JP2005504175A - High-strength duplex / triplex lightweight structural steel and its use - Google Patents

High-strength duplex / triplex lightweight structural steel and its use Download PDF

Info

Publication number
JP2005504175A
JP2005504175A JP2003532715A JP2003532715A JP2005504175A JP 2005504175 A JP2005504175 A JP 2005504175A JP 2003532715 A JP2003532715 A JP 2003532715A JP 2003532715 A JP2003532715 A JP 2003532715A JP 2005504175 A JP2005504175 A JP 2005504175A
Authority
JP
Japan
Prior art keywords
structural steel
lightweight structural
strength
strength lightweight
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003532715A
Other languages
Japanese (ja)
Inventor
コンラド・アイッパー
ゲオルク・フロムマイヤー
ヴォルフガング・フーセネッガー
アルント・ゲーリック
ヴォルフガング・クライネカテーファー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10231125A external-priority patent/DE10231125A1/en
Application filed by Daimler AG filed Critical Daimler AG
Publication of JP2005504175A publication Critical patent/JP2005504175A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Body Structure For Vehicles (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The invention concerns a steel for lightweight construction, consisting of a multiphase structure. In the case of a duplex steel, it consists of mixed ferrite (alpha) and austenite (gamma) crystals. In the case of a triplex steel, it comprises, additioally to said two phases, martensitic (epsilon) and/or (kappa) phases. The volumetric weight of the inventive steel is low as a result of the high proportion of light alloys A1, Si Mn, Mg, Ga and Be. The inventive alloys have a volumetric weight of less than 7b/cm<SUP>3</SUP>.

