JP2005532692A - Defect reduction in semiconductor materials. - Google Patents

Defect reduction in semiconductor materials. Download PDF

Info

Publication number
JP2005532692A
JP2005532692A JP2004520620A JP2004520620A JP2005532692A JP 2005532692 A JP2005532692 A JP 2005532692A JP 2004520620 A JP2004520620 A JP 2004520620A JP 2004520620 A JP2004520620 A JP 2004520620A JP 2005532692 A JP2005532692 A JP 2005532692A
Authority
JP
Japan
Prior art keywords
etching
epitaxial
growth
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004520620A
Other languages
Japanese (ja)
Inventor
ロイクロフト,ブレンダン,ジョン
マアスカント,プレアン,ピーター
Original Assignee
ユニバーシティ・カレッジ・コークーナショナル・ユニバーシティ・オブ・アイルランド,コーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーシティ・カレッジ・コークーナショナル・ユニバーシティ・オブ・アイルランド,コーク filed Critical ユニバーシティ・カレッジ・コークーナショナル・ユニバーシティ・オブ・アイルランド,コーク
Publication of JP2005532692A publication Critical patent/JP2005532692A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30617Anisotropic liquid etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

GaNからなる最初のエピタキシャル層(2)をサファイア基板(2)の上に成長させる。次に、エピタキシャル層(2)を反応性イオンエッチング(RIE)チャンバ内でエッチングする。このエッチングが欠陥(3)に対して優先的に作用して、それらを拡大されたキャビティ(5)にする。キャビティ(5)は結晶格子に対して大き過ぎるので、通常の意味での欠陥として作用せず、更なるGaNエピタキシャル層がキャビティ内を充填する。従って、欠陥の伝播が回避される。An initial epitaxial layer (2) made of GaN is grown on a sapphire substrate (2). Next, the epitaxial layer (2) is etched in a reactive ion etching (RIE) chamber. This etching preferentially acts on the defects (3), making them enlarged cavities (5). Since the cavity (5) is too large for the crystal lattice, it does not act as a defect in the normal sense and a further GaN epitaxial layer fills the cavity. Therefore, the propagation of defects is avoided.

Description

本発明は、欠陥密度を減少させたエピタキシャル材料の製造に関する。   The present invention relates to the manufacture of epitaxial materials with reduced defect density.

エピタキシャルウエハ材料は、半導体デバイス製造における開始材料として広く使用されている。このようなウエハ材料における欠陥の存在は、得られるデバイスの性能に深刻な影響を与える虞がある。例えば、GaN及びその関連する化合物であるInGaN及びAlGaNは、短波長半導体レーザダイオードの製造に広く使用されている。このようなレーザダイオードの性能は、エピタキシャル層の中を縦方向に通るらせん(threading)転位の存在によってひどく劣化する。同様の欠陥は、他の材料系、例えばGaAsをSiGe/Si上に成長させる場合に認められる。従って、エピタキシャルウエハ材料上の転位密度を少なくすることが好ましい。以下の記載において、GaNは、その化合物(In)(Al)(Ga)Nをもいうものであり、かつp型、n型またはドープされていないものであっても良いことがことが理解される。   Epitaxial wafer materials are widely used as starting materials in semiconductor device manufacturing. The presence of such defects in the wafer material can seriously affect the performance of the resulting device. For example, GaN and its related compounds, InGaN and AlGaN, are widely used in the manufacture of short wavelength semiconductor laser diodes. The performance of such laser diodes is severely degraded by the presence of threading dislocations that run longitudinally through the epitaxial layer. Similar defects are observed when other material systems such as GaAs are grown on SiGe / Si. Therefore, it is preferable to reduce the dislocation density on the epitaxial wafer material. In the following description, it is understood that GaN also refers to its compound (In) (Al) (Ga) N and may be p-type, n-type or undoped. The

