JP2005511709A - 治療組織用の密閉された自動システム、及び治療組織の投与方法 - Google Patents

治療組織用の密閉された自動システム、及び治療組織の投与方法 Download PDF

Info

Publication number
JP2005511709A
JP2005511709A JP2003550677A JP2003550677A JP2005511709A JP 2005511709 A JP2005511709 A JP 2005511709A JP 2003550677 A JP2003550677 A JP 2003550677A JP 2003550677 A JP2003550677 A JP 2003550677A JP 2005511709 A JP2005511709 A JP 2005511709A
Authority
JP
Japan
Prior art keywords
micro
organ
tissue
cutting
organs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003550677A
Other languages
English (en)
Other versions
JP4447916B2 (ja
JP2005511709A5 (ja
Inventor
ベッローモ、スティーブン・エフ
パールマン、アンドリュー・エル
ピバ、ギレーモ・エイ
ローゼンバーグ、リオール
リッピン、イツハク
ブクマン、モーデカイ
シャビット、メナケム、ディー
シャー、ニブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aevi Genomic Medicine LLC
Original Assignee
Medgenics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medgenics Inc filed Critical Medgenics Inc
Publication of JP2005511709A publication Critical patent/JP2005511709A/ja
Publication of JP2005511709A5 publication Critical patent/JP2005511709A5/ja
Application granted granted Critical
Publication of JP4447916B2 publication Critical patent/JP4447916B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/322Skin grafting apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1816Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/212IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/08Chemical, biochemical or biological means, e.g. plasma jet, co-culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/322Skin grafting apparatus
    • A61B2017/3225Skin grafting apparatus with processing of harvested tissue

Abstract

微小器官構造体は、組織から形成された微小器官の一部を、少なくとも2つ含んでいる。前記した少なくとも2つの微小器官は、前記組織(微小器官を形成する組織)から形成された連結器を用いて、互いに連結されている。