Description

【技術分野】
【0001】
本発明は、優れた深絞り性を有する高強度デュプレックス(二相)又はトリプレックス(三相)軽量構造用鋼及びその使用法に関する。
【背景技術】
【0002】
様々な特性を有する高強度鋼が自動車産業、建設業用に、並びに、航空及び航空宇宙用途に開発され、既に製造に使用されている。本明細書では、特に、自動車産業で使用するため、新規な材料の使用により車両の重量を低減させることがますます望まれている。本明細書の目的は、より軽量の鋼合金を製造することであり、該合金は、その他、従来の好ましい特性を保持する又は更に改善する。
【0003】
特許文献1は、耐酸化性及び耐食性構成要素として、Alを13〜16重量%、幾つかの場合には、Cr、Nb、Ta、Si、B、Tiなどの他の合金元素を高濃度含有する鋼を開示している。この種の合金は、700℃より高温で、高い耐酸化性及び耐食性を特徴とし、高温で使用され得るが、機械的負荷が低い酸化及び腐食条件にしかさらされない構成要素に使用されるのが好ましい。
【0004】
更に、例えば、特許文献2は、アルミニウム、クロミウム、ニッケルやマンガンの含有量が更に高く、その結果、鉄よりも密度が低い高強度軽量構造用鋼を開示している。期待されるように、この鋼合金は、腐食及び応力腐食割れに対する良好な耐性、並びに高強度を特徴とする。この種の鋼は、10重量%までのアルミニウム含有量を有する。
【0005】
例えば、オーステナイト系、又はオーステナイト/フェライト系軽量構造用鋼は、Mnを7〜27重量%、Alを1〜10重量%、Crを10重量%未満、Niを10重量%未満、Siを0.7〜4重量%よりも多く、Cuを3重量%未満、Cを0.5重量%未満、並びに、鉄及び溶融に関連する残りの不純物、を含む組成物を有する。他の合金成分は、少量の窒素、ニオブ、チタン、バナジウム、及びリンを含んでもよい。
【0006】
更に、特許文献3は、航空機構成要素、エンジン、及び弾丸用などの軽量構造用鋼の使用法を開示しており、この鋼は、Alを4〜20%、Mnを18〜40%、Cを0.15〜2%含む、高濃度の軽量合金成分を含有する。また、必要に応じて、これらにSiを0〜3%、Nbを0〜4%加える場合がある。
【0007】
特許文献4から冷間加工可能なオーステナイト系軽量構造用鋼、特に、良好な深絞り成形性を有するオーステナイト系軽量構造用鋼を使用することも知られており、それは、1100MPaまでの引張り強さ、並びに、TRIP特性及び/又はTWIP特性を有する。Siを1〜6%、Alを1〜8%(但し、(Al+Si)<12%)、Mnを10〜30%、普通鋼に伴う元素を含有する本質的な鉄を残りに含む組成物では、それは補強用薄板金車体部品の材料として使用される。
【0008】
【特許文献1】
独国特許第43 03 316号明細書
【特許文献2】
独国特許第199 00 199号明細書
【特許文献3】
独国特許第12 62 613 B1号明細書
【特許文献4】
独国特許第197 27 759号明細書
【発明の開示】
【発明が解決しようとする課題】
【0009】
前述の既知の軽量構造用鋼は、前述の技術分野で使用する重要で有利な特性を有するが、それにも関わらず、本質的な欠点がある。既知の鋼では、例えば、自動車産業において、更なる重量削減は、薄板金の厚さを更に減少することによって又は追加の設計方法を使用することによってのみ達成され得る。容易に変形できる、即ち、深絞り成形及び引張成形することができ、冷間圧延可能で、再結晶焼鈍を経ており、特に、自動車工学技術に使用するのに必要とされるように、アルミニウム含量が比較的高い深絞り加工用鋼は、これらの固有密度が依然として高すぎるため、この形態の従来技術からは知られていない。
【0010】
本発明は、良好な冷間加工性、特に、良好な深絞り性及び引張成形性、並びにこれまで開示されてきた鋼の固有密度より低い密度を有する、高強度軽量構造用鋼を提供するという目的に基づいている。
【発明を実施するための最良の形態】
【0011】
本発明は、請求項1の主題によって表される。他の請求項は、本発明の有利な発展形態及び改良形態を記載する。
【0012】
本発明による解決手段は、以下の組成(重量%の含有率)、即ち、
Mn、18〜35%、
Al、8〜12%、
Si、6%まで、但しAl+Si>12%、
C、0.5〜2%、
B、最大0.05%、
Ti、0〜3%、
Mg、Ga、Beの元素のうちの少なくとも1つをそれぞれ3%までの量、及び
残りに普通鋼に伴う元素を含む本質的な鉄、
を有する高強度α/γデュプレックス(二相)又はα/γ/ε(κ)トリプレックス(三相)の軽量構造用鋼に関する。
【0013】
本明細書では、3%より多くの軽元素Siを含有する本発明の改良形態が、特に好ましい。
【0014】
本発明の改良形態によれば、Mg、Ga、及びBeの元素が存在する場合、その含量は、それぞれ0.3%より大きいことが非常に好ましい。
【0015】
本発明による合金の改良形態によれば、元素N、Nb、V、及び必要に応じてTiが、以下の含量で使用されることが好ましい。
Ti、0.03〜2%
N、0.3%未満
Nb、0.5%未満
V、0.5%未満。
【0016】
本発明による軽量構造用鋼は、多相(multiphase)微細構造から形成され、二相(デュプレックス)鋼の場合は、α−フェライトとγ−オーステナイト固溶体から形成される。三相(トリプレックス)鋼の場合は、前述の最初の2相に加えてマルテンサイト系ε−相及び/又はκ−相がある。本発明による鋼の相対密度は、軽量合金元素Al、Si、C、及びMn、並びにMg、Ga、Be、及び任意選択的なTiのうちの少なくとも1つの元素の高含有率によって、低い値まで低下する。これらの合金は共に、7g/cm未満の密度を達成し、これは、7.3〜7.5g/cmの密度を有する通常の鋼と比較して、15%まで顕著に低下している。本発明による解決手段は、また、アルミニウムを8%まで含有する文献から既知の軽量構造用鋼と比較して密度を更に低下させる。
【0017】
元素Mgが本発明による軽量構造用鋼の合金中に存在する場合、この元素Mgは、Mgの相対密度が非常に低いため、鋼の密度を更に低下させる。Beが合金中に存在する場合、同様の状態がBeにも当てはまり、この場合、強度も増大するが、延性は維持される。元素Tiが合金中に存在する場合、この元素Tiは、細粒化、及び固溶体硬化により、強度を更に増大させる。元素Gaが合金中に存在する場合、この元素Gaも、強度及び硬度の増大に役立つ。更に、Gaの含量により、同様の温度条件で合金がより流動しやすくなるため、元素Gaは合金の鋳造性を改善する。
【0018】
本発明によるデュプレックス(二相)又はトリプレックス(三相)軽量構造用鋼は、冷間圧延され再結晶された状態において、α−フェライト、γ−オーステナイト、及びε−マルテンサイト結晶粒の等軸、即ち、等方性のモルフォロジー(形態)を有する、細粒化された2相又は3相微細構造を特徴とする。
【0019】
デュプレックス(二相)/トリプレックス(三相)の鋼の硬化指数は、n=0.23〜0.24、及び平均のr値(平面異方性)は、r=(r0°+r90°+2r45°)/4≒1、即ち、この軽量構造用鋼は、深絞り成形及び引張成形中の平面形状変化に関して、準等方性の挙動をとる(Δr≒0)。
【0020】
例えば、衝撃荷重の結果として又は激突した場合に起こるように、高い歪速度で負荷を受ける時、微細粒二相又は三相微細構造により、この鋼のエネルギー吸収−エネルギーの散逸−が増大する。
【0021】
軽量構造用鋼は、400Mpaを超える流れ応力(流動応力)を特徴とする。共存するα/γ相又はα/γ/ε(κ)相の転位間の広範囲な相互作用から生じる高い歪硬化の結果、1000MPaまでの熱間帯鋼(ホットストリップ)の引張り強さ、40%までの均一な伸び、及び50%までの最大伸びを生じる。再結晶焼鈍を経た冷間帯鋼(コールドストリップ)の強度は900MPaの範囲であり、最大伸びは70%である。
【0022】
通常の鋼と比較して顕著に低下した密度は、特に有利である。本発明による軽量構造用鋼はまた、従来技術で既知のアルミニウム成分を含む軽量構造用鋼と比較して、これまでに知られていない程、密度が低下する。
【0023】
本発明による解決手段の他の利点は、高強度に関わらず、材料が非常に良好な加工性を有することである。これらの特性は、これまで、高合金特殊鋼でしか達成されなかった。加工中のその鋳造性は、既に述べたように、Gaが存在する場合には更にまだ改善されることが、特に強調されなければならない。
【0024】
前述の特性のスペクトル、即ち、高い構成要素強度、幾何学的形状に関する設計の自由度が高くなること、及び材料の密度の低下は、軽量の材料及び形状構造体の使用により構成要素の重量を低下させるという目的を達成する。
【0025】
従って、本発明によるα/γデュプレックス(二相)、又はα/γ/ε(κ)トリプレックス(三相)の軽量構造用鋼により、これまでに知られていない有利な特性の組合せにおいて更に改善されることになる。
【0026】
鉄の相対密度より低い相対密度を有する合金成分の割合を高くすること、及びこれまでに開示されている軽量構造用鋼により、従来の製造方法を維持した状態で、自動車産業に有利な重量の減少が達成される。更に、軽量構造用鋼は、優れた延性、高強度、及び非常に高い硬化速度を有する。高い荷重速度の特性は、事故における激突の際、特に強調されなければならないが、これは、この鋼合金が自動車の構造に特に好適であることを意味するからである。更に、腐食、特に応力腐食割れに対する耐性が高く、そのため、この鋼合金は、例えば、建設業などの他の技術分野で使用するのにも好適である。
【0027】
本発明による軽量構造用鋼は、コンクリート構造体で、即ち、特にプレストレストコンクリート用鋼、及び強化鉄(強化鋼)、又はガードレール、及び矢板壁として使用するのに極めて好適である。更に、化学、電気化学、有機、非金属、又は金属の塗膜によって耐食性を改善することができる。
【0028】
化学処理、電気化学処理、又は熱処理によって、鋼合金を硬化することも可能である。
【0029】
表面にアルミニウムを添加(濃化、濃縮)及び/又は塗工(コーティング)することによって保護被覆層を得ることができる。
