JP2006002178A - Method for producing pure molybdenum or molybdenum alloy thin strip - Google Patents

Method for producing pure molybdenum or molybdenum alloy thin strip Download PDF

Info

Publication number
JP2006002178A
JP2006002178A JP2004177178A JP2004177178A JP2006002178A JP 2006002178 A JP2006002178 A JP 2006002178A JP 2004177178 A JP2004177178 A JP 2004177178A JP 2004177178 A JP2004177178 A JP 2004177178A JP 2006002178 A JP2006002178 A JP 2006002178A
Authority
JP
Japan
Prior art keywords
molybdenum
rolling
molybdenum alloy
pure molybdenum
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004177178A
Other languages
Japanese (ja)
Inventor
Shinichiro Yokoyama
紳一郎 横山
Hideki Mori
英樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004177178A priority Critical patent/JP2006002178A/en
Publication of JP2006002178A publication Critical patent/JP2006002178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long-pure molybdenum or molybdenum alloy thin strip having high working efficiency at the time of using materials and inexpensive as possible. <P>SOLUTION: The method for producing a pure molybdenum or molybdenum alloy thin strip comprises a process where pure molybdenum or molybdenum alloy sheets with a thickness of 0.5 to 5.0 mm as stocks are welded each other, the weld is thereafter heated at 250 to 600°C, and is subjected to warm rolling at the total draft of 10 to 90%. Preferably, softening is performed at 700 to 1,100°C after the warm rolling. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば放電ランプ電極用の材料として使用される純モリブデンまたはモリブデン合金薄帯の製造方法に関するものである。   The present invention relates to a method for producing pure molybdenum or a molybdenum alloy ribbon used as a material for a discharge lamp electrode, for example.

従来、例えば、液晶表示装置のバックライトに使用される放電ランプの電極には、熱伝導性に優れ、かつ電極寿命の優れた純モリブデンまたはモリブデン合金をカップ形状にした部品が特開2003−151496号公報に提案されている(特許文献1参照)。
このカップ形状の部品は、通常、薄板を深絞り加工することによって製造されるが、加工性の良くない純モリブデンやモリブデン合金の薄板を深絞り加工することは容易でない。それ故、純モリブデンやモリブデン合金の深絞り性を改善するための提案がなされている。
Conventionally, for example, as a discharge lamp electrode used for a backlight of a liquid crystal display device, a component made of pure molybdenum or molybdenum alloy having a cup shape with excellent thermal conductivity and excellent electrode life is disclosed. (See Patent Document 1).
This cup-shaped component is usually manufactured by deep drawing a thin plate, but it is not easy to deep draw a pure molybdenum or molybdenum alloy thin plate having poor workability. Therefore, proposals have been made to improve the deep drawability of pure molybdenum and molybdenum alloys.

例えば、吉田桂一郎著:クロス圧延機の開発、「鉄と鋼」1985年8月30日P.1637−1640(非特許文献1参照)には、長手方向に供給される板材を、それとほぼ平行であるが進行方向に狭まる軸を持った一対の揺動ロールの往復回転運動により幅方向に圧延しながら長手方向にも連続的に圧延するクロス圧延技術が開示されており、クロス圧延機を用いて製造した純モリブデンの薄板は、深絞り性に優れることが記載されている。
また、特開平3−291101号公報には、クロス圧延に供する純モリブデンを高純度化することにより、更に深絞り性を高める提案もなされている(特許文献2参照)。
これらの先行文献で開示されるものは、クロス圧延によって、純モリブデン薄板内の強度の異方性を少なくし、深絞り性を向上させるというものである。
For example, by Keiichiro Yoshida: Development of a cross rolling mill, “Iron and Steel”, August 30, 1985, p. In 1637-1640 (see Non-Patent Document 1), a plate material supplied in the longitudinal direction is rolled in the width direction by a reciprocating rotary motion of a pair of oscillating rolls having an axis that is substantially parallel to the longitudinal direction but narrows in the traveling direction. However, a cross rolling technique of continuously rolling in the longitudinal direction is disclosed, and it is described that a thin plate of pure molybdenum manufactured using a cross rolling mill is excellent in deep drawability.
In addition, Japanese Patent Laid-Open No. 3-291101 proposes to further improve deep drawability by purifying pure molybdenum to be subjected to cross rolling (see Patent Document 2).
What is disclosed in these prior documents is to reduce the anisotropy of strength in a pure molybdenum thin plate and improve deep drawability by cross rolling.

