JP2006003034A - Method of manufacturing cold storage capsule - Google Patents

Method of manufacturing cold storage capsule Download PDF

Info

Publication number
JP2006003034A
JP2006003034A JP2004181513A JP2004181513A JP2006003034A JP 2006003034 A JP2006003034 A JP 2006003034A JP 2004181513 A JP2004181513 A JP 2004181513A JP 2004181513 A JP2004181513 A JP 2004181513A JP 2006003034 A JP2006003034 A JP 2006003034A
Authority
JP
Japan
Prior art keywords
capsule
tube
heat
closed
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004181513A
Other languages
Japanese (ja)
Inventor
Kotaro Tsuri
弘太郎 釣
Shoji Kitamura
省治 北村
Koji Yamamoto
孝司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2004181513A priority Critical patent/JP2006003034A/en
Publication of JP2006003034A publication Critical patent/JP2006003034A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe manufacturing method free from firing, of a cold storage capsule capable of inexpensively manufacturing the cold storage capsule by maximizing a volume ratio of a enclosed capacity of a cold storage material with respect to a size of the cold storage capsule, and encapsulating the cold storage material having inflammability such as paraffin, by welding or the like. <P>SOLUTION: A cylindrical tube is cut, both end parts of the tube are drawn, then one end is welded to close its opening, a cold storage agent is poured from an opening part of the other end, and then the end part is closed by caulking, and then welded. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空調装置に使用される蓄冷器の部品である蓄冷カプセルの製造方法に関するものである。   The present invention relates to a method for manufacturing a regenerator capsule that is a part of a regenerator used in an air conditioner.

空調装置に使用される蓄冷(熱)器の一般的な形式は、シェルアンドチューブ方式とカプセル方式の2種類がある。カプセル方式の方がシェルアンドチューブ方式よりも蓄冷材の充填効率が良いとされており、比較的狭いスペースに設置される時はカプセル方式が使用されることが多い。
狭いスペースに蓄冷器を設置する必要がある空調調和機の例として、自動車(車両)の空調調和機が稼動して車内の快適性を保つ技術が検討されている。冷房時にはエンジン回転に直結した圧縮機(コンプレッサー)が稼動し、フロンなどの高圧の気体状態の冷媒が凝縮器に送られて外気により液化され、膨張弁を介して低圧の液体のまま蒸発器に送られる。蒸発器では、冷媒の蒸発潜熱により冷却された空気が室内に送られて車内空調が行われる。また暖房時には冷媒は前述と同じ経路を通るが、蒸発器では冷媒の蒸発潜熱により空気の除湿が行われ、その空気が加熱器によって温調されて車内空調が行われる。
There are two general types of regenerators (heaters) used in air conditioners: a shell and tube method and a capsule method. The capsule method is said to have better charging efficiency of the regenerator material than the shell and tube method, and the capsule method is often used when installed in a relatively narrow space.
As an example of an air conditioner in which a regenerator needs to be installed in a narrow space, a technique for maintaining comfort in a vehicle by operating an air conditioner of an automobile (vehicle) has been studied. During cooling, a compressor (compressor) that is directly connected to the engine rotation is operated, and high-pressure gaseous refrigerant such as chlorofluorocarbon is sent to the condenser and liquefied by the outside air. Sent. In the evaporator, air cooled by the latent heat of vaporization of the refrigerant is sent into the room and air conditioning in the vehicle is performed. During heating, the refrigerant passes through the same path as described above, but in the evaporator, the air is dehumidified by the latent heat of vaporization of the refrigerant, and the temperature of the air is adjusted by the heater to perform vehicle interior air conditioning.

この一般的な車両用空調機の冷媒熱サイクルの中で、蒸発器の前に蓄冷器を設置しておくと、車両の運転時にコンプレッサーによる冷媒の循環で、低温になった冷媒によって蓄冷器に冷熱が蓄えられる。この場合のシステム例を図9に示す。図9において、31はエンジン、32は圧縮機、33は凝縮器、34は電動弁、35蓄冷器、36は遠心式電動ポンプ、37は三方弁、38は蒸発器、39は外気または内気、および40は冷風をそれぞれ示す。また、実線の矢印は通常時の冷媒の流れを、点線の矢印は蓄冷器使用時の冷媒の流れをそれぞれ示す。そして、車両のエンジン31停止に伴う圧縮機32の停止のときに、蓄冷器35と蒸発器38との間の冷媒の循環を遠心式電動ポンプ36などで行うようにすると、蓄冷器35が車両運転時の凝縮器の代わりとなって、蓄冷器35に蓄えられた熱量の冷熱分だけエンジン停止時でも車内空調が可能となる。
このような小スペースに設置する空調機に蓄冷器を利用する例としては、例えば特許文献1〜5に記載のものがある。蓄冷カプセルを使用した蓄冷(熱)器では、内部が密閉されたカプセルの中に蓄冷(熱)材が封入されている。冷熱を蓄えるとき蓄冷材は、カプセルの外側から融点以下の温度である冷たい流体によって冷却され、蓄冷材自体は凝固して保有される蓄冷材の潜熱分の冷熱エネルギーが蓄えられ、冷熱が必要とされるときにカプセル外側に被冷却流体が流されてカプセル内部の蓄冷材の溶解による潜熱の移動で、被冷却流体が冷却される。空調設備において被冷却流体は冷媒(一般的にフロンが多い)であり、蓄冷熱が使用されるときに蓄冷カプセルの外側では冷媒の凝縮(相変化)が行われる。また、温熱を蓄えて蓄熱器となる場合は全く逆のことが行われて、蓄温熱が利用されるときに被加熱流体である冷媒は液体から蒸発(相変化)が行われる。
If a regenerator is installed in front of the evaporator in the refrigerant heat cycle of this general vehicle air conditioner, the refrigerant is circulated by the compressor during operation of the vehicle. Cold energy is stored. An example of the system in this case is shown in FIG. In FIG. 9, 31 is an engine, 32 is a compressor, 33 is a condenser, 34 is an electric valve, 35 is a regenerator, 36 is a centrifugal electric pump, 37 is a three-way valve, 38 is an evaporator, 39 is outside air or inside air, And 40 indicate cold air, respectively. In addition, the solid line arrows indicate the refrigerant flow during normal operation, and the dotted line arrows indicate the refrigerant flow when using the regenerator. When the compressor 32 is stopped when the vehicle engine 31 is stopped, the refrigerant is circulated between the regenerator 35 and the evaporator 38 by the centrifugal electric pump 36 or the like. In-vehicle air conditioning can be performed even when the engine is stopped instead of the condenser during operation by the amount of heat stored in the regenerator 35.
Examples of using a regenerator for an air conditioner installed in such a small space include those described in Patent Documents 1 to 5, for example. In a regenerator (heat) device using a regenerator capsule, a regenerator (heat) material is enclosed in a capsule whose inside is sealed. When storing cold heat, the cold storage material is cooled from the outside of the capsule by a cold fluid whose temperature is below the melting point, and the cold storage material itself solidifies and stores the cold energy of the latent heat of the stored cold storage material, which requires cold heat. Then, the fluid to be cooled is caused to flow outside the capsule, and the fluid to be cooled is cooled by the movement of latent heat due to the melting of the cold storage material inside the capsule. In the air conditioning equipment, the fluid to be cooled is a refrigerant (generally a lot of chlorofluorocarbons), and when the cold storage heat is used, the refrigerant is condensed (phase change) outside the cold storage capsule. In addition, when the thermal energy is stored and used as the heat accumulator, the reverse is performed, and when the stored heat is utilized, the refrigerant that is the fluid to be heated is evaporated (phase change) from the liquid.