【0030】
深絞り加工成形及び引張成形に好適なアルミニウム含有鋼は、その製造プロセスにおいて、溶融され、連続鋳造プロセスを使用して鋳造され、再結晶温度より高温の温度範囲で圧延されるか、又は、圧延及び鋳造により、好ましくは薄帯鋼の鋳造により、精密帯鋼として完全に鋳造される。
【0031】
鋼は、熱間圧延帯鋼(ホットストリップ)として更に直接加工できるか、又は熱間圧延後に冷間圧延された状態で更に加工できる。
【0032】
自動車部門における上述の可能な使用法に加えて、本発明による軽量構造用鋼は、また、ホワイトボデー構成要素/ボデーフレーム、一体支持体(Integraltraeger)、シャーシ構造体、及びスペースフレーム用の構成要素の製造に特に好適である。自動車の他の軽量構成要素には、ステアリング、車軸、及び車軸構成要素、付属部品、座席用レール、固定部品、及び乗員保護装置、車輪懸架装置、動力伝達系、及び燃料タンクなどが挙げられる。
【0033】
出願の範囲はまた、鉄道車両、及び船艇にも及び、航空及び航空宇宙部門、好ましくは薄い壁の強度に関する建設構成要素にも及ぶ。
【0034】
建設業、特に建築物における上述の使用法に加えて、この材料は、運搬装置、コンベヤーベルト、及び冶金用途にも好適である。
【Technical field】
[0001]
The present invention relates to a high-strength duplex (two-phase) or triplex (three-phase) lightweight structural steel having excellent deep drawability and uses thereof.
[Background]
[0002]
High-strength steels with various properties have been developed for the automotive industry, construction industry, as well as aerospace and aerospace applications and are already in production. It is increasingly desired here to reduce the weight of a vehicle by using new materials, especially for use in the automotive industry. The purpose of this specification is to produce a lighter steel alloy, which otherwise retains or even improves conventional favorable properties.
[0003]
Patent Document 1 contains 13 to 16% by weight of Al as an oxidation resistance and corrosion resistance component, and in some cases, contains a high concentration of other alloy elements such as Cr, Nb, Ta, Si, B, and Ti. Steel to be disclosed. This type of alloy is characterized by high oxidation and corrosion resistance at temperatures above 700 ° C. and can be used at high temperatures, but it is used for components where mechanical loads are only exposed to low oxidation and corrosion conditions. preferable.
[0004]
Further, for example, Patent Document 2 discloses a high-strength lightweight structural steel having a higher content of aluminum, chromium, nickel, and manganese, and as a result, a density lower than that of iron. As expected, this steel alloy is characterized by good resistance to corrosion and stress corrosion cracking as well as high strength. This type of steel has an aluminum content of up to 10% by weight.
[0005]
For example, an austenitic or austenitic / ferrite lightweight structural steel has a Mn content of 7 to 27 wt%, an Al content of 1 to 10 wt%, a Cr content of less than 10 wt%, a Ni content of less than 10 wt%, and a Si content of 0.0. It has a composition comprising more than 7-4% by weight, less than 3% by weight of Cu, less than 0.5% by weight of C, and the remaining impurities related to iron and melting. Other alloy components may include small amounts of nitrogen, niobium, titanium, vanadium, and phosphorus.
[0006]
Further, Patent Document 3 discloses the use of lightweight structural steels such as for aircraft components, engines, and bullets, which steel is 4-20% Al, 18-40% Mn, C Containing 0.15 to 2% of a high concentration light-weight alloy component. Further, if necessary, 0 to 3% of Si and 0 to 4% of Nb may be added thereto.
[0007]
It is also known from patent document 4 that austenitic lightweight structural steels that can be cold worked, in particular austenitic lightweight structural steels with good deep-drawability, which have a tensile strength up to 1100 MPa. And have TRIP characteristics and / or TWIP characteristics. In the composition containing 1 to 6% of Si, 1 to 8% of Al (however, (Al + Si) <12%), 10 to 30% of Mn, and essential iron containing elements associated with ordinary steel in the balance It is used as a material for reinforcing sheet metal car body parts.
[0008]
[Patent Document 1]
German Patent No. 43 03 316 [Patent Document 2]
German Patent No. 199 00 199 [Patent Document 3]
German Patent No. 12 62 613 B1 [Patent Document 4]
German Patent No. 197 27 759 [Disclosure of the Invention]
[Problems to be solved by the invention]
[0009]
Although the aforementioned known lightweight structural steels have important and advantageous properties for use in the aforementioned technical field, nonetheless, there are substantial drawbacks. With known steels, for example in the automotive industry, further weight reduction can only be achieved by further reducing the thickness of the sheet metal or by using additional design methods. Can be easily deformed, i.e. deep-drawn and stretch-formed, cold-rollable, undergoes recrystallization annealing and, in particular, aluminum content as required for use in automotive engineering However, deep drawing steels that are relatively high are not known from this form of prior art because their intrinsic density is still too high.
[0010]
The present invention provides a high-strength lightweight structural steel having good cold workability, in particular, good deep drawability and tensile formability, and a density lower than the intrinsic density of steels disclosed so far. Based on purpose.
BEST MODE FOR CARRYING OUT THE INVENTION
[0011]
The invention is represented by the subject matter of claim 1. The other claims describe advantageous developments and improvements of the invention.
[0012]
The solution according to the invention has the following composition (weight% content):
Mn, 18-35%,
Al, 8-12%,
Si, up to 6%, but Al + Si> 12%,
C, 0.5-2%,
B, up to 0.05%
Ti, 0 to 3%,
An essential iron containing at least one of the elements Mg, Ga, Be in an amount of up to 3% each, and the remainder of the elements associated with ordinary steel,
It relates to a lightweight structural steel having high strength α / γ duplex (two phases) or α / γ / ε (κ) triplex (three phases).
[0013]
Particularly preferred herein is an improved form of the invention containing more than 3% light element Si.
[0014]
According to an improvement of the invention, it is highly preferred that when Mg, Ga and Be elements are present, their contents are each greater than 0.3%.
[0015]
According to an improved form of the alloy according to the invention, the elements N, Nb, V and optionally Ti are preferably used in the following content.
Ti, 0.03 to 2%
N, less than 0.3% Nb, less than 0.5% V, less than 0.5%.
[0016]
The lightweight structural steel according to the invention is formed from a multiphase microstructure, and in the case of a duplex steel is formed from α-ferrite and γ-austenite solid solution. In the case of three-phase (triplex) steel, there is a martensitic ε-phase and / or κ-phase in addition to the first two phases described above. The relative density of the steel according to the invention is reduced to a low value due to the high content of the light-weight alloy elements Al, Si, C and Mn and at least one of Mg, Ga, Be and optionally Ti. descend. Both of these alloys achieved a density of less than 7 g / cm 3 , which was significantly reduced to 15% compared to ordinary steel having a density of 7.3 to 7.5 g / cm 3. Yes. The solution according to the invention also further reduces the density compared to the known lightweight structural steel from the literature containing up to 8% aluminum.
[0017]
When the element Mg is present in the lightweight structural steel alloy according to the invention, this element Mg further reduces the density of the steel because the relative density of Mg is very low. When Be is present in the alloy, a similar situation applies to Be, in which case the strength is increased but the ductility is maintained. When the element Ti is present in the alloy, the element Ti further increases the strength by refining and solid solution hardening. When the element Ga is present in the alloy, this element Ga also helps increase the strength and hardness. Furthermore, the Ga content improves the castability of the alloy because the Ga content makes it easier for the alloy to flow under similar temperature conditions.
[0018]
Duplex (two-phase) or triplex (three-phase) lightweight structural steels according to the present invention are equiaxed with α-ferrite, γ-austenite and ε-martensite grains in the cold-rolled and recrystallized state. That is, it is characterized by a finely divided two-phase or three-phase microstructure having an isotropic morphology.
[0019]
The hardening index of duplex (two phase) / triple (three phase) steel is n = 0.23 to 0.24, and the average r value (plane anisotropy) is r = (r0 ° + r90 ° + 2r45). °) / 4≈1, that is, this lightweight structural steel behaves quasi-isotropically with respect to planar shape changes during deep drawing and tensile forming (Δr≈0).
[0020]
For example, when subjected to high strain rates, as occurs as a result of impact loading or in the case of a crash, the fine-grained two-phase or three-phase microstructure increases the energy absorption-energy dissipation of this steel.
[0021]
Light structural steel is characterized by a flow stress (flow stress) in excess of 400 Mpa. High strain hardening resulting from extensive interaction between coexisting α / γ or α / γ / ε (κ) phase dislocations, resulting in a tensile strength of hot strip up to 1000 MPa, 40% Produces a uniform elongation of up to 50% and a maximum elongation of up to 50%. The strength of the cold zone steel (cold strip) that has undergone recrystallization annealing is in the range of 900 MPa, and the maximum elongation is 70%.
[0022]
A significantly reduced density compared to normal steel is particularly advantageous. The lightweight structural steel according to the invention also has a density that is less known to date compared to lightweight structural steels containing an aluminum component known in the prior art.
[0023]
Another advantage of the solution according to the invention is that the material has a very good processability, regardless of its high strength. These properties have heretofore been achieved only with high alloy special steels. It must be particularly emphasized that its castability during processing, as already mentioned, is still improved when Ga is present.
[0024]
The spectrum of properties described above, i.e., high component strength, increased design freedom with respect to geometric shape, and reduced material density, reduce the weight of the component through the use of lightweight materials and shape structures. Achieve the goal of lowering.
[0025]
Thus, the α / γ duplex (dual phase) or α / γ / ε (κ) triplex (three phase) lightweight structural steel according to the present invention further enhances the combination of advantageous properties previously unknown. It will be improved.
[0026]
By increasing the proportion of alloy components having a relative density lower than the relative density of iron, and by the light weight structural steels disclosed so far, while maintaining the conventional manufacturing method, the weight is advantageous for the automobile industry. Reduction is achieved. In addition, lightweight structural steel has excellent ductility, high strength, and a very high cure rate. The characteristics of high load speeds must be particularly emphasized in the event of a crash in an accident, since this means that this steel alloy is particularly suitable for the construction of automobiles. Furthermore, it is highly resistant to corrosion, in particular stress corrosion cracking, so that this steel alloy is also suitable for use in other technical fields, for example in the construction industry.
[0027]
The lightweight structural steel according to the invention is very suitable for use in concrete structures, i.e. in particular as prestressed concrete steel and reinforced iron (reinforced steel) or guardrails and sheet pile walls. Furthermore, corrosion resistance can be improved by chemical, electrochemical, organic, non-metallic, or metallic coatings.
[0028]
It is also possible to harden the steel alloy by chemical treatment, electrochemical treatment or heat treatment.
[0029]
A protective coating layer can be obtained by adding aluminum to the surface (concentration, concentration) and / or coating (coating).
[0030]
Aluminum-containing steels suitable for deep drawing and tensile forming are melted in their manufacturing process, cast using a continuous casting process and rolled in a temperature range above the recrystallization temperature, or rolled. And by casting, preferably by casting of strip steel, it is completely cast as precision strip steel.
[0031]
The steel can be further processed directly as hot-rolled strip (hot strip) or can be further processed in the cold-rolled state after hot rolling.
[0032]
In addition to the possible uses mentioned above in the automotive sector, the lightweight structural steel according to the invention also provides components for white body components / body frames, integral supports, chassis structures and space frames. It is particularly suitable for the production of Other lightweight components of the automobile include steering, axle and axle components, accessories, seat rails, fixed components, and occupant protection devices, wheel suspensions, power transmission systems, and fuel tanks.
[0033]
The scope of the application also extends to railway vehicles and ships and to construction components relating to the aviation and aerospace sector, preferably thin wall strength.
[0034]
In addition to the use described above in the construction industry, in particular in buildings, this material is also suitable for conveying devices, conveyor belts and metallurgical applications.

Claims (10)

以下の組成(重量%の含量)、即ち、
Mnが、18〜35%、
Alが、8〜12%、
Siが、6%まで、但しAl+Si>12%、
Cが、0.5〜2%、
Bが、最大で0.05%、
Tiが、0〜3%、
Mg、Ga、Beの元素のうちの少なくとも1つをそれぞれ3%までの量、及び
標準鋼に伴う元素を含む主要な鉄からなる残りの部分、
であることを特徴とする、α/γデュプレックス、又はα/γ/ε(κ)トリプレックスの高強度軽量構造用鋼。
The following composition (weight% content):
Mn is 18 to 35%,
Al is 8-12%,
Si up to 6%, but Al + Si> 12%,
C is 0.5-2%,
B is 0.05% at maximum,
Ti is 0 to 3%,
An amount of up to 3% each of at least one of the elements Mg, Ga, Be, and the remainder of the main iron containing elements associated with standard steel,
An α / γ duplex or α / γ / ε (κ) triplex high-strength lightweight structural steel, characterized in that
前記Siは、Si>3%の含量を特徴とする、請求項1に記載の高強度軽量構造用鋼。The high-strength lightweight structural steel according to claim 1, wherein the Si has a content of Si> 3%. 0.3%より多くの量の前記Mg及び/又は前記Ga及び/又は前記Beを特徴とする、請求項1あるいは2に記載の高強度軽量構造用鋼。3. A high-strength light-weight structural steel according to claim 1 or 2, characterized by an amount of Mg and / or Ga and / or Be greater than 0.3%. 0.03〜2%の前記Ti含量を特徴とする、請求項1、2あるいは3に記載の高強度軽量構造用鋼。The high-strength lightweight structural steel according to claim 1, 2 or 3, characterized by a Ti content of 0.03 to 2%. 前記高強度軽量構造用鋼は、さらに他の合金元素、即ち、
Nが、最大0.3%まで、
Nbが、最大0.5%まで、及び
Vが、最大0.5%まで、
を含むことを特徴とする、請求項1〜4のいずれか1項に記載の高強度軽量構造用鋼。
The high-strength lightweight structural steel is further alloyed elements, that is,
N up to 0.3%
Nb up to 0.5% and V up to 0.5%
The high-strength lightweight structural steel according to any one of claims 1 to 4, characterized by comprising:
前記高強度軽量構造用鋼は、冷間圧延及び再結晶化された状態で等軸モルフォロジーを有する微細粒化された二相のα/γデュプレックス微細構造、又は三相のα/γ/ε(κ)トリプレックス微細構造であることを特徴とする、請求項1〜5のいずれか1項に記載の高強度軽量構造用鋼。The high-strength lightweight structural steel is a fine-grained two-phase α / γ duplex microstructure having an equiaxed morphology in the cold-rolled and recrystallized state, or a three-phase α / γ / ε ( The high-strength lightweight structural steel according to any one of claims 1 to 5, characterized in that it is a κ) triplex microstructure. 前記高強度軽量構造用鋼は、r≒1の平面等方性、即ち、薄板金の面で、強度及び伸びに関して概ね等方性の機械的特性を有する鋼であることを特徴とする、請求項1〜6のいずれか1項に記載の高強度軽量構造用鋼。The high-strength lightweight structural steel is a steel having plane isotropy of r≈1, that is, a steel sheet having mechanical properties that are generally isotropic in terms of strength and elongation on the surface of a sheet metal. Item 7. The high-strength lightweight structural steel according to any one of Items 1 to 6. 前記高強度軽量構造用鋼の構成要素は、鋳造プロセスにより製造される、請求項1〜7のいずれか1項に記載の高強度軽量構造用鋼の製造方法。The manufacturing method of the high strength lightweight structural steel of any one of Claims 1-7 with which the component of the said high strength lightweight structural steel is manufactured by a casting process. 前記高強度軽量構造用鋼は、車両のホワイトボデー又はボデーフレームの構成要素、一体支持体、シャーシ構造体、又はスペースフレーム用の材料として使用される、請求項1〜7のいずれか1項に記載の軽量構造用鋼の使用方法。The high-strength lightweight structural steel is used as a material for a vehicle white body or body frame component, an integral support, a chassis structure, or a space frame. Use of the described lightweight structural steel. 前記高強度軽量構造用鋼は、建築物、運搬装置、冶金用途、並びにガードレール、及び矢板壁用の材料として使用される、請求項1〜7のいずれか1項に記載の軽量構造用鋼の使用方法。The lightweight structural steel according to any one of claims 1 to 7, wherein the high-strength lightweight structural steel is used as a material for buildings, conveying devices, metallurgical applications, guardrails, and sheet pile walls. how to use.
JP2003532715A 2001-09-28 2002-09-25 High-strength duplex / triplex lightweight structural steel and its use Pending JP2005504175A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10148101 2001-09-28
DE10231125A DE10231125A1 (en) 2001-09-28 2002-07-10 High strength duplex / triplex lightweight engineering steel and its use
PCT/EP2002/010679 WO2003029504A2 (en) 2001-09-28 2002-09-25 High-strength duplex/triplex steel for lightweight construction and use thereof

Publications (1)

Publication Number Publication Date
JP2005504175A true JP2005504175A (en) 2005-02-10

Family

ID=26010254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003532715A Pending JP2005504175A (en) 2001-09-28 2002-09-25 High-strength duplex / triplex lightweight structural steel and its use

Country Status (6)

Country Link
US (1) US20070125454A1 (en)
EP (1) EP1430161B1 (en)
JP (1) JP2005504175A (en)
AT (1) ATE298009T1 (en)
ES (1) ES2242899T3 (en)
WO (1) WO2003029504A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1807542A1 (en) * 2004-11-03 2007-07-18 ThyssenKrupp Steel AG High-strength steel strip or sheet exhibiting twip properties and method for producing said strip by direct strip casting "
DE102005017929A1 (en) * 2005-04-18 2006-10-19 Friedr. Fingscheidt Gmbh Use of a lightweight steel
DE102005057599A1 (en) * 2005-12-02 2007-06-06 Volkswagen Ag lightweight steel
DE202005021771U1 (en) * 2005-12-20 2010-02-18 Salzgitter Flachstahl Gmbh Formable lightweight steel
DE102006030699B4 (en) * 2006-06-30 2014-10-02 Daimler Ag Cast steel piston for internal combustion engines
CA2660957C (en) * 2006-08-23 2016-10-11 Neurogen Corporation 2-phenoxy pyrimidinone analogues
DE102008020757A1 (en) 2007-04-30 2008-11-06 Volkswagen Ag Sheet workpiece forming method, involves inserting sheet workpiece into molding tool at specific temperature, forming workpiece by molding tool, and extracting heat from workpiece during retention period
EP2350332B1 (en) 2008-11-05 2014-05-21 Honda Motor Co., Ltd. High-strength steel sheet and the method for production therefor
WO2010052052A1 (en) * 2008-11-07 2010-05-14 Siemens Aktiengesellschaft Rotor for a turbomachine
RU2492022C2 (en) * 2009-03-11 2013-09-10 Зальцгиттер Флахшталь Гмбх Method of making hot-rolled strip
US20120067492A1 (en) * 2010-09-22 2012-03-22 Yann Bernard Duval Tires with high strength reinforcement
DE102011117135A1 (en) * 2010-11-26 2012-05-31 Salzgitter Flachstahl Gmbh Energy-saving container made of lightweight steel
RU2625512C2 (en) * 2015-12-03 2017-07-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Structured casting ausaging steel with high strength-weight ratio and method of its processing
RU2652935C1 (en) * 2016-11-28 2018-05-03 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Structural foundry and deformable by microalloy nitrogen austenite heat-resistant cryogenic steel with high specific strength and method of its treatment
RU2652934C1 (en) * 2016-11-28 2018-05-03 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Structural wrought austenitic non-magnetic heat-resistant cryogenic steel with high specific strength and method of its treatment
WO2019241303A1 (en) * 2018-06-12 2019-12-19 The Trustees Of Dartmouth College High-entropy alloys with high strength

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841366A (en) * 1957-07-02 1960-07-13 Langley Alloys Ltd Improvements in iron aluminium alloys
GB938401A (en) * 1959-05-14 1963-10-02 Langley Alloys Ltd Improvements in iron-aluminium-manganese alloys
DE1182844B (en) * 1959-06-23 1964-12-03 Ford Werke Ag Austenitic steel alloy
SU348089A1 (en) * 1970-02-14 1978-05-25 Предприятие П/Я М-5641 High-temperature steel
US4865662A (en) * 1987-04-02 1989-09-12 Ipsco Inc. Aluminum-manganese-iron stainless steel alloy
GB2220674A (en) * 1988-06-29 1990-01-17 Nat Science Council Alloys useful at elevated temperatures
US5278881A (en) * 1989-07-20 1994-01-11 Hitachi, Ltd. Fe-Cr-Mn Alloy
DE19727759C2 (en) * 1997-07-01 2000-05-18 Max Planck Inst Eisenforschung Use of a lightweight steel
DE102005027258B4 (en) * 2005-06-13 2013-01-31 Daimler Ag High carbon steel with superplasticity

Also Published As

Publication number Publication date
US20070125454A1 (en) 2007-06-07
ES2242899T3 (en) 2005-11-16
ATE298009T1 (en) 2005-07-15
EP1430161B1 (en) 2005-06-15
EP1430161A2 (en) 2004-06-23
WO2003029504A3 (en) 2003-11-27
WO2003029504A2 (en) 2003-04-10

Similar Documents

Publication Publication Date Title
JP5393459B2 (en) High manganese type high strength steel plate with excellent impact characteristics
EP3423608B1 (en) Austenitic, low-density, high-strength steel strip or sheet having a high ductility, method for producing said steel and use thereof
JP5142101B2 (en) Method for producing austenitic iron / carbon / manganese steel sheets with very high strength and elongation properties and excellent homogeneity
KR100931140B1 (en) High tensile steel sheet with excellent formability and manufacturing method thereof
US20090324441A1 (en) Austenitic stainless cast steel part, method for production and use thereof
US9315883B2 (en) High strength and low density particle-reinforced steel with improved E-modulus and method for producing said steel
US20060278309A1 (en) Electrode for fuel cell, and methods for manufacturing these
EP1937861A1 (en) High strength hot rolled steel sheet containing high mn content with excellent workability and method for manufacturing the same
JP2005504175A (en) High-strength duplex / triplex lightweight structural steel and its use
CN111836908A (en) Forged parts of bainitic steel and method for manufacturing same
KR100856314B1 (en) High strength steel plate with high manganese having excellent burring workability
KR20100071619A (en) High manganese steel sheet with high yield ratio, excellent yield strength and formability and manufacturing method thereof
JP7482231B2 (en) Low carbon, low cost, ultra-high strength multi-phase steel sheet/strip and manufacturing method thereof
JP2023551501A (en) Ultra-high strength cold-rolled steel sheet with excellent bending workability and its manufacturing method
EP3730651A1 (en) High yield ratio-type high-strength steel sheet and method for manufacturing same
EP4186991A1 (en) Steel sheet having excellent formability and strain hardening rate
EP4033001A1 (en) Steel sheet having excellent uniform elongation and strain hardening rate, and method for producing same
KR20140081479A (en) Laminate steel sheet for automobile
DE10231125A1 (en) High strength duplex / triplex lightweight engineering steel and its use
EP4217517A1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
WO2023073410A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
CA3236022A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP2001294978A (en) High strength hot rolled steel sheet having high dynamic deformation resistance and good formability and its producing method
JPH08302446A (en) High strength hot rolled steel sheet excellent in fatigue characteristic in sheared part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061214

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070525