JP2005509394A - 静止式電磁発生装置 - Google Patents

静止式電磁発生装置 Download PDF

Info

Publication number
JP2005509394A
JP2005509394A JP2003543167A JP2003543167A JP2005509394A JP 2005509394 A JP2005509394 A JP 2005509394A JP 2003543167 A JP2003543167 A JP 2003543167A JP 2003543167 A JP2003543167 A JP 2003543167A JP 2005509394 A JP2005509394 A JP 2005509394A
Authority
JP
Japan
Prior art keywords
magnetic
coil
input
input coil
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003543167A
Other languages
English (en)
Inventor
エル. パトリック,ステファン,
イー. ベアーデン,トーマス,
シー. ヘイエス,ジェームス,
ディー. ムーア,ケネス,
エル. ケニー,ジェームス,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2005509394A publication Critical patent/JP2005509394A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F29/146Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

【課題】
【解決手段】可動部分のない電磁発生装置(10、130、150、170)が、永久磁石(12、154、174)と、第1磁路および第2磁路(18、20)を組み込んだ磁気コア(16、132、156)とを含む。第1入力コイル(26、166)および第1出力コイル(29、135、152、178)が、第1磁路(18)の一部の回りに延びている一方で、第2入力コイル(28、138、168)および第2出力コイル(30、135、153、178)が、第2磁路(20)の一部の回りに延びている。入力コイル(26、28、138、168)は、交互にパルス化され、第2出力コイル(29、30、135、135、152、153、178)に誘導電流パルスを供給する。入力コイル(26、28、138、166、168)のそれぞれを経て電流を励振することにより、入力コイルが回りに延びている磁路内の永久磁石(12、154、174)からの磁束のレベルを低減させる。

