit passes through the resin cover. Corrects the optical path of the detected light. As a result, it is possible to suppress the occurrence of optical path deviation that may occur by passing through a resin cover with a realistic shape. Therefore, a sensor device that uses detection light that accompanies the passage of a resin cover that forms a part of the outer surface of the monitoring device. It is possible to suppress a decrease in information detection accuracy.
  • An example is a sensor device according to an embodiment.
  • the vehicle in which the sensor device of FIG. 1 is mounted is shown. It is a figure explaining the function of the optical path correction member in the sensor device of FIG. It is a figure explaining the function of the optical path correction member in the sensor device of FIG.
  • Another example of the configuration of the optical path correction member in the sensor device of FIG. 1 is shown.
  • Another example of the configuration of the optical path correction member in the sensor device of FIG. 1 is shown.
  • An example is shown in which the sensor device of FIG. 1 is mounted on a transportation infrastructure facility.
  • the arrow F indicates the forward direction of the illustrated structure.
  • Arrow B indicates the backward direction of the illustrated structure.
  • the arrow L indicates the left direction of the illustrated structure.
  • the arrow R indicates the right direction of the illustrated structure.
  • the "left" and “right” used in the following description indicate the left-right direction as seen from the driver's seat.
  • FIG. 1 schematically illustrates the configuration of the sensor device 10 according to the embodiment.
  • the sensor device 10 can be mounted on the vehicle 20 exemplified in FIG.
  • the vehicle 20 is an example of a moving body.
  • the vehicle 20 is also an example of a monitoring device.
  • the sensor device 10 is mounted on the left front part of the vehicle 20.
  • the left front portion of the vehicle 20 is a portion located on the left side of the center in the left-right direction of the vehicle 20 and on the front side of the center in the front-rear direction of the vehicle 20.
  • the detection area A of the sensor device 10 is set outside the vehicle 20.
  • the sensor device 10 includes a housing 11 and a resin cover 12.
  • the resin cover 12 forms a part of the outer surface of the vehicle 20.
  • the resin cover 12 and the housing 11 partition the accommodation space 13.
  • the sensor device 10 includes a light emitting unit 14.
  • the light emitting unit 14 is arranged in the accommodation space 13.
  • the light emitting unit 14 includes a light source that emits the detected light DL to the detection region A.
  • Examples of such a light source include semiconductor light emitting devices such as light emitting diodes (LEDs) and laser diodes (LDs).
  • the detection light DL is invisible light.
  • infrared light having a wavelength of 905 nm can be used as the detection light DL.
  • the light emitting unit 14 may include a plurality of light sources that emit the detection light DL in different directions in the detection region A, respectively.
  • the light emitting unit 14 may include a scanning mechanism that directs the detection light DL emitted from a single light source in different directions within the detection region A.
  • the detection light DL emitted from the light emitting unit 14 passes through the resin cover 12 and heads for the detection region A. That is, the resin cover 12 is made of a material having translucency at the wavelength of the detection light DL. Examples of such materials include polycarbonate, ABS resin, polyvinyl chloride, acrylic and the like.
  • the sensor device 10 includes a light receiving unit 15.
  • the light receiving unit 15 is arranged in the accommodation space 13.
  • the light receiving unit 15 includes a light receiving element having sensitivity to the wavelength of the detection light DL.
  • the light receiving element outputs a detection signal DS based on the detection light DL returned from the detection area A by being reflected by an object located in the detection area A. Examples of such light receiving elements include photodiodes, photoresists, photoresistors, and the like.
  • the detection signal DS is transmitted to a control device (not shown).
  • the control device may be mounted on the housing 11 as a part of the sensor device 10, or may be mounted on the vehicle 20 independently of the sensor device 10.
  • Such a control device may be realized by a general-purpose microprocessor such as a CPU or MPU that operates in cooperation with a general-purpose memory such as RAM or ROM, or may be realized by a dedicated integrated circuit such as a microcontroller, ASIC, or FPGA. May be done.
  • the control device has a detection light DL based on the time from the timing when the light emitting unit 14 emits the detection light DL in a certain direction in the detection region A until the light receiving unit 15 receives the detection light DL returned from the direction. You can get the distance information to the object that reflected the light. Further, by accumulating such distance information in association with the emission direction of the detection light DL, the control device can acquire information relating to the shape of the object located in the detection region A.
  • the control device is an object that reflects the detection light DL based on the difference between the waveform of the detection light DL emitted from the light emitting unit 14 and the waveform of the detection light DL received by the light receiving unit 15. Information related to attributes such as the material of the light can be acquired.
  • the sensor device 10 includes an optical path correction member 16.
  • the optical path correction member 16 is arranged in the accommodation space 13 at a position closer to the inner surface 12a of the resin cover 12 than the light emitting portion 14.
  • the optical path correction member 16 is arranged so as to allow the detection light DL emitted from the light emitting unit 14 and the detection light DL returned from the detection region A to pass through. That is, the optical path correction member 16 has translucency at the wavelength of the detected light DL.
  • FIG. 3 illustrates an optical path of the detection light DL that passes through the resin cover 12 when the optical path correction member 16 is not arranged.
  • FIG. 4 illustrates the optical path of the detection light DL passing through the optical path correction member 16 and the resin cover 12.
  • the detection light DL emitted from the light emitting unit 14 is incident on the inner surface 12a of the resin cover 12. Since the refractive index of the material forming the resin cover 12 is different from the refractive index of air, the detection light DL incident on the inner surface 12a is refracted. The refracted detection light DL travels inside the resin cover 12 and is emitted from the outer surface 12b. The detection light DL emitted from the outer surface 12b into the air is also refracted.
  • the two-dot chain line represents an optical path P0 when the detection light DL incident on the inner surface 12a of the resin cover 12 goes straight without being refracted.
  • the optical path P1 of the detection light DL that has passed through the resin cover 12 while undergoing refraction deviates from the optical path P0.
  • the deviation amount d is expressed by the following equation.
  • t represents the thickness dimension of the resin cover 12.
  • represents the angle formed by the optical path P1 of the detection light DL with respect to the normal direction of the outer surface 12b of the resin cover 12.
  • n 1 represents the refractive index of air.
  • n 2 represents the refractive index of the resin cover 12.
  • the above description is also applicable to the detection light DL that returns from the detection region A, passes through the resin cover 12, and is received by the light receiving unit 15.
  • the detected light DL emitted from the light source is not refracted. It passes through the resin cover 12. However, it is unrealistic to determine the actual shape of the resin cover 12 as such. This is because the resin cover 12 forms a part of the outer surface of the vehicle 20, so that design and functionality are prioritized. Therefore, the detection light DL emitted from the light emitting unit 14 with the intention of detecting an object in a specific direction passes through the resin cover 12 and is reflected by an object located in the direction deviated by the above-mentioned deviation amount d. Will receive.
  • the solid line represents the optical path P2 of the detection light DL passing through the optical path correction member 16 and the resin cover 12.
  • the broken line represents the optical path P1 of the detection light DL that passes through the resin cover 12 when the optical path correction member 16 is not provided (the same as that illustrated by the solid line in FIG. 3).
  • the alternate long and short dash line represents the optical path P0 of the detection light DL when it does not pass through the optical path correction member 16 and is not refracted by the resin cover 12 (same as that exemplified by the alternate long and short dash line in FIG. 3).