蓄冷(熱)カプセルについて、その熱交換特性を高める改善例を示したものには、例えば、特許文献6〜7に記載のものがある。これらの公知文献は、特に円筒状の蓄冷(熱)カプセルの熱交換特性を高めるために、蓄冷(熱)剤とカプセル壁面とが接する部分に、内面フィンを取り付けるなどの改善技術を開示したものである。図8は内面にフィンを取り付けた蓄冷熱カプセル形状の一例の説明図である。(a)は蓄冷熱カプセルの外観図であり、点線は内部のフィンを示している。(b)は蓄冷熱カプセルの断面図を示す。(c)はフィン部の詳細な説明図である。ここでDはカプセル外径、dはカプセル内径、hはフィン高さ、tはカプセルの肉厚、αはフィンの頂角、Rftはフィン先端部の曲率半径、Rfbはフィン底部の曲率半径をそれぞれ示すものである。
特開2003−285634号公報 特開平6−211036号公報 特開平7−76208号公報 特開2000−313226号公報 特開2001−287539号公報 特開平11−270975号公報 特開昭55−56597号公報
Examples of the cold storage (heat) capsules that show improved examples for improving the heat exchange characteristics include those described in Patent Documents 6 to 7. These known documents disclose improvement techniques such as attaching an internal fin to the portion where the cold storage (heat) agent and the capsule wall surface are in contact with each other, in particular, in order to enhance the heat exchange characteristics of the cylindrical cold storage (heat) capsule. It is. FIG. 8 is an explanatory diagram of an example of a regenerative heat capsule shape in which fins are attached to the inner surface. (A) is an external view of a cool storage heat capsule, and the dotted line has shown the internal fin. (B) shows sectional drawing of a cool storage heat capsule. (C) is a detailed explanatory view of the fin portion. Where D is the capsule outer diameter, d is the capsule inner diameter, h is the fin height, t is the capsule thickness, α is the apex angle of the fin, Rft is the radius of curvature of the fin tip, and Rfb is the radius of curvature of the fin bottom. Each is shown.
JP 2003-285634 A Japanese Patent Laid-Open No. 6-211036 Japanese Unexamined Patent Publication No. 7-76208 JP 2000-313226 A JP 2001-287539 A Japanese Patent Laid-Open No. 11-270975 JP 55-56597

上記のような車両用などに代表される小スペースに設置が必要な空調機でカプセル方式の蓄冷器を適用する場合には、蓄冷熱カプセルの大きさ(容積)に対して、内部に封入される蓄冷材量を出来る限り増やす形状にする必要がある。また、空調機に使用される蓄冷熱器は、空調機の熱サイクルにおいて、駆動力エネルギーの低減を図る目的で設置される補助装置である。そのため安価に供給されるものでなくてはならない。   When a capsule type regenerator is applied to an air conditioner that needs to be installed in a small space represented by the vehicle as described above, the size (volume) of the regenerator heat capsule is enclosed inside. It is necessary to increase the amount of cold storage material as much as possible. The regenerator used in the air conditioner is an auxiliary device installed for the purpose of reducing driving force energy in the heat cycle of the air conditioner. Therefore, it must be supplied inexpensively.

潜熱を利用する蓄冷材としては水が安価で、潜熱も大きいとしてよく知られている。そのため、蓄冷材としてよく用いられる。但し、水は大きな圧力を変えない限り相変化温度(融点)を変えることが出来ず、一般的な冷媒であるフロンの作動温度を水の潜熱を利用できる温度に圧力調整しなければ、蓄冷器としての機能を果たさない問題がある。そのため、1〜30℃程度で潜熱を利用できる融点(凝固点)をもつパラフィンも蓄冷材としてよく使用される。但し、パラフィンは引火性があるので取り扱いに注意が必要とされる。
従来、蓄冷熱カプセルの製造は、パラフィン封入後に該カプセル端部を溶接する方法が取られていた。しかし、溶接部にパラフィンが付着してしまうため、溶接時にパラフィンが引火して火災が発生する危険があった。
As a regenerator material using latent heat, it is well known that water is inexpensive and has large latent heat. Therefore, it is often used as a cold storage material. However, water cannot change the phase change temperature (melting point) unless a large pressure is changed, and if the operating temperature of CFC, a general refrigerant, is not adjusted to a temperature that can use the latent heat of water, the regenerator There is a problem that does not fulfill the function. Therefore, paraffin having a melting point (freezing point) that can use latent heat at about 1 to 30 ° C. is often used as a cold storage material. However, since paraffin is flammable, it must be handled with care.
Conventionally, in the manufacture of a cold-storage capsule, a method of welding the end of the capsule after enclosing the paraffin has been taken. However, since paraffin adheres to the welded portion, there is a danger that the paraffin may ignite during welding and a fire may occur.

さらに、自動車空調装置に使用される蓄冷器は、自動車のエンジンが稼動中に車内空調を行う場合には本来必要とされない、補助的な機器であり、小型あるいは軽量であることが重要である。そのため、特許文献6や特許文献7に開示される蓄冷(熱)カプセルを使用して、蓄冷(熱)器の小型軽量化を図ることが有効な技術と認められる反面、そのような複雑な形状を有する蓄冷(熱)カプセルを、前述のような問題を改善して安価に、また安全に製造される技術が、その実現には不可欠である。
上記のように蓄冷カプセル方式の蓄冷器は車両用空調機などの効率化に有効なものとして提案されている公知例が多いが、実用化あるいは普及させるためには経済性および安全性の上で問題も多い。
Furthermore, the regenerator used in the vehicle air conditioner is an auxiliary device that is not originally required when the vehicle engine performs air conditioning while the vehicle engine is in operation, and it is important that the regenerator is small or lightweight. For this reason, it is recognized that it is effective to reduce the size and weight of the regenerator (heat) by using the regenerator (heat) capsule disclosed in Patent Document 6 and Patent Document 7, but such a complicated shape. In order to realize such a cold storage (heat) capsule having a low temperature and a safe manufacturing process that improves the above-described problems, it is indispensable.
As described above, there are many known examples of regenerators of the regenerator capsule type that are proposed as effective for improving the efficiency of vehicle air conditioners and the like. There are many problems.