Description

本発明は、可動部分を有さずに電力を発生するために使用される磁気発生装置に関し、より具体的には、運転時に、入力コイルを経た入力電力を外部から加えずに電力を発生する能力を有する装置に関する。
背景情報
本出願は、2000年9月6日に出願された以前に出願された同時継続米国特許出願第09/656,313号明細書の利益を主張する。
本特許は、いくつかの磁気発生装置を記述する。それぞれには、永久磁石と、各々が永久磁石の向かい合う磁極間に延びる永久磁石の外部にある2つの磁路と、2つの磁路のそれぞれに沿って磁束を交互に流れさせる切替え手段と、電流が装置内の磁場の変化によって流れるように誘導される1つまたは複数の出力コイルとが含まれる。これらの装置は、磁場の源が静止している場合でも、変動する磁場内において電流が導体内に誘導されることを表すファラデイの法則の拡張に従って動作する。
永久磁石の向かい合う極間において2つの磁路のどちらかに沿って優位に流れるように磁束を切り替える方法が、Enigineer’s Digest、1963年7月23日において、R.J.Radusによって「フラックストランスファ(flux transfer)」の原理として記載されている。この原理は、磁北極および磁南極の両方の一端部において強力な磁力を及ぼし、他端部において非常に弱い力を及ぼすために使用され、磁場発生装置の構築には使用されない。この作用は、保磁子の運動によって機械的に生じさせる、または磁極部品14の細長いバージョンの回りに延びる1つまたは複数の制御巻線に電流を励振することによって電気的に生じさせることができる。この作用を使用するいくつかの装置は、米国特許第3,165,723号、第3,228,013号、および第3,316,514号に記載されており、これらは本明細書内に文献として援用されている。
磁場発生装置の開発を対象とする他のステップは、文献として本明細書内に援用されている米国特許第3,368,141号において、コアの回りに第1巻線および第2巻線を有する変圧器と組み合わされた永久磁石を含み、磁束の2つの経路が永久磁石の各磁極からコアのどちらかの端部まで至る装置として記載されている。これにより、交流がコアにおいて磁束の方向変化を誘導するとき、永久磁石からの磁束は、その電流によりコアを通る磁束が取る方向と一致する経路を通るように自動的に向けられる。このようにして、磁束は増強される。この装置を使用して、通常誘導的に負荷がかけられる交流回路の電力ファクタを改善することができる。
他の特許は、より従来的な発生手段として、負荷を励振するために1つまたは複数のコイルからの電流が利用可能であると記述されている磁気発生装置を記載している。例えば、文献として本明細書内に援用されている米国特許第4,006,401号は、永久磁石およびコア部材を含む電磁発生装置を記載しており、この装置では、コア部材の磁石から流れる磁束を切替えによって迅速に交互にして、コア部材の上の巻線に交流を生じさせる。この装置には、永久磁石と、磁石の磁北極と磁南極との間に2つの別々の磁束回路経路とが含まれる。回路経路のそれぞれは、回路経路を交互に開閉して、コア部材の上の巻線に交流を生じさせる2つの切替え手段を含む。切替え手段のそれぞれは、回路経路と交差する切替え磁気回路を含み、切替え磁気回路はコイルを有し、永久磁石まで延びる回路経路を飽和させるために、このコイルを経て電流が磁束を誘導するように励振される。これらのコイルを励振する電力は、連続的に加えられる電流源の出力から直接得られる。そのような電流源の適用を必要としない電磁発生装置が必要である。
文献として本明細書内に援用されている米国特許第4,077,001号は、間隔をおいて位置する磁極と磁石の磁極間に延びる永久磁場とを有する永久磁石を備える磁気発生装置、またはdc/dc変換器について記載している。可変式磁気抵抗コアは、磁石に対して固定されて磁場に配置され、コアの磁気抵抗は、磁力線のパターンがシフトするように変化する。この出力導体は、磁石に対して固定されて磁場に配置され、シフトする永久磁力線によって切断されるように位置決めされ、それにより電流が導体に誘導される。磁束は、コアの一部の回りに延びる切替えコイルによって、交互になる経路の間において切り替えられ、電流の流れは、フリップ・フロップの出力によって励振される1対のトランジスタを経てこれら切替えコイル間において交互になる。フリップ・フロップへの入力は、調節可能周波数発振器によって励振される。これらの励振回路の電力は、追加の別の電力源を経て供給される。そのような電力源の適用を必要としない磁場発生装置が必要である。
文献として本明細書内に援用されている米国特許第4,904,926号は、磁場の運動を使用する他の磁気発生装置について記載している。この装置は、各端部にベースを有する磁気伝導ゾーンを確定する電気巻線を含み、この巻線は、誘導電流を巻線から除去する要素を含む。この発生装置は、それぞれが第1磁極および第2磁極を含む2つの極磁石をさらに含み、各第1磁極は、磁場伝導ゾーンの1つのベースと磁気接続される。この発生装置は第3磁極磁石をさらに含み、第3磁極磁石は2つの磁極電磁石における第1磁極の中間に配向されるとともに、第3磁極磁石は電磁伝導ゾーンの軸に対しほぼ横方向の磁気軸を有しており、そして第3磁石は伝導ゾーンに最も近い極を有するとともに、2つの磁極電磁石の第1磁極と磁気的に引力関係にあり、この場合、2つの磁極電磁石の第1磁極は、同じ磁極である。この発生装置に含まれるものも又、巻線の形状の中で電磁石の磁極性を周期的に逆転させる要因である。これらの逆転手段は、電磁石の磁気極性を周期的に変化させることにより、電磁石の第1磁極と第3磁極の最も近い磁極との間の磁気引力関係に関連する磁束線を対応して逆転させる。これにより、磁気伝導ゾーンを横切るワイピング効果が、2つの電磁石においてそれぞれの第1極間における磁束線のスイングとして生じて、出力巻線内において電子の運動が誘導されるので、出力巻線内において電流の流れが発生する。
文献として本明細書内に援用されている米国特許第5,221,892号は、磁気軸を確定する磁極を有する磁気包絡線を含み、かつ磁束線のパターンが軸について極性対称性であることを特徴とする直流磁束圧縮変圧器の形態の磁気発生装置を記載している。磁束線は、コアに対して機械により静止されている制御素子を使用して、磁気包絡線に対して間隔をおくように変位される。さらに、磁気包絡線に対してやはり機械により静止されている誘導素子が供給される。誘導素子に対して磁束が間隔をおいて変位していることにより、電流の流れが生じる。さらに、供給されるものとして磁束バルブがあり、磁気抵抗を変化させて、磁束バルブを横断し、それにより誘導素子を横断する磁気抵抗がそれぞれ増大または低減される時間領域パターンを創出する。
他の特許は、磁束を移動させるための超電導要素を使用する装置を記載している。これらの装置は、マイスナー効果に従って動作し、構造が超電導相に遷移するように超電導構造の内部からの磁束の排除を記述する。例えば、文献として本明細書内に援用されている米国特許第5,011,821号は、永久磁石の磁北極部品および磁南極部品によって発生する磁場に配置される1束の導体を含む電力発生装置を記載している。磁場は、超電導材料の1対の薄膜を経て導体の束を通過して前後にシフトする。薄膜の一方が超電導状態に配置されると、他の薄膜は非超電導状態に配置される。それらの状態が2つの薄膜間で周期的に逆転すると、磁場は導体の束を前後に通過して偏向される。