Description

本発明は、微小器官を基礎とした組織(例えば、治療用の組織)の分野に関するものである。
本出願の関連出願としては、米国仮出願第60/330,959号(出願日:2001年11月5日)、米国仮出願第60/393,746号(出願日:2002年7月8日)、米国仮出願第60/393,745号(出願日:2002年7月8日)がある。これらは、引用することをもって本願に含まれるものとする。
治療薬を投与するための様々な手法が知られている。例えば、治療薬は経口、経皮、吸入、注射、徐放性薬剤のデボ(depot)により投与することができる。どの場合でも、供給方法は、頻繁な投与によって生じる薬による身体作用と、利用される分子サイズの限定により制限される。また、ある方法では、治療薬の量は投与中に変化する。本明細書では、治療薬を作成及び/又は投与するための治療用微小器官(therapeutic micro-organ:TMO)を作成する方法及び装置と、作成された治療用微小器官の使用について説明する。
一般に、ある方法と、微小器官及び治療用微小器官の使用が、米国特許第5,888,720号、PCT出願第PCT/MOI/00979号、欧州出願第01 204 125.7号、及び米国特許出願第09/589,736号において説明されている。これらは、開示することをもって本発明の一部とする。これらの文献は従来技術についての批評を含んでいるので、本発明では繰り返さない。また、これらの文献は、TMOの使用の可能性と、生成される可能性のあるタンパク質の種類とについての情報を含んでいる。
Mitraniによる米国特許第5,888,720号及び第6,372,482号と、未公開の特許出願09/589,736、PCT/IEL01/00979及びEP 01 204 125.7は、微小器官及び遺伝子操作された微小器官の作成及び維持に関する情報を提供する。これらは、開示することをもって本発明の一部とする。これらの情報のいくつかは、維持するための栄養とガスに関する情報と、遺伝子組み換えの可能性に関する情報を含んでいる。これらの情報は、本発明の実施形態に適用することが可能である。本発明は、概ね、微小器官及び遺伝子操作された微小器官の作成、維持、及び使用するための技術の向上を図っているが、前記した特許文献において説明されていることは、本明細書中では繰り返さない。
一般に、調合薬は、図1に示すような手順により作成される。まず、治療用分子が少量作成し、その有効性を検査する(10)。次に、治療用分子(例えば、タンパク質)を大量に作成する(12)。そして、作成された治療用分子は流通し(14)、保存され(16)、患者(20)に注射する(18)又は他の方法により導入する。
本明細書中では、微小器官及び微小器官及び遺伝子操作された微小器官を、作成及び利用するための方法及び装置について説明する。
(本明細書中で使用される言葉の定義)
維持に関する情報を提供する
「外植片」という単語は、被験者の1つ又はそれ以上の器官から生体組織を切り取った部分のことを指す。
「微小器官」という単語は、外植片から生じた組織構造体のことを指す。この微小器官は、少なくともインビボの相互作用中に、細胞の生存能力と機能を助けるために作成される。微小器官は、2つ以上の隣接した組織の層から成り、器官又はそれが由来する器官の微小構造を持ち続ける。そして、細胞への適切な栄養とガスの受動拡散を可能にする。
細胞の拡散は、細胞の毒性を最小限に抑えるべく前記細胞を消費し、栄養不足と消費の蓄積に起因する死を伴う。
「ドナー」という単語は、外植片が切り取られた被験者のことを指す。切り取られた外植片は、1つ又はそれ以上の微小器官を作成するのに使用される。
「治療用微小器官(therapeutic micro-organ:TMO)」という単語は、例えばタンパク質のような治療薬を作成するために遺伝子操作された微小器官のことを指す。治療薬は体物質に天然で存在する場合もあるし存在しない場合もある。
「移植」は、披移植者に1つ又はそれ以上の微小器官又はTMOを導入することを指す。微小器官又はTMOは、被移植者の組織に由来する。又は、他の固体又は動物の組織に由来する。微小器官又はTMOの転移は、被移植者の皮膚に移植することにより、皮下埋め込み術に移植することにより、又は被移植者の他の望ましい位置に配置することにより行うことができる。
「被移植者」は、1つ又はそれ以上の微小器官又はTMOが移植される被験者のことを指す。
本明細書中では、TMOの作成と活用の様々な態様について詳細に説明している。また、本発明は、TMOに形質導入するための微小器官の作成と維持を含んでいる。なお、本発明の態様により作成された微小器官は、TMOへの形質導入以外の目的で使用することも可能である。
TMOの作成は、次の手順で行う。(1)患者(又は動物)又は類似した(又は異なる)タイプの他の人間(動物)から、組織サンプルを採取する。(2)組織から生存可能な微小器官(又は微小器官の構造体)を作成する。(3)微小器官を遺伝子操作する。(4)また、好ましくは、遺伝子操作された微小器官(TMO)により、所望の物質(例えばタンパク質)の生成を確認する。
TMOの活用としては、患者(又は動物)の体内に、治療物質(例えばタンパク質)を作成することが挙げられる。例えば、インビボで治療物質を作成するために、被験者の皮膚にTMOを移植する。他の被験者から採取された組織を使用する場合は、被移植者の免疫系反応から保護するため、例えば、TMOを免疫保護性のあるカプセル又は覆いにより覆う。また、例えば、細胞膜でTMOを取り囲むこともできる(TMOをカプセルに封入した後でもよい)。細胞膜は細孔を有しており、細孔の大きさは、栄養素廃棄物と治療物質を通過させるのには十分大きいが、免疫系の細胞を通過させない程度に小さい。
本発明は、微小器官を作成するのに適した組織サンプルを採取する装置と方法を含んでいる。組織はTMOの基礎原料として使用される。組織は皮膚ではなく、肺、腸、筋肉、及び肝組織でもよい。つまり、どうような組織でも使用することができる。組織は、人体から、従来の方法(例えば生検方法)によって採取することができる。好ましくは、組織を採取するときは、組織の微小構造を傷つけないようにする。
本発明の好ましい実施形態では、採取される組織が皮膚である場合は、組織サンプルは、組織の表面を持ち上げた後、皮膚の一部を所定の厚さで切断することにより採取する。厚さは、皮膚の所望する層が全て含まれるように、十分に厚くする。所望する層としては、全ての表皮と、少なくともいくつかの下皮がある。また、厚さは、0.3〜3mmにする。表皮と下皮の皮膚構造体(を用いて微小器官を作成した場合は、採取した組織の生存可能性は、移植後はインビトロでもインビボでも長期間維持される。なお、本明細書中で用いられる「切断」という語は、鋭利な刃により、組織の一部を他の部分から分離させることを意味する。
組織を採取した後、インビトロ及び好ましくはインビボで生存可能となるように、採取された組織サンプルから適切な構造体が作成される。このサンプルは、好ましくは、全ての生存層を含んでいる。また、サンプルが保持される培地からの栄養素が、サンプル全体に拡散することができるように、そして、廃棄物が培地に拡散できるように、その厚さは十分に厚い。外側の表面から細胞までの距離は、好ましくは100〜400μmである。ある環境では、厚さは、500、600、又は1000μmとすることができる。もちろん、薄片自身は、最大距離の約2倍の厚さである。
従来技術では、切断処理中に、組織を安定させることができなかった。そのため、従来の方法により得られる組織の薄片の幅と形状は均一ではなかった。さらに、微小器官の長さは限定され、平行6面体の形状にしか形成することができなかった。そのため、微小器官の処理と活用は困難を伴うものであった。さらに、皮膚の上皮層は硬く、組織を切断した際に、組織の形状が崩れてしまいやすい。さらに、皮膚は接触したもの全ての表面にくっつきやすいので、切断処理をさらに困難なものとする。
ある実施形態では、皮膚組織から微小器官を作成する。採取した皮膚サンプルを、複数の刃により複数の微小器官に切断する。この切断は、皮膚サンプルを、基板上に設けられた刃に押し付けることにより行われる。組織サンプルを刃に押し付けたとき、サンプルの互いの端はアコーディオンのようにくっついたままである。そして、サンプルを引き抜くと、ほぼ均一の幅と厚さを有する細長いサンプルが作成される。このように、サンプルは比較的扱いやすく、多くの組織を有し、使用する際は、適した長さに切断することができる。幅と厚さが均一であるので、各部分での治療物質の生成能力はほぼ均等となる。サンプルの長さは、適宜設定する。サンプルから微小器官を作成した後、微小器官は遺伝子操作される。組織の細胞に、組み換えウイルス・ベクターと共に、遺伝子を導入する。
微小器官は、プロセス中は栄養素溶液と接触する。このことにより、微小器官から生成された治療物質は、溶液中に分泌される。微小器官はいくつかの方法で活用される。1つは、被験者に移植される。例えば、遺伝子操作された皮膚が、被験者の皮膚に移植される。動物実験では、移植された皮膚は、かなり長い期間、治療物質を生成する。
または、TMOをインビトロにて保持し、TMOから生成される治療物質をTMOを取り囲む培地の上澄みにて保持する。または、その治療物質を培地から分離して、被験者に注射する。
または、微小器官、又はTMOを低温にて保存する。例えば、組織サンプルから作成された直後、又は遺伝子操作された直後に、10%のDM50を含有するDMEM内で、段階的冷凍(0℃、−20℃、−80℃、−196℃)する。
移植されるTMOの量は、以下の1つ又は複数の条件に基づいて決定する。
類似した被験者に対する規定の指針、規定の臨床試験計画書又は人口統計に基づいて定期的に投与された同じ治療用タンパク質の量
以前に注射又は他の投与方法により同一の被験者に投与された同じ治療薬の量
体重、年齢、健康状態、臨床状態などの被験者のデータ
以前の他の類似した被験者へTMOを投与したときの薬物動態学的データ
以前の同一の被験者へTMOを投与したときの反応
移植するまでは、微小器官/TMOは、密閉されたモジュール装置により、運ばれ、保持され、遺伝子操作される。理想的には、全てのプロセスを密閉された無菌のモジュール装置内で実施する。
各モジュール間の微小器官/TMOの移動は無菌下で行う。微小器官/TMOの環境の制御は手動ではなく自動的に行う。各モジュールには、微小器官/TMOの移動を容易にするための接続ポートを設ける。
ある実施形態では、組織サンプルから微小器官を作成する全ての処理段階で作用する複数のモジュールと、処理中に、モジュールに設けられたポートを経由して、モジュールから組織サンプルを除去することなく、組織サンプル又は微小器官をあるモジュールから次のモジュールに移動させる手段とを備えている。
また、ある実施形態では、微小器官は更なるモジュールに移され、更なるモジュールには、微小器官をその内部にて維持するために、栄養素の注入口と廃棄物の排出口が設けられている。
また、ある実施形態では、更なるモジュールには、微小器官をその内部にて遺伝子操作するために、形質導入因子を提供するための注入口が設けられている。また、ある実施形態では、更なるモジュールには、その中にある液体を試料採取するために、試料採取用の排出口が設けられている。また、ある実施形態では、更なるモジュールのポートに入るように構成された腕を有する移動用モジュールを備えており、移動用モジュールへ移動させるべく、少なくとも微小器官の選択された部分を除去する。
また、ある実施形態では、モジュールは、適合するポート及び接続機構により接続され、物質はモジュール間にて外部環境に晒されること無く移動することができる。また、ある実施形態では、モジュールは、組織サンプルを導入から始まる処理を無菌の状態で行う。
また、ある実施形態では、微小器官の維持の制御と、必要に応じた遺伝子操作を行うための微小器官処理機構であって、1つのモジュール又は複数の連結されたモジュールと結合する、少なくとも1つのポートと、1つ又はそれ以上の流動体、少なくも1つのモジュールへ又はモジュールからの廃棄物の流れを制御すべく作動する流体制御システムと、少なくともいくつかのモジュールの各要素に動力を供給すべく作動する電力制御システムとを備えている。
また、ある実施形態では、少なくとも1つのモジュールに物質を保持すべく、少なくとも1つのモジュールに制御された真空を供給する真空制御システムをさらに備えている。
また、ある実施形態では、流体制御システムは、あるモジュール内で微小器官の遺伝子操作を引き起こす物質を少なくとも1つ導入するのを制御すべく作動する。
また、ある実施形態では、少なくとも1つのモジュールから流動体を採取する試料採取手段をさらに備えている。
また、ある実施形態では、グルコース、ラクタート、溶解酸素、溶解二酸化炭素、アンモニア、グルタミン、pH、汚染物質、又は分泌した治療薬などの1つ以上のプロセス・パラメータを求めるべく、流動体を分析するための分析器をさらに備えている。また、ある実施形態では、分析器は、微小器官から排出された治療薬を求めるために、流体を分析する。
また、ある実施形態では、治療薬の量をモニタし、微小器官が移植に適しているときに指示する制御器をさらに備えている。
また、ある実施形態では、微小器官の遺伝子操作を促進する促進手段をさらに備えている。また、ある実施形態では、促進手段は機械的又は音響振動である。また、ある実施形態では、促進手段は機械的又は音響振動を生成するための電気エネルギー手段をさらに備えている。
また、ある実施形態では、患者に移植される治療用微小器官の量を決定するための方法であって、インビトロでの微小器官の量により、治療薬の分泌レベルを割り出すステップと、インビトロでの分泌とインビボでの微小器官の血液濃度との関係を推定するステップと、分泌レベル及び推定された関係に基づいて移植する治療用微小器官の量を決定するステップとを含む。
また、ある実施形態では、関係は、下記の(a)〜(c)からなる群から1つ以上選択される要因に基づいて推定される。
(a)体重、年齢、健康状態、臨床状態などの被験者のデータ
(b)以前の他の類似した被験者へTMOを投与したときの薬物動態学的データ
(c)以前の同一の被験者へTMOを投与したときの薬物動態学的データ
また、ある実施形態では、関係は少なくとも2つの要因に基づいて推定される。また、ある実施形態では、関係は3つの要因に基づいて推定される。また、ある実施形態では、患者に移植する治療用微小器官の量の決定は、似した被験者に対する規定の指針、規定の臨床試験計画書又は人口統計に基づいて投与された同じ治療用タンパク質の量と、前に注射又は他の投与方法により同一の被験者に投与された同じ治療薬の量との一方又は両方に基づいて行う。また、ある実施形態では、決定された量に基づいて、移植する治療用微小器官の量を用意するステップをさらに含む。
また、ある実施形態では、患者に微小器官を移植する方法であって、皮膚表面の真下に穴をあけてカテーテルを入れて、微小器官が規定の位置に付着した細長いキャリアを、組織の表面に出るべく、カテーテル嵌め込み、微小器官が規定の位置にあるキャリアをカーテルの組織の表面下に位置し、微小器官の位置を保ちつつカーテルを除去する。
また、ある実施形態では、患者に微小器官を移植する方法であって、微小器官を針の内部に吸引し、針を皮膚の既知の位置に挿入し、その位置に微小器官を保持しつつ針を除去することを特徴とする。また、ある実施形態では、微小器官は、治療薬を排出する遺伝子操作された微小器官であることを特徴とする。
また、ある実施形態では、被験者に移植された治療用微小器官により作成された治療薬の投薬量と、治療薬の排出量を調整する方法であって、(a)被験者の治療薬のレベルをモニタするステップと、(b)薬のレベルと所望するレベルとを比較するステップと、(c)薬のレベルが最低レベルよりも低い場合、さらなる治療用微小器官を移植するステップと、(d)薬のレベルが最大レベルよりも高い場合、移植された微小器官の一部を不活化させる又は除去するステップとを含む。また、ある実施形態では、(a)〜(d)を定期的に繰り返す。
また、ある実施形態では、不活化させる又は除去するのは、移植された微小器官の一部を除去することにより行う。また、ある実施形態では、除去は外科的に行う。また、ある実施形態では、不活化は、移植された微小器官の一部を死滅させることにより行う。また、ある実施形態では、不活化は、移植された微小器官の一部を切除することにより行う。
(システムの概要)
図2は、微小器官及び遺伝子操作された微小器官(therapeutic micro-organ:TMO)を作成及び活用する方法200の概略を示すブロック図である。202では、被験者から組織の外植片が採取される。ある実施形態では、外植片は、後で治療が施される同一の被験者から採取される。好適な実施形態では、サンプルは、皮膚サンプルである。他の組織を採取し、後述する皮膚サンプルの場合と同様の方法で使用することもできる。なお、後述する方法は好適な方法であるが、ある実施形態では、コアリングやパンチングなどの他の採取方法を用いることもできる。さらに、市販されている皮節を使用することもできる。採取されたサンプルは、後述する方法により、その状態を判断するために検査された後、微小器官作成装置に運ばれる。必要なら、組織の外植片は、後に使用するために、低温にて貯蔵する。
204では、生存可能な微小器官(micro-organ:MO)が外植片から作成される。生存可能であるためには、微小器官の大きさは、少なくとも、微小器官と接触する培養液から栄養素が微小器官の細胞全体に拡散することができ、微小器官の廃棄物が培養液内に排出されるように、十分に小さくある必要がある。このことにより、後述するさらなるプロセス、及びタンパク質のような治療物質のソースとしてのさらなる活用のために、微小器官がインビトロで十分に長く生存することが可能になる。微小器官の外面から、生存している組織までの最大間隔は、1000μm未満であることが好ましい。なお、それよりも大きい間隔でも生存可能な構造体を作成することができる。組織サンプルから微小器官を作成するこの方法によれば、結果として微小器官がインビトロで数ヶ月生存することが可能となる。
微小器官が作成された後、好ましい形状を有しているか、及び望ましい大きさを有しているかを、視覚的に検査する。検査は光学的に行うこともできる。そして、ホルダ上に載せて、遺伝子操作するための装置に移す(206)。適切な遺伝子操作物質を用意する(208)。物質を作成する他の好適な方法は、望ましい滴定濃度でのアリコートの作成、所定濃度に希釈されたウイルス粒子の緩衝材(低温での保存と、制御された温度(0〜4℃)でのウイルス・アリコートの解凍が可能である)の使用、及びウイルス・ベクターの活性化を含んでいる。これらのプロセスはすべて従来技術として知られている。この時点では、微小器官は低温で保存することができる(後に、プロセスにおける同じ段階で導入される)。これは、例えば10%のDMSOを含むDMEM培地を使用した、組織と細胞を緩やかに冷凍する公知の手法により行うことができる。
210では、微小器官は遺伝子操作される、遺伝子操作の方法は数多く知られており、本発明ではそれらの手法を使用することができる。以下の説明では、微小器官の細胞に遺伝子を導入するのに、ウイルス・ベクターを使用することを前提にしている。このプロセスはよく知られているので、ウイルスを微小器官に導入するための特別な方法と装置に関する以外は、その説明を省略する。
212では、遺伝子操作された微小器官(TMO)の治療物質の分泌量が検査される。
分泌量を測定する方法としては、例えば、ELISA、他の免疫学的検定、スペクトル解析などの様々な方法がある。加えて、分泌量の検査は、例えば分泌されたタンパク質の無菌性と活性を調べるために行われる。この検査は、オンラインで、定期的に又は継続的に行われる。
この時点では、TMOは、後の使用のために、低温で保存することができる。
214と216では、望ましい治療効果を得るために必要とされるTMOの量が測定される。後述するが、要求される治療は、インビトロの分泌とインビボの血中濃度との推測される又は知られている関係に基づいて、測定された分泌量、患者の条件、人口統計から推測することができる。
218では、TMOの選択された部位が、移植器具に移される。好ましい移植器具については、後述する。必要ならば、同種移植又は異種移植のために、又は他の理由により、TMOをカプセル化する。もし、荷電した移植手段(又はTMO)を運ぶときは、随意に、維持ステーション(220)で保持する。維持ステーションは、運搬中にTMOを生存させるべく、温度と湿度を一定に保つ。TMO物質の残りは、後の使用のために、インビトロで維持される。これは、暖かいインキュベーターの状態(37℃)又は、冷たいインキュベーターの状態(4℃)で維持する。
224では、TMOの一部分(又は前回作成されたTMOの一部)を被験者に移植する。移植の方法は、数多くある(それらの方法は後述する)。動物実験により、微小器官とTMOがインビボで生存しているが分かった。つまり、TMOは、移植後数ヶ月の間、治療物質を継続して作成し分泌する。動物実験により、治療量は120日以上も作成されることが分かった。微小器官又はTMOの組織が、被験者の組織と一体化していくように見える間は(特に、組織が、同じ種類の組織に移植された場合は)、微小器官又はTMOを含んでいる細胞は、治療物質を継続して作成し分泌する。
他の実施形態では、治療物質はインビトロ内のTMOから採取され、栄養素と廃棄物を除去するために精製される。精製された物質は被験者に注射される。あるいは他の方法により被験者に投与される。
いずれの場合でも、TMOのインビボでの能力は、随意に測定される(228)。例えばこの評価、及び/又は過去の患者のデータ(226)に基づいて、移植する量を増やすか、移植されたものをいくつか除去することにより、患者への投与量が調節される(230)。詳細については後述する。移植の効果が変わると、さらなるTMOの断片が移植される。
以下、システムの作用とその変形例についてさらに詳しく説明する
(外植片の採取)