特開2003−151496号公報JP2003-151696A 特開平3−291101号公報Japanese Patent Laid-Open No. 3-291101 吉田桂一郎著:クロス圧延機の開発、「鉄と鋼」1985年8月30日P.1637−1640Yoshida Keiichiro: Development of cross rolling mill, “Iron and Steel”, August 30, 1985, p. 1637-1640

上述した、非特許文献1や特許文献2に開示されるクロス圧延により製造される純モリブデンまたはモリブデン合金薄板は、薄板内の強度の異方性を少なくし、優れた深絞り性が得られるという点では有利であるものの、一方向圧延材と比較すると生産効率が悪く、薄板の製造費用が高価になるという問題がある。
また、純モリブデンやモリブデン合金は、一般に微細な繊維状組織を有しており、室温でもある程度の延性を示すことから、冷間圧延を施すことができるが、被圧延材の素材を長尺とするために、被圧延材の素材同士を溶接すると、溶接部と周辺の熱影響部が再結晶し、結晶粒が粗大化する。特に、溶接部の結晶粒粗大化は顕著であるので、元の繊維状組織と比較して延性−脆性遷移温度が上昇し、溶接部と熱影響部が著しく脆化する。
それ故、純モリブデンやモリブデン合金の薄板は、深絞り性を良好とするために上述のクロス圧延を施していても、製造工程で溶接を行わない短尺の薄板として供給されているのが現状である。
本発明の目的は、被圧延材の素材同士を溶接して圧延し、長尺の純モリブデンまたはモリブデン合金薄帯とすることができる純モリブデンまたはモリブデン合金薄帯の製造方法を提供することである。
The pure molybdenum or molybdenum alloy thin plate manufactured by the cross rolling disclosed in Non-Patent Document 1 or Patent Document 2 described above reduces the anisotropy of strength in the thin plate, and provides excellent deep drawability. Although advantageous in terms, there is a problem in that the production efficiency is low and the manufacturing cost of the thin plate is high as compared with the unidirectionally rolled material.
Pure molybdenum or molybdenum alloy generally has a fine fibrous structure and exhibits a certain degree of ductility even at room temperature, so that it can be cold-rolled. Therefore, when the materials of the material to be rolled are welded together, the welded part and the surrounding heat-affected part are recrystallized, and the crystal grains become coarse. In particular, since the crystal grain coarsening of the welded portion is remarkable, the ductile-brittle transition temperature is increased as compared with the original fibrous structure, and the welded portion and the heat-affected zone are markedly brittle.
Therefore, pure molybdenum and molybdenum alloy thin plates are currently supplied as short thin plates that are not welded in the manufacturing process even if they are subjected to the above-mentioned cross rolling in order to improve the deep drawability. is there.
An object of the present invention is to provide a method for producing a pure molybdenum or molybdenum alloy ribbon which can be rolled by welding the materials of the material to be rolled to form a long pure molybdenum or molybdenum alloy ribbon. .

本発明者は、長尺の純モリブデンまたはモリブデン合金薄帯を得るため、従来、困難とされていた純モリブデンまたはモリブデン合金板を溶接によって長尺化後、圧延する工程を検討した。その結果、延性−脆性遷移温度以上の温度での温間圧延を行うことにより、結晶粒が粗大化した溶接部と周辺の熱影響部をも圧延できることを見出し、本発明に到達した。
即ち本発明は、純モリブデンまたはモリブデン合金薄帯の製造方法において、厚さ0.5〜5.0mmの純モリブデンまたはモリブデン合金板を素材とし、該素材同士を溶接後、250〜600℃に加熱して総圧下率10〜90%の温間圧延を行う工程を含む純モリブデンまたはモリブデン合金薄帯の製造方法である。
好ましくは、温間圧延後に700〜1100℃での軟化焼鈍を行う純モリブデンまたはモリブデン合金薄帯の製造方法である。
本発明は、従来から行われたクロス圧延ではなく、温間圧延または冷間圧延時の圧延方向が一方向の圧延とすることができる純モリブデンまたはモリブデン合金薄帯の製造方法である。
In order to obtain a long pure molybdenum or molybdenum alloy ribbon, the present inventor examined a process of rolling a pure molybdenum or molybdenum alloy plate, which has been conventionally difficult, by elongating by welding. As a result, the present inventors have found that by performing warm rolling at a temperature equal to or higher than the ductile-brittle transition temperature, it is possible to roll the welded portion where the crystal grains are coarsened and the surrounding heat-affected zone as well.
That is, according to the present invention, in a method for producing pure molybdenum or molybdenum alloy ribbon, pure molybdenum or molybdenum alloy plate having a thickness of 0.5 to 5.0 mm is used as a raw material, and the raw materials are welded to each other and heated to 250 to 600 ° C. And a method for producing pure molybdenum or a molybdenum alloy ribbon including a step of warm rolling at a total rolling reduction of 10 to 90%.
Preferably, the method is a pure molybdenum or molybdenum alloy ribbon manufacturing method in which soft annealing at 700 to 1100 ° C. is performed after warm rolling.
The present invention is not a conventional cross rolling, but a method for producing pure molybdenum or a molybdenum alloy ribbon that can be rolled in one direction during the warm rolling or the cold rolling.