欠陥密度を減少させるという問題を解決する従来の方法で本願発明者が知っているものは、米国特許出願US2002/0022290号明細書に記載されているエピタキシャル成長(ELOG)である。この方法では、二酸化シリコンの細いストリップをGaNバッファ層の上にパターン形成する。次に、SiOのストリップが被覆されて平坦な表面が達成されるまで、GaN成長を再開する。前記ストリップの下側の欠陥が見えなくなり、かつ前記ストリップの上のエピタキシャル材料が、ストリップ間に成長するエピタキシャル材料よりも低い欠陥密度を有することは明らかである。SiO上の材料は高品質を有することが分かっているが、前記ストリップ間の材料は変わっておらず、従ってELOGの工程を多数回行って、広い面積の高品質材料を作る必要があると思われる。良好なELOG成長における欠陥密度は、標準的なGaN/サファイア成長における1010cm−2から1回のELOG過程で10cm−2まで、または多数回のELOG過程の後に5.10cm−2まで減少する。5.10cm−2の欠陥密度は、14μm×14μm平方面積当たりの欠陥数が1であることに対応している。従って、欠陥の無い面積のサイズは、デバイスの製造に利用可能である50mm径のウエハ面積と比較して依然として小さい。 One conventional method that solves the problem of reducing defect density is known to the inventors by epitaxial growth (ELOG) described in US patent application US 2002/0022290. In this method, a thin strip of silicon dioxide is patterned on the GaN buffer layer. The GaN growth is then resumed until a strip of SiO 2 is coated to achieve a flat surface. It is clear that the defects under the strip are not visible and the epitaxial material on the strip has a lower defect density than the epitaxial material grown between the strips. The material on SiO 2 has been found to have high quality, but the material between the strips has not changed, so it is necessary to perform the ELOG process many times to make a high quality material with a large area. Seem. The defect density in good ELOG growth ranges from 10 10 cm −2 in standard GaN / sapphire growth to 10 8 cm −2 in one ELOG process, or 5.10 5 cm after multiple ELOG processes. Decrease to 2 . A defect density of 5.10 5 cm −2 corresponds to a defect number of 1 per 14 μm × 14 μm square area. Therefore, the size of the defect free area is still small compared to the 50 mm diameter wafer area available for device fabrication.

別の問題は、この方法が加工処理及び再成長において更に相当な努力を必要とし、最良の結果を得るために100μmを超えるエピタキシャル成長が要求されることである。   Another problem is that this method requires much more effort in processing and regrowth, and epitaxial growth in excess of 100 μm is required for best results.

米国特許出願US2002/0005593号明細書に記載されている第2の方法は、高温(1000℃)で標準的なGaNエピタキシャル層を成長させ、次に低温(700〜900℃)でGaNの薄層を被着させ、次に高温(1000℃)で成長を再開することである。この方法によって、欠陥が縦方向に伝播することが防止され、欠陥密度が>1010cm−2から4.10cm−2まで減少すると主張している。この方法は、欠陥の除去が不十分であるという問題がある。 A second method described in US patent application US2002 / 0005593 is to grow a standard GaN epitaxial layer at a high temperature (1000 ° C.) and then a thin layer of GaN at a low temperature (700-900 ° C.). And then resume the growth at a high temperature (1000 ° C.). This method claims that defects are prevented from propagating in the longitudinal direction and the defect density is reduced from> 10 10 cm −2 to 4.10 7 cm −2 . This method has a problem that defects are not sufficiently removed.

第3の方法は、液体ガリウムと非常に高圧(45,000バール)の窒素とからGaN基板を直接製造することである(ポーランド国のUnipressによる)。この方法は、非常に高度に専門的で高価な設備を使用すること及び相当小さい(〜1cm)のGaN結晶が形成されるという問題がある。 A third method is to directly produce a GaN substrate from liquid gallium and very high pressure (45,000 bar) nitrogen (according to Unipress, Poland). This method suffers from the use of very highly specialized and expensive equipment and the formation of fairly small (˜1 cm 2 ) GaN crystals.