図3−A及び3−Bに、被験者から皮膚サンプルを採取する好適な方法を図解的に示す。皮膚サンプルを採取すべく、基板314を被験者311の恵皮部と接触して配置する。基板314は、腕の周りに巻きつけられるストラップ313により、わずかな圧力で皮膚に押し付けられる。この基板314は切欠された窓を有しており、この窓によって採取される組織の長さと幅が規定される。また、恵皮部の周囲の皮膚が固定される。サンプル・キャリア310(図3−B参照)は、基板の上面よりも、既知の間隔(採取される組織の厚さ)だけ上方に位置する。本実施形態では、サンプル・キャリア310には小径の孔(スロット)が形成されており、サンプル・キャリアの背面側(皮膚との反対側)には、真空ヘッド312が設けられている。そして、真空源320の作動時には、皮膚の表面をサンプル・キャリア310に引き寄せ、基板の上方において、所定の高さでしっかりと保持する。後述するような異なる形態の微小器官構造体には、様々な孔構造体(基板)を用いることができる。真空吸引により、採取する皮膚サンプルを安定させ、人体から組織が採取された後も、採取された皮膚サンプルがキャリアに付着し続けることができる。また、真空吸引の代わりに、サンプル・キャリア上に、皮膚が付着するような接着テープを設けることもできる。例えば、サンプル・キャリア310の下面に、両面接着テープを貼り付ける。なお、接着テープを使用する場合は、サンプル・キャリアを皮膚に接触させる。
薄くて鋭利な刃316が、基板の上面を横切ることにより、皮膚サンプル318が採取される。サンプル・キャリア上でのサンプルの薄さは、基板310の上面とサンプル・キャリア310の下面との間隔により決定される。刃316は、サンプルの切断を容易にするために、左右方向に動かす(図3−A)。この左右の動作を電動で行ってもよいし、全ての動作を手動で行ってもよい。さらに、刃の切断方向の動作を、電動で行ってもよい。真空ヘッド312は、サンプル・キャリア310から皮膚サンプル318(図3−B参照)が落下するのを防止すべく、以下のプロセスが開始する間は、サンプル・キャリア310に取り付けられたままである。
典型的な場合は、皮膚サンプルは、幅6mn、長さ35mm、厚さ1mmである。他の長さ、幅、厚さでもよい。横方向の大きさは、それほど重要なことではない。しかし、以下のプロセスにより一貫した微小器官を作成する上では、標準的なサイズの外植片を採取することは有用である。
(微小器官の作成及び載置)
図4−A及び4−Bは、組織サンプル(例えば、図3に示した方法により採取した皮膚の組織サンプル)から微小器官を作成するための器具410を示している。
図4−Aに示すように、サンプル・キャリア310(図3−B参照)に付着し、真空ヘッド312により保持されている皮膚サンプル318を、ブロック414上に設置された一連の刃(複数の刃)412と接触させ押し付ける。複数の刃は同じ長さ(サンプルの長さよりもやや長い)であり、平行に配置されている。組織を切断する前に、各刃の間に微小器官マスク416を設置する。サンプル・キャリアを刃に十分な力で押し付けると、組織は切断され、皮膚サンプル(微小器官418)が各刃の間で受け止められる。微小器官が各刃の間にぴたりと保持されると、吸着用の真空源(又は接着テープ)と共にサンプル・キャリアを取り去る。微小器官を切断した後の状態を図4−B及び4−Cに示す。各刃の間の間隔Wは、微小器官の幅を決定する。その後、図4−Dに示すように、微小器官マスク416を刃から持ち上げる。このことにより、さらなるプロセスのために、微小器官の薄片を刃から取り去ることができる。なお、前記した押し付けの動作は、器具又はサンプル・キャリアの上面にロッドを転がすことにより行うこともできる。
図5−Aは、異なる形状の微小器官を切断するための構造体を示す図である。この構造体では、複数の刃512は、2つのグループに分けられており、各刃は互いに軸方向(刃の長手方向)にずれている。各刃の間には、マスク416と同様の微小器官マスクが設置される。皮膚サンプルを刃に接触させ押し付けると、皮膚サンプル(微小器官)は図5−Bに示すパターン(模様)のように切断される。そして、微小器官マスク416を刃から持ち上げて、微小器官518を微小器官マスク416上に移す。図5−Bに示すように、微小器官518は、曲がりくねった形状に切断される。
前述した方法では、サンプルの全層は、直線状構造体の「連結部」の端部間に保持される。例えば、皮膚サンプルでは、上皮層だけを残せば十分である。
構造体の全長を伸張すると、微小器官がとても長い構造(平行6面体)となる。このような構造体を、本明細書では、元のサンプルと区別して、「超直線状構造体」という。他の形状とすることも可能である。例えば、外植片を螺旋状のパターンで切断する場合は、図5で説明したのと同じような方法で行うことができる。また、環状の構造や、直交する薄肉の構造も、押し付け又は切断により作成することができる。他の微小器官の大きな構造の例は、連結部により両端で接続した二本の直線が隣り合った形状の微小器官がある。そのような微小器官は、微小器官の組織の環を形成することができる。
図6(A)は、典型的なメッシュ状の微小器官600を示す概念図である。メッシュの部分の詳細は図6(B)及び図6(C)に示す。図6中に見える表面は、皮膚層(角質層)の外側か、反対側の内皮の表面(真皮下層)である。メッシュ構造600の各部分は、周囲の栄養素溶液から栄養素を受け取ることができ、前記栄養素溶液により廃棄物を運搬できるような、表面からの距離を有している。また、組織の取り扱いとプロセスを簡単にすべく、組織サンプル全体を内在的に保持するように設計されている。さらに、皮膚の表面又は裏面を継続して識別可能な構造により、微小器官又はTMOを適切な方向で移植することができる。
図6(B)に示すように、2つメッシュ間の接合部608の幅602(図6(C)参照)が、メッシュの腕608の厚さ606(図6(C)参照)と同一になるように作成されている場合は、腕608の最も内側の組織よりも栄養素から遠い領域は、とても小さい。また、栄養素の源から、わずかに離れたところにある。幅602を狭くすれば、領域も距離もさらに減らすことができる。ある実施形態では、幅は厚さ606と等しい。また、厚さ606よりも狭い、又は広い場合もある。図6(B)に示すように、メッシュの各部位は、実質的に、直線状の微小器官と同様である。
図6(A)・6(C)に示したようなメッシュを作成する方法の1つに、組織サンプルの一部に、図7に示すよなパターン700を形成する方法がある。スリットの長さと連結部の長さの比率は、1対1から1対100までの広い範囲を取ることができる。前記比率によりメッシュの硬さと広がる度合いが決まる。図4−Aの器具414に対応する刃のカートリッジ800を、図8に示す。等しい長さの刃(各刃は図5−Aのように互いに刃の長手方向にはずれていない)が、特別に設計されたキャリアに、その左右方向(刃の長手方向)に部分的に間隔を開けて配置されている。
上述したように、超直線状構造とメッシュ微小器官構造は、連結部で連結される直線状微小器官との構造と見なすことができる。なお、直線状微小器官は、微小器官と見なすこともできるし、非微小器官組織の一部と見なすこともできる。
図7のように、構造体を形成すべく組織を押し付けた後、図6(A)に示したメッシュを形成すべく、組織は横方向に引き伸ばされる。メッシュは、スリットがひし形になるまで、引き伸ばすことができる。また、メッシュは、最大よりも小さく広げられる。
図9−Aは、超直線状微小器官をプロセス中に保持する構造体900である。この構造体900の他の機能は、微小器官の導入と、バイオリアクタの内外への微小器官の移動を容易にすることである。
図9−Aに示すように、構造体900は略長方形(ただし曲線状である)の本体910を備えており、本体900には組織サンプルと同じ(あるいは若干大きい)幅を有するスロット912が形成されている。スロットは、微小器官の両側に、流体が自由に流れることを可能にする。
本体910の側部には、一定の間隔でクリップ914(又は他の微小器官の保持手段)が形成される。微小器官518が本体910に装填された後、微小器官518を保持すべく、クリップは閉じる。微小器官の初期配置は、その端部を真空保持器具で掴むことにより、効果的に行うことできる。第1のクリップ914´は閉じており、微小器官を保持している。微小器官が本体910に保持されているとき、その表面の大部分はさらされている。このことにより、微小器官はその周囲の流体若しくは物質と良好に物理的接触することができる。これにより、インビボにおける微小器官の生存性が向上する。また、クリップ(最初と最後の間の)は、微小器官上では閉じない。むしろ、それらは開けておき、微小器官を左右に移動させ続ける。また、中間のクリップは、ホルダの表面に対して垂直であり、微小器官が横方向に滑り続けることができる他の阻止により置き換えてもよい。
図9−Bは、プロセス中に、メッシュ状の微小器官を保持する構造体960を示す。この構造体960の他の機能は、微小器官の導入と、バイオリアクタの内外への微小器官の移動を容易にすることである。
図9−Bに示すように、メッシュ状の微小器官600がホルダ962上に載置される。ホルダ962の中央には、開口部964が設けられている。開口部964の周辺には複数のピン966が形成されている。メッシュ構造体600は引き伸ばされ、ピン966により保持される。また、図9−Bでは、ピン状のホルダを示しているが、クリップのようなメッシュの縁部を保持する他のタイプのホルダを用いることもできる。さらに、正方形の開口部を示しているが、開口部は長方形、円形、他の多角形であってもよい。また、完全に広げたメッシュを示しているが、部分的に広がったメッシュを用いると、他の形状と大きさの微小器官を得ることができる。
(微小器官のバイオリアクタ、及び遺伝子変化)
微小器官が作成され載置されると、微小器官を遺伝子変換してTMOを作成する準備が整う。
一般に、遺伝子変換は、遺伝子を選択する又は遺伝子を細胞内に導入するという、遺伝学的な技術を含んでおり、タンパク質のような治療物質を分泌する細胞を作成する。好適な実施形態では、少なくとも遺伝子変換の間の微小器官を維持するプロセスの一部や、遺伝子変換自体は、バイオリアクタで行われる。
バイオリアクタが、以下の性質のいくつか又は全てを有していることが好ましい。
(1)微小器官の表面に栄養素とガスを供給し、栄養素とガスを微小器官内に拡散させ、微小器官を生存させ続けることができる。このことにより、周囲の液体との接触により微小器官の有効な領域及び量が阻害されることがない。
(2)微小器官の望ましい温度を維持することができる。
(3)微小器官の周辺における望ましいpH及びガス組成を維持することができる。
(4)微小器官とバイオリアクタから廃棄物を除去することができる。
(5)ベクターで周囲を汚染するおそれが十分にないように、遺伝子操作されたベクターを簡単な方法で挿入することができる。
(6)過剰で不使用のベクターを除去することができる。
(7)生成された治療物質の能力を測定することができる。
(8)実質的に無菌の治療物質を取り出すことができる。
(9)微小器官を容易に挿入する、及び、全ての又は測定されたTMOを取り出すことができる。
図10は、バイオリアクタ100の概略断面図である。なお、バイオリアクタ100は、簡単かつ有用なバイオリアクタの一例であり、優れたバイオリアクタの性質の全ては備えてはいない。このバイオリアクタ100は、図9に示すようなホルダに保持されるメッシュタイプの微小器官に適している。
プラスチック又は他の非反応性素材からなる容器1002の底部には凹部1004が形成されている。凹部1004は、ホルダ962(図9(B)参照)に保持された微小器官600(図6(A)参照)を保持するのに適している。容器1002の最下部には、バルブ1008で制御されるドレイン1006が設けられている。また、容器1002には、入口ポート1010が設けられている。微小器官の生存に必要な栄養素溶液(例えば、グルタミンや抗生物質を含んでいる微小量のDMEM)と溶解ガスが、栄養素貯留部1012からポンプ1014により容器1002に供給される。
また、容器1002には、オーバーフロー出口1016が設けられている。容器1002内の過剰な栄養素溶液は、オーバーフロー出口1016からオーバーフロー容器1018に溢れ出る。容器1002からの平均的な排水流量は、流入量と等しいので、一定の水位が保たれる。容器1002は、図示しないガスケット・システムにより取り付けられたカバー1020により覆われている。したがって、容器1002内の機密性と無菌性が保たれている。また、容器1002、栄養素貯留部1012及びオーバーフロー容器1018のために、空気の吸気口(又は排気口)1021が設けられている。吸気口(又は排気口)1021は、機密性を保つためにフィルター処理されている。吸気口(又は排気口)1021の主な役割は、圧力を均一にすることである。ガス・フローシステムにより、容器1002の栄養素溶液上の、酸素と他のガスの濃度が制御される。また、ガスは、栄養素貯留部1012又は容器1002に通気させることにより、栄養素溶液内に溶解させることもできる。
作動中は、微小器官600は容器1002に挿入される(図2の206参照)。他の実施形態では、微小器官ホルダは、カバー1020の下側にロッドにより物理的に取り付けられる。容器1002には、栄養素1030が部分的に満たされ、室温に近い温度に保たれる。新しい栄養素が容器1002に継続的に供給され、出口1016を経由して溢れる栄養素は微小器官が生成した廃棄物の一部を運び出す。また、必要に応じて、廃棄物がバイオオーガン(bio-organ)の近くで濃縮されないように、栄養素1030を機械的(又は音波振動や流体混合)により攪拌する。
あるいは、等しい量の栄養素を容器1002に供給し、ドレイン1006から排出させる。ドレイン1006は微小器官の近くにあり、流れの方向は常に微小器官からドレイン口1006なので、微小器官には常に新しい栄養素が供給され、廃棄物は効果的に除去される。栄養素とガスの必要な濃度が維持されるように、流入量と流出量は十分であるべきである。しかし、その量は、微小器官により自然に生成される発育因子を洗い流さない程度にする。また、最少培地で維持される際に、その生存性を維持できるようにする。
どちらの場合でも、容器1002内の栄養素は、グルコース、ラクタート、アンモニア、溶解酸素、溶解酸二酸化炭素、及び他の栄養素(例えば、アミノ酸)のレベルを定期的又は継続的に測定する。レベルが望ましい範囲外である場合は、是正処置をとる。
ウイルスの形質導入が行われる(容器1002内に微小器官の挿入)だけの規定の待ち時間(約24時間)の後、栄養素1030はドレイン1006を経由して除去され、ウイルス・ベクターを含む新しい栄養素に取り替えられる。栄養素溶液は、最低、微小器官を覆うだけの量があればよい。また、ウイルス・ベクターは、隔壁ポート1023から、注射により添加してもよい。また、ポート1010を経由して供給することもできる。また、栄養素の一部だけを除去し、残りを遺伝子挿入中に栄養素を供給するのに使用することもできる。
あるいは、遺伝子操作プロセス中は、栄養素は交換しない。プロセス完了後に、ウイルスを含んでいる栄養素を容器1002から排出する。そして、ウイルスの残りを排出するために、容器1002を数回洗浄する。また、必要に応じて、新しい栄養素溶液を添加し、潅流を規定時間(数日)継続する。
また、プロセスの全ての段階、規定の待ち時間、形質導入及び形質導入前に維持において、振盪、揺動、転動、流体混合、音響振動などにより微小器官を攪拌することができる。例えばドレイン1006又は出口1016から除去された物質内の治療物質の濃度を測定することにより、治療物質の分泌の進展を定期的に検査する。そして、必要に応じて、分泌データに基づいて、是正処置をとる(例えば、さらなる潅流を行う)。
さらに、微小器官由来の望ましい物質の分泌レベルが一度分かると、この情報は、適切な薬物動態学的モデル及び/又は人口統計と共有される。TMOは、患者の皮膚に又は皮膚下に移植される。ある実施形態では、微小器官/TMOは、元の組織サンプルが採取された同一の対象に移植される。また、他の実施形態では、微小器官/TMOは異なる対象に移植される。移植に関しての詳細は後述する。
(微小器官/TMOの移植)
TMOの移植は、比較的簡単で効果的であることが判明した。
移植する前に、TMOの一部をバイオリアクタから取り出し、移植のために準備する必要がある。図9−A及び9−Bの例では、TMOがマウントされるホルダ962(又は900)をバイオリアクタから取り出し、TMOの目的とする部分を移植ために取り出す。取り出す物質の量は、バイオリアクタで計測された分泌レベルの基づいて決定する。
TMOの治療潜在能力は、治療タンパク質を必要としている対象に、TMOを移植することで達成される。この移植方法は、著しい効果と有効性がある。TMOの効果を最大化するためには、TMOの分泌の利益を最適化するべく、組織を患者に組み込む。例えば、部分的なタンパク質の供給が必要とされる領域に、TMOを移植する。又は、全身に供給する。さらに、移植処置は簡略化し、形成外科や皮膚科などの専門的技術が必要とされないことが望ましい。また、処置は、素早く、治療中は患者にとって最小限の痛みで行うべきである。
移植するTMOの数と大きさにより、治療物質の投与量が決まる。TMOの全体又は一部分は、患者内での分泌レベルを調節するために、移植又は除去/中和する。それぞれ異なる治療物質を生成する複数のTMOを移植することも可能である。
線状のTMOを移植する方法の1つと、TMOを皮下埋め込みする2つの方法を以下に説明する。
(線状TMOの移植)
図11は、ある長さのTMO1112を、皮膚の表面1106内の切れ目(スリット)1104に移植するための器具(移植用器具)1102を示す。図11に示すように、移植用器具1102には複数の孔1108が形成されており、菅1110を介して図示しない真空源に接続されている。孔1108は、真空吸引によりTMO1112を保持する。この移植用器具1102は、TMO1112をスリット1104に導くのに使用される。
患者の皮膚に線状TMOを移植するのは、被移植部に適切な深さ及び長さの切れ目を作り、その切れ目に線状TMOを置き、その傷をTMOで適切に塞ぐことにより行われる。移植されたTMOは、被移植部において皮膚と一体化する。最良の結果としては、TMOの順応は、TMOの角質層の表皮と皮層が皮膚組織の周囲の層とぴったりと合う。切れ目を作るための外科用メスは、切れ目の深さを制御する器具(開切用器具)に保持される。この開切用器具は、切れ目の長さを規定する窓が切欠された基板を有し、切れ目を作成する前に皮膚の周囲をわずかな圧力で押さえる。開切用器具は前記基板上に置かれ、外科用メスの先端を基板の下方に約1mm突出させる。このようにして、切れ目の深さを正確に規定する。切れ目が作成されると、開切用器具を取り除き、開切用器具の代わりに、移植用器具の下降を補助するためのガイドを配置する。このガイドにより、移植用器具に保持された線状TMOを切れ目1104内に正確に挿入することができる。組織の周辺のテンションが緩和されたら、線状TMOが移植された切れ目を閉じる。必要に応じて、傷口を閉じるための力を加えるとよい。この段階では、真空は開放され、基板と共に、移植用器具は取り除かれる。
治療中に、移植されたTMOが押し出さるのや、周囲に露出するのを防ぐべく、傷口の包帯は確実に行う。包帯は、必要に応じて、適切な位置にて保持すべく、適度に移植されたTMOに圧力を加える。一体化を助ける。
移植されたTMOが生成するタンパク質は、皮膚組織中に分泌し、皮膚と皮下に入る。TMOは自系の皮膚サンプルであるので、拒否反応の心配はない。
(線状TMOの皮下移植)
皮下に埋め込まれたTMOは、皮下内に留まり(外に押し出されることがなく)、傷つくことがない。このような実施は、移植する場合よりも皮膚の外部に損傷を与えない。痛みも無く、見栄えもよい。皮下に埋め込む手法は、外科的に切断する手法よりも注射に近い。
皮下に埋め込む手法では、埋め込みスペースを介して、皮膚の切り口にカテーテルが挿入される。反対側において先端が皮膚の表面に出る。皮膚下に挿入されたカテーテルの既知の長さを確実にするために、被移植部における患者の皮膚の位置を機械的手段(例えば真空吸引や両面テープ)により持ち上げる。そして、カテーテルは、この皮膚の突出した部分の基部に挿入される。基部の長さは、真空を生成する道具の大きさや、両面テープの大きさにより規定される。
一旦皮下に埋め込まれると、TMOは埋め込みスペースにおいて、細胞内の流動体と接触し、全ての分泌したタンパク質が埋め込みスペースに到達する。この埋め込みスペースは、治療用タンパク質を大量注射する際の注射する場所と同じである。図12−A〜Dは、皮下埋め込み方法の一連のステップを示す。この方法では、埋め込みに備えて、まずTMO1202を外科用の針に取り付ける。次に、カテーテル1206を皮膚1208の下に挿入する。このとき、カテーテルの先端は、他端側(挿入側から見て)に突き出ない(図12−A参照)。糸は、硬い又は柔らかく、吸収性が有る又は無い、生体適合性材料からなり、直径は大きい。糸は、その先端に、縫合針1203を有する。なお、糸の全長は、カテーテルの長さよりも長い。糸が取り付けられた縫合針と糸に保持されたTMOは、カテーテルに導入される(図12−B参照)。そして、カテーテルの先端を越えて、皮膚を貫通する。その後、TMOが皮膚下の埋め込みスペースに正確に位置するまで、針を引っ張る(図12−C参照)。施術者は、糸とTMOを適所に残したまま、カテーテルを取り除くまで、針及び/又は針を保持する(図12−D参照)。その後、糸は、皮膚の一端側にて切り取られる。
糸は、TMOの位置をマークする、その結果、同定と後の除去が容易になる。タンパク質治療の調整と停止のために。重要なのは、糸は、TMOの皮膚が生成したケラチンが、埋め込みスペースから排出される経路を提供する。TMOの角質層から剥がれ落ちるケラチンは、皮下に埋め込まれる領域に蓄積され、封入体嚢胞を形成する。糸の存在は、糸の長手方向軸に沿って、ケラチンを流す。体の外に。場合によっては、TMOの表皮は、糸の周囲に上皮細胞を生成し、糸の周囲にケラチンの安定した経路が形成される
上述した方法の変形例としては、カテーテルの先端は、皮膚の他端側(挿入側から見て)に突き出てもよい。