本発明の方法により製造される純モリブデンまたはモリブデン合金薄帯は、長尺で提供されるので、例えば、放電ランプ電極を製造する際の深絞り加工の様に、薄帯を使用した部品を連続的に製造する量産ラインにおいて、生産効率の向上に貢献できる。ひいては、純モリブデンまたはモリブデン合金薄帯を用いて成る部品の低価格化に効果を奏するものである。   The pure molybdenum or molybdenum alloy ribbon manufactured by the method of the present invention is provided in a long length, so that, for example, the parts using the ribbon are continuously used as in deep drawing when manufacturing a discharge lamp electrode. This contributes to the improvement of production efficiency in mass production lines. As a result, it is effective in reducing the price of parts made of pure molybdenum or molybdenum alloy ribbon.

上述したように、本発明の重要な特徴は、長尺の薄帯を得るために、所定厚さの純モリブデンまたはモリブデン合金板を溶接後、適切な温度範囲に加熱して、適切な圧下率の温間圧延を行う製造方法を採用したことにある。
以下、本発明における規定理由を述べる。
As described above, an important feature of the present invention is that, in order to obtain a long ribbon, a pure molybdenum or molybdenum alloy plate having a predetermined thickness is welded and then heated to an appropriate temperature range to obtain an appropriate reduction ratio. The production method of performing the warm rolling is employed.
Hereinafter, the reason for the definition in the present invention will be described.

素材の厚さ:0.5〜5.0mm
本発明において素材となる純モリブデンまたはモリブデン合金板の板厚は、0.5〜5.0mmとする。この理由は、0.5mm厚未満の素材では、溶接が難しくなることと併せて、圧延後に長尺の薄帯を得る効果が小さいからである。逆に、5.0mmを超える範囲では、素材を溶接後の取り扱いが難しくなるので、上述の範囲に規定した。より望ましい範囲は、0.8〜3.0mmである。
Material thickness: 0.5-5.0mm
The thickness of the pure molybdenum or molybdenum alloy plate used as the material in the present invention is set to 0.5 to 5.0 mm. This is because a material having a thickness of less than 0.5 mm is difficult to weld and has a small effect of obtaining a long ribbon after rolling. On the contrary, in the range exceeding 5.0 mm, it becomes difficult to handle the material after welding. A more desirable range is 0.8 to 3.0 mm.

温間圧延時の加熱温度:250〜600℃
溶接後に行う温間圧延時の加熱温度を規定した理由は、250℃未満の温度域では、結晶粒の粗大化した溶接部と熱影響部が脆性を示し、逆に600℃を超える温度では、純モリブデンまたはモリブデン合金の表面酸化が著しくなるからである。より望ましい範囲は、300〜500℃であり、更に好ましくは400〜450℃の範囲である。
Heating temperature during warm rolling: 250-600 ° C
The reason for prescribing the heating temperature at the time of warm rolling performed after welding is that, in a temperature range of less than 250 ° C., the welded portion and the heat-affected zone in which the crystal grains are coarsened are brittle, and conversely at a temperature exceeding 600 ° C. This is because the surface oxidation of pure molybdenum or molybdenum alloy becomes remarkable. A more desirable range is 300 to 500 ° C, and a more preferred range is 400 to 450 ° C.

温間圧延時の総圧下率:10〜90%
温間圧延を行うことによって、結晶粒の粗大化した溶接部と熱影響部を加工性の良好な繊維状組織に変化させることができる。但し、総圧下率が10%未満の範囲では、組織を繊維状とする効果が小さく、逆に90%を超える範囲では、繊維状組織は得られるものの、温間圧延中に純モリブデンまたはモリブデン合金の塑性加工限界に達して割れることがある。それ故、総圧下率の範囲を10〜90%とした。より望ましい範囲は30〜80%であり、更に好ましくは50〜75%の範囲である。
実際の作業においては、最初のパスで90%の圧下率とすると溶接部で破断する危険性が高くなる。そのため、最初のパスでは最大でも20%以下、好ましくは10%以下、更に好ましくは5%以下程度の圧下率とし、その後、圧下率を徐々に上げて行き、最終的に総圧下率を10〜90%とするのが良い。
なお、この温間圧延は、後述する焼鈍を施した後に、再度行っても良い。
Total rolling reduction during warm rolling: 10 to 90%
By performing the warm rolling, the welded portion and the heat-affected zone in which the crystal grains are coarsened can be changed to a fibrous structure having good workability. However, if the total rolling reduction is less than 10%, the effect of making the structure fibrous is small. Conversely, if it exceeds 90%, a fibrous structure is obtained, but pure molybdenum or a molybdenum alloy is obtained during warm rolling. May reach the limit of plastic working and crack. Therefore, the range of the total rolling reduction is 10 to 90%. A more desirable range is 30 to 80%, and a more preferred range is 50 to 75%.
In actual work, if the reduction rate is 90% in the first pass, there is a high risk of fracture at the weld. Therefore, in the first pass, the reduction rate is 20% or less, preferably 10% or less, more preferably 5% or less at the maximum, and then the reduction rate is gradually increased, and finally the total reduction rate is 10 to 10%. 90% is good.
In addition, you may perform this warm rolling again, after giving the annealing mentioned later.