本願発明の目的は上記の従来の問題点を解決した蓄冷熱カプセルの製造方法を提供することである。具体的には、蓄冷熱カプセルの大きさに対して、蓄冷熱材の封入量の容積比率を出来るだけ大きくなるように、且つ安価で製造できる方法を提供することである。また、パラフィンのように引火性のある蓄冷熱材を溶接などで封入する蓄冷熱カプセルであっても、引火しないような、安全な製造方法を提供することである。さらに、蓄冷熱カプセルを、1度の工程で複数本製造して、製造コスト低減を図ることのできる製造方法を提供することである。   The object of the present invention is to provide a method for producing a cold-storage capsule that solves the above-mentioned conventional problems. Specifically, it is to provide a method that can be manufactured at a low cost so that the volume ratio of the amount of the regenerator material to be encapsulated is as large as possible with respect to the size of the regenerator heat capsule. It is another object of the present invention to provide a safe manufacturing method that does not ignite even a cold-storage heat capsule that encloses a flammable cold-storage material such as paraffin by welding or the like. Furthermore, it is to provide a manufacturing method capable of manufacturing a plurality of cold storage heat capsules in one step and reducing the manufacturing cost.

本発明は、
(1)筒状の管を切断し、両端部を絞り加工したのち、一端を溶接して口を閉じ、他端の開口部より蓄冷熱材を注入し、次いでカシメ加工によって端部の閉口を行った後、その端部を溶接することを特徴とする蓄冷熱カプセルの製造方法、
(2)筒状の管を切断し、該管と同じ外側形状をもつキャップの内側形状および高さに合わせた分だけ両端を縮径して、一端を該キャップで接合し、次いで蓄冷熱材を注入し、他端を該管と同じ外側形状をもつ別のキャップにて溶接することを特徴とする蓄冷カプセルの製造方法、
(3)筒状の管を切断し、前記筒状の管の内径よりも小さい外径の管を複数本挿入すると同時に、挿入される管の内側から蓄冷熱材を注入することを特徴とする蓄冷熱カプセルの製造方法、
(4)筒状の管を切断し、該管の一端をカシメ加工によって閉口した後、その端部を溶接し、他端をその管と同じ外側形状をもつキャップの内側形状および高さに合わせた分だけ縮径してキャップを接合し、閉口することを特徴とする蓄冷熱カプセルの製造方法、
(5)複数本の管からなる蓄冷熱カプセル端部の閉口部分に相当する形状の板材あるいはキャップ形状の連結体に該管の一端をロウ付けあるいは溶接によって閉口し、該管の他端から蓄冷熱材を注入し、次いで蓄冷熱カプセル端部の閉口部分に相当する板材あるいはキャップ形状の連結体に該管の他端をロウ付けあるいは溶接によって閉口することを特徴とする蓄冷熱カプセルの製造方法、
(6)管を押出により成形する押出速度と同じ速度で蓄冷熱材を注入しながら管を製造し、管外面から管を押し潰して端部を機械的に閉口して切断し、次いで該閉口部分を溶接することを特徴とする蓄冷熱カプセルの製造方法、
(7)管を押出により成形する押出速度と同じ速度で蓄冷熱材を注入しながら管を製造し、管側面を圧縮し閉口させたのち切断し、次いで該閉口部分を溶接することを特徴とする蓄冷熱カプセルの製造方法、
(8)カプセルの母材となる材料を押出によって中空状の長手方向の一端が閉口された容器とし、開口部より蓄冷熱材を注入して、その後、該開口部をロウ付けあるいは溶接によって閉口することを特徴とする蓄冷熱カプセルの製造方法、
(9)(1)〜(7)のいずれか1項に記載の蓄冷器用カプセルの製造方法において、蓄冷熱カプセルの端部の閉口を、カプセル母材の融点よりも低い融点を持つ、ハンダあるいはロウ材を使用して閉口することを特徴とする蓄冷熱カプセルの製造方法、および
(10)(9)項に記載の蓄冷熱カプセルの製造方法において、蓄冷熱カプセルの端部の閉口の際に、母材に超音波を与えてハンダ付けすることを特徴とする蓄冷熱カプセルの製造方法
を提供するものである。
The present invention
(1) After cutting the tubular tube and drawing both ends, weld one end to close the mouth, inject cold storage heat material from the opening at the other end, and then close the end by caulking A method for producing a regenerative heat capsule characterized by welding its end after being performed,
(2) Cut the tubular tube, reduce the diameter of both ends according to the inner shape and height of the cap having the same outer shape as the tube, join one end with the cap, and then cool storage heat material And the other end is welded with another cap having the same outer shape as the pipe,
(3) The tubular tube is cut, and a plurality of tubes having an outer diameter smaller than the inner diameter of the tubular tube are inserted, and at the same time, a cold storage heat material is injected from the inside of the inserted tube. Manufacturing method of cold storage heat capsule,
(4) After cutting the tubular tube and closing one end of the tube by caulking, the end is welded and the other end is matched to the inner shape and height of the cap having the same outer shape as the tube. A method for producing a regenerative thermal capsule, characterized in that the diameter is reduced by an amount, the cap is joined, and the cap is closed
(5) One end of the tube is closed by brazing or welding to a plate or cap-shaped connector corresponding to the closed portion of the end of the regenerative heat capsule composed of a plurality of tubes, and cold storage is performed from the other end of the tube A method for producing a regenerative heat capsule, comprising injecting a heat material, and then closing the other end of the tube by brazing or welding to a plate-like or cap-shaped connecting body corresponding to a closed portion of the end of the regenerative heat capsule ,
(6) A tube is manufactured while injecting a regenerative heat material at the same speed as the extrusion speed at which the tube is formed by extrusion, and the tube is crushed from the outer surface of the tube, and the end is mechanically closed and cut. A method for producing a regenerative heat capsule characterized by welding portions;
(7) It is characterized in that a tube is manufactured while injecting a cold storage heat material at the same speed as the extrusion speed for forming the tube, compressing and closing the side of the tube, then cutting, and then welding the closed portion. A method for producing a cold-storage capsule,
(8) The material used as the base material of the capsule is formed into a hollow container with one end in the longitudinal direction closed by extrusion, a cold storage heat material is injected from the opening, and then the opening is closed by brazing or welding. A method for producing a cold-storage capsule, characterized by:
(9) In the method for manufacturing a regenerator capsule according to any one of (1) to (7), the end of the regenerator heat capsule has a melting point lower than the melting point of the capsule base material. In the method for manufacturing a regenerator heat capsule characterized by closing using a brazing material and the method for manufacturing a regenerator heat capsule described in (10) and (9), when closing the end of the regenerator heat capsule An object of the present invention is to provide a method for manufacturing a cold-storage capsule, characterized by applying ultrasonic waves to a base material and soldering.