他の形態では、糸は、フック状の突起に形成される。この糸は、針を必要としない。カテーテルを埋め込みスペースに挿入する前に、糸をカテーテル内に挿入する。カテーテルは、皮膚の他端側(挿入側から見て)に突き出ない。カテーテルを挿入すると、すぐに、カテーテルを引き出す。このとき、糸のフックは、糸がカテーテルと共に引き出されるのを防ぐ。
一般に、埋設方法では、TMOをカプセル化する、又は膜で被包又は囲む。膜は、細孔を有する。細孔の大きさは、栄養素の廃棄物と治療物質を通過させるのに十分に大きく、免疫系の細胞を通過させないのに十分に小さい。
図13−A〜Eは、第2の皮下埋め込み方法の一連のステップを示す。
この方法は、第1の皮下埋め込み方法と類似しているが、糸は使用しない。この方法では、空のカテーテル1302を埋め込みスペースに挿入する。このとき、カテーテル1302の先端は、皮膚の反対側(挿入する側に対しての反対側)に突出する。真空保持器1304をカテーテル内に挿入し、カテーテルの出口においてTMO1306の一端を保持する(図13−A)。また、他の真空保持器1308によりTMO1306の他端を保持する。TMO1306がカテーテルの内部に位置するように、両真空保持器1304・1308を同時に動かす(図13−B、13−C)。そして、両真空保持器でTMOを保持した状態で、TMO1306だけが埋め込みスペースに位置するように、カテーテルを引き出す(図13−D)。
なお、TMOの両端は皮膚の表面よりも突き出ている。その後、被移植部における、TMOの各端部とその隣接する部分に1つづつ、外科用メスで切れ目を作成する。そして、真空吸引を中止し、真空保持器を引き離す。TMOの突出端は、上述した線状TMOの移植の場合と同様に、隣接する切れ目に挿入する(図13−E)。
この方法では、TMOの両端が移植された部分は、TMOの位置を示すマーカとしての役割を果たす。さらに、TMOの皮膚の角質層は、それ自身がケラチンを体外に流出させる経路を形成する。糸と同様に、TMOの表皮は、角質層のケラチンの周囲に、上皮細胞を形成する。したがって、TMOの角質層の周囲に安定したケラチンの経路が形成される。ケラチンは、この経路を経由して分泌する。TMOの近隣に封入体嚢胞は形成されることを防止する。
埋め込まれていない微小器官/TMO物質は、その後の使用のために、低温で保存できる。例えば、埋め込まれた物質の効果が、要求される量よりも減少した際に。
栄養素物質から代わりの物質を取り除き、精製する、注射又は他の投与方法により被験者に投与する。
(TMOの除去又は中和化)
微小器官/TMO物質が治療に優れている点は、治療物質を分泌する組織が、身体の明確な位置に局部的に配置されることである。そのため、治療を終了する際は、この組織を除去するだけで、タンパク質の供給を中止できる。また、埋め込まれた組織は、後述する方法により、除去又はその機能を中止することができる。
微小器官/TMO物質の位置を視覚化するための参照点は、TMOそれ自身や糸(あるいは他のTMOと共に埋め込まれた物質)により提供される。例えば、TMOの両端に蛍光性ビーズを埋め込み、その蛍光によりTMOの位置を特定することもできる。同様に、物質、超音波、X線、MRI又は他の可視化ソースにより可視化する物質を使用することができる(磁気特性を有する物質と同様に)。
移植されると、微小器官/TMO物質は、外科用メス又は他の切断手段により、外科的に除去できる。また、除去する代わりに、TMOをその場所に残したまま、レーザー、低温、ラジオ周波数、マイクロ波エネルギーなどの外部エネルギーによりTMOの細胞を蒸発させる。これら中和方法は、微小器官/TMO物質の周辺にプローブを導入して行う。
外科用メスや他の切断手段により、TMOを外科的に切断する場合は、例えば、埋め込まれた組織を周囲の最小限の宿主組織と共に除去する場合は、TMOのパスをたどるために、コアリング・デバイスを用いる。
実施例1
SCIDマウスに埋め込まれた、マウスインターフェロンアルファ(mIFNα)を発現するヒト皮膚TMO
ヒト皮膚微小器官は、おなかの脂肪を取る手術(tummy-tack)手順で得られた新鮮な皮膚組織サンプルから調整された。1.4-1.5mmの皮膚厚(深さ)切片が除去され、ハイポクロライド(hypochloride)溶液(10%ミルトン溶液)を用いて清浄された。清浄された皮膚サンプルは、組織切断装置(TC-2型チョッパー、Sorval, Du-pont instruments)を用い、無菌環境下で、450マイクロメータの切片(幅)に切り分けられた。結果的に獲得される微小器官が、ウェル(well)あたり400μlのDMEM(Biological Industries - Beit Haemek)を含有する、48枚のウェルマイクロプレート内、各ウェル毎に一つ、24時間にわたって、摂氏37度、CO25%雰囲気という条件下で、血清が存在しない条件で、配置された。その後、各ウェルが形質導入手順を経て、マウスインターフェロンアルファのための遺伝子を有するアデノウイルスベクター(1x1O9 IP/ml)を用い、治療用微小器官(TMO)を生成した。その後、TMOは、再びウェルあたり400μlのDMEMで維持される。培地は2〜3日ごとに交換され、特定のELISAキット(Cat. # CK2010-1, Cell Science Inc)を用いて分泌されたmIFNαの存在が解析された。上述のヒト皮膚mIFNα TMOが、複数のSCID(重症複合免疫不全)マウスに皮下埋め込みされた。埋め込まれたマウスは数週に渡って、血清内に高レベルのインターフェロンアルファを呈した。それらSCIDマウスの血清内検出された分泌mIFNαは、ウイルス細胞変性阻害アッセイによって分析され、生物学的に活性であることが解った(データ図示せず)。図14−Aは、埋め込み前のmIFNα TMOのin-vitroな分泌と、埋め込み後の血清のin-vivoレベルとの間の相関分析を示すものである。相関データによって、埋め込み前に測定されたin-vitroな分泌レベルが所望とする治療効果を達成するために埋め込まれるべきTMO量が計算され、調薬に用いられても良いことが示されている。
図14−Bは、SCIDマウス内のヒト皮膚TMOによって生成され運搬されたmIFNαと共に、被験者に注射された様々な組み替え型治療タンパク質の薬物動態性を示すものである。値は、注射されたタンパク質の標識またはTMO技術を有するSCIDマウスの血清のいずれかより得られた、比較タンパク質血中濃度を示しており、タンパク質のために示された各Cmaxのパーセンテージとして表されている。
実施例2
マウスインターフェロンアルファ(mIFNα)を発現するヒト皮膚TMOが示す、タンパク質アウトプットにおける患者間の高再現性
TMOが、1×109IP/mlのアデノウイルス滴定量を含めて上述したような標準的(最適化されているわけではない)手順を用い、Ad5/CMV-mIFNαベクターと共に調整、形質導入された。形質導入は、微小器官の調整後24時間実行された。培地は、in-vitroなmIFNα分泌のために、特定のELISAキット(Cat. # CK2010-1, Cell Science Inc)を用い、形質導入後6日目に検定された。図15は、異なる回数処置された、異なる患者よりの皮膚サンプル間変化の程度が極めて小さいことを示している。ヒトの患者間の変化の程度が低いことによって、充分に比較可能なタンパク質分泌レベルが、所望とする治療効果を得るために埋め込まれるべきTMO適用量を計算し適定するのに実用的な量を、患者の標準サイズ皮膚サンプルより得ることが可能であると示されている。
実施例3
再埋め込みを含めて、SCIDマウスに埋め込まれた、ヒトエリスロポエチン(hEPO)を発現するヒト皮膚線形TMO
線形(長さ20mm、幅0.4μm)のヒト皮膚微小器官は、おなかの脂肪を取る手術(tummy-tack)手順で得られた新鮮な皮膚組織サンプルより調整される。0.85-1.1mmの中間層皮膚厚(深さ)の組織サンプルが、グルタミンを含むDMEM、及びペトリ皿(90mm)におけるPen.-Strepを用いて取り除かれ清浄される。
線形の微小器官を生成するためには、上述の組織サンプルが、上述のブレード構造を用いる加工装置で切断されて、20 mm x 400μmの所望寸法が得られる。結果的に獲得される微小器官は、ウェル(well)あたり400μlのDMEM(Biological Industries - Beit Haemek)を含有する、24枚のウェルマイクロプレート内、各ウェル毎に一つ、24時間にわたって、摂氏37度、CO25%雰囲気という条件下で、血清が存在しない条件で、配置された。プレートを振動させながら24時間に渡り各ウェルが形質導入手順を実行され、ヒトエリスロポエチンのための遺伝子を有するアデノウイルスベクター(Adeno-hEPO)(1x1O10 IP/ml)を用いて、治療用微小器官(TMO)を生成した。培地は2〜4日ごとに交換され、特定のELISAキット(Cat. # DEP00, Quantikine IVD, R&D )を用いて分泌されたhEPOの存在が解析された。
上述のヒト皮膚hEPO線形TMOは、複数のSCID(重症複合免疫不全)マウスに皮下埋め込みされた。図16を参照するとおわかりのように、埋め込まれたマウスは、数週に渡って、血清内に高レベルのエリスロポエチンを呈した。それらSCIDマウスの血清内で検出された分泌hEPOは、生物学的に活性であることが解った。埋め込み後70日間に渡って、複数のマウスは追加的な線形hEPO TMOの2次的埋め込みを実施され、より長期間の治療効果を導き出すより長いhEPO分泌が達成された。
実施例4
様々な適用量でSCIDマウスに埋め込まれた、ヒトエリスロポエチン(hEPO)を発現するヒト皮膚線形TMO
線形(長さ30.6mm、幅0.6μm)のヒト皮膚微小器官は、おなかの脂肪を取る手術(tummy-tack)手順で得られた新鮮な皮膚組織サンプルより調整される。0.85-1.2mmの中間層皮膚厚(深さ)の組織サンプルが、グルタミンを含むDMEM、及びペトリ皿(90mm)におけるPen.-Strepを用いて取り除かれ清浄される。
線形の微小器官を生成するためには、上述の組織サンプルが上述したようなブレード構造を用いる加工装置を用いて切断されて、30.6mm x 600μmの所望寸法が得られる。結果的に獲得される微小器官は、ウェル(well)あたり500μlのDMEM(Biological Industries - Beit Haemek)を含有する、24枚のウェルマイクロプレート内、各ウェル毎に一つ、24時間にわたって、摂氏37度、CO25%雰囲気という条件下で、血清が存在しない条件で、配置された。各ウェルが形質導入手順を経て、ヒトエリスロポエチンのための遺伝子を有するアデノウイルスベクター(Adeno-hEPO)(1x1O10 IP/ml)を用いて、プレートを振動させながら24時間に渡って、治療用微小器官(TMO)を生成した。培地は2〜4日ごとに交換され、特定のELISAキット(Cat. # DEP00, Quantikine IVD, R&D Systems)を用いて分泌されたhEPOの存在が解析された。
上述のヒト皮膚hEPO線形TMOが、3種類の適用量(マウス1匹あたり、1〜3のTMO)で複数のSCID(重症複合免疫不全)マウスに皮下埋め込みされた。図17から解るように、埋め込まれたマウスは、数週に渡って、血清内に高レベルのエリスロポエチンを呈した。さらには複数のマウスで見受けられる血中濃度は埋め込まれた線形TMOの数との相関関係を有しており、投与量に関連した効果が達成された。SCIDマウスの血清内で検出された分泌hEPOは、hematocriteの上昇によって確認されているように、生物学的に活性であることが解った。
実施例5
ヒトエリスロポエチン(免疫コンピテント動物へのhEPO)を発現する、ミニブタ(miniature swine)皮膚の線形TMOの自己埋め込み
線形(長さ30.6mm、幅0.6μm)のミニブタ(Sinclar swine)皮膚微小器官は、一般的麻酔使用法で、生体より獲得した新鮮な皮膚組織サンプルを用いて調整される。0.9-1.1mmの中間層皮膚厚(深さ)の組織サンプルが、市販の植皮刀(Aesculap GA630)を用いて除去され、グルタミンを含むDMEM、及びペトリ皿(90mm)におけるPen.-Strepを用いて清浄される。
線形の微小器官を生成するためには、上述の組織サンプルが上述したようなブレード構造を用いる加工装置を用いて切断されて、30.6mm x 600μmの所望とする寸法が得られる。結果的に獲得される微小器官は、ウェル(well)あたり500μlのDMEM(Biological Industries - Beit Haemek)を含有する、24枚のウェルマイクロプレート内、各ウェル毎に一つ、24時間にわたって、摂氏37度、CO25%雰囲気という条件下で、血清が存在しない条件で、配置された。各ウェルが形質導入手順を経て、ヒトエリスロポエチンのための遺伝子を有するアデノウイルスベクター(Adeno-hEPO)(1x1O10 IP/ml)を用いて、プレートを振動させながら24時間に渡って、ミニブタの治療用微小器官(pig skin-TMO)を生成した。培地は2〜4日ごとに交換され、特定のELISAキット(Cat. # DEP00, Quantikine IVD, R&D Systems)を用いて分泌されたhEPOの存在が解析された。
上述のミニブタ皮膚hEPO線形TMOは、複数の免疫適格ミニブタに皮下埋め込みされ、皮膚移植片として移植された(2匹のミニブタに対しTMOs-hEPOが皮下に埋め込まれ、異なる2匹のミニブタに対しTMOs-hEPOが1mmの深いスリット内に移植された)。十分な数のTMOs-hEPOが各ミニブタに埋め込まれ、各ブタにおける総合的な埋め込み前分泌レベルは、一日あたりおよそ7μグラムであった。ELISAアッセイによって決定された血清hEPOレベルの上昇(図18−A)、及び網状赤血球カウント増加(18−B)は、埋め込み7日後に得られた。図18−A及び18−Bは、生理学的に活性化されている(エリスロポエチン効果)hEPO治療量の、ブタ血清への運搬を示すものである。
実施例6
in-vitroでヒトエリスロポエチン(hEPO)を発現するヒト皮膚の線形TMO及びメッシュTMO
線形(長さ28mm、幅0.6μm)、及びメッシュ部分(各セグメント幅0.6μm)のヒト皮膚微小器官は、おなかの脂肪を取る手術(tummy-tack)手順で得られた新鮮な皮膚組織サンプルより調整される。0.85-1.2mmの中間層皮膚厚(深さ)の組織サンプルが、グルタミンを含むDMEM、及びペトリ皿(90mm)におけるPen.-Strepを用いて取り除かれ清浄される。
線形及びメッシュの微小器官を生成するべく、上述の組織サンプルに図4−Aに記載のブレードカセットを用いる加工装置を用いて線形微小器官を生成し、図8−Aに記載のブレードカセットを用いる加工装置を用いてメッシュ微小器官を生成した。結果的に獲得される線形/メッシュ微小器官は、ウェル(well)あたり500/1000μlのDMEM(Biological Industries - Beit Haemek)を含有する、48/24枚のウェルマイクロプレート内、各ウェル毎に一つ、24時間にわたって、摂氏37度、CO25%雰囲気という条件下で、血清が存在しない条件で、配置された。各ウェルが形質導入手順を経て、ヒトエリスロポエチンのための遺伝子を有するアデノウイルスベクター(Adeno-hEPO)(1x1O10 IP/ml)を用いて、プレートを振動させながら24時間に渡って、治療用微小器官(TMO)を生成した。培地は3〜4日ごとに交換され、特定のELISAキット(Cat. # DEP00, Quantikine IVD, R&D )を用いて分泌されたhEPOの存在が解析された。図19−Aにおいて見られるように、hEPOタンパク質は、形質導入後31日間に渡ってin-vitro分泌のために検出された。
実施例7
in-vitroでヒトエリスロポエチン(hEPO)を発現するヒト皮膚の線形及び超(Super)線形TMO
線形(長さ20mm、幅0.6μm)、及び超線形部分(長さ15mm、幅0.6μm)のヒト皮膚微小器官は、おなかの脂肪を取る手術(tummy-tack)手順で得られた新鮮な皮膚組織サンプルより調整される。0.85-1.2mmの中間層皮膚厚(深さ)の組織サンプルが、グルタミンを含むDMEM、及びペトリ皿(90mm)におけるPen.-Strepを用いて取り除かれ清浄される。
線形及び超線形の微小器官を生成するためには、上述の組織サンプルが、図4−Aに記載のブレードカセットを用いる加工装置を用いて線形微小器官を生成し、図5−Aに記載のブレードカセットを用いる加工装置を用いて超線形微小器官を生成した。結果的に獲得される線形/超線形微小器官は、500μlのDMEM(Biological Industries - Beit Haemek)を含む各ウェル毎に一つ、若しくは3750μlのDMEMを含むペトリ皿にて、24時間にわたって、摂氏37度、CO25%雰囲気という条件下で、血清が存在しない条件で、配置された。各ウェルが形質導入手順を経て、ヒトエリスロポエチンのための遺伝子を有するアデノウイルスベクター(Adeno-hEPO)(1x1O10 IP/ml)を用いて、プレートを振動させながら24時間に渡って、治療用微小器官(TMO)を生成した。培地は3〜4日ごとに交換され、特定のELISAキット(Cat. # DEP00, Quantikine IVD, R&D )を用いて分泌されたhEPOの存在が解析された。図19−Bにおいて見られるように、hEPOタンパク質は、形質導入後14日間の、in-vitro分泌のために検出された。
実施例8
in-vitroでヒトエリスロポエチン(hEPO)を発現する、新規のデルマトームと共に採取される皮膚サンプルに由来するヒト皮膚線形TMO
線形(長さ30.6mm、幅0.6μm)のヒト皮膚微小器官は、おなかの脂肪を取る手術(tummy-tack)手順で得られた新鮮な皮膚組織サンプルより調整される。0.9-1.1mmの中間層皮膚厚(深さ)の組織サンプルが、図3−A乃至3−Eに記載のデルマトームを用いて除去され、グルタミンを含むDMEM、及びペトリ皿(90mm)におけるPen.-Strepを用いて清浄される。
線形及び超線形の微小器官を生成するため、上述の組織サンプルに、図4−Aに記載のブレードカセットを用いる加工装置を用いて線形微小器官を生成した。結果的に獲得される微小器官は、500μlのDMEM(Biological Industries - Beit Haemek)を含有する各ウェル毎に一つ、24時間にわたって、摂氏37度、CO25%雰囲気という条件下で、血清が存在しない条件で、配置された。各ウェルが形質導入手順を経て、ヒトエリスロポエチンのための遺伝子を有するアデノウイルスベクター(Adeno-hEPO)(1x1O10 IP/ml)を用いて、プレートを振動させながら24時間に渡って、治療用微小器官(TMO)を生成した。培地は3〜4日ごとに交換され、特定のELISAキット(Cat. # DEP00, Quantikine IVD, R&D )を用いて分泌されたhEPOの存在が解析された。図19−Cにおいて見られるように、hEPOタンパク質は、形質導入後23日間の、in-vitro分泌のために検出された。
(密閉された無菌微小器官処理カセット)
図20〜39は、被験者において組織採取から開始して移植で終わるような微小器官/TMO処理の全ての段階を処理するために用いられるようなカセットモジュールを説明するものである。説明されているカセットモジュールでは、上記の種々の機能は、効率的、無菌かつ制御可能な方法で実行されるモジュール間の微小器官/TMOの移送を伴い、無菌環境で実行される。
図20は、主カセットモジュール2000を示し、モジュールは見易いように分離されている。主モジュールは、組織採取器2002、微小器官モジュール2010、バイオプロセッシングモジュール2020、フルイディクスモジュール2040である。各モジュールは、塑性または他の生体適合性ハウジングを含む。一般に、組織採取器2002は組織が採取されているときに残りのカセットから取り外され、次に採取された組織をそこに移送するべく微小器官モジュール2010に取着される。各モジュールの組は、バーコードなどの方法で識別された所与の被験者及び所与の試料に固有のものである。使用後、モジュールは好適には廃棄される。
図21及び22は、採取器2002の動作及び詳細を示す。
外来診察室や手術室などの臨床的に無菌の環境において、皮膚採取器2002を用いて被験者から皮膚試料が採取される。採取器2002は、搭載された電源または別体をなすパワーモジュール(図示せず)内の電源のいずれかによって状況に応じて電力供給されるが、医学的に分離された電源などによっても電力供給され得る。
図3に関連して上述したような組織採取装置の設計原理に従って、採取器2002は、専用ポータブル真空源であるか或いは非可動式据付真空源から誘導され得るかいずれかであるような真空源2102を用いる。標準外科部位の準備は恵皮部で行われ、局所麻酔薬が投与された。
ポート2116はベースプレート2412上に開けられ、無菌組織採取器への唯一の開口部であるような窓2120を形成する。そしてこれは、窓2120から皮膚表面2114が出るように十分な圧力を供給する手段(図示せず)と共に被験者に所望の位置で取り付けられる。
プランジャ2106は、皮膚に接触する必要があるので気密ハウジング2105内で無菌ブッシング2104から下に下げられ、真空は、皮膚の表面を試料キャリアの表面に対して平坦に保持するべく、アクセス孔2110を介して試料キャリア2108まで加えられる。
試料キャリアの接触面は、所望の厚さの皮膚試料を切るために、プランジャによって垂直に位置決めされ、ブレードのカッティングエッジ上方の所望の距離に維持される。
ブレード2118(端部を図示する)は状況に応じて、組織(例えば皮膚)を切るために、順方向に駆動されるようなモータ2122によって、例えばねじ駆動装置2126によって左右に振動される。駆動装置2126は、モータ(図示せず)によって始動される。