なお、本発明における純モリブデンまたはモリブデン合金とは、公知のいかなるモリブデン材料でも良い。例えば、3Nレベルの純モリブデンでも良いし、モリブデンにチタンを約0.5%、ジルコンを約0.05%添加したTZMと呼ばれるモリブデン合金でも良く、モリブデン合金とは典型的には最大でも10質量%以下の範囲でモリブデン以外の元素を含んだものであれば良い。
また、本発明では厚さ0.5〜5.0mmの板となるまでの素材の製造工程も、特に規定しない。例えば、エレクトロンビーム溶解により溶解後に熱間圧延した板でも良いし、粉末焼結材を熱間圧延した板でも良い。
また、本発明では、溶接の方法も特に規定はなく、公知のいかなる溶接方法を用いても良い。但し、電子ビーム溶接やレーザ溶接は、高価な溶接方法であるので、経済的には、酸化防止のためにアルゴンガスでシールドした雰囲気内でのTIG溶接が望ましい。
The pure molybdenum or molybdenum alloy in the present invention may be any known molybdenum material. For example, pure molybdenum of 3N level may be used, or a molybdenum alloy called TZM in which about 0.5% titanium and about 0.05% zircon are added to molybdenum may be used. Any element containing elements other than molybdenum may be used within a range of% or less.
Further, in the present invention, the manufacturing process of the material until it becomes a plate having a thickness of 0.5 to 5.0 mm is not particularly specified. For example, a plate hot-rolled after melting by electron beam melting or a plate hot-rolled from a powder sintered material may be used.
In the present invention, the welding method is not particularly specified, and any known welding method may be used. However, since electron beam welding and laser welding are expensive welding methods, economically, TIG welding in an atmosphere shielded with argon gas is desirable to prevent oxidation.

次に、好ましい製法として規定した軟化焼鈍について説明する。
温間圧延後の軟化焼鈍温度:700〜1100℃
本発明方法により製造した純モリブデンまたはモリブデン合金を、例えば深絞り加工に供する場合、温間圧延後に軟化焼鈍を行っておくことが望ましい。
その理由は、温間圧延したままの状態では、加工硬化により硬さが上昇しているため、深絞り時に必要な伸びや絞りが得られないからである。但し、700℃未満の温度では、硬さを低下させる効果が小さく、逆に1100℃を超える範囲では、温間圧延時に形成された繊維状組織が再結晶によって粗粒化し脆化するため上述の範囲に規定した。より望ましい軟化焼鈍温度の範囲は、800〜1000℃である。
また、純モリブデンまたはモリブデン合金の酸化による脆化を防ぐため、軟化焼鈍は、非酸化性雰囲気で行うことが望ましく、具体的にはアルゴンガス、水素ガスやこれらの混合ガス雰囲気中で行うと良い。
Next, the softening annealing specified as a preferable manufacturing method will be described.
Soft annealing temperature after warm rolling: 700-1100 ° C
When pure molybdenum or a molybdenum alloy produced by the method of the present invention is subjected to, for example, deep drawing, it is desirable to perform soft annealing after warm rolling.
The reason for this is that in the state of being warm-rolled, the hardness is increased by work hardening, so that it is not possible to obtain the necessary elongation and drawing during deep drawing. However, when the temperature is lower than 700 ° C., the effect of reducing the hardness is small. Conversely, when the temperature exceeds 1100 ° C., the fibrous structure formed during the warm rolling is coarsened and embrittled by recrystallization. Stipulated in the range. A more desirable softening annealing temperature range is 800 to 1000 ° C.
Further, in order to prevent embrittlement due to oxidation of pure molybdenum or molybdenum alloy, soft annealing is desirably performed in a non-oxidizing atmosphere, and specifically, in argon gas, hydrogen gas, or a mixed gas atmosphere thereof. .

以上、説明した本発明の方法によれば、従来から行われてきたクロス圧延ではなく、温間圧延または冷間圧延時の圧延方向が一方向の圧延によって長尺の純モリブデンまたはモリブデン合金薄帯を製造することができるため、製造効率を高め、製造コストの低減が図れる。
この時、リバース圧延を行えばより一層生産性が向上する。なお、本発明で言う一方向の圧延とはリール−リールのリバース圧延も含むものである。
As described above, according to the method of the present invention described above, a long pure molybdenum or molybdenum alloy ribbon is obtained by rolling in one direction of the rolling direction during the warm rolling or the cold rolling instead of the conventional cross rolling. Therefore, manufacturing efficiency can be improved and manufacturing cost can be reduced.
At this time, if reverse rolling is performed, the productivity is further improved. The one-way rolling referred to in the present invention includes reel-to-reel reverse rolling.