本発明の製造方法によれば、蓄冷熱カプセルの大きさに対して、蓄冷熱材の封入量の容積比率を出来るだけ大きく取ることが可能となる。また、パラフィンのように引火性のある蓄冷熱材を溶接などで封入する蓄冷熱カプセルで、引火しないように安全な製造方法を提供できる。さらに、蓄冷熱カプセルを、1度の工程で複数本製造できる設備を提供して、製造コスト低減を図ることができる。その結果、高効率化を図るために空調機に取り付ける蓄冷熱器を、安価に提供できるようになり、実用化および普及を促進できる。   According to the manufacturing method of the present invention, it is possible to make the volume ratio of the enclosed amount of the regenerator material as large as possible with respect to the size of the regenerator heat capsule. Also, a cold storage heat capsule that encloses a flammable cold storage material such as paraffin by welding or the like can provide a safe manufacturing method so as not to ignite. Furthermore, the manufacturing cost can be reduced by providing equipment capable of manufacturing a plurality of cold storage heat capsules in one step. As a result, it is possible to provide a regenerator and heat exchanger attached to an air conditioner for high efficiency at a low cost, thereby promoting practical use and spread.

以下、本発明の蓄冷熱カプセルの製造方法の好ましい実施態様について詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, although the preferable embodiment of the manufacturing method of the cool storage heat capsule of this invention is described in detail, this invention is not limited to this.

まず、第1の実施態様による製造工程を図1に示す。ここでは、金属管などの筒状の管を常法により切断してカプセル原管1とする(a)。次いで、A端部2およびB端部3を常法により絞り加工したのち(b)、B端部3のみを溶接して口を閉じる(c)。このときもう一端のA端部2は(d)および(e)に示されるように、半部だけ端部の口が開いた開口部となっている。なお、(e)は、A端部2を上方から見た拡大図である。次いで、A端部2の開口部より注射器のようなものでパラフィン等の蓄冷熱材4を注入し(f)、常法によりカシメ加工によって端部の閉口を行う(gおよびh)。なお、(h)は、このときのA端部2を上方から見た拡大図である。最後に、A端部2を常法により溶接する。
この方法によれば、従来の溶接のみの方法と異なるため、引火性のある蓄冷熱材(パラフィン)を注入しても、機械的に封入を行いその後で最終溶接を行うので引火する危険性がない。またカプセル端部の処理に新たな材料を使用しないでカプセル原管の変形でカプセルを作成するので、材料費自体がカプセルの原管だけでよいので安価に製造可能である。なお、例示ではカプセル外形状が円筒状の場合を示しているが、形状をこれに制限するものではなく、多角柱の形状であっても同様である。
First, the manufacturing process according to the first embodiment is shown in FIG. Here, a cylindrical tube such as a metal tube is cut by a conventional method to form a capsule original tube 1 (a). Next, after the A end 2 and the B end 3 are drawn by a conventional method (b), only the B end 3 is welded to close the mouth (c). At this time, the other end A end 2 is an opening in which the mouth of the end is opened only by a half as shown in (d) and (e). In addition, (e) is the enlarged view which looked at A edge part 2 from upper direction. Next, the regenerator material 4 such as paraffin or the like is injected from the opening of the A end portion 2 using a syringe (f), and the end portion is closed by caulking by a conventional method (g and h). In addition, (h) is the enlarged view which looked at the A edge part 2 at this time from the upper direction. Finally, the A end 2 is welded by a conventional method.
According to this method, since there is a difference from the conventional welding only method, there is a risk of igniting even if a flammable regenerator material (paraffin) is injected, since mechanical sealing is performed and then final welding is performed. Absent. In addition, since the capsule is produced by deforming the capsule original tube without using a new material for the processing of the capsule end, the material cost itself can be only the original tube of the capsule, so that it can be manufactured at low cost. In addition, although the case where the capsule outer shape is a cylindrical shape is shown in the example, the shape is not limited to this, and the same applies to a polygonal column shape.

第2の実施態様による製造工程を図2に示す。ここでは、筒状の管を常法により切断してカプセル原管1とする(a)。その後、カプセル原管1と同じ外側形状をもつキャップ5の内側形状および高さに合わせた分だけ、A端部2およびB端部3の両端を常法により縮径して(b)、B端部3にキャップ5を接合する(c)。次いで、A端部2の開口部よりパラフィン等の蓄冷熱材4を注入し(d)、A端部2をキャップ5を装着し常法により溶接する。キャップ5はカプセル原管1と同様の材質あることが好ましい。
カプセル端部をカシメ加工で溶接する場合は、カプセル端部に蓄冷熱材が封入できず、カプセルの容積サイズに対して蓄冷熱材の充填率が下がることがあるが、第2の実施態様では、カプセル端部まで蓄冷熱材を封入できるので蓄冷熱材の充填率を上げることができる。また、広い口から引火性のある蓄冷熱材(パラフィン)を注入するので、キャップを溶接する面にその蓄冷熱材が付着しにくく、溶接時に引火する危険が少ない。キャップの外径(外形状)と、蓄冷熱カプセルの原管である金属管の外径(外形状)が同じであるので、蓄冷器にこのカプセルを配列しても、隙間を発生することが無く、蓄冷器の製造時に効率よくカプセルを配列できる。なお、図2ではカプセル外形状が円筒状の場合を示しているが、第1の実施態様と同様、多角柱の形状であっても同様である。
The manufacturing process according to the second embodiment is shown in FIG. Here, a cylindrical tube is cut by a conventional method to form a capsule original tube 1 (a). Thereafter, both ends of the A end portion 2 and the B end portion 3 are reduced in diameter by a conventional method by an amount corresponding to the inner shape and height of the cap 5 having the same outer shape as the capsule original tube 1 (b), The cap 5 is joined to the end 3 (c). Next, cold storage material 4 such as paraffin is poured from the opening of the A end 2 (d), and the A end 2 is welded by a conventional method with a cap 5 attached. The cap 5 is preferably made of the same material as the capsule original tube 1.
When the capsule end is welded by caulking, the regenerator heat material cannot be enclosed in the capsule end, and the filling rate of the regenerator heat material may decrease with respect to the capsule volume size. In the second embodiment, Since the regenerator material can be enclosed up to the capsule end, the filling rate of the regenerator material can be increased. In addition, since a flammable regenerator material (paraffin) is injected from a wide opening, the regenerator material hardly adheres to the surface to which the cap is welded, and there is little risk of ignition during welding. Since the outer diameter (outer shape) of the cap is the same as the outer diameter (outer shape) of the metal tube that is the original tube of the regenerator heat capsule, a gap may be generated even if this capsule is arranged in the regenerator. No, the capsules can be arranged efficiently when manufacturing the regenerator. Note that FIG. 2 shows a case where the capsule outer shape is a cylindrical shape, but the same applies to a polygonal column shape as in the first embodiment.