図22は、ポート2116が閉位置にあるときの、キャリアに取着された結果として得られる採取された皮膚試料2202を示す。組織採取器モジュールは、無菌方法で再び密封され、微小器官モジュールへの微小器官の移送及び運搬の準備が整っている。
図23〜25は、本発明の実施例に基づく皮膚試料からの微小器官の形成を示す。
閉じた採取器2002はキャリア上に皮膚試料を伴い、気密ガスケット2304を介して、図23に示されるようにクリップ2302を経て微小器官モジュール2010に取外し可能に取り付けられる。採取器モジュールの配置位置の平面図は図20に2014で示される。
微小器官モジュール2010において、トリミングカートリッジ2320は通常超線状微小器官の個別セグメントの所望の長さ(通常は30mm)で離隔されかつベース2321に支持された2つの平行ブレード2318を含む。状況に応じて、トリミングカートリッジ2320は、試料の長さ及び幅の両方の寸法を描くような長方形をなす4つのブレードを含む。
トリミングカートリッジ2320は採取器2002の試料キャリアと調整され、採取器のポート2116及び微小器官モジュールのポート2306は開いている。
切断及び移送過程中に組織試料を湿潤に保つために用いられる湿潤剤は、ディスペンサ(図23には示されていないが、図29の平面図に見られる)を経由してトリミングカートリッジ及びカッティングカートリッジの両方に運ばれる。
プランジャ2106は、カートリッジ2320に対して駆動され、ブレードがキャリアの真下まで皮膚を切り、それによって皮膚試料の2つのエッジをトリミングするようにする。
プランジャ2106は、真空が維持される間、ブレード2318の真上の高さまで後退され、それによってトリムされた試料及びキャリアに対する切り代の両方を保持する。
図4及び5に関連して上述したような組織採取装置の設計原理に従って、カッティングカートリッジ2321は、支持ベース2322に取り付けられたスペーサ2331によって離隔され、奇数ブレードが対応する偶数ブレードに対して軸方向に通常微小器官の幅に等しい距離だけ、通常は数百マイクロメートルの範囲で、偏位しているように配置された多数の平行なカッティングブレード2330を含む。
取外し可能なマスク2328はブレード2330の間に挿入され、オフセット2324に対して載置されるようなブラケット2326によって適所に保持される。ブラケット2326は状況に応じて、ラッチ(図示せず)によって適所に保持されるような圧縮されたばねなどの圧力に逆らって適所にラッチされる。
トリミングカートリッジ2320及び微小器官カートリッジ2321は、微小器官カートリッジ2321がキャリアに調整されるようにねじ駆動装置2233によって駆動される。
プランジャ2106は、図24に示されるようにキャリアの真下まで皮膚を切るまでブレード2330に対して駆動される。
プランジャ2306は上に上げられ、通常は図25に示されるように2010に取り付ける前に初期開始位置へ戻る。
マスク2328は、圧縮されたばねの反動など幾つかの手段の1つによって上昇させられるブラケット2326によってブレード2330上に上げられ、それを保持するラッチ(図示せず)の解放によって始動される。ラッチ解放は、とりわけ、カッティングカートリッジによる切断中にプランジャからの圧力によって始動され得る。
結果として得られる超線状微小器官2502は、運搬の準備ができた既知の位置及び向きでマスク2328の頂部に静止する。キャリア2108はこのときトリムされた組織マージンを保持し、マスク上に超線状微小器官を残すことに留意されたい。
更に図26〜28を参照すると、図20にも示されているような微小器官が移送されるバイオプロセッシングモジュール2020の詳細が示されている。バイオプロセッシングモジュール2020は、内部にポート2024が形成されたハウジング2021を含む。ハウジング2020内では、取付機構2602は後述のように回転可能に取り付けられる。ハウジング2020はまた、フルイディクスモジュール2040からモジュール2020内の構成要素に電力を伝えるような複数のフルイディクスポート2023で形成される。ハウジング2020はまた、モジュール2010のハウジングにおいて整合孔2013にちょうどよく嵌るような取付ピン2027で形成され、シーリングガスケット3037の助けを借りて2つのモジュールを気密封止する。
モジュール2010に引き込まれるように示されている真空ガイド2011は図20にも示されている。
取付機構2602の詳細は、図26及び27に示されている。機構2606は、内部回転機構2702と回転微小器官ホルダ2704とを含む。内部回転機構を回転させることによって開放されるような真空ピックアップリード2604が内部回転機構に取着されている。
図26は、モジュール2010と2020の間での微小器官の移送を概略的に示す。ポート2025及び2306は、開放されている(図示されてはいない)。真空ガイド2011はモジュール間のポート領域に開始位置を有し、真空ピックアップリード2604はそのピックアップ2606位置がマスク2328上に静止する微小器官2502から僅かに離れて位置決めされるように真空ガイド2011上に静止している。微小器官2502を掴むために、内部回転機構2702は時計回りに僅かに回転し、それによって微小器官2502の側面に隣接する真空ピックアップ2604を押してその端部に重なる。内部回転機構2702を反時計回りに回転させ、真空ガイド2011上に誘導されることによって、真空ピックアップ2606は起動され、ピックアップリードはモジュール2020に引き込まれる。ここで、真空ガイド2011は、真空ピックアップリード2604が微小器官2502にくっついた後、真空ピックアップリード2604及び微小器官2502を保つのに十分な真空圧のみを有する。微小器官の先端が回転微小器官ホルダ2704に到達するとき、先端はセグメントマウント2610上にある。セグメントマウント2610(拡大したものを引伸ばし円に示す)は、少なくとも2つの閉止部分2608と状況に応じて伸張性のクロスバー2614(後述)とを含み、更にアイ2612(機能は後述)を状況に応じて含む。一たび微小器官が微小器官ホルダ2704に到達したら、内部回転機構2702は外部回転機構2703にロックし、それによって両者は1つのユニットとして共に回転するが、これは微小器官ホルダ2704が反時計回りに回転する効果を伴うものであり、微小器官をその上にロードする。
真空ガイド2011は、器官が運搬中に方向付けられたままでかつねじれないように低レベルの真空を微小器官に加える。状況に応じて、それは、長さに沿って孔2630が形成された長方形チューブ(線A−Aに示される)の形状をなし、微小器官がその側面にそれとくっつく際にそれに沿って摺動するのに十分な僅かな真空が孔2630から加えられる。
状況に応じて、微小器官を調整しかつ湾曲を防止するようなアライメント部材2632が取着される。凹部はまた、リード2604がガイド2011に位置決めされたままになるようにする。
回転微小器官ホルダ2704には、それぞれ微小器官の単一セグメントの長さであるような一連のセグメントマウント2610(拡大したものを引伸ばし円に示す)が与えられ、マウントの各端に1つずつクリップ2608が配置される。このように、微小器官ホルダが回転する際に1つの微小器官セグメントはセグメントマウントの一端のクリップ上に配置され、別の端部はセグメントマウントの他端のクリップ上に配置される。セグメントマウントが閉止機構2616を通過する際に、機構は、セグメントマウントの端部でクリップ2608を閉じるような2つのパドルを上昇させるように回転する。一たび微小器官が完全に保持されたら、真空ピックアップ及び真空ガイドの真空は解放され得る。微小器官ホルダ2704にしっかり取り付けられた微小器官2502によって、ガイド2011はその後、ポートをクリアするまでねじ駆動装置により始動される微小器官カセット2010まで後退される。ポートはその後閉じられる。組織採取器モジュール2202を伴う微小器官モジュール2010は、その後廃棄され得る。
図28−Aは上記過程の側面図であり、図28−Bはセグメントマウント上に取り付けられた微小器官を示す。
バイオリアクタベース2802は、超線状微小器官ホルダ2704がベース2802の内面に支承されるまで上昇させられる。ベース2802は例えばカップリング2808を経由してモータ2806によって駆動される支持板2805を介して上昇させられる。一実施例では、超線状微小器官を内部に有するベースはカバーで覆われない。状況に応じて、撹拌によるバイオリアクタ内での流体のはねを防止するため、或いは気化を低減するために、必要であればカバーがあてられ得る。カバーは、ペトリ皿などのベースを覆う遊嵌カバーであるか或いはバイオリアクタ全体を密封する気密封止カバーであり得る。カバーは、硬い塑性物質または他の生体適合性材料で製造され得るか、気体透過性(通気性)、液体非透過性膜または他種の膜などの膜で製造され得るかのいずれかである。通気性膜は、上記バイオリアクタを囲繞する追加チャンバ内のガス濃度によるガス性環境の制御を許容するという付加的な利点を有し得る。カバーはブレード・アセンブリ3220(後述)の下方または上方のいずれかに設けられ得る。
図29は、一連のモジュールが取り付けられた処理ステーション2900を示す。本発明の一実施例では、図のように、制御モジュール2900の一部の左側部分にモジュールが置かれるとき、図23〜28に関連して上述した機能が実行される。モジュール2010、2020及び2040がはっきりと示されている。モジュール2002は、図20及び29に2014で示されるポートでモジュール2010に接続される。作動中に、モジュール2002、2010、2020及び2040は、例えばクイックディスコネクトによって真空レギュレータ2923及びフルイディクスコントローラ2921に繋がれる。真空レギュレータ2923及びフルイディクスコントローラ2921はローカルコントローラ2960の制御下にあり、ローカルコントローラ2960は同様にマスタコントロール2940の制御下にある。ローカルコントローラ2960はまた、上述のポートを開けたり、ホルダを回転させたりする等に必要なモータを制御する。フルイディクス及び電気的(モータ)制御が混在して述べられているとき、流体制御のみまたは電気的制御のみが用いられ得ることを理解されたい。
採取器モジュール2002によって組織試料が採取された後、採取器モジュール2002はポート2014を介してモジュール2010に連結される。採取された組織試料は切断され(図23〜25)、切断された微小器官は図26に関連して説明したようにモジュール2020に移送される。ここで、モジュール2002が取着されたままのモジュール2010はもはや必要なく、モジュール2020から切り離されて廃棄され得る。
バイオプロセッシングモジュール2020及びフルイディクスモジュール2040は次に、図29の右側に示されるドッキングステーションに示された向きに移送される。処理ステーション2900において、多くの患者/部位の1つから産出され得るような異なる組織試料を含むカセットに対して複数のドッキングステーションが設けられ得る。複数のドッキングステーションにおいて全てのカセットはその処理開始時に左側にドックを通過する必要がある。図面のこちら側では、フルイディクスアクチュエータ2920(フルイディクスコントローラ2932によって制御される)及び真空レギュレータ2922(真空コントローラ2934によって制御される)に取り付けられたモジュール2020及び2040が示されている。モータ2224、2226、2906及び2912は、モータコントロール2936によって始動される。
モジュール2020及び2040は、外囲部2901内に配置され、温度センサ(図示せず)に反応してヒータ2942によって所望の温度に保たれ、ヒータコントローラ2938によって制御される。コントローラは、別体をなすコントローラであってもよく、大型ローカルコントローラ2930の一部であってもよい。ローカルコントローラ2930はまた、試料採取器2912を介してTMOからのサンプリング及び分析を制御する。試料採取器2912は、隔壁などの無菌ポート2943を介してバイオリアクタ2037から流体をサンプリングし、マスタコントロール2940と連通する分析器2996にこれらを与える。センサは、複数のパラメータ、例えば、温度、湿度、CO、pHや、資料管理または制御のためにバイオリアクタにおいて用いられるような他の一般にモニターされるパラメータを状況に応じて検知し得る。
流体、例えば栄養素、廃棄物、ガスなどは、フルイディクスモジュール2040によってバイオリアクタ2037へ/から移送される。
増殖培地は、ディスペンシングボリューム(dispensing volume)2905に保存され、フルイディクスコントローラ2932の制御下でバイオリアクタ2037に搬送される。
廃棄培地は、フルイディクスコントローラ2932の制御下でディスペンシングボリューム2909に移動される。
ディスペンシングボリューム2907は、無菌ガス、例えば、酸素、窒素、COまたはこれらの混合体を搬送し得る。或いは、ボリューム2907は、抗生物質、消毒薬または他の所望の流体を搬送するために用いられ得る。
真空にしている間に空気圧の平衡を許容するように必要に応じて各モジュールに無菌エアフィルタ(図示せず)が付加され得る。
マスタコントローラ2940によって実行されるマスタTMO処理アルゴリズムの制御下で、適時に遺伝子移入ベクターを含む流体の導入及び分離に関与し、バイオリアクタ2037における微小器官マウントの回転及び並進運動などの手段によって、またはバイオリアクタ2037において流体に与えられる音響エネルギーの使用によって、またはその他の手段による撹拌に関与するような過程の時間系列が続く。これらの過程のタイミング及び持続時間は、例えばプリセットプログラム及び/または測定されたプロセス状態のいずれかによって決定され、通常は、特定の遺伝子または遺伝子移入ベクターの特性、対象とする用途、及び被験者からの或る種のデータに合致するように選択される。
遺伝子移入ベクター供与ボリューム2950は通常、図示されていない手段によって極低温に維持され、適時に移動及び解凍され、隔壁などの無菌ポート2929を介して投与され、同様にフルイディクスコントローラ2932の制御下でバイオリアクタ2937に搬送されるようなディスペンシングボリューム2911を満たす。
適時に、通常は超線状微小器官の形成後24時間で、遺伝子移入ベクターはディスペンシングボリューム2911を満たすために無菌ポート2929から注入され、このベクターの第1の部分の搬送が開始される。
(TMOの能力の検査)
TMOの能力検査は、単位時間当たりに、望ましい量のタンパク質が生成されるかどうかをモニタするために行われる。この検査は、バイオリアクタから取り出した組織サンプル(又はその周囲の流体)を用いて、免疫学的(又は類似した化学的・生物学的手法)により行う。また、バイオリアクタから組織サンプルを物理的に取り出すことなく、光学的に行うこともできる。いずれにしても、TMOの能力は、微小器官が初めにバイオリアクタに導入された時点から、使用のために取り出す時点までの様々な時点で検査することができる。
(1)ベクター処理の数
微小器官を含むバイオリアクタ培地に添加することによる、遺伝子導入ベクターに対して微小器官の1つ又は1つ以上の露出。
(2)各処理の継続期間
各露出は、バイオリアクタより残りのベクターを取り除くべく、一部又は全ての培地の交換により終了する。なお、ベクターの活性を減少させることにより達成することもできる。具体的には、時間、熱、又は他の手段により無力化する。
(3)ベクターの投薬量
各露出は、規定の投薬量又は遺伝子導入ベクターの量により利用される。提供されるベクターの量は、同一又は異なる有効性又はバイオリアクタに添加した合計量により変化する。
(4)ベクターを強化する手段
ベクターが微小器官の培地に存在している間に、遺伝子導入の効果を高めることにより、ベクターの動作を強調することができる。そのような方法としては、次のようなものがある。
ベクターの摂取又は効果を強化することが知られている化学物質を添加する
微小器官の物理的処理(磨耗又は組織の目打ち)
培地内で微小器官の物理的攪拌
微小器官又はその培地の物理的振動
微小器官の露出又はその培地の音波又は超音波エネルギー
エレクトロポレーションや電磁場のような電気的手段の活用
(5)維持状態の調整
予定された量と、培地を除去し取り替えるタイミングと、ガスを交換する割合、バイオリアクタの培地への物資の添加(バッファや他の化学物質)。これらは、バイオリアクタ内で、培地の成長を望ましい状態で維持するためのものである。
(6)予定される段階
微小器官からTMOへ変換する際の、各段階のタイミングと継続期間は、TMOが使える状態にあるまでの間、微小器官が作成される。
処理中は、バイオリアクタ2937内の培地のサンプルは、生成された特定の所望するタンパク質の量を計量すべく、サンプラー2912により採取され、分析器2996により分析される。分析は、例えば、ELISAにより行われる。TMOにより生成されたタンパク質の特性を示すために、スペクトル解析などの他の検査が行われる。
プロセスの結果、TMOが被験者への投与できる状態にあることを示すと、ブレード・アッセンブリ3220に近づけるべく、ベース2802をさらに持ち上げる(図30参照)。刃2804は、図32に示すように、スロット間に配置される。図31は刃の上面図である(図30の側面図と対応している)。ベースが近づくと、刃3804は超線状TMOをばらばらな断片に切断する。ブレード・アセンブリ3220はそのまま残され、流体と微小器官/TMOを分離するのに使用される。
被験者に投与するTMOを作成するために、投与に必要な断片の数が推測される。推測は、入力されたデータに基づいて行われる。
(a)類似した被験者に対する規定の指針、規定の臨床試験計画書又は人口統計に基づいて投与された同じ治療用タンパク質の量、
(b)以前に注射又は他の投与方法により同一の被験者に投与された同じ治療薬の量
(c)体重、年齢、健康状態、臨床状態などの被験者のデータ
(d)以前の他の類似した被験者へTMOを投与したときの薬物動態学的データ
(e)以前の同一の被験者へTMOを投与したときの反応
モジュールは結合ステーションから取り除かれ、TMO移転モジュール3300が、結合材3304とシール用ガスケット3306を介して、バイオプロセッサー2020に取り付けられる(図33)。処理ステーションの左側の結合ステーションに挿入される(図34)。図33及び34に示すように、移転モジュール3300は、ポート3305、x−yステージ3311上に設けられた複数のトランスファー・ピン3310を有するハウジング3302と、モータ3406により駆動する2つのリード・スクリュー3312、3314を備える。トランスファー・ピン3310は、ポート3305を介した選択的通過のために適用される。
図34に示すように、モジュール2020は、モジュール2040と結合したままモジュール3300に結合され、アッセンブリ3402を形成する。モジュール2020・3000間のポートは開放されている。2つのモータ3404と3406は模式的に示されている。これらのモータは、微小器官ホルダ2704を回転させる。また、x−yステージ3311を作動させる。
図35は、ピン3310の1つを示す。図37のAは、マウント部分のトップでアイ2612と噛み合うピン3310を示す。微小器官ホルダ2704がわずかに回転すると、又はピン3310が横方向に動くと(x−yステージにより)、マウント部分はホルダ2704から引き離される。その結果、微小器官部分3702はピン3310により保持される(B)。小穴2612は円形構造体である(他の形状でもよい)。
断片3702と一緒のピン3310は、x−yステージにより、モジュール3300に引き出される(図36)。このプロセスは必要に応じて繰り返される。ポートは閉じられ、モジュール2040と一体化されたモジュール2020は、ロードしていない微小器官/TMOを継続的に維持するため、結合ステーションに戻される(図29の右側)。TMO移転モジュール3300はアッセンブリから取り外され、処理センターに運ばれる。
微小器官/TMOが移植されるとき、ピンはモジュール3300から取り除かれる。そして、移植用器具1110(図38)に移される(図11参照)。なお、他の移植方法も用いることもできる。
微小器官/TMOの投与は、外来診察室又は手術室のような臨床的クリーンルームにて行う。モジュール3300は手動で使用する。取り除いた各ピン3310は、図38に示すように、真っ直ぐにする。各マウント部位は、共通するラチェット・ロッド上の、3802、3804、3806の3つの部位からなる。TMO断片にテンションが提供される。結果として、断片3812を真っ直ぐにする。
線状微小器官/TMO断片を取り除く際は、真空保持具1110を使用して行う(図11参照)。真空保持具1110は、真空源と接続した状態で、断片3812と接触し、角質層3816を保持する。また、微小器官/TMOを真空ホールにより保持する。このプロセスは、必要な数の微小器官/TMOを被験者に投与するまで、繰り返される。
本実施形態では、バイオリアクタは体温に近い温度で維持される(例えば36〜38度)微小器官は抗生物資や抗真菌剤などの条件下で維持される。タンパク質の分泌の正確な測定に必要な化学物質や試薬は、使用しないときは、冷凍して保存される。
命令を入力するため、及びデータを受け取るためのコントロール・センターは、随意に設ける。処理を自動的に(又は準自動的に)行い、データをディスプレイに示すコントローラ2940は、ソフトウエアにより提供される。
以上、本発明の実施形態について説明したが、本発明は前記した実施形態のみに限定されるものではなく、本発明の技術的思想に基づく限りにおいて、種々の変形が可能である。
調合薬を作成する手順を示す図である。 微小器官及び遺伝子操作された微小器官(therapeutic micro-organ:TMO)を作成及び活用する方法の概略を示すブロック図。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。 本発明の実施形態を説明するための図である。