文献として本明細書内に援用されている米国特許第5,327,015号は、超電導材料で作成された管と、管の一端部の回りに取り付けられた磁束の源と、コイルのように管に沿って取り付けられた磁束を遮断するための手段と、管の回りに取り付けられた超電導体の温度を変化させる手段とを備えた電気インパルス発生装置について記載している。管が連続的に超電導化されると、磁場が管内でトラップされて、遮断手段において電気インパルスを作り出す。この超電導状態の逆転が、第2パルスを発生する。
上述した特許権を有する装置のいずれも、磁束の経路を変化させるために使用される逆転手段に給電するために、装置内で発生される電力の一部を使用しない。従って、従来の回転発生装置と同様に、これらの装置は電力の定常入力を必要とし、この入力はこれら磁気発生装置の1つの逆転手段を励振する電力の形態、または従来の回転発生装置のロータを励振するトルクの形態とすることが可能である。しかしながら、電気発生装置の磁気部分の本質的な機能は、単に精密なタイミングに従って磁場を切り替えることである。磁気発生装置の最も普通の応用例では、電圧は、コイルの両端部で切り替えられると、永久磁石の磁場を打ち消すために使用される磁場をコイルに作り出すため、切替え手段に給電するために大量の電力が発生装置へ供給しなければならず、発生装置の効率は低減されてしまう。
磁気材料に関する最近の進歩では、C.O’HandleyによってModern Magnetic Materials、Principles and Applications、John Wiley&Sons、ニューヨーク、456〜468ページに具体的に記載されており、磁束の迅速な変化に特に適しているナノ結晶合金を提供する。これらの合金は、それぞれが数ナノメートルの少なくとも1つの寸法を有する結晶粒または結晶から主になる。ナノ結晶材料は、ナノ結晶材料の先駆物質を形成するアモルファス合金を加熱処理することによって作成可能であり、これに銅などの不溶性要素が大量の核形成を促進するために追加されると共に、ニオビウムまたはタンタルなどの安定で無反応性の合金材料が粒の成長を阻害するために追加される。ナノ結晶合金の体積のほとんどは、約2〜40nmの寸法を有する無作為に分布した結晶から成る。これらの結晶は、核とされており、アモルファス相から成長して、不溶性素子が結晶成長の過程中に排除される。磁気用語では、各結晶は、単一領域粒子である。ナノ結晶合金の残りの体積は、約1nmの厚さを有する粒境界の形態にあるアモルファス相で作成される。
特に有用な特性を有する磁気材料が、ほぼゼロの磁歪および比較的強い磁性、ならびに良好な機械的強度および耐腐食性を有する無形性のCo−Nb−B(コバルト−ニオビウム−ホウ素)合金から形成される。この材料を焼きなます過程は、材料に形成される結晶のサイズを変化させて、結果的にDC保磁度に対して強い作用となるように変更することができる。ナノ結晶子の沈殿は、別種のアモルファス合金のAC性能をも改善する。
他の磁気材料が、鉄の豊富なアモルファス合金およびナノ結晶合金を使用して形成され、一般にコバルトをベースとする合金より大きい磁性を示す。そのような材料は、例えばFe−B−Si−Nb−Cu(鉄−ホウ素−ケイ素−ニオビウム−銅)合金がある。鉄が豊富なアモルファス合金の透磁率は、磁気ひずみのレベルが比較的高いことによって限定される一方で、そのようなアモルファス合金からナノ結晶材料を形成することにより、この磁気ひずみレベルを劇的に減少させて、容易な磁化を支持する。
具体的には希土類元素を含む材料の開発である、永久磁石の材料の開発についても進展している。そのような材料は、サマリウム・コバルトSmCo5を含み、これは、あらゆる既知の材料の消磁に対する最高の抵抗を有する永久磁石材料を形成するために使用される。他の磁気材料は、例えば鉄、ネオジミウム、およびホウ素を使用して作成される。
本発明の第1の目的は、発生装置の動作中に外部電力源の必要性が排除される磁気発生装置を提供することである。
本発明の第2の目的は、磁場の方向を変化させるために、磁場に過度に給電することを必要とせずに、磁束経路が変更される磁気発生装置を提供することである。
本発明の第3の目的は、電気の発生装置が、部品を移動させることなく達成される磁気発生装置を提供することである。
本発明の装置では、永久磁石からの磁束の経路は、磁場に過度に給電することを必要しない方式で切り替わる。その上、自己開始反復切替え過程は、永久磁石から装置内の交互になる磁路間に磁束の切替えを動作するのに利用され、その電力は、低レベルの電力を使用することが既知である構成要素からなる制御回路を経て提供される。自己切替えにより、発生装置における運転中の外部電源の必要性が排除され、電池などの別の電源が発生装置の作動中に非常に短時間のみ使用される。
本発明の第1の態様によれば、電磁発生装置は、永久磁石と、磁気コアと、第1入力コイルならびに第2入力コイルと、第1出力コイルならびに第2出力コイルと、切替え回路とを含む。永久磁石は、両端に磁極を有する。磁気コアは、第1磁路を永久磁石の両端の間に含み、その回りに、第1入力コイルおよび第2出力コイルが延び、また第2磁路を含み、その回りに、第2入力コイルおよび第2出力コイルが延びる。切替え回路は、第1入力コイルおよび第2入力コイルを経て交互に電流を励振する。第1入力オイルを経て励振された電流は、第1入力コイルを第1磁路内で永久磁石からの磁束の集中と対向する磁場を形成させる。第2入力コイルを経て励振された電流は、第2入力コイルを第2磁路内で永久磁石からの磁束の集中と対向する磁場を形成させる。
本発明の他の態様によれば、電磁発生装置は、磁気コアと、複数の永久磁石と、第1ならびに第2の複数の入力コイルと、複数の出力コイルと、切替え回路とを含む。磁気コアは、それぞれが中央開口を有する1対の間隔をおいて位置するプレートと、間隔をおいて位置するプレートの間に延びる第1ならびに第2の複数のポストとを含む。永久磁石は、それぞれ間隔をおいて位置するプレートの対の間に延びる。各永久磁石は両端に磁極を有しており、全ての永久磁石の磁場は共通の方向に延びるように整列される。各入力コイルは、ポストと永久磁石との間において、間隔をおいたプレート内におけるプレートの一部の回りに延びる。出力コイルが、各ポストの回りに延びる。切替え回路は、第1および第2の複数の入力コイルを経て交互に電流を励振する。第1の複数の入力コイルにおける各入力コイルを経て励振された電流は、ポストの各側にある永久磁石から第1の複数のポスト内における各ポスト内の磁束を増大させ、ポストの各側にある永久磁石から第2の複数のポスト内における各ポスト内の磁束を減少させる。第2の複数の入力コイル内で各入力コイルを経て励振された電流は、ポスト両面上の永久磁石から第1の複数のポスト内で各ポスト内の磁束を減少させると共に、ポスト両側上の永久磁石から第2の複数のポスト内で各ポスト内の磁束を増大させる。
図1は、本発明における第1実施例で構築される電磁発生装置10の部分的な概略的前面図であり、磁石12の磁北極14から外向きに磁束経路コア材料16の中へ移動する磁束の入力線を供給する永久磁石12を含む。磁束経路コア材料16は、右側磁路18および左側磁路20を形成するように構成され、両経路とも、磁石12の磁北極14と磁南極22との間に外部から延びる。電磁発生装置10は、切替えおよび制御回路24によって励振される。この回路は、右側入力コイル26および左側入力コイル28を経て電流を交互に励振する。これらの入力コイル26、28は、それぞれコア材料16の一部の回りに延びており、右側入力コイル26は右側磁路18の一部を囲む一方で、左側入力コイル28は左側磁路20の一部を囲む。右側出力コイル29も又右側磁路18の一部の回りを囲む一方、左側出力コイル30は左側磁路20の一部を囲む。
本発明の好ましいバージョンによれば、切替えおよび制御回路24ならびに入力コイル26、28は、右側入力コイル26に電圧が印加されたとき、磁北極が、永久磁石12の磁北極14に最も近い端部である左側端部31に存在し、また左側入力コイル28に電圧が印加されたとき、磁北極が、やはり永久磁石12の磁北極14に最も近い端部である右側端部32に存在するように構成される。従って、右側入力コイル26が磁化されたときに、永久磁石12からの磁束は右側入力コイル26を通過して延びることから反発される。同様に、左入力コイル28が磁化されたときに、永久磁石12からの磁束は左側入力コイル28を通過して延びることから反発される。
従って、右側入力コイル26を経て電流を励振することは、右側磁路18内における永久磁石12からの磁束の集中に対向し、この磁束の少なくともいくらかが左側磁路20に移動されることがわかる。その一方で、左側入力コイル28を経て電流を励振することは、左側磁路20内における永久磁石12からの磁束の集中に対向し、この磁束の少なくともいくらかが右側磁路18に移動される。
図1の例では、入力コイル26、28は、永久磁石12の磁北極の両側に配置され、永久磁石12の磁北極から延びるコア16の一部に沿って構成されるが、その代わりとして、入力コイル26、28を永久磁石12の磁南極の両側に配置して、永久磁石12の磁南極から延びるコア16の一部に沿って構成し、電圧を印加されたときに永久磁石12の磁南極に向く磁南極を有する磁場を形成するように、入力コイル26、28を配線することが容易にできることを理解されたい。一般に、入力コイル26、28は、磁北極のように、第1磁極を形成する永久磁石の端部のどちらかの側にある磁気コアに沿って構成されており、永久磁石の第1磁極に向く第1磁極の極性の磁場を形成するように配置される。
本発明の更に好ましいバージョンによれば、入力コイル26、28は、コア材料16が飽和する程の多くの電流で励振されることはない。コア材料16を飽和まで励振することは、対応する磁束の変化を生じずに、入力電流をその後増大させることがあるため、入力電力を浪費することがあることを意味する。このように、本発明の装置は、各磁路の両端部の一部が磁束流を遮断するように飽和まで励振される米国特許第4,000,401号の装置と比較して、入力電力を効率的に使用する点について利点を備える。電磁発生装置10においては、入力コイル26、28内における電流の流れの切替えは、磁路18、20の一方において磁束の流れを停止する一方で、他の磁路において磁束の流れを促進することを十分に必要とされない。電磁発生装置10は、磁束パターンを変化させることによって機能する。一方の側から他方へ完全に切り替える必要はない。
実験は、出力コイル29、30内に電力を発生するための入力コイル26、28内における電力の使用効率の点で、入力コイルに電圧が印加されると永久磁石からの磁束が入力コイルを経て励振されるように入力コイルおよび入力コイルを励振する回路を構成する代替法よりも、この構成が優れていることを実証した。本発明のこの構成は、電圧が印加されたコイルを経て磁束が励振される、例えば米国特許第4,077,001号で示されている従来の技術の方法と比較して、顕著な利点を提供する。
本発明の構成は、磁束が2つの交互になる磁路18、20の間で切り替えられ、単一入力コイル26、28が交互になる磁路のそれぞれを囲む米国特許第3,368,141号および第4,077,001号の従来の構成に対しても利点を有する。米国特許第3,368,141号および第4,077,001号の各構成は、磁路のそれぞれに2つの入力コイルを必要とする。本発明のこの利点は、ハードウエアを簡単にし、かつ電力変換の効率を増大させるという両方の点について重要である。
右側出力コイル29は、調整器34を経て励振される出力を有する整流器およびフィルタ33に電気的に接続され、調整器34は、電位差計35を使用することにより調節可能である出力電圧を提供する。線形調整器34の出力は、感知および切替え回路36への入力として提供される。開始条件下では、感知および切替え回路36は、切替えおよび制御回路24を、例えば始動用蓄電池である外部電源38に接続する。電磁発生装置10が適切に開始された後、感知および切替え回路36は、調整器34から利用可能な電圧が所定のレベルに達したことを感知し、それにより、切替えおよび制御回路24に入力される電力は、外部電源38から調整器34の出力に切り替えられる。この切替えが行われた後、電磁発生装置10は、外部電力を加えられずに運転を続行する。
左側出力コイル30は、整流器およびフィルタ40に電気的に接続されており、整流器およびフィルタ40の出力電圧が調整器42に接続されて、調整器の出力電圧が電位差計43によって調節される。調整器42の出力は、外部負荷44に接続される。
図2は、切替えおよび制御回路24の第1バージョンの概略図である。発振器50が、フリップ・フロップ54のクロック入力を励振して、フリップ・フロップ54のQ出力およびQ’出力は、入力コイル26、28が交互に励振されるように、ドライバ回路56、58を経てFET60、62に給電するように接続される。本発明の好ましいバージョンによれば、FET60、62を経てコイル26、28に加えられる電圧Vは、感知および切替え回路36の出力から得られる。
図3は、図2のFET60、62のゲートを励振する信号を示すグラフであり、FET60のゲートを励振する信号の電圧を線64によって表し、FET62を励振する信号の電圧を線66によって表す。コイル26、28の両方とも、正の電圧で励振される。
図4は、切替えおよび制御回路24の第2バージョンの概略図である。このバージョンでは、発振器70がフリップ・フロップ72のクロック入力を励振して、フリップ・フロップ72のQ出力およびQ’出力が1ショット74、76のトリガとして作用するように接続される。1ショット74、76の出力は、FET82、84を励振するようにドライバ回路78、80を経て接続され、それにより、入力コイル26、28は、フリップ・フロップ72のQおよびQ’の出力より短い持続期間のパルスで交互に励振される。
図5は、図4のFET82、84のゲートを励振する信号を示すグラフであり、FET82のゲートを励振する信号の電圧を線86によって表し、FET84のゲートを励振する信号の電圧を線88によって表す。
再び図1を参照すると、磁束のレベルが右側磁路18において変化しているときのみ、電力が右側出力コイル29で発生され、磁束のレベルが左側磁路20において変化しているときのみ、左側出力コイル30で発生される。従って、特有の磁気発生装置の構成では、磁束の最も迅速な実際の変化を供給するパルス幅を決定し、次いで、図2の装置における発振器50の周波数を変化させた結果、このパルス幅が図3に示す信号で供給されることによって、または、図4の1ショット74、76の時間定数を変化させた結果、このパルス幅がより低い発振器周波数において図5の信号で供給されることによって、このパルス幅を供給することが望ましい。このようにして、入力コイルは必要より長く放置されることはない。入力コイルのどちらかが磁束の方向を変化させるのに必要な時間期間より長く放置されるとき、電力は、対応する出力コイルにおいて電力を追加して発生せずに、入力コイル内における加熱により浪費されている。
電力を入力コイル26、28に供給するために切替えおよび制御回路を励振すると共に外部負荷44を励振する両方の電力を発生するように、図1の発生装置10として構築された電磁発生装置の妥当性を判定するためのいくつかの実験が行われた。この実験で使用された構成では、入力コイル26、28が40巻の18ゲージ銅ワイヤを有し、出力コイル29、30が450巻の18ゲージ銅ワイヤを有する。永久磁石12は、40mmの高さを有し(矢印89の方向である磁北極と磁南極との間を1.575in、矢印90の方向である幅を25.4mm(1.00in)、および他の方向である深さを38.1mm(1.50in))。コア16は、矢印89の方向において90mm(3.542in)の高さと、矢印90の方向において135mm(5.315in)の幅と、および70mm(2.756in)の深さとを有する。コア16は、磁石12を収容するように矢印89の方向において40mm(1.575mm)の高さと、矢印90の方向において85mm(3.346in)の幅の中央孔を有する。コア16は、2つの「C」型の半分で製作され、出力コイル29、30および入力コイル26、28の巻線をコア材料の上に収容するために、線92において接合される。
コア材料は、ハニウエル(Honeywell)によってMETGLAS磁気合金2605SA1として販売されている薄層の鉄をベースとする磁気合金であった。磁気材料は、鉄、ネオジミウム、およびホウ素の組み合わせであった。
入力コイル26、28は、87.5KHzの発振器周波数において励振され、この周波数は、図2に示したように構成された切替え制御回路を最適効率で使用されるように決定された。この周波数は、11.45マイクロ秒の周期を有している。フリップ・フロップ54は、例えば発振器から入力されるクロック信号の縁が立ち上がる際にセットおよびリセットされるように構成されているため、FET60、62の一方を励振する各パルスは11.45マイクロ秒の持続期間を有し、一連のパルスも又各FETに対して11.45マイクロ秒だけ分離される。
図6A〜6Hは、75ボルトで印加された入力電圧で動作中の図1および2の装置内において同時に生じる信号を示すグラフである。図6Aは、FET60を励振する第1励振信号100を示し、右側入力コイル26を励振するように作用する。図6Bは、FET62を励振する第2励振信号102を示すと共に、左側入力コイル28を励振するように作用する。
図6Cおよび6Dは、両方のFET60、62を励振する電池源からの電流に関連する電圧および電流信号を示す。図6Cは、電圧Vのレベル104を示す。電池の通常の電圧は75ボルトであったが、FET60、62の一方が作用するように切り替えられるたびに、崩壊過渡信号106がこの電圧に重ね合わされる。この過渡信号の特有のパターンは、磁気発生装置10のいくつかの特性と同じように、電池の内部抵抗に依存する。同様に、図6Dは、電池源からFET60、62の両方に流れ込む電流106を示す。信号104、106は、FET60、62の両方に流れ込む電流の作用を示すので、過渡スパイクは、11.45マイクロ秒離れている。
図6E〜6Hは、出力コイル29、30において測定された電圧レベルおよび電流レベルを示す。図6Eは右側出力コイル29の電圧出力信号108を示し、一方、図6Fは左側出力コイル30の電圧出力信号110を示す。例えば、右側出力コイル29の出力電流信号116には、右側磁路18を通して磁束を向けるように左側入力コイル28の電流パルスがオンにされているときに生じる第1過渡スパイク112と、左側入力コイル28がオフにされるとともに右側入力コイル26がオンにされているときに生じる第2過渡スパイク114と、が含まれる。図6Gは、右側出力コイル29の電流出力信号116を示し、一方、図6Hは、左側出力コイル30の電流出力信号118を示す。
図7は、10vから75vまで変化する入力電圧の8つのレベルを電磁発生装置10によって測定された出力電力を示すグラフである。発振器周波数は、87.5KHzに維持された。測定点は、指標120によって表される一方で、曲線122は最小2乗適合を使用する多項回帰分析によって作成される。
図8は、図7に示した測定点のそれぞれについて、出力電力と入力電力の比として確定される性能係数を示すグラフである。各測定点において、出力電力は、入力電力よりかなり高かった。実際の電力測定値は、測定電圧および電流のレベルを使用して各データ点において計算され、その結果を信号の周期にわたって平均した。これらの測定値は、テキストロニクス(Textronic)THS730のデジタル・オシロスコープを用いて測定されたRMS電力と一致する。
電磁発生装置10は、はるかに高い電力および電流で飽和することなく運転することができた一方で、入力電圧は、使用される切替え回路の電圧制限のために、75ボルトに限定された。当業者なら、この応用例のより高い電圧に対処することができる切替え回路の構成要素は、容易に利用可能であることを理解するであろう。実験測定データは、入力電流が140ma、入力電力が14ワット、結果的な出力電力が2つの出力コイル29、30のそれぞれについて48ワットである100ボルトの入力電圧、12maの平均出力電流、および4000ボルトの平均出力電圧における運転の記述から想定された。これは、出力コイル29、30のそれぞれについて、性能係数が3.44であることを意味する。
4000ボルトの出力電圧が、いくつかの応用例に必要な可能性があるが、出力電圧は、電磁発生装置10の構成を単に変更することにより、変化させることができる。出力電圧は、出力巻線の巻数を減らすことによって容易に低減される。もし、この巻数が450から12に減少する場合に、出力電圧は106.7まで下がって、各出力コイル29、30の出力電流は、0.5ampに増大する結果となる。このようにして、電磁発生装置の出力電流および電圧は、出力電力を大きく変化させることなく、出力コイル29、30の巻数を変更することによって変化させることができると共に、入力電流によって決定される代わりに切替え過程中に往復する磁束の量を決定する。
性能係数は、全て1よりはるかに大きく、図8にプロットされるように出力コイル29、30でそれぞれ測定された出力電力レベルが入力コイル26、28の両方の励振に対応する入力電力レベルよりはるかに大きいことを示す。従って、電磁発生装置10は、図1を参照して上記で論述したように、自己作動の形態で構築させることができることが明らかである。図1の例では、外部電源38から電力を短時間加えることを除いて、電力発生過程を開始するために、入力コイル26、28を励振するのに必要な電力は右側出力コイル29内で発生する電力から完全に得られる。単一出力コイル29、30で発生する電力が入力コイル26、28を十分に励振できる量より多い場合、追加の負荷126は、入力コイル26、28を励振する電力を発生させる際に、出力コイル29内で発生する電力によって励振するのに加えられる。その一方で、出力コイル29、30のそれぞれを使用して、入力コイル電力要件の一部を励振することが可能であり、例えば、出力コイル26、28の一方の電圧VをFET60に供給する一方で(図2に示す)、他方の出力コイルがこの電圧をFET62に供給する。
熱力学の考慮事項に関して、電磁発生装置10が動作しているとき、これは熱力学的平衡にないオープン・システムであることに留意されたい。システムは、永久磁石の磁束から静的エネルギーを受け取る。なぜならば、電磁発生装置10が追加のエネルギー入力のない自己切替え式であるので、システムの熱力学的動作がオープン散逸システムとなり、環境から、この場合は永久磁石内に蓄積されている磁束からエネルギーを受け取って、収集して散逸させるからである。電磁発生装置10の動作を続行することにより、永久磁石は消磁される。サマリウム・コバルト材料または鉄、ネオジミウム、およびホウ素を含む材料など、希土類元素を含む磁気材料を使用することが本発明の範囲内では好ましいが、その理由としては、そのような磁気材料は、この応用例において比較的寿命が長いからである。
したがって、本発明に関する電磁発生装置は、永久運動機械としてではなく、永久磁石から放出される磁束が電気に変換され、この電気が装置の給電および外部負荷の給電の両方に使用されるシステムとして見なされるべきである。これは、いくつかの燃料ロッドがエネルギーを放出し、このエネルギーが外部負荷を励振する電気を発生するためにチェーン反応の進行を維持し、かつ水を加熱するために使用される核反応器を含むシステムと同様である。
図9は、本発明の第1実施例の第2バージョンにより構築される電磁発生装置130の断面図である。この電磁発生装置130は、構築および動作について、この実施例の第1バージョンで構築される電磁発生装置10と概して同様であるが、電磁発生装置10の磁気コア132が、線134に沿って接合される2つの半分として構築されており、これにより出力コイル135のそれぞれをボビン136がコア132のレッグ137の上に配置される前に、プラスチック・ボビン136に巻き付けることが可能になる点が異なる。図9は、又、入力コイル138の代わりの配置も示している。図1の例では、入力コイル26、28が両方とも磁気コア16の上方部分の上に配置され、これらのコイル26、28がコイル26、28の内端部31、32に磁北極を有する磁場を確立するように構成されているので、これらの磁北極は磁北極を有する永久磁石12の端部14に最も近い。図9の例では、第1入力コイル26が図1を参照して上記で記述した通りであるが、第2入力コイル138が永久磁石12の磁南極140に隣接して配置される。この入力コイル138は、内端部142において磁南極を確立するように構成されているので、したがって、入力コイル138がオンにされたときに、永久磁石12からの磁束が左側磁路20から離れて右側磁路18の中に向く。
図10および11は、本発明の第2実施例の第1バージョンで構築される電磁発生装置150を示す。図10は、その上面図であり、図11は、その前面図である。この電磁発生装置150は、各コーナに位置する出力コイル152、153と、出力コイル間において各側面に沿って延びる永久磁石154とを含む。磁気コア156は、上方プレート158と、下方プレート160と、各出力コイル152、153内に延びる正方形ポスト162とを含む。上方プレート158および下方プレート160の両方とも、中央開口164を含む。
永久磁石154は、それぞれ上方プレート158に接しており、磁北極など同じ磁極で配向される。8つの入力コイル166、168が、出力コイル152、153と永久磁石154との間において、上方プレート158の回りの位置に配置される。各入力コイル166、168は、上方プレート158に隣接する磁石154の磁極と同じ極性の磁極を、隣接する永久磁石154に最も近い端部において形成するように構成される。従って、入力コイル166が永久磁石154の磁束を隣接する出力コイル152から偏向させるようにスイッチ・オンにされると、この磁束が出力コイル153を経て磁路の中に偏向される。このとき、入力コイル168がスイッチ・オンされると、永久磁石154の磁束が隣接する出力コイル153から偏向されて、この磁束が出力コイル152を経て磁路の中に偏向される。従って、入力コイルは、入力コイル166の第1グループおよび入力コイル168の第2グループを形成し、入力コイルのこれらの第1グループおよび第2グループは、単一入力コイル26、28について図1を参照して上記で記述した方式で、交互にエネルギーを加えられる。出力コイルは、コイル152内において同時に生じるパルスの第1列として電流を発生し、またコイル153内において同時に生じるパルスの第2列として電流を発生する。
従って、入力コイル166を介して電流を励振することにより、出力コイル153を経て延びるポスト162内における永久磁石154からの磁束を増大させると共に、出力コイル152を経て延びるポスト162内における永久磁石154からの磁束を減少させる。一方、入力コイル168を経て電流を励振することにより、出力コイル153を経て延びるポスト162内における永久磁石からの磁束を減少させると共に、出力コイル152を経て延びるポスト162内における永久磁石154からの磁束を増大させる。
図10および11の例は、入力コイル166、168の全て上方プレート158に沿って配置されることを示すが、これらの入力コイル166、168のあるものは、代わりとして図9に全体的に示す方式で下方プレート160の回りに配置することができることを理解されたい。この場合、1つの入力コイル166、168は、永久磁石154と、出力コイル152、153内において延びる隣接するポスト162との間において各磁気回路内にあり、各入力コイル166、168は、隣接する永久磁石154の最も近い極と同じ磁極を有する磁場を形成するように構成される。
図12は、本発明における第2実施例の第2バージョン170の上面図である。これは、図10および11を参照して論述した第1バージョンと同様であるが、上方プレート172および同様の下方プレート(図示せず)の形状が環状であり、出力コイル178を経て延びる永久磁石174およびポスト176が円筒である点が異なる。入力コイル180は、図9および10を参照して上記で記述したように配向され、かつ切り替えられる。
図12の例は、4つの永久磁石と、4つの出力コイルと、8つの入力コイルとを示すが、上記で記述した原理を異なる数の素子を有する電磁発生装置に適用することができることを理解されたい。例えば、2つの永久磁石と、2つの出力コイルと、4つの入力コイルとを有する、若しくは、6つの永久磁石と、6つの出力コイルと、12の入力コイルとを有するような装置を構築することができる。
本発明によれば、磁気コアに使用される材料は、ナノ結晶合金およびアモルファス合金を交互に有することが好ましい。材料は、積層の形態であることが好ましい。たとえば、コア材料は、コバルト−ニオビウム−ホウ素合金または鉄をベースとする磁気合金である。
また、本発明によれば、永久磁石の材料は、希土類元素を含むことが好ましい。例えば、永久磁石の材料は、サマリウム・コバルト材料または鉄、ネオジミウム、およびホウ素の組み合わせである。
本発明について、好ましいバージョンおよび実施形態についてある程度具体的に記述してきたが、この記述は、例示としてのみ与えられており、経路の組み合わせおよび配置を含めて、構造、製造、および使用法の詳細について、本発明の精神および範囲から逸脱せずに、多くの変更を実施することが可能であることを理解されたい。
本発明における第1実施例の第1バージョンで構築される磁気発生装置および関連する電気回路の部分的な概略正面図である。 図1に関連する電気回路内の切替えおよび制御回路の第1バージョンの概略図である。 図2の回路内において発生する励振信号を示すグラフである。 図1に関連する電気回路内における切替えおよび制御回路の第2バージョンの概略図である。 図3の回路内で発生する励振信号を示すグラフである。 図6Aは、図1の装置内における第1励振信号を示すグラフである。図6Bは、図1の装置内における第2励振信号を示すグラフである。図6Cは、図1の装置内における入力電圧信号を示すグラフである。図6Dは、図1の装置内における入力電流信号を示すグラフである。図6Eは、図1の装置内における第1出力電圧信号を示すグラフである。図6Fは、図1の装置内における第2出力電力信号を示すグラフである。図6Gは、図1の装置内における第1出力電流信号を示すグラフである。図6Hは、図1の装置内における第2出力電流信号を示すグラフである。 入力電圧の関数として、図1の装置内で測定された出力電力を示すグラフである。 入力電圧の関数として、図1の装置内の測定から計算された性能係数を示すグラフである。 本発明における第1実施例の第2バージョンの断面図である。 本発明における第2実施例の第1バージョンにより構築される磁気発生装置の上面図である。 図10の磁気発生装置の正面図である。 本発明における第2実施例の第2バージョンで構築される磁気発生装置の上面図である。

Claims (26)

  1. 磁極(14、22、140)を両端に有する永久磁石(12、154、174)と、
    第1磁路および第2磁路(18、20)を前記永久磁石(12、154、174)の前記両端の間に含む磁気コア(16、132、156)と、から成り、
    前記磁気コア(16、132、156)が、閉じたループを備えると共に、
    前記永久磁石(12、154、174)が、前記閉じたループ内に延びており、
    前記永久磁石(12、154、174)の前記両端が、前記閉じたループの対向側面に隣接し、かつ前記閉じたループを備える前記磁気コア(16、132、156)の内表面に接して配置され、
    前記第1磁路(18)の一部の回りに延びる第1入力コイル(26、166)と、
    前記第2磁路(20)の一部の回りに延びる第2入力コイル(28、138、168)と、
    第1電気出力を供給するための、前記第1磁路(18)の一部の回りに延びる第1出力コイル(29、135、152、178)と、
    第2電気出力を供給するための、前記第2磁路(20)の一部の回りに延びる第2出力コイル(30、135、153、178)と、
    前記第1入力コイルおよび前記第2入力コイル(26、28、138、166、168)を経て交互に電流を励振する切替え回路(24)とを備え、
    前記第1入力コイル(26、166)を経て励振される前記電流により、前記第1入力コイル(26、166)が、前記第1磁路(18)内において、前記永久磁石(12、154、174)からの磁束の集中と対向する磁場を形成すると共に、
    前記第2入力コイル(28、138、168)を経て励振される前記電流により、前記第2入力コイル(28、138、168)が、前記第2磁路(20)内において、前記永久磁石(12、154、174)からの磁束の集中と対向する磁場を形成する、電磁発生装置(10、130、150、170)。
  2. 前記永久磁石(12、154、174)の磁極の第1タイプが、前記閉じたループの第1側に隣接して配置されると共に、
    前記第1および第2入力コイル(26、28、138、166、168)が、前記閉じたループの前記第1側に沿って配置され、
    前記第1入力コイル(26、166)を経て励振される前記電流により、前記第1入力コイル(26、166)が、前記永久磁石(12、154、174)に隣接する前記第1入力コイル(26、166)の端部において、磁極の前記第1タイプを有する磁場を形成すると共に、
    前記第2入力コイル(28、138、168)を経て励振される前記電流により、前記第2入力コイル(28、138、168)が、前記永久磁石(12、154、174)に隣接する前記第2入力コイル(28、138、168)の前記の端部において、磁極の前記第1タイプを有する磁場を形成する、請求項1に記載の電磁発生装置(10、130、150、170)。
  3. 前記磁気コア(16、132、156)が、ナノ結晶磁気合金から構成される、請求項1に記載の電磁発生装置(10、130、150、170)。
  4. 前記ナノ結晶磁気合金が、コバルト−ニオビウム−ホウ素合金である、請求項3に記載の電磁発生装置(10、130、150、170)。
  5. 前記ナノ結晶磁気合金が、鉄をベースとする合金である、請求項3に記載の電磁発生装置(10、130、150、170)。
  6. 前記磁気コア(16、132、156)内における磁束密度の前記変化が、前記磁気コア(16、132、156)を磁気飽和まで励振せずに生じる、請求項1に記載の電磁発生装置(10、130、150、170)。
  7. 前記切替え回路(24)が、パルスの第1列に応答して、前記第1入力コイル(26、166)を経て前記電流を励振すると共に、
    前記切替え回路(24)が、パルスの前記第1列内におけるパルスと交互になるパルスの第2列に応答して、前記第2入力コイル(28、138、168)を経て前記電流を励振して、
    パルスの前記第1列および前記第2列における前記パルスの持続期間が、約11.5ミリ秒である、請求項1に記載の電磁発生装置(10、130、150、170)。
  8. 前記永久磁石(12、154、174)が、希土類元素を含む材料からなる、請求項1に記載の電磁発生装置(10、130、150、170)。
  9. 前記永久磁石(12、154、174)が、本質的にサマリウム・コバルトからなる、請求項8に記載の電磁発生装置(10、130、150、170)。
  10. 前記永久磁石(12、154、174)が、本質的に鉄、ネオジミウム、およびホウ素からなる、請求項8に記載の電磁発生装置(10、130、150、170)。
  11. 前記第1出力コイル(29、135、152、178)に誘導された電力の一部が、前記切替え回路(24)を励振するための電力として供給する、請求項1に記載の電磁発生装置(10、130、150、170)。
  12. 前記切替え回路(24)が、開始過程中に外部電源(38)によって励振され、かつ前記開始過程後の運転中に前記第1出力コイル(29、135、152、178)に誘導された電力によって励振される、請求項11に記載の電磁発生装置(10、130、150、170)。
  13. 前記永久磁石(12)の磁極(14)の第1タイプが、前記閉じたループの第1側に隣接して配置され、
    磁極(14)の前記第1タイプと反対の、前記永久磁石(12)の磁極(140)の第2タイプが、前記閉じたループの第2側に隣接して配置され、
    前記第1入力コイル(26)が、前記閉じたループの前記第1側に沿って配置され、
    前記第2入力コイル(138)が、前記閉じたループの前記第2側に沿って配置され、
    前記第1入力コイル(26)を経て励振される前記電流により、前記第1入力コイル(26)が、前記永久磁石(12)に隣接する前記第1入力コイル(26)の端部において磁極の前記第1タイプを有する磁場を形成し、
    前記第2入力コイル(138)を経て励振される前記電流により、前記第2入力コイル(138)が、前記永久磁石(12)に隣接する前記第2入力コイル(138)の前記端部において磁極の前記第2タイプを有する磁場を形成する、請求項1に記載の電磁発生装置(130)。
  14. 前記第1出力コイル(29、135、152、178)に誘導される電力の一部が、前記切替え回路(24)を励振する電力として供給する、請求項1に記載の電磁発生装置(10、130、150、170)。
  15. 前記切替え回路(24)が、開始過程中に外部電源(38)によって励振され、かつ前記開始過程後の運転中に前記第1出力コイル(29、135、152、178)に誘導される電力によって励振される、請求項14に記載の電磁発生装置(10、130、150、170)。
  16. 磁極(14、22、140)を両端に有する永久磁石(12、154、174)と、
    第1磁路および第2磁路(18、20)を前記永久磁石(12、154、174)の前記両端の間に含む磁気コア(16、132、156)と、
    前記第1磁路(18)の一部の回りに延びる第1入力コイル(26、166)と、
    前記第2磁路(20)の一部の回りに延びる第2入力コイル(28、138、168)と、
    第1電気出力を提供するための、前記第1磁路(18)の一部の回りに延びる第1出力コイル(29、135、152、178)と、
    第2電気出力を提供するための、前記第2磁路(20)の一部の回りに延びる第2出力コイル(30、135、153、178)と、
    前記第1入力コイルおよび前記第2入力コイル(26、28、138、166、168)を経て交互に電流を励振する切替え回路(24)とを備え、
    前記第1入力コイル(26、166)を経て励振される前記電流により、前記第1入力コイル(26、166)が、前記第1磁路(18)内において前記永久磁石(12、154、174)からの磁束の集中に対向する磁場を形成すると共に、前記第2入力コイル(28、138、168)を経て励振される前記電流により、前記第2入力コイル(28、138、168)が、前記第2磁路(20)内において前記永久磁石(12、154、174)からの磁束の集中に対向する磁場を形成して、前記第1出力コイル(29、135、152、178)に誘導される電力の一部が前記切替え回路(24)を励振する電力として供給する、電磁発生装置(10、130、150、170)。
  17. 前記切替え回路(24)が、開始過程中では外部電源(38)によって励振され、前記開始過程後の運転中では前記第1出力コイル(29、135、152、178)に誘導される電力によって励振される、請求項24に記載の電磁発生装置(10、130、150、170)。
  18. 1対の間隔をおいて位置するプレート(158、160)を含む磁気コア(150,170)であって、前記間隔をおいて位置するプレート(158、160)のそれぞれが、中央開口(164)と、前記間隔をおいて位置するプレート(158、160)の間に延びる第1および第2の複数のポスト(162、176)とを含み、
    前記1対の間隔をおいて位置するプレート(158、160)の間および前記複数のポスト(162、176)内の隣接するポスト(162、176)の間に個々に延びる複数の永久磁石(154、174)であって、前記複数の永久磁石(154、174)内の各永久磁石(154、174)が、磁極を両端に有すると共に、前記複数の永久磁石(154、174)内の全ての永久磁石(154、174)が、共通の方向を有する磁場を形成するように配向され、
    第1および第2の複数の入力コイル(166、168)であって、前記第1および第2の複数の入力コイル(166、168)内の各入力コイル(166、168)が、前記複数のポスト(162、176)のポスト(162、176)と、前記複数の永久磁石(154、174)の永久磁石(154、174)との間において、前記間隔をおいて位置するプレート(158、160)内のプレート(158、160)の一部の回りに延びており、
    電気出力を供給するために、前記第1および前記第2複数のポスト(162、176)内の各ポスト(162、176)の回りに延びる出力コイル(152、153、178)と、
    前記第1および第2の複数の入力コイル(166、168)を経て交互に電流を励振する切替え回路(24)とを備え、
    前記第1の複数の入力コイル(166、168)において各入力コイル(166、168)を経て励振される前記電流により、前記ポスト(162、176)の各側にある永久磁石(154、174)からの前記第1の複数のポスト(162、176)内における各ポスト(162、176)内の磁束を増大させると共に、前記ポスト(162、176)の各側にある永久磁石(154、176)からの前記第2の複数のポスト(162、176)内における各ポスト(162、176)内の磁束を減少させ、
    前記第2の複数の入力コイル(166、168)の入力コイルを経て励振される前記電流によって、前記ポスト(162、176)の各側にある永久磁石(154、174)からの前記第1の複数のポスト(162、176)内における各ポスト(162、176)内の磁束を減少させると共に、前記ポスト(162、176)の各側にある永久磁石(154、174)から前記第2の複数のポスト(162、176)内における各ポスト(162、176)内の磁束を増大させる、電磁発生装置(150、170)。
  19. 各入力コイル(166、168)が、前記入力コイル(166、168)に隣接する永久磁石(154、174)の前記両端の間で、前記磁気コア(156)を経て磁路の一部の回りに延びると共に、
    前記磁路が、前記入力コイル(166、168)に隣接する前記磁気コア(156)内のポスト(162、176)を経て延びており、
    前記入力コイル(166、158)を経て電流を励振することにより、前記入力コイル(166、168)が、前記磁路内における磁束の集中に対向する磁場を形成する、請求項18に記載の電磁発生装置(150、170)。
  20. 前記切替え回路(24)が、開始過程中に外部電源(38)によって励振されると共に、前記開始過程後の運転中に前記第2出力コイル(152、153、178)に誘導される電力によって励振される、請求項18に記載の電磁発生装置(150、170)。
  21. 前記磁気コア(156)が、ナノ結晶磁気合金から構成される、請求項18に記載の電磁発生装置(150、170)。
  22. 前記ナノ結晶磁気コアが、コバルト−ニオビウム−ホウ素合金である、請求項21に記載の電磁発生装置(150、170)。
  23. 前記ナノ結晶磁気合金が、鉄をベースとする合金である、請求項21に記載の電磁発生装置(150、170)。
  24. 前記永久磁石(154、174)が、希土類元素を含む材料から構成される、請求項18に記載の電磁発生装置(150、170)。
  25. 前記永久磁石(154、174)が、本質的にサマリウム・コバルトからなる、請求項24に記載の電磁発生装置(150、170)。
  26. 前記永久磁石(154、174)が、本質的に鉄、ネオジミウム、およびホウ素からなる、請求項24に記載の電磁発生装置(150、170)。
JP2003543167A 2001-11-06 2001-11-06 静止式電磁発生装置 Pending JP2005509394A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2001/043416 WO2003041247A1 (en) 2001-11-06 2001-11-06 Motionless electromagnetic generator

Publications (1)

Publication Number Publication Date
JP2005509394A true JP2005509394A (ja) 2005-04-07

Family

ID=21742999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003543167A Pending JP2005509394A (ja) 2001-11-06 2001-11-06 静止式電磁発生装置

Country Status (6)

Country Link
EP (1) EP1446862B1 (ja)
JP (1) JP2005509394A (ja)
KR (1) KR100749866B1 (ja)
CN (1) CN1582524A (ja)
IL (1) IL161783A0 (ja)
WO (1) WO2003041247A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2446656A (en) * 2007-02-16 2008-08-20 Zahoor Akram Shaikh Electricity generation from the magnetic field of a permanent magnet
WO2010083538A2 (en) * 2009-01-16 2010-07-22 Hoang Giang Dinh Generators and motors using propagated magnetic field
UA43102U (ru) * 2009-04-08 2009-08-10 Надежда Васильевна Андрус Способ статического генерирования электрической энергии
CN102480209B (zh) * 2010-11-26 2016-03-09 上海聚然智能科技有限公司 磁场跳变式电源及其采用该电源的装置
CN106230227B (zh) * 2010-11-26 2019-06-11 上海科斗电子科技有限公司 恒向电流输出电源
KR101273491B1 (ko) * 2011-08-16 2013-06-17 인하대학교 산학협력단 에너지 하베스팅에 의한 마이크로 자기 왜곡 운동체
WO2023080907A1 (en) * 2021-11-03 2023-05-11 Villalobos Victor M Motionless high frequency magnetic method and apparatus to extract potential from dc batteries without destroying the battery's charge
CN115249591B (zh) * 2022-08-26 2024-03-19 天津加美特电气股份有限公司 一种磁力线封闭式双组合电永磁驱动双电源转换开关

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831157A (en) * 1952-09-26 1958-04-15 Int Standard Electric Corp Saturable core transformer
US2866943A (en) * 1956-01-12 1958-12-30 John F Ringelman Circuit for providing improved core characteristics for saturable reactor devices
US3569947A (en) * 1969-06-16 1971-03-09 Westinghouse Electric Corp Magnetic memory device
FR2312135A1 (fr) * 1975-05-21 1976-12-17 Galey Paul Dispositif magnetique statique generateur de courant electrique
DE3640235A1 (de) * 1986-11-25 1988-05-26 Horst Von Heyer Ferromagnetischer energieumwandler
US4883977A (en) * 1987-07-06 1989-11-28 Regan Dennis J Magnetic power converter

Also Published As

Publication number Publication date
EP1446862A1 (en) 2004-08-18
CN1582524A (zh) 2005-02-16
EP1446862B1 (en) 2013-10-23
KR20040078102A (ko) 2004-09-08
IL161783A0 (en) 2005-11-20
WO2003041247A1 (en) 2003-05-15
KR100749866B1 (ko) 2007-08-16

Similar Documents

Publication Publication Date Title
US6362718B1 (en) Motionless electromagnetic generator
US20070242406A1 (en) Electricity generating apparatus utilizing a single magnetic flux path
US5926083A (en) Static magnet dynamo for generating electromotive force based on changing flux density of an open magnetic path
US6946938B1 (en) Method and apparatus for coil-less magnetoelectric magnetic flux switching for permanent magnets
JP5878019B2 (ja) 超伝導システム
US4263523A (en) Pulse generator using read head with Wiegand wire
JP2009513010A (ja) 超伝導システム
US20060163971A1 (en) Solid state electric generator
JP2005509394A (ja) 静止式電磁発生装置
Takebuchi et al. Reduction of vibration amplitude in vibration-type electricity generator using magnetic wire
RU2173499C2 (ru) Генератор переменного тока
JP2001238349A (ja) 限流器
Summers Hybrid rings of fixed 8T superconducting magnets and iron magnets rapidly cycling between-2T and+ 2T for a muon collider
Takemura et al. Frequency dependence of output voltage generated from bundled compound magnetic wires
JPS6237912A (ja) 磁気固定装置
US10547218B2 (en) Variable magnetic monopole field electro-magnet and inductor
Yatchev et al. Characteristics of a bistable permanent magnet linear actuator with soft magnetic mover
RU2178942C1 (ru) Сверхпроводниковая вентильная индукторная машина
JP2000287470A (ja) 複合磁性体の起電力発生装置
Rhee et al. A bipolar pulse-type hysteresis loop tracer for rare earth based permanent magnets
JPH05167127A (ja) 磁歪素子
Summers Accelerating muons to 2400 GeV/c with dogbones followed by interleaved fast ramping iron and fixed superconducting magnets
JP2004152927A (ja) 磁界発生装置
JPH0517898A (ja) 磁性膜めつき装置及び該装置の使用方法
CN101479815A (zh) 利用单个磁通量路径的发电设备

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070907

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080618