次に、本発明では必要に応じて、上述の温間圧延や軟化焼鈍の後に、冷間圧延を行っても良い。
溶接部と熱影響部の結晶粒が粗大化したままの組織で冷間圧延を行うことはできないが、上述の温間圧延と軟化焼鈍を経て繊維状となった組織であれば、溶接部や熱影響部であっても破断することなく冷間圧延を行える。
また、温間圧延と比較して冷間圧延は、板厚や表面肌の制御を行い易いことから、特に最終の仕上げ圧延は、冷間で行うことが望ましい。
この冷間圧延時の圧下率は、特に規定しないが、5〜50%の範囲が望ましい。その理由は、5%未満の圧延では板厚や表面肌の制御を行うことが難しく、逆に50%を超える範囲では、冷間圧延中に塑性加工限界に達し、破断するからである。より望ましくは、10〜30%であると良く、冷間圧延を行った後には加工硬化が起きているので、軟化焼鈍により硬さを下げておくことが望ましい。この場合の軟化焼鈍は、温間圧延後と同様、700〜1100℃の範囲で行うと良い。
Next, in the present invention, if necessary, cold rolling may be performed after the above-described warm rolling or softening annealing.
Although cold rolling cannot be performed in a structure in which the crystal grains of the welded part and the heat-affected zone are coarsened, if the structure is a fibrous structure after the above-described warm rolling and softening annealing, Even in the heat-affected zone, cold rolling can be performed without breaking.
Also, since cold rolling is easier to control the plate thickness and surface skin than warm rolling, it is desirable that the final finish rolling be performed particularly cold.
The rolling reduction during the cold rolling is not particularly specified, but is preferably in the range of 5 to 50%. This is because it is difficult to control the plate thickness and the surface skin when rolling is less than 5%, and conversely, when it exceeds 50%, the plastic working limit is reached during the cold rolling and fracture occurs. More preferably, it is 10 to 30%, and work hardening occurs after cold rolling, so it is desirable to reduce the hardness by softening annealing. The softening annealing in this case is preferably performed in the range of 700 to 1100 ° C. as in the case of warm rolling.

以下の実施例で本発明を更に詳しく説明する。
表1に示す組成(純度3N)の厚さ1.0mm、幅100mm、長さ200mmの2枚の純モリブデン板を被圧延材の素材とした。この素材は、純モリブデン粉末を焼結後、熱間圧延することにより得られた板である。
この2枚の素材(純モリブデン板)を突き合せてTIG溶接機により溶接した。
TIG溶接条件は、電流値150A、溶接速度500mm/minであり、酸化防止のためにアルゴンガスでシールドした雰囲気内で溶接作業を行った。なお、溶接棒は使用しなかった。
被圧延材の素材の化学組成を表1に示す。
The following examples further illustrate the present invention.
Two pure molybdenum plates having a composition (purity of 3N) shown in Table 1 having a thickness of 1.0 mm, a width of 100 mm, and a length of 200 mm were used as the material of the material to be rolled. This material is a plate obtained by hot rolling after sintering pure molybdenum powder.
The two materials (pure molybdenum plates) were butted together and welded by a TIG welder.
TIG welding conditions were a current value of 150 A, a welding speed of 500 mm / min, and the welding operation was performed in an atmosphere shielded with argon gas to prevent oxidation. A welding rod was not used.
Table 1 shows the chemical composition of the material of the material to be rolled.

素材である純モリブデン板の断面組織、および溶接部と周辺の熱影響部の断面組織を、それぞれ図1と図2に示す。素材は繊維状の組織(図1)であるのに対し、溶接部1と熱影響部2では再結晶している。
特に、溶接部の結晶粒は粗大化している(図2)。画像解析により平均結晶粒径を測定したところ、溶接部1は143μm、熱影響部2は24μmであった。
The cross-sectional structure of the pure molybdenum plate, which is the raw material, and the cross-sectional structure of the welded part and the surrounding heat-affected part are shown in FIGS. While the material is a fibrous structure (FIG. 1), the weld 1 and the heat affected zone 2 are recrystallized.
In particular, the crystal grains in the weld are coarsened (FIG. 2). When the average crystal grain size was measured by image analysis, the welded portion 1 was 143 μm, and the heat affected zone 2 was 24 μm.

TIG溶接後の板より、幅10mm、長さ60mm(以下、試料1)と幅100mm、長さ120mm(以下、試料2)の2種類の試料を放電加工機により切り出した。いずれの試料においても、長さ方向のほぼ中央部がTIG溶接部となる様にした。
これらの試料を430℃に加熱後、温間圧延を行い、各試料の板厚をそれぞれ0.35mm(試料1)と0.16mm(試料2)に仕上げた。試料1の総圧下率は65%であり、試料2の総圧下率は84%である。
なお、温間圧延は、複数のパス回数に分けて行い、1パスが終了するごとに試料を430℃に再加熱した。また、いずれの試料においても温間圧延の方向は一方向とし、試料の長さ方向のみに圧延した。温間圧延中に溶接部や熱影響部が破断することはなかった。一例として、試料1を温間圧延後(総圧下率65%)の外観を図3に示す。
圧延後の断面組織を図4〜5に示す。図4は、低倍率での観察組織であり、図5は、図4の内、特に溶接部の組織を拡大した写真である。図4〜5より、溶接後に結晶粒が粗大化していた溶接部(図2)も、総圧下率65%の温間圧延により、繊維状の組織に変化することが分かる。
Two types of samples having a width of 10 mm, a length of 60 mm (hereinafter referred to as sample 1), and a width of 100 mm and a length of 120 mm (hereinafter referred to as sample 2) were cut out from the plate after TIG welding by an electric discharge machine. In any sample, the substantially central part in the length direction was made to be a TIG welded part.
These samples were heated to 430 ° C. and then warm-rolled to finish the plate thickness of each sample to 0.35 mm (sample 1) and 0.16 mm (sample 2), respectively. The total rolling reduction of sample 1 is 65%, and the total rolling reduction of sample 2 is 84%.
In addition, warm rolling was divided into a plurality of passes, and the sample was reheated to 430 ° C. every time one pass was completed. Moreover, in any sample, the direction of warm rolling was set to one direction, and it rolled only to the length direction of the sample. During the warm rolling, the welded part and the heat affected part did not break. As an example, FIG. 3 shows the appearance of sample 1 after warm rolling (total rolling reduction of 65%).
The cross-sectional structure after rolling is shown in FIGS. 4 is an observation structure at a low magnification, and FIG. 5 is an enlarged photograph of the structure of the welded portion in FIG. 4 in particular. 4-5, it turns out that the welded part (FIG. 2) from which the crystal grain became coarse after welding also changes to a fibrous structure | tissue by warm rolling of 65% of total reduction.

温間圧延により、溶接部の粗大粒(図2)を繊維状組織(図4〜5)に変化させておけば、溶接部も他の部分と同様に取り扱うことができる。換言すれば、溶接後に一度、温間圧延を施した後は、例えば、鉄鋼材料の様な他材料の薄帯を圧延によって製造する場合と同様の一般的な方法で、純モリブデンまたはモリブデン合金薄帯を製造することができる。
すなわち、必要に応じて温間圧延と軟化焼鈍を2回以上、繰り返すこともできる。また、温間圧延と軟化焼鈍を行った後、冷間圧延を施すこともできる。
但し、図1に示すように、溶接部にはブローホールが発生しやすく、溶接部以外の個所とでは機械的特性が異なる場合があるため、実際の製品とする場合には、溶接部の使用は避ける方が良い。
If the coarse grain (FIG. 2) of a welded part is changed into a fibrous structure (FIGS. 4 to 5) by warm rolling, the welded part can be handled in the same manner as other parts. In other words, after performing the warm rolling once after the welding, for example, a pure molybdenum or molybdenum alloy thin film is manufactured by a general method similar to that for producing a ribbon of another material such as a steel material by rolling. Bands can be manufactured.
That is, warm rolling and softening annealing can be repeated twice or more as necessary. Moreover, after performing warm rolling and softening annealing, cold rolling can also be performed.
However, as shown in Fig. 1, blowholes are likely to occur in the welded part, and the mechanical characteristics may differ from the parts other than the welded part. Is better to avoid.

一方向に圧延した試料2(板厚0.16mm、総圧下率84%)に対し、1080℃の水素雰囲気炉中で4分間の軟化焼鈍を行った後、深絞り性評価としてのエリクセン試験に供した。
JIS Z2247に準拠した方法で試験を行った結果、得られたエリクセン値は、4.4mmであった。特許文献2に記される様に、深絞り加工の可能な目安となるエリクセン値は約4.0mmであることから、一方向の圧延であっても、実用に耐え得る深絞り性が得られている。
Sample 2 (plate thickness 0.16 mm, total reduction rate 84%) rolled in one direction was subjected to soft annealing for 4 minutes in a hydrogen atmosphere furnace at 1080 ° C., and then subjected to the Erichsen test as a deep drawability evaluation. Provided.
As a result of testing by a method based on JIS Z2247, the obtained Erichsen value was 4.4 mm. As described in Patent Document 2, the Erichsen value, which is a possible guide for deep drawing, is about 4.0 mm, so that deep drawing properties that can withstand practical use can be obtained even with unidirectional rolling. ing.

(比較例)
TIG溶接後の純モリブデン板より、試料1と同じ幅10mm、長さ60mmの試料(以下、試料3)を切り出した。試料3においても、長さ方向のほぼ中央部がTIG溶接部となる様にした。この試料3を加熱せずに冷間圧延に供したところ、図6に示す様な試料の破断が起こり、全く圧延できなかった。
断面組織を確認すると、図7に示す通り、溶接部1と熱影響部2で破断が起きていた。図6より、溶接部や熱影響部は粗大化した結晶粒のままであり、繊維状の組織に全く変化していない。
(Comparative example)
A sample having a width of 10 mm and a length of 60 mm (hereinafter referred to as “sample 3”) was cut out from the pure molybdenum plate after TIG welding. Also in the sample 3, the substantially central portion in the length direction was made to be a TIG welded portion. When this sample 3 was subjected to cold rolling without heating, the sample was broken as shown in FIG. 6 and could not be rolled at all.
When the cross-sectional structure was confirmed, the weld 1 and the heat affected zone 2 were broken as shown in FIG. As shown in FIG. 6, the welded part and the heat-affected part remain as coarse crystal grains, and are not changed into a fibrous structure.

以上の実施例から、(1)溶接部の圧延を行うためには温間圧延が必要であること、(2)温間圧延により、溶接部の粗大な結晶粒が、延性のある繊維状組織に変化すること、及び(3)比較的安価な一方向圧延であっても、実用に耐え得る深絞り性(エリクセン値)が得られることが分かった。本実施例は、実験室レベルでの検討結果であるが、薄帯の実生産にも適用できる。
すなわち、本発明の製造方法を適用することにより、従来、得られなかった長尺の純モリブデンまたはモリブデン合金薄帯を得ることができ、例えば、放電ランプ電極を製造する際の深絞り加工時の生産効率の向上に貢献できる。ひいては、該薄帯を用いて成る放電ランプ電極の低価格化にも効果を奏する。
From the above examples, (1) warm rolling is required to perform rolling of the welded portion, and (2) coarse crystal grains of the welded portion have a ductile fibrous structure by warm rolling. And (3) it was found that deep drawability (Ericsen value) that can withstand practical use can be obtained even with relatively inexpensive unidirectional rolling. This example is the result of examination at the laboratory level, but it can also be applied to actual production of ribbons.
That is, by applying the manufacturing method of the present invention, it is possible to obtain a long pure molybdenum or molybdenum alloy ribbon that has not been obtained conventionally, for example, during deep drawing when manufacturing a discharge lamp electrode. Contributes to improved production efficiency. As a result, it is also effective in reducing the price of the discharge lamp electrode formed using the ribbon.

本発明によれば、純モリブデンまたはモリブデン合金薄帯を長尺化できる点で優れているので、これらの薄帯を使用した部品を連続的に製造する量産ラインにおいて、生産効率の向上に貢献できる。本明細書では、液晶表示装置のバックライトに使用される放電ランプの電極を用途例として挙げたが、その他、半導体部品のリード電極やブラウン管内のカソード部品等にも適用できる。   According to the present invention, it is excellent in that the length of pure molybdenum or molybdenum alloy ribbon can be increased, so that it can contribute to the improvement of production efficiency in a mass production line that continuously manufactures parts using these ribbons. . In this specification, the electrode of the discharge lamp used for the backlight of the liquid crystal display device is given as an application example, but it can also be applied to a lead electrode of a semiconductor component, a cathode component in a cathode ray tube, or the like.

素材の断面組織を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the cross-sectional structure | tissue of a raw material. 溶接部と熱影響部の断面組織を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the cross-sectional structure of a welding part and a heat affected zone. 本発明の製造方法において圧延後の外観を示す写真である。It is a photograph which shows the external appearance after rolling in the manufacturing method of this invention. 本発明の製造方法において圧延後の断面組織を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the cross-sectional structure | tissue after rolling in the manufacturing method of this invention. 本発明の製造方法において圧延後の溶接部の拡大組織を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the expanded structure of the welding part after rolling in the manufacturing method of this invention. 比較例の製造方法において圧延後の外観を示す写真である。It is a photograph which shows the external appearance after rolling in the manufacturing method of a comparative example. 比較例の製造方法において圧延後の断面組織を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the cross-sectional structure | tissue after rolling in the manufacturing method of a comparative example.

符号の説明Explanation of symbols

1. 溶接部
2. 熱影響部
1. 1. Welded part Heat affected zone

Claims (3)

純モリブデンまたはモリブデン合金薄帯の製造方法において、厚さ0.5〜5.0mmの純モリブデンまたはモリブデン合金板を素材とし、該素材同士を溶接後、250〜600℃に加熱して総圧下率10〜90%の温間圧延を行う工程を含むことを特徴とする純モリブデンまたはモリブデン合金薄帯の製造方法。 In a method for producing pure molybdenum or molybdenum alloy ribbon, a pure molybdenum or molybdenum alloy plate having a thickness of 0.5 to 5.0 mm is used as a raw material. A method for producing pure molybdenum or a molybdenum alloy ribbon, comprising a step of performing 10% to 90% warm rolling. 温間圧延後に700〜1100℃での軟化焼鈍を行うことを特徴とする請求項1に記載の純モリブデンまたはモリブデン合金薄帯の製造方法。 The method for producing pure molybdenum or molybdenum alloy ribbon according to claim 1, wherein soft annealing at 700 to 1100 ° C is performed after warm rolling. 温間圧延または冷間圧延時の圧延方向が一方向であることを特徴とする請求項1または2に記載の純モリブデンまたはモリブデン合金薄帯の製造方法。 The method for producing pure molybdenum or a molybdenum alloy ribbon according to claim 1 or 2, wherein the rolling direction during warm rolling or cold rolling is one direction.
JP2004177178A 2004-06-15 2004-06-15 Method for producing pure molybdenum or molybdenum alloy thin strip Pending JP2006002178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177178A JP2006002178A (en) 2004-06-15 2004-06-15 Method for producing pure molybdenum or molybdenum alloy thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177178A JP2006002178A (en) 2004-06-15 2004-06-15 Method for producing pure molybdenum or molybdenum alloy thin strip

Publications (1)

Publication Number Publication Date
JP2006002178A true JP2006002178A (en) 2006-01-05

Family

ID=35770823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177178A Pending JP2006002178A (en) 2004-06-15 2004-06-15 Method for producing pure molybdenum or molybdenum alloy thin strip

Country Status (1)

Country Link
JP (1) JP2006002178A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215933A (en) * 2009-03-13 2010-09-30 Allied Material Corp Molybdenum plate and method for producing the same
CN103658171A (en) * 2012-09-24 2014-03-26 上海六晶金属科技有限公司 Warm-rolling and cogging-down method of pure molybdenum sheet
JP2016536469A (en) * 2013-09-13 2016-11-24 アメテック,インコーポレイティド Method for producing molybdenum strip or molybdenum-containing strip
CN107127213A (en) * 2017-06-14 2017-09-05 中南大学 A kind of method for preparing very thin metal molybdenum foil
US20200306832A1 (en) * 2017-09-29 2020-10-01 Plansee Se Sintered molybdenum part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215933A (en) * 2009-03-13 2010-09-30 Allied Material Corp Molybdenum plate and method for producing the same
CN103658171A (en) * 2012-09-24 2014-03-26 上海六晶金属科技有限公司 Warm-rolling and cogging-down method of pure molybdenum sheet
CN103658171B (en) * 2012-09-24 2016-02-10 上海六晶金属科技有限公司 A kind of warm-rolling cogging method of pure molybdenum thin plate
JP2016536469A (en) * 2013-09-13 2016-11-24 アメテック,インコーポレイティド Method for producing molybdenum strip or molybdenum-containing strip
CN107127213A (en) * 2017-06-14 2017-09-05 中南大学 A kind of method for preparing very thin metal molybdenum foil
CN107127213B (en) * 2017-06-14 2018-11-06 中南大学 A method of preparing very thin metal molybdenum foil
US20200306832A1 (en) * 2017-09-29 2020-10-01 Plansee Se Sintered molybdenum part
US11925984B2 (en) * 2017-09-29 2024-03-12 Plansee Se Sintered molybdenum part

Similar Documents

Publication Publication Date Title
JP6639908B2 (en) Copper alloy wire and method of manufacturing the same
JP6499159B2 (en) Copper alloy wire and method for producing the same
JP2016128171A (en) Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method
JP4274177B2 (en) Steel pipe for bearing element parts, manufacturing method and cutting method thereof
KR102532976B1 (en) Titanium alloy plate, manufacturing method of titanium alloy plate, manufacturing method of copper foil manufacturing drum and copper foil manufacturing drum
JPWO2017018517A1 (en) Titanium material for hot rolling
WO2022123812A1 (en) Method for manufacturing austenitic stainless steel strip
JP2017186665A (en) Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND MANUFACTURING METHOD THEREFOR
JP2009046760A (en) Co-BASED ALLOY STOCK FOR LIVING BODY FOR HOT DIE FORGING, AND METHOD FOR PRODUCING THE SAME
JP5821929B2 (en) High-strength hot-rolled steel sheet with excellent material stability and weldability and method for producing the same
JP2006002178A (en) Method for producing pure molybdenum or molybdenum alloy thin strip
JP2007107078A (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP2010229458A (en) HIGH-STRENGTH alpha+beta TYPE TITANIUM ALLOY SUPERIOR IN TOUGHNESS, AND METHOD FOR MANUFACTURING THE SAME
JPWO2012014851A1 (en) Steel for thermal cutting using oxygen
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
CN105555976A (en) Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part
JP5523288B2 (en) Seamless steel pipe for high-strength hollow springs
JP5143799B2 (en) Steel wire rod for solid wire excellent in pickling property and method for producing the same
JP3907095B2 (en) Method for producing aluminum alloy foil
KR20180004253A (en) Steel strip for cutlery
JP2011168843A (en) METHOD FOR MANUFACTURING Cu-CONTAINING HIGH-STRENGTH STEEL
WO2019049792A1 (en) Welding method and joining member
JP6775335B2 (en) Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector
EP3444365A1 (en) Titanium alloy and method for producing material for timepiece exterior parts
JP4872577B2 (en) Copper alloy backing plate and copper alloy manufacturing method for backing plate