Claims (72)

  1. 組織より形成された少なくとも二つの微小器官部分を有する微小器官構造であって、前記少なくとも二つの微小器官が前記微小器官が形成される前記組織より形成された接合部によって互いに接続されていることを特徴とする微小器官構造。
  2. 少なくとも3つの微小器官が、前記微小器官と同一の前記組織より形成された前記同一の接合部を介して互いに取着されていることを特徴とする請求項1に記載の器官構造。
  3. 複数の前記接合部が、微小器官によって連結されており、
    ここで、そのような微小器官の少なくとも一つが、前記微小器官の一端にて前記接合部の一つに取着され、
    また、前記微小器官の他端にて別の接合部に取着されていることを特徴とする請求項1に記載の微小器官接合部形状を呈する微小器官メッシュ構造。
  4. セグメント化された線形微小器官構造であって、
    少なくとも複数の前記連結接合部がそれに接続された二つの線形微小器官を有することを特徴とする請求項1に記載の連結接続部を含む微小器官。
  5. セグメント化された線形微小器官構造であって、
    少なくとも複数の前記連結接合部がそれに接続された二より多い線形微小器官を有することを特徴とする請求項1に記載の連結接続部を含む微小器官。
  6. 各々の連結接合部が、それに接続された4つの線形微小器官構造を有することを特徴とする請求項5に記載の構造。
  7. 前記線形微小器官構造及び前記接合部が、メッシュ構造を形成することを特徴とする請求項6に記載の構造。
  8. 前記線形微小器官及び前記接合部が、微小器官及び接合部の交互のストリングを含む超線形構造を形成することを特徴とする請求項5に記載の構造。
  9. 前記微小器官が、複数の組織層を有し、ここで前記接合部が複数の層を含むことを特徴とする請求項1乃至8のいずれかに記載の構造。
  10. 前記接合部が微小器官であることを特徴とする請求項9に記載の構造。
  11. 前記微小器官が、複数の組織層を有し、
    ここで、前記接合部が前記微小器官と比較してより少ない数の層を有することを特徴とする請求項1乃至8のいずれかに記載の構造。
  12. 前記組織が、ヒトの皮膚組織であることを特徴とする先の請求項のいずれかに記載の構造。
  13. 切断することで組織ボリュームより微小器官を調整するための装置であって、
    a)近接配置されており、各々の長さの少なくとも一つのセグメントに沿って、互いに平行に配置されており、また前記セグメントに沿って互いに近接しながらも等距離に保たれている複数の近接した切断用ブレードを有し、前記近接する切断用ブレードの切断エッジが、前記セグメントに沿って約200μメートルから約2000μメーターのスライス距離だけ離れていることを特徴とする切断アレイと、
    b)組織スライスを保持するべく適合されている組織サンプルキャリアであって、前記キャリア上に。保持されている前記組織が前記カッティングアレイに対して押しつけられている場合に、前記組織が前記切断ブレードによってスライスされることを特徴とする組織サンプルキャリアとを有する装置
  14. 前記ブレードの前記切断動作を妨害することなく、前記切断ブレードの前記平行なセグメント間に適合する少なくとも一つのインサートを含む除去マスクを有することを特徴とする請求項13に記載の装置。
  15. 前記少なくとも一つのインサートが、複数の前記インサートを有することを特徴とする請求項10に記載の装置。
  16. 前記複数のインサートが互いに連結し、それによって前記切断ブレード間で互いに挿入され、また除去され得ることを特徴とする請求項15に記載の装置。
  17. 前記複数の線形インサートが端部で互いに取着されていることを特徴とする請求項15に記載の装置。
  18. 前記サンプルキャリア及び前記切断アレイの間に圧力を適用するための手段を含むことを特徴とする請求項13乃至17のいずれかに記載の方装置。
  19. 前記切断ブレードが、すべて前記同一の長さを有しているので、それらが前記組織サンプルより複数の線形微小器官を切除するようになることを特徴とする請求項13乃至18に記載の装置。
  20. 前記切断ブレードが概ね同一の長さを有しながら互いに長手方向にずれているので、互いの端部で、接合微小器官構造によって隣接する線形微小器官に対して接続されている複数の線形微小器官を切断することを特徴とする請求項13乃至18のいずれかに記載の構造。
  21. 前記切断アレイが、所与間隔で配置された線形アレイをなす少なくとも3つの複数のブレードを有しており、ここで前記線形アレイは平行であることを特徴とする請求項13乃至18のいずれかに記載の構造。
  22. 前記所与の離隔長が、スライス感覚の0.5倍及び2倍であることを特徴とする請求項21の装置。
  23. 請求項13乃至18に記載の装置であって、
    複数の切断刃は全て同一の長さを有し、その長手方向において互いにずれておらず、
    前記切断刃の隣接する刃側の切刃は、前記切断刃の依然として延びる刃よりも下方にあり、
    前記切断刃は、その厚さが組織の全層未満の連結部によって連結される組織から、複数の線状の微小器官を切断することを特徴とする装置。
  24. 請求項13乃至18に記載の装置であって、
    複数の切断刃は全て同一の長さを有し、その長手方向において互いにずれておらず、
    前記組織ホルダは、隣接する刃の他端と対応する位置が窪んで形成されており、
    前記切断刃は、その厚さが組織の全層未満の連結部によって連結される組織から、複数の線状の微小器官を切断することを特徴とする装置。
  25. 請求項13乃至18に記載の装置であって、
    切断アレイは少なくとも3つの刃を有しており、
    前記刃は、断続的に離間しており、前記直線状アレイの残りの刃の切断面よりも低い切刃は、隣接する低い歯面間の刃の低い切断面と共に並んで配置され、
    一連の連結部は、組織サンプルの全層よりも薄い厚さは、切断面よりも低く形成されていることを特徴とする装置。
  26. 請求項13乃至18に記載の装置であって、
    切断アレイは少なくとも3つの刃を有しており、
    組織キャリアは、隣接するアレイの凹部間に適合するアレイと共に、切断刃と対応する断続的に離間する複数の平行なアレイから形成されており、
    一連の連結部は、組織サンプルの全層よりも薄い厚さは、凹状に形成されていることを特徴とする装置。
  27. 前記ブレードが、スライス間隔分離隔された一連の同心円形状であり、リング形状の複数の微小器官が組織より生成されることを特徴とする請求項13乃至15のいずれかに記載の装置。
  28. 前記ブレードが、前記スライス間隔分離隔された連続螺旋形状を有するので、渦巻き形状を呈する微小器官が組織より生成されることを特徴とする請求項13に記載の装置。
  29. 前記組織キャリアが、真空装置によって組織を保持するべく適合されていることを特徴とする請求項13乃至28のいずれかに記載の装置。
  30. 前記組織キャリアが、前記キャリア表面に対して接着することで前記組織を保持するべく適合されていることを特徴とする請求項13乃至28のいずれかに記載の装置。
  31. 切断することによって、組織よりアクセス可能な微小器官若しくは微小器官構造を生成するための方法であって、
    a)前記微小器官を形成するべく、適切な厚さの組織を提供する過程と、
    b)請求項13乃至30のいずれかに記載の装置を提供する過程と、
    c)前記装置の前記サンプルキャリア上に前記組織を配置する過程と、
    d)組織を前記キャリア上に配置し、前記装置の前記切断ブレードと接触させる過程と、
    e)前記組織の一部が、その厚さに渡って切断されるまで、前記ブレードに対し前記組織を押し込み、それによって少なくとも一つの微小器官すなわち微小器官構造を生成する過程とを含む方法。
  32. 切断することによって、組織よりアクセス可能な微小器官若しくは微小器官構造を生成するための方法であって、
    a)前記微小器官を形成するべく、適切な厚さの組織を提供する過程と、
    b)請求項14乃至17のいずれかに記載の装置を提供する過程と、
    c)前記装置の前記サンプルキャリア上に前記組織を配置する過程と、
    d)組織を前記キャリア上に配置し、前記装置の前記切断ブレードと接触させる過程と、
    e)前記組織の一部が、その厚さに渡って切断されるまで、前記ブレードに対し前記組織を押し込み、それによって少なくとも一つの微小器官すなわち微小器官構造を生成する過程と、
    f)前記切断ブレードの間より前記マスクを除去することによって、前記切断ブレードの間より少なくとも一つの微小器官すなわち微小器官構造を除去し、それによって前記切断された微小器官を前記除去されたマスクの前記表面上へと配置する過程とを含む方法。
  33. 前記押し込み過程が、前記キャリアの一端より他端へと円筒形のドラムを回転させる過程を含み、その回転によって前記組織を切断することを特徴とする請求項31若しくは32に記載の方法。
  34. 組織サンプルより微小器官を生成するための方法であって、
    厚さ、及び前記厚さ方向とは垂直な方向の範囲を有する薄い組織サンプルを提供する過程と、
    前記サンプルの少なくとも一部分に渡って、前記厚さを通って前記サンプルを切断し、少なくとも一つの方向が2000マイクロメーターよりも小さく、また少なくとも別の方向が前記範囲の最長部分よりも長いことを特徴とする方法。
  35. 前記切断過程が、スタンプ動作を含むことを特徴とする請求項34に記載の方法。
  36. 前記薄い組織サンプルは薄い略矩形状の組織サンプルであり、切断は、略直線状に、平行に行い、切断されたものが同じ長さを有し、隣接する細長い組織間に連結部を残すべく、長さ方向に互いにずれていることを特徴とする請求項34又は35に記載の方法。
  37. 前記形成された切断サンプルを変性させ、前記接合部によって接続された組織ストリップを含んだ、拡張された微小器官を生成する過程を含む請求項36に記載の方法。
  38. 切断する過程が渦巻き形状に切断する過程を含むことを特徴とする請求項34に記載の方法。
  39. 前記渦巻き形状を巻き戻し、延長された微小器官を生成する過程を含むことを特徴とする請求項38に記載の方法。
  40. 切断過程が一連の同心円形状の切断によって前記組織を切断する過程を含むことを特徴とする請求項34に記載の方法。
  41. 組織サンプルより微小器官を生成するための方法であって、
    厚さ及び、前記厚さとは垂直な方向の範囲を有する薄い組織サンプルを提供する過程と、
    同時に、前記サンプルに前記厚さに沿った複数の切込みをいれる過程であって、前記切り込みは、長手方向に列をなして形成されており、各々の列は複数の離隔された切断であって傾斜が付けられており、又各々の列が切込み方向にずれており、前記所与の列の空間は隣接する列の切り込み部分に対し接近して配置されていることを特徴とする過程とを含む方法。
  42. 前記ずれが約2分の1のピッチで、各列の切り込みが概ね近接する列の前記空間の概ね中心にあることを特徴とする請求項41に記載の方法。
  43. 近接切り込み間の前記距離が200乃至2000μメータで有ることを特徴とする請求項41に記載の方法。
  44. 前記距離が500乃至1500μメータで有ることを特徴とする請求項43に記載の方法。
  45. 近接する切り込み間の前記距離が近接する列の間の前記距離の5分の1から5倍の間であることを特徴とする請求項41乃至44のいずれかに記載の方法。
  46. 近接する切り込み間の前記距離が近接する列の間の前記距離の2分の1から2倍の間であることを特徴とする請求項41乃至45のいずれかに記載の方法。
  47. 前記間隔が、近接する列間の距離に概ね等しいことを特徴とする請求項41乃至44のいずれかに記載の方法。
  48. 前記切断された組織サンプルを引き延ばしメッシュを形成する過程を含むことを特徴とする請求項41乃至46のいずれかに記載の方法。
  49. 前記切断過程が、スタンプ動作を含むことを特徴とする請求項41乃至48のいずれかに記載の方法。
  50. 前記薄い組織サンプルが、少なくとも表皮の基底層及び真皮の一部を含む皮膚組織であることを特徴とする請求項34乃至49のいずれかに記載の方法。
  51. 前記組織サンプルが、前記全体表皮を含むことを特徴とする請求項50に記載の方法。
  52. 前記組織サンプルが、角質層を含むことを特徴とする請求項50若しくは請求項51に記載の方法。
  53. 前記組織サンプルが、真皮の主要部を含むことを特徴とする請求項50乃至52のいずれかに記載の方法。
  54. 前記サンプルが、概ね真皮全体を含むことを特徴とする請求項50乃至53のいずれかに記載の方法。
  55. 前記薄い組織サンプルが、0.3mmから3mmの厚さであることを特徴とする請求項34乃至54のいずれかに記載の方法。
  56. 前記組織サンプルが、0.5mmから1.5mmの厚さであることを特徴とする請求項55に記載の方法。
  57. 切り込み間の前記距離が、200から2000μメーターであることを特徴とする請求項34乃至56のいずれかに記載の方法。
  58. 切り込み間の前記距離が、500から1500μメーターであることを特徴とする請求項57に記載の方法。
  59. ブレード間の前記空間に対する前記ブレードの長さの比率が、1:1から100:1であることを特徴とする請求項41乃至49のいずれかに記載の方法。
  60. 維持中及び随意の遺伝子操作中に、バイオリアクタ内で微小器官を保持するための固定器具であって、
    1つ以上の開口を有し、微小器官が載置されるホルダと、前記微小器官を前記1つ以上の開口に対して並列に保持する複数の微小器官を固定する要素とを備え、
    前記微小器官の両側の70%以上が露出することを特徴とする器具。
  61. 前記微小器官の両側の80%以上が露出することを特徴とする請求項60に記載の器具。
  62. 前記微小器官の両側の90%以上が露出することを特徴とする請求項60に記載の器具。
  63. 前記微小器官はメッシュ構造を有し、前記固定要素は、前記メッシュ及び開口部の周辺においてメッシュと噛み合う要素を含むことを特徴とする請求項60又は請求項61に記載の器具。
  64. 前記ホルダは、部分的に又は完全に引き伸ばされたメッシュの開口部に配置され、メッシュを固定するピン又はロッドを含むことを特徴とする請求項63に記載の器具。
  65. 先行する全ての請求項に記載の固定器具であって、前記微小器官はメッシュ機構を有し、前記固定要素は前記メッシュを非微小器官の周辺に固定することを特徴とする器具。
  66. 前記ホルダは、メッシュを固定すべく、非微小器官の周辺の開口部に突き刺さる又は配置されるピン又はロッドを含むことを特徴とする請求項65に記載の固定器具。
  67. 前記ホルダは円周スロットから形成されたリングであり、前記開口部を含んでいることを特徴とする請求項60に記載の固定器具。
  68. 前記スロットは軸方向に300から2000μmの範囲で突出していることを特徴とする請求項65に記載の固定器具。
  69. 前記スロットは軸方向に500μm以上突出していることを特徴とする請求項68に記載の固定器具。
  70. 前記スロットは軸方向に1mm以上突出していることを特徴とする請求項68に記載の固定器具。
  71. 固定要素は前記リングの円周に組織って配置され、微小器官を円周に沿って正確に保持し、各固定要素間では、前記微小器官は露出されることを特徴とする請求項67乃至請求項70に記載の固定器具。
  72. 維持中及び随意の遺伝子操作中に、微小器官を保持するための方法であって、
    少なくとも2つの微小器官固定要素を有する固定器具を提供し、
    前記微小器官を前記固定要素により固定し、
    少なくとも、前記固定要素間の微小器官の表面は全ての側で露出することを特徴とする方法。
JP2003550677A 2001-11-05 2002-11-05 微小器官処理システム及びそれを用いた微小器官の製造方法 Expired - Fee Related JP4447916B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US33095901P 2001-11-05 2001-11-05
US39374502P 2002-07-08 2002-07-08
US39374602P 2002-07-08 2002-07-08
PCT/IL2002/000879 WO2003049626A1 (en) 2001-11-05 2002-11-05 Method and apparatus for production of a skin graft and the graft produced thereby