そこで、本発明は、比較的一般的で高価でない設備及び材料を用いて、大きな面積のエピタキシャル材料を低欠陥密度で簡単かつ効果的に製造する方法及びシステムを提供することを目的とする。   Accordingly, an object of the present invention is to provide a method and system for easily and effectively manufacturing an epitaxial material having a large area with a low defect density by using relatively common and inexpensive equipment and materials.

本発明によれば、エピタキシャル層を基板上に成長させる低欠陥半導体ウエハを製造する方法であって、
(a)前記基板上にエピタキシャル材料の層を成長させ、
(b)前記層の欠陥を優先的にエッチングするように前記エピタキシャル層をエッチングし、かつ
(c)エッチングした前記エピタキシャルウエハ上に次のエピタキシャル材料の層を成長させる過程からなることを特徴とする方法が提供される。
According to the present invention, a method of manufacturing a low defect semiconductor wafer in which an epitaxial layer is grown on a substrate, comprising:
(A) growing a layer of epitaxial material on the substrate;
(B) etching the epitaxial layer so as to preferentially etch defects in the layer, and (c) growing a next epitaxial material layer on the etched epitaxial wafer. A method is provided.

ある実施例では、前記過程(b)が、RIE、またはICP(誘導結合プラズマエッチング)、または化学反応イオンビームエッチング、または他の適当なドライエッチング方法によるドライエッチングに前記表面を曝露することによって実行される。   In one embodiment, step (b) is performed by exposing the surface to dry etching by RIE, ICP (Inductively Coupled Plasma Etching), or chemically reactive ion beam etching, or other suitable dry etching method. Is done.

別の実施例では、前記過程(b)が、王水、またはKOH/NaOHの混合物、または他の適当なウエットエッチング溶液に浸漬することによって実行される。   In another embodiment, step (b) is performed by dipping in aqua regia, or a KOH / NaOH mixture, or other suitable wet etch solution.

更に別の実施例では、前記成長過程(c)について追加の化合物を添加して表面平滑度を向上させる。   In yet another embodiment, an additional compound is added to the growth process (c) to improve surface smoothness.

ある実施例では、前記追加の化合物がIn(Ga)N、またはAl(Ga)N、またはマグネシウムドープド(Al)(In)(Ga)Nである。   In one embodiment, the additional compound is In (Ga) N, or Al (Ga) N, or magnesium doped (Al) (In) (Ga) N.

別の実施例では、前記エピタキシャル材料がGaNである。   In another embodiment, the epitaxial material is GaN.

更に別の実施例では、前記基板がサファイア材料から形成されている。   In yet another embodiment, the substrate is formed from a sapphire material.

ある実施例では、前記基板がSi、SiC、またはダイアモンド材料で形成されている。   In one embodiment, the substrate is made of Si, SiC, or diamond material.

ある実施例では、前記エピタキシャル材料がInPである。   In one embodiment, the epitaxial material is InP.

別の実施例では、前記エピタキシャル材料がGaAsである。   In another embodiment, the epitaxial material is GaAs.

更に別の実施例では、目標の欠陥密度を達成するまで前記過程(b)及び(c)を追加して1回またはそれ以上の回数繰り返す過程を更に有する。   In yet another embodiment, the method further includes repeating the steps (b) and (c) one or more times until the target defect density is achieved.

ある実施例では、前記エッチングが成長チャンバ内でその場で実行される。   In one embodiment, the etching is performed in situ in the growth chamber.

別の実施例では、前記エッチングが真空下で実行される。   In another embodiment, the etching is performed under vacuum.

本発明の別の側面によれば、上述した方法により製造される半導体ウエハが提供される。   According to another aspect of the present invention, a semiconductor wafer manufactured by the above-described method is provided.

本発明は、添付図面を参照しつつ、その単なる実施例として以下に詳細に記載されるいくつかの実施態様からより明確に理解することができる。   The invention can be more clearly understood from the several embodiments described in detail below, by way of example only, with reference to the accompanying drawings, in which:

図1(a)に関し、サファイア基板1は、デバイスクオリティのウエハ材料のエピタキシャル成長のための基板としての役目を持つ。図1(b)に示すように、GaNからなる初期エピタキシャル層2を基板1上に従来の方法で成長させる。しかしながら、エピタキシャル層2の中をねじれて通る多くの欠陥3が存在する。   With reference to FIG. 1 (a), a sapphire substrate 1 serves as a substrate for epitaxial growth of device quality wafer material. As shown in FIG. 1B, an initial epitaxial layer 2 made of GaN is grown on a substrate 1 by a conventional method. However, there are many defects 3 that twist through the epitaxial layer 2.

図1(c)に関し、エピタキシャル層2を成長チャンバ内でウエットまたはドライエッチングによりエッチングする。このエッチングはエピタキシャル層2に欠陥3に対して優先的に作用し、それらが拡大されたキャビティ5になるようにするが、それらは基板1まで延長していてもしていなくても良い。これらのキャビティは、図2に示すエッチング面の写真において黒い点として見える。キャビティ5は結晶格子に対して大きすぎるので、通常の意味での欠陥として作用しない。従って、GaNからなる別の層を成長させると(図1(d))、それが横方向成長を伴ってキャビティ5を充填し、エピタキシャル層2の上に均質な比較的欠陥の無いエピタキシャル成長10を形成する。インジウムまたはマグネシウムをGaNに添加して平坦化を助けることができる。過程(c)及び(d)は、過程(c)において欠陥の除去が不十分であった場合に繰り返すことができる。更なるエピタキシャル成長によって、高出力トランジスタ、発光ダイオード及びレーザダイオードのようなデバイスのためのウエハ材料を製造することができる。   Referring to FIG. 1C, the epitaxial layer 2 is etched by wet or dry etching in the growth chamber. This etching preferentially acts on the epitaxial layer 2 against the defects 3 so that they become enlarged cavities 5, which may or may not extend to the substrate 1. These cavities appear as black dots in the photograph of the etched surface shown in FIG. Since the cavity 5 is too large for the crystal lattice, it does not act as a defect in the normal sense. Thus, when another layer of GaN is grown (FIG. 1 (d)), it fills the cavity 5 with lateral growth and produces a homogeneous, relatively defect-free epitaxial growth 10 on the epitaxial layer 2. Form. Indium or magnesium can be added to GaN to aid in planarization. Steps (c) and (d) can be repeated if the defect removal is insufficient in step (c). Further epitaxial growth can produce wafer materials for devices such as high power transistors, light emitting diodes and laser diodes.

以下に、本発明を実行した2つの実施例を詳細に説明する。   In the following, two embodiments embodying the present invention will be described in detail.

実施例1
GaN成長に適当な基板(一般的にサファイアであるが、SiCまたは別のものであって良い)で始めて、MOVPEまたはMBEによる標準的な方法でGaN成長を開始する。別のグループによって、初期の三次元成長の後に二次元成長モードが起こることが分かっている。この二次元成長では、意図していないのに、その後の全ての成長において上向きに伝播する多くのらせん転位を伴う。面成長モードが確立された後に、前記ウエハを成長チャンバから取り外して、反応性イオンエッチング(RIE)チャンバ内に配置する。エッチング剤としてSiCl/Hの混合物でエッチングを行う。これは、微細な欠陥及びらせん転位を優先的にエッチングすることが分かっている。エッチングの時間は作業者の判断に委ねられるが、前記欠陥を実質的にエッチングするのに十分なものでなければならず、それは基板のところまで全部エッチングしてもしなくても良い。ドライエッチング後、前記基板は、NまたはNH雰囲気内で300〜1000℃で熱処理する。次に、GaN成長を成長反応器内で、平坦面が達成されるまで再開する。ここで前記ウエハは、要求されるデバイスエピタキシャル層をその後成長させる準備が整う。
Example 1
Starting with a suitable substrate for GaN growth (generally sapphire, but may be SiC or another), GaN growth is initiated in a standard manner by MOVPE or MBE. Another group has found that the two-dimensional growth mode occurs after the initial three-dimensional growth. This two-dimensional growth is unintended and involves many screw dislocations that propagate upward in all subsequent growth. After the surface growth mode is established, the wafer is removed from the growth chamber and placed in a reactive ion etching (RIE) chamber. Etching is performed with a mixture of SiCl 4 / H 2 as an etchant. This has been found to preferentially etch fine defects and screw dislocations. Etching time is left to the operator's discretion, but must be sufficient to substantially etch the defect, and may or may not be etched all the way to the substrate. After dry etching, the substrate is heat-treated at 300 to 1000 ° C. in an N 2 or NH 3 atmosphere. GaN growth is then resumed in the growth reactor until a flat surface is achieved. The wafer is now ready for subsequent growth of the required device epitaxial layer.

実施例2
GaN成長に適当な基板(一般的にサファイアであるが、SiCまたは別のものであって良い)で始めて、MOVPEまたはMBEによる標準的な方法でGaN成長を開始する。面成長モードが確立された後に、前記ウエハを成長チャンバから取り外して、沸騰した王水溶液(HCl:HNOを3:1の割合)ビーカ内に配置する。エッチングは、良好な品質のGaN領域をほとんど影響を受けない状態で残すが、微細な欠陥及びらせん転位は実質的にエッチングすることが分かっている。エッチングの時間は作業者の判断に委ねられるが、前記欠陥を実質的にエッチングするのに十分なものでなければならず、それは基板のところまで全部エッチングしてもしなくても良い。次に、前記ウエハを前記溶液から取り出し、沸騰したアンモニアポリスルフィド溶液内に10分間配置し、取り出し、イオン交換水でリンスし、次に乾燥させる。最後に、GaN成長を成長反応器内で、平坦面が達成されるまで再開する。ここで前記ウエハは、要求されるデバイスエピタキシャル層をその後成長させる準備が整う。
Example 2
Starting with a suitable substrate for GaN growth (generally sapphire, but may be SiC or another), GaN growth is initiated in a standard manner by MOVPE or MBE. After the plane growth mode is established, the wafer is removed from the growth chamber and placed in a boiled aqua regia (HCl: HNO 3 in a 3: 1 ratio) beaker. Etching has left a good quality GaN region almost unaffected, but fine defects and screw dislocations have been found to etch substantially. Etching time is left to the operator's discretion, but must be sufficient to substantially etch the defect, and may or may not be etched all the way to the substrate. The wafer is then removed from the solution, placed in a boiled ammonia polysulfide solution for 10 minutes, removed, rinsed with ion exchange water, and then dried. Finally, GaN growth is resumed in the growth reactor until a flat surface is achieved. The wafer is now ready for subsequent growth of the required device epitaxial layer.

本発明は従来技術よりも簡単な加工処理で欠陥をより効果的に減少させることが理解される。例えば、前記エッチング過程はウエハ全面に適用されるので、ELOG方法のように表面領域を画定/マスキングする必要がない。更に、本発明は、基板の上に均質なGaNエピタキシャル成長が効果的に提供されるので、異質な物質(ELOGにおけるSiOまたはSiのような)を混入する必要がない。別の利点は、欠陥が、ELOGにおけるようなストリップにおいてではなく、むしろ基板全体から除去されることである。また、前記ドライエッチングによって約1μmのみを損失することから材料の浪費が僅かであり、前記ウエットエッチングによって損失する材料がほとんど無いことが分かる。再成長は、欠陥のサイズが小さいことから、1μm未満の成長で平坦化を達成することができる。ELOGでは、SiOストリップを被覆しかつ平坦面を達成するのに少なくとも2μmの成長が必要であり、多くの場合100μmを超える成長が用いられる。 It will be appreciated that the present invention reduces defects more effectively with simpler processing than the prior art. For example, since the etching process is applied to the entire surface of the wafer, it is not necessary to define / mask the surface region as in the ELOG method. Furthermore, the present invention effectively provides homogeneous GaN epitaxial growth on the substrate, so there is no need to incorporate foreign materials (such as SiO 2 or Si x N y in ELOG). Another advantage is that the defects are removed from the entire substrate rather than in the strip as in ELOG. Further, since only about 1 μm is lost by the dry etching, the material is wasted little and it can be seen that there is almost no material lost by the wet etching. Re-growth can achieve planarization with growth of less than 1 μm because the defect size is small. In ELOG, growth of at least 2 μm is required to cover the SiO 2 strip and achieve a flat surface, and growth of more than 100 μm is often used.

本発明は、InP、GaAs及びSiのような広く様々な半導体デバイスについて他のエピタキシャル層の成長に適用し得ると考えられる。更に、Si、SiC、またはダイアモンドのような他のあらゆる適当な基板を用いることができる。また、欠陥を優先的にエッチングするあらゆる適当なウエットまたはドライエッチング方法を用いることができる。   The present invention is believed to be applicable to the growth of other epitaxial layers for a wide variety of semiconductor devices such as InP, GaAs and Si. Furthermore, any other suitable substrate such as Si, SiC, or diamond can be used. Also, any suitable wet or dry etching method that preferentially etches defects can be used.

本発明は上述した実施例に限定されるものでなく、その構成及び詳細において様々に変更・変化を加えることができる。   The present invention is not limited to the above-described embodiments, and various changes and changes can be made in the configuration and details thereof.

(a)図乃至(d)図は、本発明の半導体成長方法を連続して示す図である。FIGS. 4A to 4D are diagrams sequentially showing the semiconductor growth method of the present invention. RIE後のエッチングされたGaNの表面を示す写真である。It is a photograph which shows the surface of the etched GaN after RIE.

Claims (14)

エピタキシャル層を基板上に成長させる低欠陥半導体ウエハを製造する方法であって、
(a)前記基板上にエピタキシャル材料の層を成長させ、
(b)前記層の欠陥を優先的にエッチングするように前記エピタキシャル層をエッチングし、かつ
(c)エッチングした前記エピタキシャルウエハ上に次のエピタキシャル材料の層を成長させる過程からなることを特徴とする方法。
A method of manufacturing a low-defect semiconductor wafer in which an epitaxial layer is grown on a substrate,
(A) growing a layer of epitaxial material on the substrate;
(B) etching the epitaxial layer so as to preferentially etch defects in the layer, and (c) growing a next epitaxial material layer on the etched epitaxial wafer. Method.
前記過程(b)が、RIE、またはICP(誘導結合プラズマエッチング)、または化学反応イオンビームエッチング、または他の適当なドライエッチング方法によるドライエッチングに前記表面を曝露することによって実行されることを特徴とする請求項1に記載の方法。   Step (b) is performed by exposing the surface to dry etching by RIE, ICP (Inductively Coupled Plasma Etching), or chemically reactive ion beam etching, or other suitable dry etching method. The method according to claim 1. 前記過程(b)が、王水、またはKOH/NaOHの混合物、または他の適当なウエットエッチング溶液に浸漬することによって実行されることを特徴とする請求項1に記載の方法。   The method of claim 1, wherein step (b) is performed by dipping in aqua regia, a KOH / NaOH mixture, or other suitable wet etch solution. 前記成長過程(c)について追加の化合物を添加して表面平滑度を向上させることを特徴とする請求項1乃至3のいずれかに記載の方法。   The method according to claim 1, wherein an additional compound is added to the growth process (c) to improve surface smoothness. 前記追加の化合物がIn(Ga)N、またはAl(Ga)N、またはマグネシウムドープド(Al)(In)(Ga)Nであることを特徴とする請求項4に記載の方法。   5. The method of claim 4, wherein the additional compound is In (Ga) N, Al (Ga) N, or magnesium doped (Al) (In) (Ga) N. 前記エピタキシャル材料がGaNであることを特徴とする請求項1乃至5のいずれかに記載の方法。   The method according to claim 1, wherein the epitaxial material is GaN. 前記基板がサファイア材料からなることを特徴とする請求項6に記載の方法。   The method of claim 6, wherein the substrate comprises a sapphire material. 前記基板がSi、SiC、またはダイアモンド材料からなることを特徴とする請求項1乃至6のいずれかに記載の方法。   7. The method according to claim 1, wherein the substrate is made of Si, SiC, or a diamond material. 前記エピタキシャル材料がInPであることを特徴とする請求項1乃至4のいずれかに記載の方法。   The method according to claim 1, wherein the epitaxial material is InP. 前記エピタキシャル材料がGaAsであることを特徴とする請求項1乃至4のいずれかに記載の方法。   The method according to claim 1, wherein the epitaxial material is GaAs. 目標の欠陥密度を達成するまで前記過程(b)及び(c)を追加して1回またはそれ以上の回数繰り返す過程を更に有することを特徴とする請求項1乃至10のいずれかに記載の方法。   11. The method according to claim 1, further comprising repeating the steps (b) and (c) one or more times until a target defect density is achieved. . 前記エッチングが成長チャンバ内でその場で実行されることを特徴とする請求項1乃至11のいずれかに記載の方法。   12. A method according to any one of the preceding claims, wherein the etching is performed in situ in a growth chamber. 前記エッチングが真空下で実行されることを特徴とする請求項1乃至12のいずれかに記載の方法。   The method according to claim 1, wherein the etching is performed under vacuum. 請求項1乃至13のいずれかに記載される方法により製造される半導体ウエハ。   A semiconductor wafer manufactured by the method according to claim 1.
JP2004520620A 2002-07-11 2003-07-11 Defect reduction in semiconductor materials. Pending JP2005532692A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IE20020574 2002-07-11
PCT/EP2003/007604 WO2004008509A1 (en) 2002-07-11 2003-07-11 Defect reduction in semiconductor materials

Publications (1)

Publication Number Publication Date
JP2005532692A true JP2005532692A (en) 2005-10-27

Family

ID=30011842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004520620A Pending JP2005532692A (en) 2002-07-11 2003-07-11 Defect reduction in semiconductor materials.

Country Status (5)

Country Link
EP (1) EP1540713A1 (en)
JP (1) JP2005532692A (en)
CN (1) CN100454486C (en)
AU (1) AU2003254349A1 (en)
WO (1) WO2004008509A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20045482A0 (en) 2004-12-14 2004-12-14 Optogan Oy A semiconductor substrate having a lower dislocation density, and a process for its preparation
CN101587831B (en) * 2008-05-19 2013-01-16 展晶科技(深圳)有限公司 Semiconductor component structure and method for manufacturing semiconductor component
CN102005370B (en) * 2010-10-12 2013-09-18 北京大学 Method for preparing homoepitaxy substrate
EP4181173A1 (en) * 2011-11-21 2023-05-17 IV Works Co., Ltd Semiconductor substrate and method of forming
CN102779787A (en) * 2012-07-20 2012-11-14 江苏能华微电子科技发展有限公司 Preparation method of III-nitride semiconductor devices
CN103871849A (en) * 2012-12-18 2014-06-18 上海华虹宏力半导体制造有限公司 Forming method of epitaxial layers
CN106486339B (en) * 2015-08-26 2020-03-13 中芯国际集成电路制造(上海)有限公司 Preparation method of GaN film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200215A (en) * 1997-01-08 1998-07-31 Mitsubishi Cable Ind Ltd Semiconductor light emitting element and manufacturing method thereof
JP2000353821A (en) * 1999-06-10 2000-12-19 Pioneer Electronic Corp Nitride semiconductor device and manufacture thereof
JP2001122693A (en) * 1999-10-22 2001-05-08 Nec Corp Ground substrate for crystal growth and method of producing substrate using the same
JP2002033288A (en) * 2000-07-18 2002-01-31 Sony Corp Crystal growing method
JP2002217115A (en) * 2001-01-18 2002-08-02 Sony Corp Crystal film, crystal substrate, and semiconductor device
JP2002261027A (en) * 2001-03-02 2002-09-13 Mitsubishi Cable Ind Ltd GaN-FAMILY SEMICONDUCTOR BASE AND ITS MANUFACTURING METHOD
JP2003124128A (en) * 2001-10-12 2003-04-25 Toyoda Gosei Co Ltd Method of manufacturing iii nitride-based compound semiconductor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404265A (en) * 1969-10-01 1983-09-13 Rockwell International Corporation Epitaxial composite and method of making
JP3036495B2 (en) * 1997-11-07 2000-04-24 豊田合成株式会社 Method for manufacturing gallium nitride-based compound semiconductor
US6177688B1 (en) * 1998-11-24 2001-01-23 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates
US6475882B1 (en) * 1999-12-20 2002-11-05 Nitride Semiconductors Co., Ltd. Method for producing GaN-based compound semiconductor and GaN-based compound semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200215A (en) * 1997-01-08 1998-07-31 Mitsubishi Cable Ind Ltd Semiconductor light emitting element and manufacturing method thereof
JP2000353821A (en) * 1999-06-10 2000-12-19 Pioneer Electronic Corp Nitride semiconductor device and manufacture thereof
JP2001122693A (en) * 1999-10-22 2001-05-08 Nec Corp Ground substrate for crystal growth and method of producing substrate using the same
JP2002033288A (en) * 2000-07-18 2002-01-31 Sony Corp Crystal growing method
JP2002217115A (en) * 2001-01-18 2002-08-02 Sony Corp Crystal film, crystal substrate, and semiconductor device
JP2002261027A (en) * 2001-03-02 2002-09-13 Mitsubishi Cable Ind Ltd GaN-FAMILY SEMICONDUCTOR BASE AND ITS MANUFACTURING METHOD
JP2003124128A (en) * 2001-10-12 2003-04-25 Toyoda Gosei Co Ltd Method of manufacturing iii nitride-based compound semiconductor

Also Published As

Publication number Publication date
AU2003254349A1 (en) 2004-02-02
CN1675746A (en) 2005-09-28
EP1540713A1 (en) 2005-06-15
CN100454486C (en) 2009-01-21
WO2004008509A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP5180050B2 (en) Manufacturing method of semiconductor device
KR100401898B1 (en) Base substrate for crystal growth and manufacturing method of substrate by using the same
US8212287B2 (en) Nitride semiconductor structure and method of making same
JP2008177586A (en) GaN SYSTEM SEMICONDUCTOR AND ITS MANUFACTURING METHOD
KR100878512B1 (en) Method of manufacturing semiconductor substrate having GaN layer
JPH1131864A (en) Crystal growth of low-migration gallium nitride
JP2830814B2 (en) Crystal growth method of gallium nitride based compound semiconductor and method of manufacturing semiconductor laser
JP2010521810A (en) Semiconductor heterostructure and its manufacture
US10892159B2 (en) Semipolar or nonpolar group III-nitride substrates
JP2016072631A (en) Method for growing nitride-based semiconductor with high quality
JP3441415B2 (en) Manufacturing method of semiconductor crystal
US7399684B2 (en) Defect reduction in semiconductor materials
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP2006273716A (en) METHOD OF MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE
JP2005532692A (en) Defect reduction in semiconductor materials.
JP2010168274A (en) Method for producing group iii nitride semiconductor, and template substrate
JP4451606B2 (en) Manufacturing method of semiconductor thin film
US12106959B2 (en) Nonpolar or semipolar group III-nitride substrates
JP2003300800A (en) Method for manufacturing nitride semiconductor wafer of element of group iii
JP2002009003A (en) Semiconductor substrate, its manufacturing method, and light emitting device
KR20060030636A (en) Sapphire substrate for gan growth and manufacturing method of the same
KR100454907B1 (en) Nitride Semiconductor substrate and method for manufacturing the same
JP2007266625A (en) Semiconductor base material
JP4158760B2 (en) GaN-based semiconductor film and method for manufacturing the same
JPH08316571A (en) Semiconductor laser and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117