第3の実施態様による製造工程を図3に示す。ここでは、筒状の管を常法により切断してカプセル原管1とする(a)。次いで、カプセル原管1の片端部を常法により溶接する(b)。次いで、カプセル原管1の内径よりも小さい外径を有する内部金属管8を複数本挿入(好ましくは圧入)するとともに、内部金属管8の内側に注射器7などにより蓄冷熱材を注入する(c)。(d)は、点線で表される内部金属管が完全にカプセル原管1に挿入された状態を示す。最後に、カプセル原管1の開口していた下部の片端部6を常法により溶接する(e)。上部の開口部の閉口はカシメ加工、あるいはキャップを被せる工程を行ったのち、片端部6を溶接して行う。
注射器で引火性のある蓄冷熱材注入した場合、注射器を抜くときに注射器の針の先端に残っている蓄冷熱材が溶接する面に若干付着し、溶接時に引火する危険がある。これに対して、この第3の実施態様であれば注射器の針に残っているパラフィンが管に付着しても、溶接する金属管の溶接面に付着すること無いので、引火の危険が少なくなる。また、圧入された内側の管が、カプセル内面にフィンを設けることと同じ効果を得ることが出来るので、蓄冷熱器全体で使用するカプセル本数を低減することにも役立つ。なお、例示では、原管である金属管を変形させるものを記載しているが、管端部封入に第2の実施態様であるキャップを使用する場合も同じである。
A manufacturing process according to the third embodiment is shown in FIG. Here, a cylindrical tube is cut by a conventional method to form a capsule original tube 1 (a). Next, one end of the capsule raw tube 1 is welded by a conventional method (b). Next, a plurality of internal metal tubes 8 having an outer diameter smaller than the inner diameter of the capsule original tube 1 are inserted (preferably press-fitted), and a regenerator material is injected into the inner metal tube 8 by a syringe 7 or the like (c ). (D) shows a state in which the internal metal tube represented by the dotted line is completely inserted into the capsule original tube 1. Finally, the lower one end 6 of the original capsule 1 that has been opened is welded by a conventional method (e). Closing of the upper opening is performed by caulking, or by applying a cap and then welding one end 6.
When a flammable cold storage material is injected with a syringe, the cold storage material remaining at the tip of the needle of the syringe slightly adheres to the surface to be welded when the syringe is pulled out, and there is a risk of ignition during welding. On the other hand, in this third embodiment, even if the paraffin remaining on the syringe needle adheres to the pipe, it does not adhere to the weld surface of the metal pipe to be welded, so the risk of ignition is reduced. . Moreover, since the press-fitted inner tube can obtain the same effect as providing the fins on the inner surface of the capsule, it is useful for reducing the number of capsules used in the entire regenerator. In addition, although the thing which deform | transforms the metal pipe which is an original pipe | tube is described in the illustration, it is the same also when using the cap which is a 2nd embodiment for pipe | tube end enclosure.

なお、第1から第3の実施態様において、両端の閉口を同じ閉口方法を採用しなくとも、その製造工程において、一端をカシメ加工および溶接によって実施し、もう一端をキャップによる接合を行っても問題はない(第4の実施態様)。   In the first to third embodiments, even if the same closing method is not used for closing both ends, in the manufacturing process, one end is carried out by caulking and welding, and the other end is joined by a cap. There is no problem (fourth embodiment).

第5の実施態様による製造工程を図4に示す。ここでは、複数本の各金属管からなるカプセル原管1の端部の閉口部分に相当する形状のキャップ形状の各連結体9に管1の一端を常法によりロウ付けあるいは溶接する(a)。なお、(b)はキャップの連結体の平面図である。もう一端から蓄冷熱材4を注入し(c)、次いでキャップ形状の連結体9に管1の一端をロウ付けあるいは溶接し(d)、閉口する(e)。
第5の実施態様を用いれば、第2の実施態様の製造方法によって製造されるカプセルを一度に複数本製造できるので、製造工程上コストダウンに有効である。
A manufacturing process according to the fifth embodiment is shown in FIG. Here, one end of the tube 1 is brazed or welded to a cap-shaped connecting body 9 having a shape corresponding to the closed portion at the end of the capsule original tube 1 composed of a plurality of metal tubes by a conventional method (a). . In addition, (b) is a top view of the coupling body of a cap. The cold storage heat material 4 is injected from the other end (c), and then one end of the tube 1 is brazed or welded to the cap-shaped connecting body 9 (d) and closed (e).
If the fifth embodiment is used, a plurality of capsules manufactured by the manufacturing method of the second embodiment can be manufactured at a time, which is effective in reducing the cost in the manufacturing process.

第6の実施態様による製造工程を図5に示す。ここでは、管状体18aを押出により成形する押出速度と同じ速度で蓄冷熱材を注入しながら管状体18aを製造し(a)、管外面からローラのようなもので管を押し潰して端部を機械的に閉口して切断し(b)、次いでカプセル端部を機械的に閉口し(c)、最後に閉口部分を溶接する(d)。なお、図5で11は素材(金属素線)、12および13はローラ、14は押出しダイ、15は蓄冷熱材、16は可動式蓄冷熱材注入機、17は回転ローラ押しつぶし機、18aは管状体、18はカプセル原管、19は機械的封入されたカプセル端部、並びに20は溶接されたカプセル端部を表す。
第6の実施態様では、カプセル内部に蓄冷熱材を封入する工程を、カプセルの原型である管材の製造工程と同時に実施できる。すなわち、カプセル原型の管材の製造時間とほぼ同時に蓄冷熱カプセルが製作されることになり、連続量産化が可能となる。その結果、大幅なコスト低減を図ることが出来る。
A manufacturing process according to the sixth embodiment is shown in FIG. Here, the tubular body 18a is manufactured while injecting the cold storage heat material at the same speed as the extrusion speed for forming the tubular body 18a by extrusion (a), and the tube is crushed with a roller or the like from the outer surface of the tube to end the end portion. Is mechanically closed and cut (b), then the capsule end is mechanically closed (c) and finally the closed part is welded (d). In FIG. 5, 11 is a material (metal wire), 12 and 13 are rollers, 14 is an extrusion die, 15 is a cold storage material, 16 is a movable cold storage material injection machine, 17 is a rotary roller crusher, and 18a is Tubular body, 18 is a capsule tube, 19 is a mechanically encapsulated capsule end, and 20 is a welded capsule end.
In the sixth embodiment, the step of enclosing the regenerator material inside the capsule can be performed simultaneously with the manufacturing process of the tube material that is the prototype of the capsule. That is, the regenerative heat capsule is manufactured almost simultaneously with the manufacturing time of the capsule prototype tube material, and continuous mass production becomes possible. As a result, significant cost reduction can be achieved.

第7の実施態様による製造工程を図6に示す。ここでは、管状体を押出により成形する押出速度と同じ速度で蓄冷熱材を注入しながら管状体を製造し(a)、蓄冷熱カプセルの管側面を圧縮し閉口させたのち切断し(b)、次いで閉口部分を溶接する(c)。各図中の符号は他の図6と同様のものを示す。
第7の実施態様は、第6の実施態様による蓄冷熱カプセルの製造設備を複数本同時加工できるように改良したものである。第6の実施態様よりも量産速度が向上して、さらにコスト低減を図ることができる。
A manufacturing process according to the seventh embodiment is shown in FIG. Here, the tubular body is manufactured while injecting the cold storage heat material at the same speed as the extrusion speed for forming the tubular body by extrusion (a), and the tube side surface of the cold storage heat capsule is compressed and closed and then cut (b). Then, the closed portion is welded (c). The reference numerals in the respective drawings are the same as those in FIG.
The seventh embodiment is an improvement in which a plurality of cold storage capsule production equipment according to the sixth embodiment can be processed simultaneously. The mass production speed is improved as compared with the sixth embodiment, and the cost can be further reduced.