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009268231A Division JP2010054513A (ja) 2001-11-05 2009-11-26 治療組織用の密閉された自動システム、及び治療組織の投与方法

Publications (3)

Publication Number Publication Date
JP2005511709A true JP2005511709A (ja) 2005-04-28
JP2005511709A5 JP2005511709A5 (ja) 2010-01-28
JP4447916B2 JP4447916B2 (ja) 2010-04-07

Family

ID=28678904

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003550677A Expired - Fee Related JP4447916B2 (ja) 2001-11-05 2002-11-05 微小器官処理システム及びそれを用いた微小器官の製造方法
JP2009268231A Pending JP2010054513A (ja) 2001-11-05 2009-11-26 治療組織用の密閉された自動システム、及び治療組織の投与方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009268231A Pending JP2010054513A (ja) 2001-11-05 2009-11-26 治療組織用の密閉された自動システム、及び治療組織の投与方法

Country Status (13)

Country Link
US (2) US20070183974A1 (ja)
EP (2) EP1451571B1 (ja)
JP (2) JP4447916B2 (ja)
KR (2) KR100954987B1 (ja)
CN (2) CN101352365B (ja)
AU (4) AU2002341378B2 (ja)
BR (1) BR0214065A (ja)
CA (1) CA2466244C (ja)
HK (1) HK1126953A1 (ja)
IL (1) IL161746A0 (ja)
MX (1) MXPA04004387A (ja)
PL (1) PL369678A1 (ja)
WO (4) WO2003049783A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504909A (ja) * 2006-09-14 2010-02-18 メドジェニクス・メディカル・イスラエル・リミテッド 長期持続性の医薬製剤
JP2012503528A (ja) * 2008-09-24 2012-02-09 ザ ジェネラル ホスピタル コーポレーション 皮膚組織を移植するための方法および装置

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666192B2 (en) * 2001-02-16 2010-02-23 Kci Licensing, Inc. Skin grafting devices and methods
US8501396B2 (en) 2001-11-05 2013-08-06 Medgenics Medical Israel Ltd. Dermal micro-organs, methods and apparatuses for producing and using the same
US8088568B2 (en) 2001-11-05 2012-01-03 Medgentics, Inc. Dermal micro-organs, methods and apparatuses for producing and using the same
EP1451571B1 (en) * 2001-11-05 2013-08-21 Medgenics, Inc. Devices for dosing and administration of therapeutic micro-organs in living subjects
US7468242B2 (en) 2001-11-05 2008-12-23 Medgenics, Inc. Dermal micro organs, methods and apparatuses for producing and using the same
AU2004215916B2 (en) 2003-02-27 2010-07-29 Applied Tissue Technologies, Llc Method and apparatus for processing dermal tissue
US7708746B2 (en) 2003-02-27 2010-05-04 Wright Medical Technology, Inc. Method and apparatus for processing dermal tissue
EP2377403A1 (en) * 2003-05-01 2011-10-19 Medgenics, Inc. A genetically modified dermal micro-organ expressing factor VIII
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
CA2623106C (en) 2005-09-19 2013-12-24 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
US8454948B2 (en) 2006-09-14 2013-06-04 Medgenics Medical Israel Ltd. Long lasting drug formulations
US8685107B2 (en) 2007-07-03 2014-04-01 Histogenics Corporation Double-structured tissue implant and a method for preparation and use thereof
US20090054984A1 (en) 2007-08-20 2009-02-26 Histogenics Corporation Method For Use Of A Double-Structured Tissue Implant For Treatment Of Tissue Defects
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
JP2013532152A (ja) * 2010-06-15 2013-08-15 メドジェニクス・メディカル・イスラエル・リミテッド 長期持続性の医薬製剤
US9597111B2 (en) 2010-08-06 2017-03-21 Kci Licensing, Inc. Methods for applying a skin graft
US8562626B2 (en) 2010-08-06 2013-10-22 MoMelan Technologies, Inc. Devices for harvesting a skin graft
US8926631B2 (en) 2010-08-06 2015-01-06 MoMelan Technologies, Inc. Methods for preparing a skin graft without culturing or use of biologics
US8617181B2 (en) 2010-08-06 2013-12-31 MoMelan Technologies, Inc. Methods for preparing a skin graft
US8978234B2 (en) 2011-12-07 2015-03-17 MoMelan Technologies, Inc. Methods of manufacturing devices for generating skin grafts
US9610093B2 (en) 2010-08-06 2017-04-04 Kci Licensing, Inc. Microblister skin grafting
US9173674B2 (en) 2010-08-06 2015-11-03 MoMelan Technologies, Inc. Devices for harvesting a skin graft
WO2012145504A1 (en) 2011-04-20 2012-10-26 Kci Licensing, Inc. Skin graft devices and methods
DE102011002193B4 (de) * 2011-04-20 2018-11-29 Leica Biosystems Nussloch Gmbh Gewebeproben-Handhabungsvorrichtung
CN102783991B (zh) * 2011-05-19 2014-09-03 常州菲胜图自动化仪器有限公司 精密微皮移植机
CA2849908C (en) * 2011-09-29 2019-03-05 The University Of Miami Ultra-rapid diagnostic tissue preparation as an alternative to frozen section
AU2012369064A1 (en) * 2012-02-09 2014-09-18 Medgenics Medical Israel Ltd. Methods and apparatuses harvesting, modifying and reimplantation of Dermal Micro -organs
EP2861238A4 (en) 2012-06-05 2016-03-16 Capricor Inc OPTIMIZED METHODS FOR GENERATING CARDIAC STEM CELLS FROM CARDIAC TISSUE AND THEIR USE IN CARDIAC THERAPY
US9574251B2 (en) 2012-06-13 2017-02-21 Jfe Steel Corporation Method of producing sintered ore
WO2014006620A1 (en) 2012-07-05 2014-01-09 P.C.O.A. Devices Ltd. Medication dispenser
NO2879974T3 (ja) 2012-07-30 2018-01-20
CA2881394A1 (en) 2012-08-13 2014-02-20 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
CN102871708B (zh) * 2012-10-26 2015-02-18 元文勇 一种可调式微型取皮植皮机
CN103070719A (zh) * 2012-12-31 2013-05-01 陈金西 皮肤组织细胞提取分离专用梅花刀片
AU2014239952B2 (en) 2013-03-14 2018-09-27 Solventum Intellectual Properties Company Absorbent substrates for harvesting skin grafts
CN105163680B8 (zh) * 2013-03-15 2018-12-14 凯希特许有限公司 微疱植皮术
US10001313B2 (en) * 2013-09-09 2018-06-19 Inovatzia, Inc. Reusable cryogenic carrying case for biological materials
WO2015103043A1 (en) 2013-12-31 2015-07-09 Kci Licensing, Inc. Sensor systems for skin graft harvesting
CN106028982B (zh) * 2013-12-31 2020-06-12 凯希特许有限公司 流体辅助的皮肤移植物采集
IL233295B (en) 2014-06-22 2019-11-28 Ilan Paz A control pill dispensing system
US11357799B2 (en) 2014-10-03 2022-06-14 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
EP3280465B1 (en) 2015-04-09 2020-12-16 3M Innovative Properties Company Soft-tack, porous substrates for harvesting skin grafts
IL238387B (en) 2015-04-20 2019-01-31 Paz Ilan Drug dispenser release mechanism
JP6918810B2 (ja) 2015-10-15 2021-08-11 ドセントアールエックス エルティーディーDosentrx Ltd 画像認識に基づく製剤ディスペンサ
WO2017066771A1 (en) * 2015-10-15 2017-04-20 Indiana University Research And Technology Corporation System and method for quantifiable shave biopsy
WO2017077529A1 (en) 2015-11-02 2017-05-11 P.C.O.A. Lockable advanceable oral dosage form dispenser containers
US11006974B2 (en) 2015-11-03 2021-05-18 Kci Licensing, Inc. Devices for creating an epidermal graft sheet
US11253551B2 (en) 2016-01-11 2022-02-22 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
EP3515459A4 (en) 2016-09-20 2020-08-05 Cedars-Sinai Medical Center CELLS DERIVED FROM CARDIOSPHERES AND THEIR EXTRACELLULAR VESICLES TO DELAY OR REVERSE AGING AND AGE-RELATED DISORDERS
US10105862B1 (en) * 2017-03-31 2018-10-23 Biocut, Llc Fenestrated graft press cutting die assembly
AU2018255346A1 (en) 2017-04-19 2019-11-07 Capricor, Inc. Methods and compositions for treating skeletal muscular dystrophy
EP3727351A4 (en) 2017-12-20 2021-10-06 Cedars-Sinai Medical Center MODIFIED EXTRACELLULAR VESICLES FOR IMPROVED TISSUE DELIVERY
CN110575205B (zh) * 2019-09-04 2022-03-22 陕西中医药大学 一种公共卫生与预防医学用的皮肤取样装置
BR112022009902A2 (pt) * 2019-11-22 2022-08-09 Cutiss Ag Métodos e sistemas para produção de enxertos de pele
CN110771600B (zh) * 2019-11-25 2021-06-08 深圳科学之门生物工程有限公司 一种用于干细胞冻存的转移架
CN115053285A (zh) 2020-02-06 2022-09-13 三星电子株式会社 显示驱动方法和支持该方法的电子装置
WO2022126005A1 (en) * 2020-12-11 2022-06-16 3D Systems, Inc. Carrier matrix for facilitating transfer of skin cores from donor site to wound site
CN116448479B (zh) * 2023-04-14 2024-01-16 中国人民解放军总医院第三医学中心 一种病理活检大体取材自动切片装置