  • the shape and refractive index of the optical path correction member 16 are determined so that the optical path P2 of the detection light DL that has passed through the optical path correction member 16 and the resin cover 12 approaches the optical path P0.
  • the optical path P2 coincides with the optical path P0.
  • the optical path correction member 16 can take a path as if the detected light DL emitted from the light emitting unit 14 passed through the resin cover 12 without being refracted before passing through the resin cover 12. It is configured to correct the optical path of the detection light DL as described above. As a result, it is possible to suppress the occurrence of optical path deviation that may occur by passing through the resin cover 12 having a realistic shape. Therefore, the detection light DL accompanied by the passage of the resin cover 12 forming a part of the outer surface of the vehicle 20 is used. It is possible to suppress a decrease in the information detection accuracy of the sensor device 10.
  • the optical path correction member 16 preferably has a portion formed of a material having a refractive index higher than that of the material forming the resin cover 12. According to such a configuration, it is easy to enhance the correction effect of the optical path.
  • An example of such a material is glass.
  • FIG. 5 illustrates a plurality of detection lights DL1 to DL3 emitted from the light emitting unit 14 in different directions.
  • the plurality of detection lights DL1 to DL3 may be emitted from a plurality of independent light sources, or the detection lights emitted from a single light source are directed in different directions by the scanning mechanism. It may be a light source.
  • the optical path correction member 16 is provided for each of the detected lights DL1 to DL3. Similar to FIG. 4, the solid line represents the optical path of each detected light passing through each optical path correction member and the resin cover 12. The broken line represents the optical path of each detected light passing through the resin cover 12 when each optical path correction member is not provided.
  • the two-dot chain line represents the optical path of each detected light when it does not pass through each optical path correction member and is not refracted by the resin cover 12. That is, the shape and refractive index of each optical path correction member 16 is the case where the optical path of the detected light that has passed through the optical path correction member 16 and the resin cover 12 does not pass through the optical path correction member and is not refracted by the resin cover 12. It is set to approach the optical path P0 of the detected light.
  • each optical path correction member 16 has a first portion 161, a second portion 162, and a third portion 163.
  • the refractive index of the first portion 161 and the refractive index of the third portion 163 are higher than the refractive index of the second portion 162. That is, the second portion 162 is located between the first portion 161 and the third portion 163 along the path of the detection light DL passing through the optical path correction member 16.
  • the material forming the first portion 161 and the material forming the third portion 163 are the same. It may or may not be different.
  • a first portion 161 and a third portion 163 made of glass can be joined to a second portion 162 made of acrylic.
  • a second portion 162 as a hollow portion may be formed in a member including the first portion 161 and the third portion 163 made of glass or acrylic.
  • the optical path correction effect can be further enhanced.
  • first portion 161 and the third portion 163 of each optical path correction member 16 have a shape that functions as a so-called plano-convex lens.
  • the respective shapes of the first portion 161 and the third portion 163 can be shaped to function as either a plano-concave lens, a positive meniscus lens, or a negative meniscus lens.
  • the optical path correction member 160 includes a connecting portion 164 for connecting the first portions 161 of two adjacent optical path correction members 16 adjacent to each other and a connecting portion 165 for connecting the third portions 163 to each other.
  • the material forming the connecting portion 164 may be the same as or different from the material forming the first portion 161.
  • the material forming the connecting portion 165 may be the same as or different from the material forming the third portion 163.
  • the optical path correction member 160 according to this example has a monolithic second portion 162. However, the second portion 162 may be formed only in the portion through which each of the detection lights DL1 to DL3 passes.
  • the optical path correction member 16 (160) can be fixed to the inner surface 12a of the resin cover 12.
  • the fixing method can be appropriately selected from adhesion, joining, welding, screwing and the like. Although specific illustration is omitted, the portion of the optical path correction member 16 (160) through which the detection light DL (DL1 to DL3) does not pass is provided for fixing to the inner surface 12a of the resin cover 12.
  • the shape of the optical path correction member 16 (160) is determined in consideration of the refraction of the detected light DL by the resin cover 12. Therefore, by suppressing the change in the relative position that may occur between the optical path correction member 16 (160) and the resin cover 12, it is possible to enhance the effect of suppressing a decrease in the information detection accuracy of the sensor device 10.
  • the optical path correction member 16 may be fixed in the accommodation space 13 via an appropriate fixing member.
  • the optical path correction member 16 may be fixed to a decorative member such as an extension so as to face the inner surface 12a of the resin cover 12.
  • the sensor device 10 may include a lamp 17 that emits illumination light LL to the outside of the vehicle 20.
  • the illumination light LL is visible light.
  • Examples of the lamp 17 include headlights, side lights, turn signal lamps, fog lamps, and the like.
  • the lamp 17 is arranged in the accommodation space 13. Therefore, the resin cover 12 is configured to allow the passage of the illumination light LL emitted from the lamp 17. That is, the resin cover 12 has a light passing region 12c that allows the passing of the illumination light LL. In this case, at least the light passing region 12c in the resin cover 12 is formed of a material transparent to the illumination light LL.
  • the lighting fixture 17 is generally installed in a place where there is little obstruction in the vehicle 20 because of the function of supplying the illumination light LL to the outside of the vehicle 20. By arranging the sensor device 10 in such a place, information on the outside of the vehicle 20 can be efficiently detected.
  • the sensor device 10 is mounted on the left front portion of the vehicle 20.
  • at least one sensor device 10 may be mounted at an appropriate position on the vehicle 20.
  • a sensor device 10 having a symmetrical configuration with the sensor device 10 illustrated in FIG. 1 may be mounted on the right front portion of the vehicle 20.
  • the right front portion of the vehicle 20 is a portion located on the right side of the center in the left-right direction of the vehicle 20 and on the front side of the center in the front-rear direction of the vehicle 20.
  • a sensor device 10 may be mounted on the left rear portion or the right rear portion of the vehicle 20 in order to detect the information in the detection area A including at least the rear of the vehicle 20.
  • the left rear portion of the vehicle 20 is a portion located on the left side of the center in the left-right direction of the vehicle 20 and on the rear side of the center in the front-rear direction of the vehicle 20. It can be mounted on the right rear part of the vehicle 20.
  • the right rear portion of the vehicle 20 is a portion located on the right side of the center in the left-right direction of the vehicle 20 and rearward of the center in the front-rear direction of the vehicle 20.
  • the lamp 17 may be a tail lamp, a brake lamp, a reverse lamp, or the like.
  • the moving body on which the sensor device 10 is mounted is not limited to the vehicle 20. Examples of other moving objects include railroads, flying objects, aircraft, ships and the like.
  • the mobile body on which the sensor device 10 is mounted does not have to require a driver.
  • the sensor device 10 does not necessarily have to be mounted on a moving body. As illustrated in FIG. 7, the sensor device 10 can also be mounted on traffic infrastructure equipment such as a street light 30 and a traffic signal 40. In this case, the transportation infrastructure equipment can be an example of a monitoring device.
  • the detection region A illustrated in FIG. 2 is set in the region A1.
  • the information can be notified to the vehicle 20 trying to enter the intersection from another direction via communication.
  • information characters, signs, blinking warning colors, etc.
  • another light source that emits visible light.

Abstract

A resin cover (12) forms part of the outer surface of a monitoring device and delimits a housing space (13). A light emitting part (14) is disposed in the housing space (13) and emits detection light (DL) to a detection region which is located outside a moving body. A light receiving part (15) is disposed in the housing space (13) and outputs a detection signal (DS) on the basis of detection light (DL) that returns from the detection region. An optical path correction member (16) is disposed in the housing space (13) at a position that is closer to the inner surface (12a) of the resin cover (12) than is the light emitting part (14). The shape and refractive index of the optical path correction member (16) are set such that the optical path of detection light (DL) that passes through the optical path correction member (16) and the resin cover (12) is near what the optical path of detection light (DL) would be without passing through the optical path correction member (16) and without refraction by the resin cover (12).

Description

センサ装置Sensor device
 本開示は、監視装置に搭載されるセンサ装置に関連する。 This disclosure relates to a sensor device mounted on a monitoring device.
 特許文献1は、監視装置の一例としての車両の外部の情報を検出するためのセンサの一例として、レーダを開示している。レーダは、車両の外部を照明するランプ装置の灯室内に配置されている。すなわち、レーダは、灯室を区画するとともに照明光の通過を許容するカバーによって覆われている。カバーは、車両の外面の一部を形成するとともに、レーダが外部の情報を検出するための検出光の通過も許容する。 Patent Document 1 discloses a radar as an example of a sensor for detecting information outside the vehicle as an example of a monitoring device. The radar is arranged in the lighting room of the lamp device that illuminates the outside of the vehicle. That is, the radar is covered by a cover that partitions the light room and allows the passage of illumination light. The cover forms part of the outer surface of the vehicle and also allows the detection light to pass through for the radar to detect external information.
日本国特許出願公開2007-106199号公報Japanese Patent Application Publication No. 2007-106199
 監視装置の外面の一部を形成するカバーの通過を伴う検出光を用いるセンサ装置の情報検出精度の低下を抑制することである。 It is to suppress the deterioration of the information detection accuracy of the sensor device that uses the detection light accompanied by the passage of the cover that forms a part of the outer surface of the monitoring device.
 上記の要求に応えるために提供されうる本開示の一態様は、監視装置に搭載されるセンサ装置であって、
 前記監視装置の外面の一部を形成するとともに、収容空間を区画している樹脂カバーと、
 前記収容空間内に配置されており、前記監視装置の外側に位置する検出領域へ検出光を出射する発光部と、
 前記収容空間内に配置されており、前記検出領域から戻った前記検出光に基づいて検出信号を出力する受光部と、
 前記収容空間内において前記発光部よりも前記樹脂カバーの内面に近い位置に配置されている光路補正部材と、
を備えており、
 前記光路補正部材の形状と屈折率は、前記光路補正部材と前記樹脂カバーを通過した前記検出光の光路が、前記光路補正部材を通過せず前記樹脂カバーによる屈折を受けない場合の前記検出光の光路に近づくように定められている。
One aspect of the present disclosure that may be provided to meet the above requirements is a sensor device mounted on a monitoring device.
A resin cover that forms a part of the outer surface of the monitoring device and partitions the accommodation space,
A light emitting unit that is arranged in the accommodation space and emits detection light to a detection area located outside the monitoring device, and a light emitting unit.
A light receiving unit that is arranged in the accommodation space and outputs a detection signal based on the detection light returned from the detection area.
An optical path correction member arranged at a position closer to the inner surface of the resin cover than the light emitting portion in the accommodation space.
Equipped with
The shape and refractive index of the optical path correction member are the detection light when the optical path of the detected light that has passed through the optical path correction member and the resin cover does not pass through the optical path correction member and is not refracted by the resin cover. It is set to approach the optical path of.
 発光部の光源を中心とする同心円に沿って延びるような形状を樹脂カバーが有している場合、当該光源から出射された検出光は、屈折を受けることなく樹脂カバーを通過する。しかしながら、実際の樹脂カバーの形状をそのように定めることは非現実的である。樹脂カバーは、監視装置の外面の一部を形成しているので、意匠性や機能性が優先されるからである。したがって、特定の方向における情報の検出を意図して発光部から出射された検出光は、樹脂カバーによる屈折分だけずれた方向に位置する物体による反射を受けることになる。 When the resin cover has a shape extending along a concentric circle centered on the light source of the light emitting portion, the detected light emitted from the light source passes through the resin cover without being refracted. However, it is impractical to determine the actual shape of the resin cover as such. This is because the resin cover forms a part of the outer surface of the monitoring device, so that design and functionality are prioritized. Therefore, the detected light emitted from the light emitting unit with the intention of detecting information in a specific direction is reflected by an object located in a direction deviated by the amount of refraction by the resin cover.
 上記の構成によれば、光路補正部材は、発光部から出射された検出光が樹脂カバーを通過する前に、検出光が屈折を受けることなく樹脂カバーを通過したかのような進路をとれるように検出光の光路を補正する。これにより、現実的な形状の樹脂カバーを通過することによって生じうる光路のずれの発生を抑制できるので、監視装置の外面の一部を形成する樹脂カバーの通過を伴う検出光を用いるセンサ装置の情報検出精度の低下を抑制できる。 According to the above configuration, the optical path correction member can take a path as if the detection light passed through the resin cover without being refracted before the detection light emitted from the light emitting unit passes through the resin cover. Corrects the optical path of the detected light. As a result, it is possible to suppress the occurrence of optical path deviation that may occur by passing through a resin cover with a realistic shape. Therefore, a sensor device that uses detection light that accompanies the passage of a resin cover that forms a part of the outer surface of the monitoring device. It is possible to suppress a decrease in information detection accuracy.
一実施形態に係るセンサ装置を例示している。An example is a sensor device according to an embodiment. 図1のセンサ装置が搭載される車両を示している。The vehicle in which the sensor device of FIG. 1 is mounted is shown. 図1のセンサ装置における光路補正部材の機能を説明する図である。It is a figure explaining the function of the optical path correction member in the sensor device of FIG. 図1のセンサ装置における光路補正部材の機能を説明する図である。It is a figure explaining the function of the optical path correction member in the sensor device of FIG. 図1のセンサ装置における光路補正部材の構成の別例を示している。Another example of the configuration of the optical path correction member in the sensor device of FIG. 1 is shown. 図1のセンサ装置における光路補正部材の構成の別例を示している。Another example of the configuration of the optical path correction member in the sensor device of FIG. 1 is shown. 図1のセンサ装置が交通インフラ設備に搭載される例を示している。An example is shown in which the sensor device of FIG. 1 is mounted on a transportation infrastructure facility.
 添付の図面を参照しつつ、実施形態の例について以下詳細に説明する。以下の説明に用いられる各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。 The example of the embodiment will be described in detail below with reference to the attached drawings. In each drawing used in the following description, the scale is appropriately changed in order to make each member a recognizable size.
 添付の図面において、矢印Fは、図示された構造の前方向を示している。矢印Bは、図示された構造の後方向を示している。矢印Lは、図示された構造の左方向を示している。矢印Rは、図示された構造の右方向を示している。以降の説明に用いる「左」および「右」は、運転席から見た左右の方向を示している。 In the attached drawing, the arrow F indicates the forward direction of the illustrated structure. Arrow B indicates the backward direction of the illustrated structure. The arrow L indicates the left direction of the illustrated structure. The arrow R indicates the right direction of the illustrated structure. The "left" and "right" used in the following description indicate the left-right direction as seen from the driver's seat.
 図1は、一実施形態に係るセンサ装置10の構成を模式的に例示している。センサ装置10は、図2に例示される車両20に搭載されうる。車両20は、移動体の一例である。車両20は、監視装置の一例でもある。 FIG. 1 schematically illustrates the configuration of the sensor device 10 according to the embodiment. The sensor device 10 can be mounted on the vehicle 20 exemplified in FIG. The vehicle 20 is an example of a moving body. The vehicle 20 is also an example of a monitoring device.
 本例においては、センサ装置10は、車両20の左前部に搭載されている。車両20の左前部は、車両20の左右方向における中央よりも左側かつ車両20の前後方向における中央よりも前側に位置する部分である。センサ装置10の検出領域Aは、車両20の外側に設定されている。 In this example, the sensor device 10 is mounted on the left front part of the vehicle 20. The left front portion of the vehicle 20 is a portion located on the left side of the center in the left-right direction of the vehicle 20 and on the front side of the center in the front-rear direction of the vehicle 20. The detection area A of the sensor device 10 is set outside the vehicle 20.
 図1に例示されるように、センサ装置10は、ハウジング11と樹脂カバー12を備えている。樹脂カバー12は、車両20の外面の一部を形成する。樹脂カバー12は、ハウジング11とともに収容空間13を区画している。 As illustrated in FIG. 1, the sensor device 10 includes a housing 11 and a resin cover 12. The resin cover 12 forms a part of the outer surface of the vehicle 20. The resin cover 12 and the housing 11 partition the accommodation space 13.
 センサ装置10は、発光部14を備えている。発光部14は、収容空間13内に配置されている。発光部14は、検出領域Aへ検出光DLを出射する光源を備えている。そのような光源の例としては、発光ダイオード(LED)やレーザダイオード(LD)などの半導体発光素子が挙げられる。本例においては、検出光DLは、非可視光である。例えば、波長905nmの赤外光が、検出光DLとして使用されうる。 The sensor device 10 includes a light emitting unit 14. The light emitting unit 14 is arranged in the accommodation space 13. The light emitting unit 14 includes a light source that emits the detected light DL to the detection region A. Examples of such a light source include semiconductor light emitting devices such as light emitting diodes (LEDs) and laser diodes (LDs). In this example, the detection light DL is invisible light. For example, infrared light having a wavelength of 905 nm can be used as the detection light DL.
 発光部14は、それぞれ検出領域A内の異なる方向へ検出光DLを出射する複数の光源を備えうる。あるいは、発光部14は、単一の光源から出射された検出光DLを検出領域A内の異なる方向へ向かわせる走査機構を備えうる。 The light emitting unit 14 may include a plurality of light sources that emit the detection light DL in different directions in the detection region A, respectively. Alternatively, the light emitting unit 14 may include a scanning mechanism that directs the detection light DL emitted from a single light source in different directions within the detection region A.
 発光部14から出射された検出光DLは、樹脂カバー12を通過して検出領域Aへ向かう。すなわち、樹脂カバー12は、検出光DLの波長において透光性を有する材料により形成されている。そのような材料の例としては、ポリカーボネート、ABS樹脂、ポリ塩化ビニル、アクリルなどが挙げられる。 The detection light DL emitted from the light emitting unit 14 passes through the resin cover 12 and heads for the detection region A. That is, the resin cover 12 is made of a material having translucency at the wavelength of the detection light DL. Examples of such materials include polycarbonate, ABS resin, polyvinyl chloride, acrylic and the like.
 センサ装置10は、受光部15を備えている。受光部15は、収容空間13内に配置されている。受光部15は、検出光DLの波長に感度を有する受光素子を備えている。受光素子は、検出領域A内に位置する物体に反射されることにより検出領域Aから戻った検出光DLに基づいて検出信号DSを出力する。そのような受光素子の例としては、フォトダイオード、フォトトランジスタ、フォトレジスタなどが挙げられる。 The sensor device 10 includes a light receiving unit 15. The light receiving unit 15 is arranged in the accommodation space 13. The light receiving unit 15 includes a light receiving element having sensitivity to the wavelength of the detection light DL. The light receiving element outputs a detection signal DS based on the detection light DL returned from the detection area A by being reflected by an object located in the detection area A. Examples of such light receiving elements include photodiodes, photoresists, photoresistors, and the like.
 検出信号DSは、不図示の制御装置へ送信される。制御装置は、センサ装置10の一部としてハウジング11に搭載されてもよいし、センサ装置10とは独立して車両20に搭載されてもよい。そのような制御装置は、RAMやROMなどの汎用メモリと協働して動作するCPUやMPUなどの汎用マイクロプロセッサにより実現されてもよいし、マイクロコントローラ、ASIC、FPGAなどの専用集積回路によって実現されてもよい。 The detection signal DS is transmitted to a control device (not shown). The control device may be mounted on the housing 11 as a part of the sensor device 10, or may be mounted on the vehicle 20 independently of the sensor device 10. Such a control device may be realized by a general-purpose microprocessor such as a CPU or MPU that operates in cooperation with a general-purpose memory such as RAM or ROM, or may be realized by a dedicated integrated circuit such as a microcontroller, ASIC, or FPGA. May be done.
 例えば、制御装置は、発光部14が検出領域A内のある方向へ検出光DLを出射したタイミングから当該方向より戻った検出光DLを受光部15が受け付けるまでの時間に基づいて、検出光DLを反射した物体までの距離情報を取得できる。また、そのような距離情報を検出光DLの出射方向と関連付けて集積することにより、制御装置は、検出領域A内に位置する物体の形状に係る情報を取得できる。これに加えてあるいは代えて、制御装置は、発光部14より出射された検出光DLの波形と受光部15により受け付けられた検出光DLの波形の相違に基づいて、検出光DLを反射した物体の材質などの属性に係る情報を取得できる。 For example, the control device has a detection light DL based on the time from the timing when the light emitting unit 14 emits the detection light DL in a certain direction in the detection region A until the light receiving unit 15 receives the detection light DL returned from the direction. You can get the distance information to the object that reflected the light. Further, by accumulating such distance information in association with the emission direction of the detection light DL, the control device can acquire information relating to the shape of the object located in the detection region A. In addition to or instead, the control device is an object that reflects the detection light DL based on the difference between the waveform of the detection light DL emitted from the light emitting unit 14 and the waveform of the detection light DL received by the light receiving unit 15. Information related to attributes such as the material of the light can be acquired.
 センサ装置10は、光路補正部材16を備えている。光路補正部材16は、収容空間13内において発光部14よりも樹脂カバー12の内面12aに近い位置に配置されている。光路補正部材16は、発光部14から出射された検出光DLおよび検出領域Aから戻った検出光DLの通過を許容するように配置されている。すなわち、光路補正部材16は、検出光DLの波長において透光性を有している。 The sensor device 10 includes an optical path correction member 16. The optical path correction member 16 is arranged in the accommodation space 13 at a position closer to the inner surface 12a of the resin cover 12 than the light emitting portion 14. The optical path correction member 16 is arranged so as to allow the detection light DL emitted from the light emitting unit 14 and the detection light DL returned from the detection region A to pass through. That is, the optical path correction member 16 has translucency at the wavelength of the detected light DL.
 図3と図4を参照しつつ、光路補正部材16の機能について説明する。図3は、光路補正部材16が配置されていない場合において樹脂カバー12を通過する検出光DLの光路を例示している。図4は、光路補正部材16と樹脂カバー12を通過する検出光DLの光路を例示している。 The function of the optical path correction member 16 will be described with reference to FIGS. 3 and 4. FIG. 3 illustrates an optical path of the detection light DL that passes through the resin cover 12 when the optical path correction member 16 is not arranged. FIG. 4 illustrates the optical path of the detection light DL passing through the optical path correction member 16 and the resin cover 12.
 図3に例示されるように、発光部14から出射された検出光DLは、樹脂カバー12の内面12aに入射する。樹脂カバー12を形成している材料の屈折率は、空気の屈折率と異なるので、内面12aに入射した検出光DLは、屈折を受ける。屈折を受けた検出光DLは、樹脂カバー12内を進行し、外面12bから出射する。外面12bから空気中へ出射する検出光DLもまた、屈折を受ける。二点鎖線は、樹脂カバー12の内面12aに入射した検出光DLが屈折を受けることなく直進した場合の光路P0を表している。屈折を受けつつ樹脂カバー12を通過した検出光DLの光路P1は、光路P0からずれる。そのずれ量dは、次式で表される。 
Figure JPOXMLDOC01-appb-I000001

tは樹脂カバー12の厚さ寸法を表している。θは、検出光DLの光路P1が、樹脂カバー12の外面12bの法線方向に対してなす角度を表している。n1は、空気の屈折率を表している。n2は、樹脂カバー12の屈折率を表している。
As illustrated in FIG. 3, the detection light DL emitted from the light emitting unit 14 is incident on the inner surface 12a of the resin cover 12. Since the refractive index of the material forming the resin cover 12 is different from the refractive index of air, the detection light DL incident on the inner surface 12a is refracted. The refracted detection light DL travels inside the resin cover 12 and is emitted from the outer surface 12b. The detection light DL emitted from the outer surface 12b into the air is also refracted. The two-dot chain line represents an optical path P0 when the detection light DL incident on the inner surface 12a of the resin cover 12 goes straight without being refracted. The optical path P1 of the detection light DL that has passed through the resin cover 12 while undergoing refraction deviates from the optical path P0. The deviation amount d is expressed by the following equation.
Figure JPOXMLDOC01-appb-I000001

t represents the thickness dimension of the resin cover 12. θ represents the angle formed by the optical path P1 of the detection light DL with respect to the normal direction of the outer surface 12b of the resin cover 12. n 1 represents the refractive index of air. n 2 represents the refractive index of the resin cover 12.
 上記の説明は、検出領域Aから戻って樹脂カバー12を通過し、受光部15により受け付けられる検出光DLにも適用可能である。 The above description is also applicable to the detection light DL that returns from the detection region A, passes through the resin cover 12, and is received by the light receiving unit 15.
 発光部14の光源を中心とする同心円に沿って延びるような形状を樹脂カバー12の内面12aおよび外面12bが有している場合、当該光源から出射された検出光DLは、屈折を受けることなく樹脂カバー12を通過する。しかしながら、実際の樹脂カバー12の形状をそのように定めることは非現実的である。樹脂カバー12は、車両20の外面の一部を形成しているので、意匠性や機能性が優先されるからである。したがって、特定の方向における物体の検出を意図して発光部14から出射された検出光DLは、樹脂カバー12を通過することにより、上記のずれ量dだけずれた方向に位置する物体による反射を受けることになる。 When the inner surface 12a and the outer surface 12b of the resin cover 12 have a shape extending along a concentric circle centered on the light source of the light emitting unit 14, the detected light DL emitted from the light source is not refracted. It passes through the resin cover 12. However, it is unrealistic to determine the actual shape of the resin cover 12 as such. This is because the resin cover 12 forms a part of the outer surface of the vehicle 20, so that design and functionality are prioritized. Therefore, the detection light DL emitted from the light emitting unit 14 with the intention of detecting an object in a specific direction passes through the resin cover 12 and is reflected by an object located in the direction deviated by the above-mentioned deviation amount d. Will receive.
 図4において、実線は、光路補正部材16と樹脂カバー12を通過する検出光DLの光路P2を表している。破線は、光路補正部材16が設けられていない場合に樹脂カバー12を通過する検出光DLの光路P1を表している(図3において実線で例示されているものと同じ)。二点鎖線は、光路補正部材16を通過せず樹脂カバー12による屈折を受けない場合の検出光DLの光路P0を表している(図3において二点鎖線で例示されているものと同じ)。光路補正部材16の形状と屈折率は、光路補正部材16と樹脂カバー12を通過した検出光DLの光路P2が、光路P0に近づくように定められている。図4に示される例においては、光路P2は、光路P0と一致している。 In FIG. 4, the solid line represents the optical path P2 of the detection light DL passing through the optical path correction member 16 and the resin cover 12. The broken line represents the optical path P1 of the detection light DL that passes through the resin cover 12 when the optical path correction member 16 is not provided (the same as that illustrated by the solid line in FIG. 3). The alternate long and short dash line represents the optical path P0 of the detection light DL when it does not pass through the optical path correction member 16 and is not refracted by the resin cover 12 (same as that exemplified by the alternate long and short dash line in FIG. 3). The shape and refractive index of the optical path correction member 16 are determined so that the optical path P2 of the detection light DL that has passed through the optical path correction member 16 and the resin cover 12 approaches the optical path P0. In the example shown in FIG. 4, the optical path P2 coincides with the optical path P0.
 すなわち、光路補正部材16は、発光部14から出射された検出光DLが樹脂カバー12を通過する前に、検出光DLが屈折を受けることなく樹脂カバー12を通過したかのような進路をとれるように検出光DLの光路を補正するように構成されている。これにより、現実的な形状の樹脂カバー12を通過することによって生じうる光路のずれの発生を抑制できるので、車両20の外面の一部を形成する樹脂カバー12の通過を伴う検出光DLを用いるセンサ装置10の情報検出精度の低下を抑制できる。 That is, the optical path correction member 16 can take a path as if the detected light DL emitted from the light emitting unit 14 passed through the resin cover 12 without being refracted before passing through the resin cover 12. It is configured to correct the optical path of the detection light DL as described above. As a result, it is possible to suppress the occurrence of optical path deviation that may occur by passing through the resin cover 12 having a realistic shape. Therefore, the detection light DL accompanied by the passage of the resin cover 12 forming a part of the outer surface of the vehicle 20 is used. It is possible to suppress a decrease in the information detection accuracy of the sensor device 10.
 なお、光路補正部材16は、樹脂カバー12を形成している材料の屈折率よりも高い屈折率を有する材料により形成された部分を有していることが好ましい。このような構成によれば、光路の補正効果を高めやすい。そのような材料の例としては、ガラスが挙げられる。 The optical path correction member 16 preferably has a portion formed of a material having a refractive index higher than that of the material forming the resin cover 12. According to such a configuration, it is easy to enhance the correction effect of the optical path. An example of such a material is glass.
 図5は、発光部14から相違する方向へ出射された複数の検出光DL1~DL3を例示している。前述のように、複数の検出光DL1~DL3は、独立した複数の光源から出射されたものであってもよいし、単一の光源から出射された検出光が走査機構によって異なる方向へ向けられたものであってもよい。 FIG. 5 illustrates a plurality of detection lights DL1 to DL3 emitted from the light emitting unit 14 in different directions. As described above, the plurality of detection lights DL1 to DL3 may be emitted from a plurality of independent light sources, or the detection lights emitted from a single light source are directed in different directions by the scanning mechanism. It may be a light source.
 本例においては、検出光DL1~DL3の各々に対して光路補正部材16が設けられている。図4と同様に、実線は、各光路補正部材と樹脂カバー12を通過する各検出光の光路を表している。破線は、各光路補正部材が設けられていない場合に樹脂カバー12を通過する各検出光の光路を表している。二点鎖線は、各光路補正部材を通過せず樹脂カバー12による屈折を受けない場合の各検出光の光路を表している。すなわち、各光路補正部材16の形状と屈折率は、その光路補正部材16と樹脂カバー12を通過した検出光の光路が、その光路補正部材を通過せず樹脂カバー12による屈折を受けない場合の検出光の光路P0に近づくように定められている。 In this example, the optical path correction member 16 is provided for each of the detected lights DL1 to DL3. Similar to FIG. 4, the solid line represents the optical path of each detected light passing through each optical path correction member and the resin cover 12. The broken line represents the optical path of each detected light passing through the resin cover 12 when each optical path correction member is not provided. The two-dot chain line represents the optical path of each detected light when it does not pass through each optical path correction member and is not refracted by the resin cover 12. That is, the shape and refractive index of each optical path correction member 16 is the case where the optical path of the detected light that has passed through the optical path correction member 16 and the resin cover 12 does not pass through the optical path correction member and is not refracted by the resin cover 12. It is set to approach the optical path P0 of the detected light.
 本例においては、各光路補正部材16は、第一部分161、第二部分162、および第三部分163を有している。第一部分161の屈折率と第三部分163の屈折率は、第二部分162の屈折率よりも高い。すなわち、第二部分162は、光路補正部材16を通過する検出光DLの進路に沿って第一部分161と第三部分163の間に位置している。 In this example, each optical path correction member 16 has a first portion 161, a second portion 162, and a third portion 163. The refractive index of the first portion 161 and the refractive index of the third portion 163 are higher than the refractive index of the second portion 162. That is, the second portion 162 is located between the first portion 161 and the third portion 163 along the path of the detection light DL passing through the optical path correction member 16.
 第二部分162を形成している材料の屈折率よりも高い屈折率を有していれば、第一部分161を形成している材料と第三部分163を形成している材料は、同じであってもよいし、相違していてもよい。例えば、ガラスで形成された第一部分161と第三部分163が、アクリルで形成された第二部分162に接合されうる。あるいは、ガラスやアクリルで形成された第一部分161と第三部分163を含む部材に中空部分としての第二部分162が形成されうる。 If the material has a refractive index higher than that of the material forming the second portion 162, the material forming the first portion 161 and the material forming the third portion 163 are the same. It may or may not be different. For example, a first portion 161 and a third portion 163 made of glass can be joined to a second portion 162 made of acrylic. Alternatively, a second portion 162 as a hollow portion may be formed in a member including the first portion 161 and the third portion 163 made of glass or acrylic.
 このような構成によれば、光路補正部材16の内部で検出光DLの屈折が繰り返されるので、光路の補正効果を高めやすい。第一部分161と第三部分163の少なくとも一方を形成する材料を、樹脂カバー12を形成する材料の屈折率よりも高い屈折率を有するように選ぶことにより、光路の補正効果をさらに高めやすくできる。 According to such a configuration, since the refraction of the detected light DL is repeated inside the optical path correction member 16, it is easy to enhance the optical path correction effect. By selecting the material forming at least one of the first portion 161 and the third portion 163 so as to have a refractive index higher than the refractive index of the material forming the resin cover 12, the optical path correction effect can be further enhanced.
 本例においては、各光路補正部材16の第一部分161と第三部分163は、いわゆる平凸レンズとして機能する形状を有している。しかしながら、第一部分161と第三部分163の各々の形状は、平凹レンズ、正メニスカスレンズ、または負メニスカスレンズのいずれかとして機能する形状とされうる。 In this example, the first portion 161 and the third portion 163 of each optical path correction member 16 have a shape that functions as a so-called plano-convex lens. However, the respective shapes of the first portion 161 and the third portion 163 can be shaped to function as either a plano-concave lens, a positive meniscus lens, or a negative meniscus lens.
 図6に例示されるように、図5に例示された複数の光路補正部材16が一体とされた単一の光路補正部材160が提供されうる。本例に係る光路補正部材160は、図5において隣り合う二つの光路補正部材16の第一部分161同士を連結する連結部164と第三部分163同士を連結する連結部165を備えている。連結部164を形成する材料は、第一部分161を形成する材料と同じであってもよいし、異なっていてもよい。連結部165を形成する材料は、第三部分163を形成する材料と同じであってもよいし、異なっていてもよい。本例に係る光路補正部材160は、モノリシックな第二部分162を有している。しかしながら、第二部分162は、検出光DL1~DL3の各々が通過する部分にのみ形成されてもよい。 As illustrated in FIG. 6, a single optical path correction member 160 in which the plurality of optical path correction members 16 exemplified in FIG. 5 are integrated can be provided. The optical path correction member 160 according to this example includes a connecting portion 164 for connecting the first portions 161 of two adjacent optical path correction members 16 adjacent to each other and a connecting portion 165 for connecting the third portions 163 to each other. The material forming the connecting portion 164 may be the same as or different from the material forming the first portion 161. The material forming the connecting portion 165 may be the same as or different from the material forming the third portion 163. The optical path correction member 160 according to this example has a monolithic second portion 162. However, the second portion 162 may be formed only in the portion through which each of the detection lights DL1 to DL3 passes.
 図1に例示されるように、光路補正部材16(160)は、樹脂カバー12の内面12aに対して固定されうる。固定の手法は、接着、接合、溶着、ねじ止めなどから適宜に選択されうる。具体的な図示を省略するが、光路補正部材16(160)において検出光DL(DL1~DL3)が通過しない部分が、樹脂カバー12の内面12aに対する固定に供される。 As illustrated in FIG. 1, the optical path correction member 16 (160) can be fixed to the inner surface 12a of the resin cover 12. The fixing method can be appropriately selected from adhesion, joining, welding, screwing and the like. Although specific illustration is omitted, the portion of the optical path correction member 16 (160) through which the detection light DL (DL1 to DL3) does not pass is provided for fixing to the inner surface 12a of the resin cover 12.
 このような構成によれば、車両20からの振動などに起因して光路補正部材16(160)と樹脂カバー12との間に生じうる相対位置の変化を抑制できる。前述の通り、光路補正部材16(160)の形状は、樹脂カバー12による検出光DLの屈折を考慮して定められている。よって、光路補正部材16(160)と樹脂カバー12との間に生じうる相対位置の変化を抑制することにより、センサ装置10の情報検出精度の低下の抑制効果を高めることができる。 According to such a configuration, it is possible to suppress a change in the relative position that may occur between the optical path correction member 16 (160) and the resin cover 12 due to vibration from the vehicle 20 or the like. As described above, the shape of the optical path correction member 16 (160) is determined in consideration of the refraction of the detected light DL by the resin cover 12. Therefore, by suppressing the change in the relative position that may occur between the optical path correction member 16 (160) and the resin cover 12, it is possible to enhance the effect of suppressing a decrease in the information detection accuracy of the sensor device 10.
 しかしながら、光路補正部材16は、適宜の固定部材を介して収容空間13内に固定されてもよい。例えば、樹脂カバー12の内面12aと対向するように、エクステンションなどの加飾部材に光路補正部材16が固定されてもよい。 However, the optical path correction member 16 may be fixed in the accommodation space 13 via an appropriate fixing member. For example, the optical path correction member 16 may be fixed to a decorative member such as an extension so as to face the inner surface 12a of the resin cover 12.
 図1に例示されるように、センサ装置10は、車両20の外側へ照明光LLを出射する灯具17を備えうる。照明光LLは、可視光である。灯具17の例としては、前照灯、車幅灯、方向指示灯、霧灯などが挙げられる。 As illustrated in FIG. 1, the sensor device 10 may include a lamp 17 that emits illumination light LL to the outside of the vehicle 20. The illumination light LL is visible light. Examples of the lamp 17 include headlights, side lights, turn signal lamps, fog lamps, and the like.
 灯具17は、収容空間13内に配置される。したがって、樹脂カバー12は、灯具17から出射された照明光LLの通過も許容するように構成される。すなわち、樹脂カバー12は、照明光LLの通過を許容する光通過領域12cを有する。この場合、樹脂カバー12における少なくとも光通過領域12cは、照明光LLに対して透明な材料によって形成される。 The lamp 17 is arranged in the accommodation space 13. Therefore, the resin cover 12 is configured to allow the passage of the illumination light LL emitted from the lamp 17. That is, the resin cover 12 has a light passing region 12c that allows the passing of the illumination light LL. In this case, at least the light passing region 12c in the resin cover 12 is formed of a material transparent to the illumination light LL.
 灯具17は、車両20の外側へ照明光LLを供給するという機能ゆえに、車両20における遮蔽物の少ない場所に設置されることが一般的である。このような場所にセンサ装置10が配置されることにより、車両20の外側の情報を効率的に検出できる。 The lighting fixture 17 is generally installed in a place where there is little obstruction in the vehicle 20 because of the function of supplying the illumination light LL to the outside of the vehicle 20. By arranging the sensor device 10 in such a place, information on the outside of the vehicle 20 can be efficiently detected.
 上記の実施形態は、本開示の理解を容易にするための例示にすぎない。上記の実施形態に係る構成は、本開示の趣旨を逸脱しなければ、適宜に変更や改良がなされうる。 The above embodiment is merely an example for facilitating the understanding of the present disclosure. The configuration according to the above embodiment may be appropriately changed or improved without departing from the spirit of the present disclosure.
 上記の実施形態においては、センサ装置10が車両20の左前部に搭載されている。しかしながら、車両20の外側に設定される検出領域Aの位置に応じて、少なくとも一つのセンサ装置10が、車両20における適宜の位置に搭載されうる。例えば、図1に例示されたセンサ装置10と左右対称の構成を有するセンサ装置10が、車両20の右前部に搭載されうる。車両20の右前部は、車両20の左右方向における中央よりも右側かつ車両20の前後方向における中央よりも前側に位置する部分である。 In the above embodiment, the sensor device 10 is mounted on the left front portion of the vehicle 20. However, depending on the position of the detection region A set on the outside of the vehicle 20, at least one sensor device 10 may be mounted at an appropriate position on the vehicle 20. For example, a sensor device 10 having a symmetrical configuration with the sensor device 10 illustrated in FIG. 1 may be mounted on the right front portion of the vehicle 20. The right front portion of the vehicle 20 is a portion located on the right side of the center in the left-right direction of the vehicle 20 and on the front side of the center in the front-rear direction of the vehicle 20.
 同様に、車両20の少なくとも後方を含む検出領域Aの情報を検出するために、車両20の左後部や右後部にセンサ装置10が搭載されうる。車両20の左後部は、車両20の左右方向における中央よりも左側かつ車両20の前後方向における中央よりも後側に位置する部分である。車両20の右後部に搭載されうる。車両20の右後部は、車両20の左右方向における中央よりも右側かつ車両20の前後方向における中央よりも後側に位置する部分である。この場合、灯具17は、尾灯、制動灯、後進灯などでありうる。 Similarly, a sensor device 10 may be mounted on the left rear portion or the right rear portion of the vehicle 20 in order to detect the information in the detection area A including at least the rear of the vehicle 20. The left rear portion of the vehicle 20 is a portion located on the left side of the center in the left-right direction of the vehicle 20 and on the rear side of the center in the front-rear direction of the vehicle 20. It can be mounted on the right rear part of the vehicle 20. The right rear portion of the vehicle 20 is a portion located on the right side of the center in the left-right direction of the vehicle 20 and rearward of the center in the front-rear direction of the vehicle 20. In this case, the lamp 17 may be a tail lamp, a brake lamp, a reverse lamp, or the like.
 センサ装置10が搭載される移動体は、車両20に限られない。その他の移動体の例としては、鉄道、飛行体、航空機、船舶などが挙げられる。センサ装置10が搭載される移動体は、運転者を必要としなくてもよい。 The moving body on which the sensor device 10 is mounted is not limited to the vehicle 20. Examples of other moving objects include railroads, flying objects, aircraft, ships and the like. The mobile body on which the sensor device 10 is mounted does not have to require a driver.
 センサ装置10は、必ずしも移動体に搭載されることを要しない。センサ装置10は、図7に例示されるように、街路灯30や交通信号機40などの交通インフラ設備にも搭載されうる。この場合、当該交通インフラ設備は、監視装置の一例になりうる。 The sensor device 10 does not necessarily have to be mounted on a moving body. As illustrated in FIG. 7, the sensor device 10 can also be mounted on traffic infrastructure equipment such as a street light 30 and a traffic signal 40. In this case, the transportation infrastructure equipment can be an example of a monitoring device.
 センサ装置10が街路灯30や交通信号機40に搭載される場合、領域A1内に位置する歩行者50や車両などが検出されうる。すなわち、図2に例示された検出領域Aが、領域A1内に設定される。例えば、歩行者50や車両が交差点に進入しようとしていることが検出されると、当該情報が通信を介して別方向から当該交差点に進入しようとしている車両20へ通知されうる。あるいは、可視光を出射する別光源により、別方向から当該交差点に進入しようとしている車両20に注意を促す情報(文字、標識、点滅する警戒色など)が領域A2に描画されうる。 When the sensor device 10 is mounted on the street light 30 or the traffic signal 40, pedestrians 50, vehicles, etc. located in the area A1 can be detected. That is, the detection region A illustrated in FIG. 2 is set in the region A1. For example, when it is detected that a pedestrian 50 or a vehicle is about to enter an intersection, the information can be notified to the vehicle 20 trying to enter the intersection from another direction via communication. Alternatively, information (characters, signs, blinking warning colors, etc.) that calls attention to the vehicle 20 trying to enter the intersection from another direction may be drawn in the area A2 by another light source that emits visible light.
 本開示の一部を構成するものとして、2020年9月4日に提出された日本国特許出願2020-149038号の内容が援用される。 The contents of Japanese Patent Application No. 2020-149038 filed on September 4, 2020 are incorporated as a part of this disclosure.

Claims (7)

  1.  監視装置に搭載されるセンサ装置であって、
     前記監視装置の外面の一部を形成するとともに、収容空間を区画している樹脂カバーと、
     前記収容空間内に配置されており、前記監視装置の外側に位置する検出領域へ検出光を出射する発光部と、
     前記収容空間内に配置されており、前記検出領域から戻った前記検出光に基づいて検出信号を出力する受光部と、
     前記収容空間内において前記発光部よりも前記樹脂カバーの内面に近い位置に配置されている光路補正部材と、
    を備えており、
     前記光路補正部材の形状と屈折率は、前記光路補正部材と前記樹脂カバーを通過した前記検出光の光路が、前記光路補正部材を通過せず前記樹脂カバーによる屈折を受けない場合の前記検出光の光路に近づくように定められている、
    センサ装置。
    It is a sensor device mounted on a monitoring device.
    A resin cover that forms a part of the outer surface of the monitoring device and partitions the accommodation space,
    A light emitting unit that is arranged in the accommodation space and emits detection light to a detection area located outside the monitoring device, and a light emitting unit.
    A light receiving unit that is arranged in the accommodation space and outputs a detection signal based on the detection light returned from the detection area.
    An optical path correction member arranged at a position closer to the inner surface of the resin cover than the light emitting portion in the accommodation space.
    Equipped with
    The shape and refractive index of the optical path correction member are the detection light when the optical path of the detected light that has passed through the optical path correction member and the resin cover does not pass through the optical path correction member and is not refracted by the resin cover. It is set to approach the optical path of
    Sensor device.
  2.  前記光路補正部材は、前記樹脂カバーを形成している材料の屈折率よりも高い屈折率を有する材料により形成された部分を有している、
    請求項1に記載のセンサ装置。
    The optical path correction member has a portion formed of a material having a refractive index higher than that of the material forming the resin cover.
    The sensor device according to claim 1.
  3.  前記光路補正部材は、第一屈折率を有する一対の第一部分、当該第一屈折率よりも小さい第二屈折率を有する第二部分、および当該第二屈折率よりも大きい第三屈折率を有する第三部分を含んでおり、
     前記第二部分は、前記光路補正部材を通過する前記検出光の進行方向に沿って前記第一部分と前記第三部分の間に位置している、
    請求項1に記載のセンサ装置。
    The optical path correction member has a pair of first portions having a first refractive index, a second portion having a second refractive index smaller than the first refractive index, and a third refractive index larger than the second refractive index. Contains the third part,
    The second portion is located between the first portion and the third portion along the traveling direction of the detection light passing through the optical path correction member.
    The sensor device according to claim 1.
  4.  前記第一部分と前記第三部分の少なくとも一方を形成している材料の屈折率は、前記樹脂カバーを形成している材料の屈折率よりも高い、
    請求項3に記載のセンサ装置。
    The refractive index of the material forming at least one of the first portion and the third portion is higher than the refractive index of the material forming the resin cover.
    The sensor device according to claim 3.
  5.  前記光路補正部材は、前記樹脂カバーの内面に固定されている、
    請求項1から4のいずれか一項に記載のセンサ装置。
    The optical path correction member is fixed to the inner surface of the resin cover.
    The sensor device according to any one of claims 1 to 4.
  6.  前記収容空間内に配置されており、前記監視装置の外側へ照明光を出射する灯具を備えており、
     前記樹脂カバーは、前記照明光の通過も許容する、
    請求項1から5のいずれか一項に記載のセンサ装置。
    It is arranged in the accommodation space and is equipped with a lamp that emits illumination light to the outside of the monitoring device.
    The resin cover also allows the passage of the illumination light.
    The sensor device according to any one of claims 1 to 5.
  7.  前記監視装置は、移動体である、
    請求項1から6のいずれか一項に記載のセンサ装置。
    The monitoring device is a mobile body.
    The sensor device according to any one of claims 1 to 6.
PCT/JP2021/032528 2020-09-04 2021-09-03 Sensor device WO2022050394A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546991A JPWO2022050394A1 (en) 2020-09-04 2021-09-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020149038 2020-09-04
JP2020-149038 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050394A1 true WO2022050394A1 (en) 2022-03-10

Family

ID=80491094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032528 WO2022050394A1 (en) 2020-09-04 2021-09-03 Sensor device

Country Status (2)

Country Link
JP (1) JPWO2022050394A1 (en)
WO (1) WO2022050394A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114671A (en) * 1994-10-13 1996-05-07 Nec Corp Laser rangefinding apparatus
JP2004362713A (en) * 2003-06-06 2004-12-24 Samsung Yokohama Research Institute Co Ltd Optical pickup device, and optical information recording/reproducing device provided with same
JP2006003184A (en) * 2004-06-17 2006-01-05 Niigata Prefecture Surface normal measurement method and its apparatus
WO2012140820A1 (en) * 2011-04-11 2012-10-18 パナソニック株式会社 Half-mirror rig
US20130050489A1 (en) * 2011-08-24 2013-02-28 Delphi Technologies, Inc. Refractive optical device and imaging system
WO2020031685A1 (en) * 2018-08-07 2020-02-13 株式会社小糸製作所 Sensor system
WO2021145089A1 (en) * 2020-01-16 2021-07-22 豊田合成株式会社 Near-infrared sensor cover

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114671A (en) * 1994-10-13 1996-05-07 Nec Corp Laser rangefinding apparatus
JP2004362713A (en) * 2003-06-06 2004-12-24 Samsung Yokohama Research Institute Co Ltd Optical pickup device, and optical information recording/reproducing device provided with same
JP2006003184A (en) * 2004-06-17 2006-01-05 Niigata Prefecture Surface normal measurement method and its apparatus
WO2012140820A1 (en) * 2011-04-11 2012-10-18 パナソニック株式会社 Half-mirror rig
US20130050489A1 (en) * 2011-08-24 2013-02-28 Delphi Technologies, Inc. Refractive optical device and imaging system
WO2020031685A1 (en) * 2018-08-07 2020-02-13 株式会社小糸製作所 Sensor system
WO2021145089A1 (en) * 2020-01-16 2021-07-22 豊田合成株式会社 Near-infrared sensor cover

Also Published As

Publication number Publication date
JPWO2022050394A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
JP6786302B2 (en) Lighting device
US10160376B2 (en) Road surface drawing lamp unit
US10137827B2 (en) Position lighting device
US20200174100A1 (en) Lamp device, sensor system, and sensor device
US10317523B2 (en) Lighting device for a vehicle and vehicle headlight
US8314558B2 (en) Light emitting diode headlamp for a vehicle
US9784839B2 (en) Automotive lighting device and a vehicle having the same
KR101794022B1 (en) Method for controlling a headlight assembly for a vehicle and headlight assembly therefor
JP6478204B2 (en) LIGHTING DEVICE AND AUTOMOBILE HAVING LIGHTING DEVICE
KR20100114916A (en) Car lighting unit for generating a beam of light and a holographic 3d image
US10696209B2 (en) Vehicle lamp tool and method for controlling vehicle lamp tool
US20230003360A1 (en) Light Module For A Lighting Device Of A Vehicle And Method For Reducing A Color Desaturation In A Light Module For A Lighting Device Of A Vehicle
US7656283B2 (en) Vehicle recognizing apparatus
WO2022050394A1 (en) Sensor device
CN109424899A (en) Illuminator for vehicle
US11697369B2 (en) LiDAR integrated lamp device for vehicle
JP2020020709A (en) Sensor system
US10823363B2 (en) Vehicular lamp
CN209484471U (en) Illuminator for vehicle
CN209116216U (en) Illuminator for vehicle
CN209386195U (en) Illuminator for vehicle
JP2021139798A (en) Sensor unit and illumination device
WO2021065437A1 (en) Ranging device
JP4412664B2 (en) Vehicle recognition device
KR102250659B1 (en) Optical lens for vehicles and vehicle lamp using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864446

Country of ref document: EP

Kind code of ref document: A1