第8の実施態様による製造工程を図7に示す。ここでは、カプセルの母材となる材料21を矢印方法に押出し(a)、中空状の長手方向の一端が閉口された容器22とする。容器22の開口部より蓄冷熱材23を注入して、その後、開口部をロウ付けあるいは溶接によって閉口し、閉口部24を形成する(c)。
第8の実施態様は、カプセル母材の押出によって、カプセルの端部の1つが押出し段階ですでに閉口されており、蓄冷熱剤注入後の端部閉口箇所が第1〜第7の実施態様に比べて1箇所ですむという利点がある。その結果、溶接箇所の低減によるコスト低減などの効果がある。
The manufacturing process according to the eighth embodiment is shown in FIG. Here, the material 21 that becomes the base material of the capsule is extruded by the arrow method (a), and the container 22 is closed at one end in the hollow longitudinal direction. The cold storage material 23 is injected from the opening of the container 22, and then the opening is closed by brazing or welding to form the closing portion 24 (c).
In the eighth embodiment, one of the end portions of the capsule is already closed in the extrusion stage by the extrusion of the capsule base material, and the end closed portion after the injection of the regenerative heat storage agent is the first to seventh embodiments. There is an advantage that only one place is required. As a result, there is an effect such as cost reduction by reducing the number of welds.

第9の実施態様は、端部の溶接方法に関するものである。第1〜第7の実施態様では蓄冷熱カプセルの母材が金属である場合に溶接の方法を適用して、カプセル端部の閉口を行う。この時、溶接方法は例えばTIG溶接などの方法でもよい。しかしながら、例えばカプセルの母材にアルミニウムを使用してTIG溶接によってカプセル端部を閉口する製造法においては、以下のような問題を生じることがある。TIG溶接は、母材であるアルミニウムを溶解して溶接する方法であるために、溶接部はアルミニウムの融点以上の温度に上昇し、また溶接による火が発生する。そして、溶接によって母剤が溶かされるために、高温になった蓄冷熱剤であるパラフィンが引火してしまう危険がある。そのため、カプセルの母材の融点以下の融点を有するロウ材あるいはハンダによって、カプセル端部を閉口すれば、引火性のある蓄冷熱剤であるパラフィンへの引火の可能性を低減できる。パラフィン注入後のカプセル端部閉口は、最初に圧着などにより機械的に閉口して、その部分をロウ付けまたはハンダ付けすることで、蓄冷熱カプセルを製造することが出来る。TIG溶接などのカプセルの母材を溶かしてしまう方法であれば、たとえ、機械的に閉口した後にTIG溶接を行っても、母材自体が溶解して内部の蓄冷熱材が出てくる危険がある。そこで、第9の実施態様では、蓄冷熱カプセルの端部の閉口を、カプセル母材の融点よりも低い融点を持つ、ハンダあるいはロウ材を使用して閉口するものである。   The ninth embodiment relates to an end welding method. In the first to seventh embodiments, the capsule end portion is closed by applying a welding method when the base material of the regenerative heat capsule is a metal. At this time, the welding method may be a method such as TIG welding. However, in the manufacturing method in which, for example, aluminum is used for the capsule base material and the capsule end is closed by TIG welding, the following problems may occur. TIG welding is a method in which aluminum, which is a base material, is melted and welded. Therefore, the welded portion rises to a temperature equal to or higher than the melting point of aluminum, and fire due to welding is generated. And since a base material is melt | dissolved by welding, there exists a danger that the paraffin which is a cold storage thermal agent which became high temperature will ignite. Therefore, if the end of the capsule is closed with a brazing material or solder having a melting point equal to or lower than the melting point of the base material of the capsule, the possibility of flamming paraffin, which is a flammable regenerator, can be reduced. The capsule end closing after the paraffin injection is first mechanically closed by crimping or the like, and the portion is brazed or soldered to produce a cold storage capsule. If the capsule base material, such as TIG welding, is melted, there is a risk that even if TIG welding is performed after mechanical closure, the base material itself will melt and the internal cold storage material will come out. is there. Therefore, in the ninth embodiment, the end of the cold storage heat capsule is closed using solder or brazing material having a melting point lower than the melting point of the capsule base material.

第10の実施態様について説明する。第9の実施態様でハンダ付けを行う場合、最近の環境問題から鉛が混入されていないハンダが要求される。しかしながら、Pbフリーのハンダはその濡れ性が劣るために、フラックスなどの母材表面の酸化膜を除去して使用する必要がある。そのため、ハンダ付け工程の後には、残留のフラックスを洗浄するための工程も必要となり、製造コストの増加の要因となる。この洗浄工程をなくすために、フラックス以外の方法でカプセル母材の表面酸化膜の除去を行える、超音波ハンダ付けの技術が有効である。この技術は、アルミニウムなどを溶接する技術として従来から用いられているが、これを蓄冷熱カプセルの端部閉口時に用いることによって、フラックスの洗浄工程が省略できる。また、ハンダ付けであるので、カプセルの母材にアルミニウムなどの金属を用いても、母材の融点以下で閉口できるので、ハンダ付け時に母材が溶けて内部からパラフィンが出るという問題もない。そこで、第10の実施態様としては、蓄冷熱カプセルの端部の閉口の際に、母材に超音波を与えてハンダ付けする。   The tenth embodiment will be described. When soldering is performed in the ninth embodiment, solder that does not contain lead is required due to recent environmental problems. However, since Pb-free solder has poor wettability, it is necessary to use it after removing the oxide film on the surface of the base material such as flux. Therefore, after the soldering process, a process for cleaning the residual flux is also required, which increases the manufacturing cost. In order to eliminate this cleaning step, an ultrasonic soldering technique that can remove the surface oxide film of the capsule base material by a method other than flux is effective. This technique has been conventionally used as a technique for welding aluminum or the like. By using this technique when closing the end of the cold-storage capsule, the flux cleaning step can be omitted. In addition, since soldering is used, even if a metal such as aluminum is used as the base material of the capsule, it can be closed at a temperature lower than the melting point of the base material, so that there is no problem that the base material melts and paraffin comes out from the inside when soldering. Therefore, as a tenth embodiment, ultrasonic waves are applied to the base material and soldered when the end of the regenerator heat capsule is closed.

本発明の第1の実施態様の説明図である。It is explanatory drawing of the 1st embodiment of this invention. 本発明の第2の実施態様の説明図である。It is explanatory drawing of the 2nd embodiment of this invention. 本発明の第3の実施態様の説明図である。It is explanatory drawing of the 3rd embodiment of this invention. 本発明の第5の実施態様の説明図である。It is explanatory drawing of the 5th embodiment of this invention. 本発明の第6の実施態様の説明図である。It is explanatory drawing of the 6th embodiment of this invention. 本発明の第7の実施態様の説明図である。It is explanatory drawing of the 7th embodiment of this invention. 本発明の第8の実施態様の説明図である。It is explanatory drawing of the 8th embodiment of this invention. 蓄冷熱カプセル形状の一例の説明図である。It is explanatory drawing of an example of a cool storage heat | fever capsule shape. 蓄冷熱器を使用した車両用空調機のシステム例の説明図である。It is explanatory drawing of the system example of the vehicle air conditioner which uses a cool storage heat | fever.

符号の説明Explanation of symbols

1 カプセル原管
2 A端部
3 B端部
4 蓄冷熱材
5 キャップ
6 片端部
7 注射器
8 内部金属管
9 キャップ形状の連結体
11 素線
12 ローラ
13 ローラ
14 押出しダイ
15 蓄冷熱材
16 可動式蓄冷熱材注入機
17 回転ローラ押しつぶし機
18a 管状体
18 カプセル原管
19 機械的封入されたカプセル端部
20 溶接されたカプセル端部
21 母材となる材料
22 容器
23 蓄冷熱材
24 閉口部
31 エンジン
32 圧縮機
33 凝縮器
34 電動弁
35 蓄冷器
36 遠心式電動ポンプ
37 三方弁
38 蒸発器
39 外気または内気
40 冷風
DESCRIPTION OF SYMBOLS 1 Capsule original pipe | tube 2 A edge part 3 B edge part 4 Cold storage heat material 5 Cap 6 Single-end part 7 Syringe 8 Internal metal pipe 9 Cap-shaped coupling body 11 Strand 12 Roller 13 Roller 14 Extrusion die 15 Cold storage heat material 16 Movable type Cold storage heat material injection machine 17 Rotating roller crusher 18a Tubular body 18 Capsule tube 19 Mechanically sealed capsule end 20 Welded capsule end 21 Base material 22 Container 23 Cold storage thermal material 24 Closed part 31 Engine 32 Compressor 33 Condenser 34 Electric valve 35 Regenerator 36 Centrifugal electric pump 37 Three-way valve 38 Evaporator 39 Outside air or inside air 40 Cold air

Claims (10)

筒状の管を切断し、両端部を絞り加工したのち、一端を溶接して口を閉じ、他端の開口部より蓄冷熱剤を注入し、次いでカシメ加工によって端部の閉口を行った後、その端部を溶接することを特徴とする蓄冷熱カプセルの製造方法。   After cutting the tubular tube and drawing both ends, after welding one end and closing the mouth, injecting cold storage heat agent from the opening at the other end, and then closing the end by caulking And the manufacturing method of the cool storage heat | fever capsule characterized by welding the edge part. 筒状の管を切断し、該管と同じ外側形状をもつキャップの内側形状および高さに合わせた分だけ両端を縮径して、一端を該キャップで接合し、次いで蓄冷熱材を注入し、他端を該管と同じ外側形状をもつ別のキャップにて溶接することを特徴とする蓄冷熱カプセルの製造方法。   Cut the tubular tube, reduce the diameter of both ends by the amount corresponding to the inner shape and height of the cap having the same outer shape as the tube, join one end with the cap, and then inject the regenerative heat material And the other end is welded with another cap having the same outer shape as the tube, a method for producing a regenerative thermal capsule. 筒状の管を切断し、前記筒状の管の内径よりも小さい外径の管を複数本挿入すると同時に、挿入される管の内側から蓄冷熱材を注入することを特徴とする蓄冷熱カプセルの製造方法。   A cold storage heat capsule characterized by cutting a cylindrical tube and inserting a plurality of tubes having an outer diameter smaller than the inner diameter of the cylindrical tube and simultaneously injecting a cold storage heat material from the inside of the inserted tube Manufacturing method. 筒状の管を切断し、該管の一端をカシメ加工によって閉口した後、その端部を溶接し、他端をその管と同じ外側形状をもつキャップの内側形状および高さに合わせた分だけ縮径してキャップを接合し、閉口することを特徴とする蓄冷熱カプセルの製造方法。   Cut the tubular tube, close one end of the tube by caulking, weld the end, and match the other end to the inner shape and height of the cap that has the same outer shape as the tube A method for producing a cold-storage capsule, wherein the cap is connected with a reduced diameter, and the cap is closed. 複数本の管からなる蓄冷熱カプセル端部の閉口部分に相当する形状の板材あるいはキャップ形状の連結体に該管の一端をロウ付けあるいは溶接によって閉口し、該管の他端から蓄冷熱材を注入し、次いで蓄冷熱カプセル端部の閉口部分に相当する板材あるいはキャップ形状の連結体に該管の他端をロウ付けあるいは溶接によって閉口することを特徴とする蓄冷熱カプセルの製造方法。   One end of the tube is closed by brazing or welding to a plate or cap-shaped connector corresponding to the closed portion of the end of the regenerative heat capsule consisting of a plurality of tubes, and the regenerative heat material is applied from the other end of the tube. A method for producing a regenerative heat capsule, characterized in that the other end of the pipe is closed by brazing or welding to a plate material or a cap-shaped connecting body corresponding to the closed portion of the end of the regenerative heat capsule. 管を押出により成形する押出速度と同じ速度で蓄冷熱材を注入しながら管を製造し、管外面から管を押し潰して端部を機械的に閉口して切断し、次いで該閉口部分を溶接することを特徴とする蓄冷熱カプセルの製造方法。   The tube is manufactured while injecting cold storage heat at the same speed as the extrusion speed at which the tube is formed by extrusion. The tube is crushed from the outer surface of the tube, the end is mechanically closed and cut, and then the closed portion is welded A method for manufacturing a cold-storage capsule, characterized by: 管を押出により成形する押出速度と同じ速度で蓄冷熱材を注入しながら管を製造し、管側面を圧縮し閉口させたのち切断し、次いで該閉口部分を溶接することを特徴とする蓄冷熱カプセルの製造方法。   Cold storage heat characterized by producing a tube while injecting a regenerative heat storage material at the same speed as the extrusion speed for forming the tube, compressing and closing the side of the tube, then cutting, and then welding the closed portion Capsule manufacturing method. カプセルの母材となる材料を押出によって中空状の長手方向の一端が閉口された容器とし、開口部より蓄冷熱材を注入して、その後、該開口部をロウ付けあるいは溶接によって閉口することを特徴とする蓄冷熱カプセルの製造方法。   Capsule base material is made into a hollow container with one end in the longitudinal direction closed by extrusion, cold storage heat material is injected from the opening, and then the opening is closed by brazing or welding. A method for producing a cold-storage capsule, which is characterized. 請求項1〜7のいずれか1項に記載の蓄冷器用カプセルの製造方法において、蓄冷熱カプセルの端部の閉口を、カプセル母材の融点よりも低い融点を持つ、ハンダあるいはロウ材を使用して閉口することを特徴とする蓄冷熱カプセルの製造方法。   In the manufacturing method of the capsule for regenerators of any one of Claims 1-7, the solder | pewter or brazing material which has melting | fusing point lower than melting | fusing point of a capsule base material is used for the closure of the edge part of a cool storage heat | fever capsule. The method for producing a cold-storage capsule is characterized by being closed. 請求項9に記載の蓄冷熱カプセルの製造方法において、蓄冷熱カプセルの端部の閉口の際に、母材に超音波を与えてハンダ付けすることを特徴とする蓄冷熱カプセルの製造方法。   10. The method for manufacturing a regenerative heat capsule according to claim 9, wherein when the end of the regenerative heat capsule is closed, an ultrasonic wave is applied to the base material and soldered.
JP2004181513A 2004-06-18 2004-06-18 Method of manufacturing cold storage capsule Pending JP2006003034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181513A JP2006003034A (en) 2004-06-18 2004-06-18 Method of manufacturing cold storage capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004181513A JP2006003034A (en) 2004-06-18 2004-06-18 Method of manufacturing cold storage capsule

Publications (1)

Publication Number Publication Date
JP2006003034A true JP2006003034A (en) 2006-01-05

Family

ID=35771570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181513A Pending JP2006003034A (en) 2004-06-18 2004-06-18 Method of manufacturing cold storage capsule

Country Status (1)

Country Link
JP (1) JP2006003034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014203545A1 (en) * 2014-02-27 2015-08-27 Siemens Aktiengesellschaft Encapsulation of phase change materials
JP2017155965A (en) * 2016-02-29 2017-09-07 日本特殊陶業株式会社 Heat reservoir

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556597A (en) * 1978-10-19 1980-04-25 Agency Of Ind Science & Technol Heat accumulating tank
JPS5653393A (en) * 1979-09-17 1981-05-12 Pipe Systems Inc Heat energy storage apparatus
JPS5942473U (en) * 1982-09-09 1984-03-19 三菱電機株式会社 Heat exchanger
JPS59139775U (en) * 1983-03-10 1984-09-18 日産自動車株式会社 heat storage element
JPS62284193A (en) * 1986-02-27 1987-12-10 Furukawa Electric Co Ltd:The Heat transfer pipe
JPH01256732A (en) * 1988-04-05 1989-10-13 Misato Kk Heating thermal accumulator
JPH0210096A (en) * 1988-06-29 1990-01-12 Fujitsu Ltd Latent heat storage material
JPH0493904A (en) * 1990-08-06 1992-03-26 Hitachi Cable Ltd Connection part for metallic-pipe covered optical fiber and connecting method therefor
JPH0530135U (en) * 1991-09-30 1993-04-20 住友重機械工業株式会社 Regenerator material for regenerator
JPH07190658A (en) * 1993-05-19 1995-07-28 Chiyoda Corp Heat accumulating member and group thereof as well as heat accumulating tank
JPH09500441A (en) * 1993-07-20 1997-01-14 レンゲレル ウント ライヒ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー Heat storage, especially latent heat storage
JPH1123171A (en) * 1997-07-04 1999-01-26 Nippon Shokubai Co Ltd Arranging method for heat storage material
JP2003080933A (en) * 2001-09-13 2003-03-19 Denso Corp Air conditioner for vehicle
JP2004098104A (en) * 2002-09-06 2004-04-02 Suzuki Motor Corp Apparatus and method for ultrasonic soldering

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556597A (en) * 1978-10-19 1980-04-25 Agency Of Ind Science & Technol Heat accumulating tank
JPS5653393A (en) * 1979-09-17 1981-05-12 Pipe Systems Inc Heat energy storage apparatus
JPS5942473U (en) * 1982-09-09 1984-03-19 三菱電機株式会社 Heat exchanger
JPS59139775U (en) * 1983-03-10 1984-09-18 日産自動車株式会社 heat storage element
JPS62284193A (en) * 1986-02-27 1987-12-10 Furukawa Electric Co Ltd:The Heat transfer pipe
JPH01256732A (en) * 1988-04-05 1989-10-13 Misato Kk Heating thermal accumulator
JPH0210096A (en) * 1988-06-29 1990-01-12 Fujitsu Ltd Latent heat storage material
JPH0493904A (en) * 1990-08-06 1992-03-26 Hitachi Cable Ltd Connection part for metallic-pipe covered optical fiber and connecting method therefor
JPH0530135U (en) * 1991-09-30 1993-04-20 住友重機械工業株式会社 Regenerator material for regenerator
JPH07190658A (en) * 1993-05-19 1995-07-28 Chiyoda Corp Heat accumulating member and group thereof as well as heat accumulating tank
JPH09500441A (en) * 1993-07-20 1997-01-14 レンゲレル ウント ライヒ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー Heat storage, especially latent heat storage
JPH1123171A (en) * 1997-07-04 1999-01-26 Nippon Shokubai Co Ltd Arranging method for heat storage material
JP2003080933A (en) * 2001-09-13 2003-03-19 Denso Corp Air conditioner for vehicle
JP2004098104A (en) * 2002-09-06 2004-04-02 Suzuki Motor Corp Apparatus and method for ultrasonic soldering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014203545A1 (en) * 2014-02-27 2015-08-27 Siemens Aktiengesellschaft Encapsulation of phase change materials
JP2017155965A (en) * 2016-02-29 2017-09-07 日本特殊陶業株式会社 Heat reservoir

Similar Documents

Publication Publication Date Title
US6257846B1 (en) Sealed compressor having pipe connectors and method of joining pipe connectors to sealed casing
JP4882890B2 (en) Internal heat exchanger
JP6180281B2 (en) Heat exchanger with heat storage function and manufacturing method thereof
JP5910415B2 (en) Cold storage heat exchanger
JP2015087086A5 (en)
JP2007187413A (en) Heat exchanger
JP2004360476A (en) Piping connection structure of compressor
KR20140105429A (en) Evaporator heat exchanger unit
JP2006003034A (en) Method of manufacturing cold storage capsule
JP2010139201A (en) Cold storage device and vehicle air conditioner using the same
JPH10311697A (en) Heat exchanger
JP2569452B2 (en) Heat exchanger manufacturing method
WO2020017414A1 (en) Thermosiphon heat exchange device
KR20010081283A (en) Evaporator for Refrigerator And Method for Manufacturing Header of Evaporator
JPH10311621A (en) Refrigeration cycle device, and heat exchanger
JP2005299956A (en) Heat exchanger
JP2005088840A (en) Vehicle mounting structure of heat exchanger
JPH04124591A (en) Heat pipe heat exchanger and manufacturing method of the same
CN219123174U (en) Fuse, motor and vehicle
US11097385B2 (en) Method for producing a heat pipe
CN114923355A (en) Blank for a heat transfer device and method of manufacturing a heat transfer device
JP2002267278A (en) Cooler of refrigerator
JP2016080320A (en) Heat exchanger with heat storage function, and manufacturing method therefor
JP2017172865A (en) Condenser
WO2016174852A1 (en) Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207