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1516071A (en) * 1921-11-02 1924-11-18 Stanley L Apolant Method of performing skin-grafting operations and surgical instrument used therefor
US3076461A (en) * 1956-12-31 1963-02-05 Meek Cicero Parker Microdermatome
US3470782A (en) * 1966-01-03 1969-10-07 Eric O Acker Slitting machine
US3613242A (en) * 1966-12-29 1971-10-19 Michigan Research Corp Skin graft cutter
US3515128A (en) * 1967-12-11 1970-06-02 Bernard F Mcevoy Skin biopsy punch
CA992255A (en) * 1971-01-25 1976-07-06 Cutter Laboratories Prosthesis for spinal repair
DE2247560C2 (de) * 1972-09-28 1974-05-09 Artur Fischer Hueftgelenkkopfprothese
US4115346A (en) * 1974-02-12 1978-09-19 Kulzer & Co. Gmbh Hydroxy group containing diesters of acrylic acids and their use in dental material
DE2939057C3 (de) * 1979-09-27 1982-02-25 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Schneidvorrichtung zum Einbringen von Schnitten in die Haut
SE420009B (sv) * 1979-12-21 1981-09-07 Ericsson Telefon Ab L M Expanderskruv for fastsettning i en halighet
DE3247387C2 (de) * 1982-12-22 1984-11-22 Rolf Prof. Dr.med. 7400 Tübingen Hettich Verfahren zur Herstellung eines Transplantats und Vorrichtung zur Durchführung des Verfahrens
DE3432897C2 (de) * 1984-09-07 1986-07-03 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Hautnetz-Dermatom
US5532341A (en) * 1985-03-28 1996-07-02 Sloan-Kettering Institute For Cancer Research Human pluripotent hematopoietic colony stimulating factor
US4966849A (en) * 1985-09-20 1990-10-30 President And Fellows Of Harvard College CDNA and genes for human angiogenin (angiogenesis factor) and methods of expression
US5266480A (en) * 1986-04-18 1993-11-30 Advanced Tissue Sciences, Inc. Three-dimensional skin culture system
US4951684A (en) * 1987-05-15 1990-08-28 Syntex (U.S.A.) Inc. Device for collecting biological material
US5487739A (en) * 1987-11-17 1996-01-30 Brown University Research Foundation Implantable therapy systems and methods
US5024841A (en) * 1988-06-30 1991-06-18 Collagen Corporation Collagen wound healing matrices and process for their production
US4973301A (en) * 1989-07-11 1990-11-27 Israel Nissenkorn Catheter and method of using same
EP0455757B1 (en) * 1989-08-04 1999-03-31 GRANDICS, Peter An integrated cell culture-protein purification system for the automated production and purification of cell culture products
JPH0390237A (ja) * 1989-08-31 1991-04-16 Matsutani Seisakusho Co Ltd アイレス縫合針の加工方法
DE3936703A1 (de) * 1989-11-03 1991-05-08 Lutz Biedermann Knochenschraube
US5059193A (en) * 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
CH680564A5 (ja) * 1989-12-07 1992-09-30 Experimentelle Chirurgie Schwe
US5236445A (en) * 1990-07-02 1993-08-17 American Cyanamid Company Expandable bone anchor and method of anchoring a suture to a bone
US5725529A (en) * 1990-09-25 1998-03-10 Innovasive Devices, Inc. Bone fastener
AU653752B2 (en) * 1990-09-25 1994-10-13 Ethicon Inc. Bone fastener
US5550316A (en) * 1991-01-02 1996-08-27 Fox Chase Cancer Center Transgenic animal model system for human cutaneous melanoma
US5720753A (en) * 1991-03-22 1998-02-24 United States Surgical Corporation Orthopedic fastener
EP0585368B1 (en) * 1991-04-25 1997-08-06 Brown University Research Foundation Implantable biocompatible immunoisolatory vehicle for delivery of selected therapeutic products
GB9112898D0 (en) * 1991-06-14 1991-07-31 Digital Equipment Int Communication networks
US5958764A (en) * 1992-04-30 1999-09-28 Baylor College Of Medicine Specific expression vectors and methods of use
JP2660641B2 (ja) * 1992-07-22 1997-10-08 株式会社東洋設計 ロール混練機の材料巻込み機構
DE9213656U1 (ja) * 1992-10-09 1992-12-03 Angiomed Ag, 7500 Karlsruhe, De
US5888720A (en) 1992-10-27 1999-03-30 Yissum Research And Development Company Of The Hebrew University Of Jerusalem In vitro micro-organs
CN1045530C (zh) * 1993-02-23 1999-10-13 王诚 负压自动取皮机
US5423330A (en) * 1993-03-10 1995-06-13 The University Of Miami Capsule suction punch instrument and method of use
US5423850A (en) * 1993-10-01 1995-06-13 Berger; J. Lee Balloon compressor for internal fixation of bone fractures
US5480400A (en) * 1993-10-01 1996-01-02 Berger; J. Lee Method and device for internal fixation of bone fractures
US6248110B1 (en) * 1994-01-26 2001-06-19 Kyphon, Inc. Systems and methods for treating fractured or diseased bone using expandable bodies
EP0741547B1 (en) * 1994-01-26 2005-04-20 Kyphon Inc. Improved inflatable device for use in surgical protocol relating to fixation of bone
ES2219660T3 (es) * 1994-03-14 2004-12-01 Cryolife, Inc Metodos de preparacion de tejidos para implantacion.
US6001647A (en) * 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US6472200B1 (en) * 1999-07-23 2002-10-29 Yissum Research Development Company Of The Hebrew University Of Jerusalem Device and method for performing a biological modification of a fluid
US20030157074A1 (en) * 1994-11-16 2003-08-21 Mitrani Eduardo N. Vitro micro-organs, and uses related thereto
US5578035A (en) * 1995-05-16 1996-11-26 Lin; Chih-I Expandable bone marrow cavity fixation device
US5782851A (en) * 1996-04-10 1998-07-21 Rassman; William R. Hair transplantation system
US5861313A (en) * 1995-06-07 1999-01-19 Ontogeny, Inc. Method of isolating bile duct progenitor cells
US5985653A (en) * 1995-06-07 1999-11-16 Aastrom Biosciences, Inc. Incubator apparatus for use in a system for maintaining and growing biological cells
US5857982A (en) * 1995-09-08 1999-01-12 United States Surgical Corporation Apparatus and method for removing tissue
US5782830A (en) * 1995-10-16 1998-07-21 Sdgi Holdings, Inc. Implant insertion device
US6071284A (en) * 1995-10-30 2000-06-06 Biomedical Enterprises, Inc. Materials collection system and uses thereof
DE19607517C1 (de) * 1996-02-28 1997-04-10 Lutz Biedermann Knochenschraube
US5763267A (en) * 1996-04-16 1998-06-09 Advanced Tissue Sciences Apparatus for the large scale growth and packaging of cell suspensions and three-dimensional tissue cultures
GB2314343B (en) * 1996-06-18 2000-08-23 Liau Ming Yi Method and apparatus for cultivating anchorage dependent monolayer cells
NL1004276C2 (nl) 1996-10-15 1998-04-20 Willem Marie Ysebaert Werkwijzen voor het vervaardigen van huideilandjes, voor het verplaatsen van huid of huideilandjes, voor het spreiden van huideilandjes en het aanbrengen hiervan op een brandwond, alsmede een houder, snijraam, snijtafel, contradrager, klemorgaan, membraan, transportorgaan en spreidingsorgaan om te worden toegepast voor dergelijke werkwijzen.
US5980887A (en) * 1996-11-08 1999-11-09 St. Elizabeth's Medical Center Of Boston Methods for enhancing angiogenesis with endothelial progenitor cells
WO1999049807A2 (en) * 1997-01-16 1999-10-07 Yissum Research And Development Company Of The Hebrew University Of Jerusalem A device and method for performing a biological modification of a fluid
US5972015A (en) * 1997-08-15 1999-10-26 Kyphon Inc. Expandable, asymetric structures for deployment in interior body regions
US6171812B1 (en) * 1997-07-15 2001-01-09 The National Institute Of Biogerontology, Inc. Combined perfusion and mechanical loading system for explanted bone
WO1999008596A1 (en) 1997-08-19 1999-02-25 Philipp Lang Measurement of capillary related interstitial fluid using ultrasound methods and devices
US20020055731A1 (en) * 1997-10-24 2002-05-09 Anthony Atala Methods for promoting cell transfection in vivo
US7687057B2 (en) * 1998-01-09 2010-03-30 Yissum Research Development Company Of The Hebrew University Of Jerusalem In vitro micro-organs, and uses related thereto
US6331166B1 (en) * 1998-03-03 2001-12-18 Senorx, Inc. Breast biopsy system and method
WO1999047922A2 (en) * 1998-03-18 1999-09-23 Massachusetts Institute Of Technology Vascularized perfused microtissue/micro-organ arrays
US6303136B1 (en) * 1998-04-13 2001-10-16 Neurotech S.A. Cells or tissue attached to a non-degradable filamentous matrix encapsulated by a semi-permeable membrane
WO1999062416A1 (en) * 1998-06-01 1999-12-09 Kyphon Inc. Expandable preformed structures for deployment in interior body regions
US6264659B1 (en) * 1999-02-22 2001-07-24 Anthony C. Ross Method of treating an intervertebral disk
US6245101B1 (en) * 1999-05-03 2001-06-12 William J. Drasler Intravascular hinge stent
US6155989A (en) * 1999-06-25 2000-12-05 The United States Of America As Represented By The United States Department Of Energy Vacuum enhanced cutaneous biopsy instrument
CA2377541A1 (en) * 1999-06-25 2001-01-04 Eduardo N. Mitrani Method of inducing angiogenesis by micro-organs
US20030152562A1 (en) * 2001-10-23 2003-08-14 Yissum Research Development Company Of The Hebrew University Of Jerusalem Vitro micro-organs, and uses related thereto
IL139259A0 (en) 2000-10-25 2001-11-25 Geus Inc Method and system for remote image reconstitution and processing and imaging data collectors communicating with the system
US20020154114A1 (en) * 2000-11-30 2002-10-24 Christensen Thomas Kragh Method and system for customising build-to-order products
EP1451571B1 (en) * 2001-11-05 2013-08-21 Medgenics, Inc. Devices for dosing and administration of therapeutic micro-organs in living subjects
JP4600373B2 (ja) * 2006-09-12 2010-12-15 株式会社デンソー 車両用交流発電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504909A (ja) * 2006-09-14 2010-02-18 メドジェニクス・メディカル・イスラエル・リミテッド 長期持続性の医薬製剤
JP2012503528A (ja) * 2008-09-24 2012-02-09 ザ ジェネラル ホスピタル コーポレーション 皮膚組織を移植するための方法および装置

Also Published As

Publication number Publication date
WO2003040686A3 (en) 2003-10-09
JP4447916B2 (ja) 2010-04-07
PL369678A1 (en) 2005-05-02
AU2002347576A1 (en) 2003-06-23
HK1126953A1 (en) 2009-09-18
KR20040060973A (ko) 2004-07-06
JP2010054513A (ja) 2010-03-11
CN1612717A (zh) 2005-05-04
CA2466244A1 (en) 2003-06-19
AU2002347577A1 (en) 2003-05-19
WO2003049626A1 (en) 2003-06-19
CN101352365B (zh) 2010-09-08
KR20090125158A (ko) 2009-12-03
AU2002347576A8 (en) 2003-06-23
US20110201115A1 (en) 2011-08-18
KR100954987B1 (ko) 2010-04-29
AU2002341378A1 (en) 2003-06-23
EP1451571B1 (en) 2013-08-21
WO2003049783A3 (en) 2003-10-30
WO2003049783A2 (en) 2003-06-19
BR0214065A (pt) 2004-12-07
CA2466244C (en) 2012-04-24
EP1451571A4 (en) 2008-10-08
CN101352365A (zh) 2009-01-28
CN100374085C (zh) 2008-03-12
IL161746A0 (en) 2005-11-20
AU2002341378B2 (en) 2008-04-17
KR100969344B1 (ko) 2010-07-09
MXPA04004387A (es) 2005-07-05
US20070183974A1 (en) 2007-08-09
WO2003039382A2 (en) 2003-05-15
AU2002347575A1 (en) 2003-05-19
WO2003039382A3 (en) 2004-01-08
WO2003040686A2 (en) 2003-05-15
EP1451571A2 (en) 2004-09-01
EP1441656A1 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP2005511709A (ja) 治療組織用の密閉された自動システム、及び治療組織の投与方法
JP2005511709A5 (ja)
JP5128813B2 (ja) 真皮小器官及びそれを作成及び使用するための方法及び器具
WO1993025660A1 (en) System and method for transplantation of cells
Chen et al. Preparation of decellularized liver scaffolds and recellularized liver grafts
US20050244967A1 (en) Closed automated system for tissue based therapy
CN117099744A (zh) 用于构建小鼠肝癌原位移植模型的试剂盒

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090714

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090722

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090917

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091013

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091020

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20091125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees