JP2005354806A - Rotor for electric motor and its manufacturing method - Google Patents

Rotor for electric motor and its manufacturing method Download PDF

Info

Publication number
JP2005354806A
JP2005354806A JP2004172623A JP2004172623A JP2005354806A JP 2005354806 A JP2005354806 A JP 2005354806A JP 2004172623 A JP2004172623 A JP 2004172623A JP 2004172623 A JP2004172623 A JP 2004172623A JP 2005354806 A JP2005354806 A JP 2005354806A
Authority
JP
Japan
Prior art keywords
rotor
axial direction
rotor core
core
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004172623A
Other languages
Japanese (ja)
Inventor
Hisamitsu Saida
寿充 歳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004172623A priority Critical patent/JP2005354806A/en
Publication of JP2005354806A publication Critical patent/JP2005354806A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor for an electric motor capable of realizing both suppression in an eddy current loss and reduction in a manufacturing cost. <P>SOLUTION: The rotor 10 for an electric motor is largely constituted of a rotor shaft 11, and a rotor iron core 12 which is integrally fitted to the rotor shaft 11 and serves as the magnetic field generating source of a magnetic flux. The rotor iron core 12 is constituted of a combination of a plurality of rotor iron core division pieces 12a, and is formed by continuously arranging the division pieces in the axial direction of the rotary shaft 11. The structure of the rotor iron core division pieces 12a is formed of laminated iron cores 13 formed by laminating a plurality of magnetic steel plates in the axial direction, structural steels 14 having a substantially the same cross-sectional shape as the laminated iron cores 13, a plurality of openings 15 which are arranged in the circumferential direction of the laminated iron cores 13 and the structural steels 14 at given intervals and are formed opening in the axial direction, and magnets 16 each being inserted into the plurality of openings 15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電動機用回転子、電動機用回転子の製造方法に係り、特に、高回転化に伴う渦電流損の抑制と製造コストの低減を実現することができる電動機用回転子、電動機用回転子の製造方法に関するものである。   The present invention relates to a rotor for an electric motor and a method for manufacturing the rotor for an electric motor, and in particular, the rotor for an electric motor and the rotation for the electric motor that can realize suppression of eddy current loss and reduction of manufacturing cost due to high rotation. The present invention relates to a child manufacturing method.

磁石埋め込み型同期モータ(以下、IPモータ)は、磁石によるトルクと、電磁鋼板のリラクタンスによるトルクの両方を利用したモータである。このIPモータに用いられるロータおよびステータは、ともに打ち抜いた鋼板を積層することによって形成されるので、製造歩留が約45%程度と極めて悪いのが現状であった。   A magnet-embedded synchronous motor (hereinafter referred to as an IP motor) is a motor that uses both a torque due to a magnet and a torque due to reluctance of an electromagnetic steel sheet. Since the rotor and stator used in this IP motor are both formed by laminating punched steel plates, the manufacturing yield is extremely low at about 45%.

特開平09−019090号公報JP 09-019090 A 特開2003−189514号公報JP 2003-189514 A

以上のような従来技術に対して、近年、IPモータのステータ側では分割型や螺旋巻きといった歩留向上、低コスト化のための手法が実施されている。しかしながら、ロータ側においては、強度等の問題から、従来通り鋼板を打ち抜いて積層するという歩留の悪い手法を取らざるを得ないのが現状である。   In contrast to the conventional techniques as described above, in recent years, methods for yield improvement and cost reduction such as split type and spiral winding have been implemented on the stator side of the IP motor. However, on the rotor side, due to problems such as strength, the current situation is that a method with a poor yield of punching and laminating steel sheets as before has to be taken.

この問題の克服は、現在モータに求められている小型・高回転化の要請とも相まって、重要な課題となっている。すなわち、モータの高回転化を進めると、渦電流損が増加して熱減磁の対策も必要となるからである。   Overcoming this problem has become an important issue, coupled with the demand for smaller and higher speeds currently required for motors. That is, as the motor speed increases, eddy current loss increases and countermeasures against thermal demagnetization are required.

本発明は、以上のような課題の存在に鑑みて成されたものであって、その目的は、高回転化に伴う渦電流損の抑制と製造コストの低減の両者を実現することができる電動機用回転子、電動機用回転子の製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an electric motor capable of realizing both suppression of eddy current loss and reduction of manufacturing cost accompanying high rotation. It is providing the manufacturing method of the rotor for motors, and the rotor for motors.

本発明に係る電動機用回転子は、回転子軸と、前記回転子軸に一体に固定されて界磁束発生源となる回転子鉄心と、を含むものであって、磁性鋼板を軸方向に複数積層して形成される積層鉄心と、前記積層鉄心と略同一断面形状を有する構造用鋼と、前記積層鉄心および前記構造用鋼の周方向に所定の間隔を介して配置されるとともに、軸方向に開口して形成される複数の開口部と、前記複数の開口部にそれぞれ嵌挿される磁石と、によって形成される回転子鉄心分割ピースを有し、前記回転子鉄心は、前記回転子鉄心分割ピースが前記回転子軸の軸方向に複数組み合わされることによって構成されていることを特徴とする。   A rotor for an electric motor according to the present invention includes a rotor shaft and a rotor core that is integrally fixed to the rotor shaft and serves as a field flux generation source, and includes a plurality of magnetic steel plates in the axial direction. A laminated iron core formed by laminating, a structural steel having substantially the same cross-sectional shape as the laminated iron core, and disposed in a circumferential direction of the laminated iron core and the structural steel via a predetermined interval, and an axial direction A rotor core split piece formed by a plurality of openings formed by being opened to each other and magnets respectively inserted into the plurality of openings, and the rotor core is divided into the rotor cores A plurality of pieces are combined in the axial direction of the rotor shaft.

また、本発明に係る電動機用回転子において、前記回転子鉄心分割ピース同士が接触する面では、前記開口部を磁性鋼板が閉鎖し、前記回転子鉄心の両端を形成する面では、前記開口部を非磁性材料から成るエンドプレートが閉鎖することにより、前記磁石は、前記回転子軸の軸方向に複数組み合わされる前記回転子鉄心分割ピース間で接触しないように固定嵌挿されていることが好適である。   Further, in the rotor for an electric motor according to the present invention, the magnetic steel plate closes the opening on the surface where the rotor core split pieces contact each other, and the opening on the surface forming both ends of the rotor core. When the end plate made of a nonmagnetic material is closed, it is preferable that the magnet is fixedly inserted so as not to contact between the rotor core divided pieces combined in the axial direction of the rotor shaft. It is.

本発明に係る電動機用回転子の製造方法は、周方向に所定の間隔を介して配置されるとともに、軸方向に開口して形成される複数の開口部を有する磁性鋼板を、軸方向に複数積層して積層鉄心を形成するステップと、前記積層鉄心と略同一断面形状を有する構造用鋼と、前記積層鉄心とを軸方向に組み合わせ、前記複数の開口部それぞれに対して磁石を嵌挿することによって回転子鉄心分割ピースを形成するステップと、前記回転子鉄心分割ピースを軸方向に複数組み合わせることによって界磁束発生源となる回転子鉄心を形成し、かかる回転子鉄心を回転子軸に対して一体に固定するステップと、を実行することを特徴とする。   The method for manufacturing a rotor for an electric motor according to the present invention includes a plurality of magnetic steel plates arranged in the circumferential direction at predetermined intervals and having a plurality of openings formed by opening in the axial direction. A step of laminating and forming a laminated core, a structural steel having substantially the same cross-sectional shape as the laminated core, and the laminated core are combined in the axial direction, and a magnet is inserted into each of the plurality of openings. Forming a rotor core split piece by combining a plurality of the rotor core split pieces in the axial direction to form a rotor core serving as a field magnetic flux generation source, and the rotor core with respect to the rotor shaft. And fixing together.

また、本発明に係る電動機用回転子の製造方法において、前記回転子鉄心分割ピース同士が接触する面では、磁性鋼板によって前記開口部を閉鎖させ、前記回転子鉄心の両端を形成する面では、非磁性材料から成るエンドプレートによって前記開口部を閉鎖させることにより、前記磁石が、前記回転子軸の軸方向に複数組み合わされる前記回転子鉄心分割ピース間で接触しないように固定嵌挿されていることとすることが好適である。   Further, in the method for manufacturing a rotor for an electric motor according to the present invention, on the surface where the rotor core split pieces are in contact with each other, the opening is closed with a magnetic steel plate, and on both surfaces of the rotor core, By closing the opening with an end plate made of a non-magnetic material, the magnet is fixedly inserted so as not to contact between the rotor core split pieces combined in the axial direction of the rotor shaft. It is preferable to do so.

本発明によれば、高回転化に伴う渦電流損の抑制と製造コストの低減の両者を実現することが可能な電動機用回転子、電動機用回転子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the rotor for motors and the rotor for motors which can implement | achieve both suppression of the eddy current loss accompanying high rotation and reduction of manufacturing cost can be provided.

発明者は、従来技術が有する課題を解決すべく鋭意努力した結果、IPモータの特性について種々の知見を得た。   As a result of diligent efforts to solve the problems of the prior art, the inventor has obtained various knowledge about the characteristics of the IP motor.

[低コスト化のアプローチ]
まず低コスト化を図るため、従来回転子鉄心に用いられていた製造歩留の悪い打ち抜き電磁鋼板の使用量を減らし、構造用鋼を用いることを検討した。
[Low-cost approach]
First, in order to reduce costs, we examined the use of structural steel by reducing the amount of punched electrical steel sheets with poor production yield that were conventionally used for rotor cores.

図1は、回転子鉄心の材質を構造用鋼板に変更した場合の鉄損悪化率を示す図である。なお、このときの構造用鋼板には、2.0mm厚の電磁軟鉄板のみを積層したものを使用している。その結果として、図1からも明らかな通り、構造用鋼板のみを用いた回転子鉄心では、電磁鋼板で製作した場合に比べて鉄損が約3倍となり、モータ効率が大幅に悪化することが確認できた。この結果から、構造用鋼のみで回転子鉄心を形成することは、モータ効率を悪化させるために好ましくないことが確認できた。   FIG. 1 is a diagram showing an iron loss deterioration rate when the material of the rotor core is changed to a structural steel plate. In addition, what laminated | stacked only the 2.0 mm-thick electromagnetic soft iron plate is used for the structural steel plate at this time. As a result, as is apparent from FIG. 1, in the rotor core using only the structural steel plate, the iron loss is about three times that in the case of manufacturing with the electromagnetic steel plate, and the motor efficiency is greatly deteriorated. It could be confirmed. From this result, it was confirmed that it is not preferable to form the rotor core with only the structural steel because the motor efficiency is deteriorated.

以上の知見を得た発明者は、次に電磁鋼板と構造用鋼という2種類の材料を組み合わせた回転子鉄心の実現を試みた。まず、IPモータの回転子に埋め込まれることになる磁石の磁気特性を確認した。図2は、Nd−Fe−B系磁石と各種構造用鋼の直流磁気特性を示す図である。図2から、回転子の回転時には、Nd−Fe−B系磁石の残留磁束密度が約1.2T付近で約0.1Tの幅を持って変動していることが明らかとなった。また、このNd−Fe−B系磁石の直流磁気特性については、回転子の回転数が増加しても大きく変化しないということが確認できた。   The inventor who has obtained the above knowledge next tried to realize a rotor core in which two kinds of materials of electromagnetic steel plate and structural steel were combined. First, the magnetic characteristics of the magnet to be embedded in the rotor of the IP motor were confirmed. FIG. 2 is a diagram showing DC magnetic characteristics of Nd—Fe—B magnets and various structural steels. FIG. 2 reveals that the residual magnetic flux density of the Nd—Fe—B magnet fluctuates around 1.2 T with a width of about 0.1 T during the rotation of the rotor. Further, it was confirmed that the DC magnetic characteristics of the Nd—Fe—B magnet did not change greatly even when the rotation speed of the rotor was increased.

一方、構造用鋼の直流磁気特性については、磁束密度の立ち上がりが大きい冷延鋼板が最も優れており、以下、純鉄(ELCH2)、電磁鋼板、低炭素鋼、中炭素鋼、SUS404Cの順であることがわかった。つまり、所望のモータ特性およびコストに応じてこれら構造用鋼を選択すればよいことが明らかとなった。   On the other hand, with respect to the DC magnetic characteristics of structural steel, cold-rolled steel sheets with a large rise in magnetic flux density are the best, and in the following order, pure iron (ELCH2), electromagnetic steel sheets, low carbon steel, medium carbon steel, SUS404C. I found out. That is, it became clear that these structural steels may be selected according to desired motor characteristics and cost.

さらに、回転子鉄心を電磁鋼板と構造用鋼の多層構造とした場合における直流磁気特性についても確認した。図3は、回転子鉄心を2層構造にした場合における直流磁気特性の積層比率依存性を表す図である。図3に示す結果から、回転子鉄心に使用する電磁鋼板と構造用鋼の組み合わせおよび積層比率の選択によって、直流磁気特性を制御することが可能となることを確認した。   Furthermore, the DC magnetic characteristics were also confirmed when the rotor core had a multilayer structure of electromagnetic steel sheets and structural steel. FIG. 3 is a diagram showing the stacking ratio dependence of the DC magnetic characteristics when the rotor core has a two-layer structure. From the results shown in FIG. 3, it was confirmed that the DC magnetic characteristics can be controlled by selecting the combination of the electrical steel sheet and the structural steel used for the rotor core and the lamination ratio.

以上の結果から、発明者は、回転子鉄心に使用する電磁鋼板と構造用鋼の組み合わせおよび積層比率の最適な選択によって鉄損の悪化を最小限に抑制することができ、所望のモータ効率が実現可能であることを確認した。   From the above results, the inventor can suppress the deterioration of iron loss to a minimum by optimally selecting the combination of the magnetic steel sheet and the structural steel used for the rotor core and the structural ratio, and the desired motor efficiency can be reduced. Confirmed that it was feasible.

さらに発明者は、電磁鋼板と構造用鋼の多層構造を採用するにあたっては、積層比率が重要であることを見出した。図4は、積層比率が鉄損に及ぼす影響について示す図であり、2層構造のものと3層構造のものを比較した結果を示す図である。図4からも明らかな通り、2層構造のものと3層構造のもので鉄損に差は見られなかった。したがって、鉄損については積層比率が重要な役割を果たしていることが明らかとなった。つまり、電磁鋼板と構造用鋼の積層比率を変更することによって、鉄損の悪化率を柔軟に制御することが可能であることが確認できた。   Furthermore, the inventor has found that the lamination ratio is important in adopting a multilayer structure of electromagnetic steel sheet and structural steel. FIG. 4 is a diagram showing the influence of the lamination ratio on the iron loss, and is a diagram showing the result of comparing the two-layer structure and the three-layer structure. As is clear from FIG. 4, there was no difference in iron loss between the two-layer structure and the three-layer structure. Therefore, it became clear that the lamination ratio plays an important role for iron loss. That is, it was confirmed that the rate of deterioration of iron loss can be flexibly controlled by changing the lamination ratio of the electromagnetic steel sheet and the structural steel.

図3は、単位重量あたりの鉄損値を示しており、一般的なモータにおいて、固定子と回転子の重量比率は2:1であることから、電磁鋼板のみの鉄損値をx、ロータ重量をyとすると、概算ではあるが、モータ鉄損Wは、
(数1)
W=2yx+yx=3yx ・・・・・・・・・ (1)
となる。
FIG. 3 shows the iron loss value per unit weight. In a general motor, the weight ratio of the stator and the rotor is 2: 1. If the weight is y, the motor iron loss W is roughly calculated.
(Equation 1)
W = 2yx + yx = 3yx (1)
It becomes.

ここで、本発明に適用すると、例えば電磁鋼板(α)と構造用鋼(β)の積層比率を1:1でロータを製作した場合、電磁鋼板のみで製作した場合の鉄損の1.6倍となるが、モータ鉄損は、
(数2)
W=2yx+1.6yx=3.6yx ・・・・・・・・・ (2)
となって(図4参照)、(1)式と(2)式を比較すると、2割の増加にしかすぎないことが分かる。
Here, when applied to the present invention, for example, when the rotor is manufactured with a lamination ratio of the electromagnetic steel sheet (α) and the structural steel (β) of 1: 1, the iron loss when the rotor is manufactured using only the electromagnetic steel sheet is 1.6. The motor iron loss is
(Equation 2)
W = 2yx + 1.6yx = 3.6yx (2)
(See FIG. 4), it can be seen that the comparison between the equations (1) and (2) is only an increase of 20%.

電気自動車に用いる小型・高回転モータの場合には、体格や運転範囲にもよるが、電磁鋼板(α)と構造用鋼(β)の積層比率を、
(数3)
0≦β/α<1.5 ・・・・・・・・・ (3)
とするのが望ましい。
In the case of small and high-speed motors used in electric vehicles, depending on the physique and operating range, the lamination ratio of electromagnetic steel sheet (α) and structural steel (β)
(Equation 3)
0 ≦ β / α <1.5 (3)
Is desirable.

なお、従来技術において、回転子鉄心に対して電磁鋼板と構造用鋼の多層構造を採用する技術を開示したものがある(上記特許文献1,2参照)。しかしながら、上記特許文献1,2に示されている従来技術は、単にコスト低減の観点から回転子鉄心の一部に構造用鋼を使用したものであり、モータ効率や積層比率の最適化といった観点を全く無視した技術であることを記しておく。   In addition, in the prior art, there is a technique that discloses a technique of adopting a multilayer structure of electromagnetic steel plates and structural steels for the rotor core (see Patent Documents 1 and 2 above). However, the prior arts shown in Patent Documents 1 and 2 simply use structural steel as a part of the rotor core from the viewpoint of cost reduction, and optimize the motor efficiency and the lamination ratio. Note that this is a technology that completely ignores.

[渦電流損抑制のアプローチ]
次に、渦電流損の抑制については、熱減磁対策として磁石を分割化することとした。磁石を分割することによって放熱特性が向上し、磁石内の損失が低減できるからである。
[Eddy current loss suppression approach]
Next, for the suppression of eddy current loss, the magnet was divided as a countermeasure against thermal demagnetization. This is because by dividing the magnet, the heat dissipation characteristics are improved and the loss in the magnet can be reduced.

[具体的な実施形態]
以上の検討で得た知見に基づいて、発明者は、渦電流損の抑制と製造コストの低減の両者を実現することができる電動機用回転子を創案した。以下、本実施形態に係る電動機用回転子の具体的な構造について、図5Aおよび図5Bを用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
[Specific Embodiment]
Based on the knowledge obtained by the above examination, the inventor has created a rotor for an electric motor that can realize both suppression of eddy current loss and reduction of manufacturing cost. Hereinafter, a specific structure of the electric motor rotor according to the present embodiment will be described with reference to FIGS. 5A and 5B. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. .

図5Aは、本実施形態に係る電動機用回転子が用いられる電動機の概略図である。また、図5Bは、図5Aにおける(A−A)断面を示す縦断面図である。   FIG. 5A is a schematic diagram of an electric motor in which the electric motor rotor according to the present embodiment is used. Moreover, FIG. 5B is a longitudinal cross-sectional view which shows the (AA) cross section in FIG. 5A.

本実施形態に係る電動機用回転子10は、大きく分けて回転子軸11と、この回転子軸11に一体に固定されて界磁束発生源となる回転子鉄心12とから構成されている。   The electric motor rotor 10 according to this embodiment is roughly composed of a rotor shaft 11 and a rotor core 12 that is integrally fixed to the rotor shaft 11 and serves as a field magnetic flux generation source.

本実施形態で特徴的なこととして、回転子鉄心12が、複数の回転子鉄心分割ピース12aの組み合わせによって構成されていることが挙げられる。これら複数の回転子鉄心分割ピース12aは、回転子軸11の軸方向に連続して設置されることによって回転子鉄心12を形成しており、回転子軸11への固定方法としては、溶接やかしめ加工、圧入等の公知の技術を採用することができる。   A characteristic feature of the present embodiment is that the rotor core 12 is constituted by a combination of a plurality of rotor core split pieces 12a. The plurality of rotor core split pieces 12 a are continuously installed in the axial direction of the rotor shaft 11 to form the rotor core 12. As a fixing method to the rotor shaft 11, welding, Known techniques such as caulking and press fitting can be employed.

回転子鉄心分割ピース12aの構造としては、磁性鋼板を軸方向に複数積層して形成される積層鉄心13と、積層鉄心13と略同一断面形状を有する構造用鋼14と、積層鉄心13および構造用鋼14の周方向に所定の間隔を介して配置されるとともに、軸方向に開口して形成される複数の開口部15と、複数の開口部15にそれぞれ嵌挿される磁石16と、によって形成されている。   As the structure of the rotor core split piece 12a, a laminated iron core 13 formed by laminating a plurality of magnetic steel plates in the axial direction, a structural steel 14 having substantially the same cross-sectional shape as the laminated iron core 13, the laminated iron core 13 and the structure The steel plates 14 are arranged at predetermined intervals in the circumferential direction, and are formed by a plurality of openings 15 formed to be opened in the axial direction, and magnets 16 respectively inserted into the plurality of openings 15. Has been.

なお、回転子鉄心分割ピース12a同士が接触する面では、開口部15を磁性鋼板13aが閉鎖し、回転子鉄心12の両端を形成する面では、開口部15を非磁性材料から成るエンドプレート17が閉鎖する構造となっている。この様な構造を採用することによって、磁石16は、回転子軸11の軸方向に複数組み合わされる回転子鉄心分割ピース12a間で接触しないように固定嵌挿されることになる。つまり、磁石16の分割によって渦電流損の低減が可能となるとともに、高回転に耐え得る磁石16の固定が可能となるのである。   The opening 15 is closed by the magnetic steel plate 13a on the surface where the rotor core split pieces 12a are in contact with each other, and the opening 15 is made of a nonmagnetic material on the surface forming both ends of the rotor core 12. The structure is closed. By adopting such a structure, the magnets 16 are fixedly inserted so as not to contact between the rotor core split pieces 12 a combined in the axial direction of the rotor shaft 11. In other words, the eddy current loss can be reduced by dividing the magnet 16, and the magnet 16 that can withstand high rotation can be fixed.

また、磁石16の固定の際には、開口部15に対して樹脂18とともに嵌め込むことが好適である。樹脂18が開口部15と磁石16の間の隙間を埋めることによって、確実に磁石16を固定することができるからである。   Further, when the magnet 16 is fixed, it is preferable that the magnet 16 is fitted into the opening 15 together with the resin 18. This is because the resin 16 can reliably fix the magnet 16 by filling the gap between the opening 15 and the magnet 16.

ちなみに、本実施形態に係る電動機用回転子10の製造方法としては、周方向に所定の間隔を介して配置されるとともに、軸方向に開口して形成される複数の開口部15を有する磁性鋼板を、軸方向に複数積層して積層鉄心13を形成し、積層鉄心13と略同一断面形状を有する構造用鋼14と、積層鉄心13とを軸方向に組み合わせ、複数の開口部15それぞれに対して磁石16を嵌挿することによって回転子鉄心分割ピース12aを形成する。磁石16の固定の際には、開口部15に対して樹脂18とともに嵌め込むことが好適である。また、回転子鉄心分割ピース12a同士が接触する面では、開口部15を磁性鋼板13aが閉鎖し、回転子鉄心12の両端を形成する面では、開口部15を非磁性材料から成るエンドプレート17が閉鎖するようにする。   Incidentally, as a method for manufacturing the electric motor rotor 10 according to the present embodiment, a magnetic steel plate having a plurality of openings 15 that are arranged in the circumferential direction and are opened in the axial direction. Are laminated in the axial direction to form the laminated iron core 13, and the structural steel 14 having substantially the same cross-sectional shape as the laminated iron core 13 and the laminated iron core 13 are combined in the axial direction, and each of the plurality of openings 15 is combined. Then, the rotor core split piece 12a is formed by inserting the magnet 16 therein. When fixing the magnet 16, it is preferable to fit the opening 16 together with the resin 18. On the surface where the rotor core split pieces 12a are in contact with each other, the opening 15 is closed by the magnetic steel plate 13a, and on the surface forming both ends of the rotor core 12, the opening 15 is made of a nonmagnetic material. To close.

そして、回転子鉄心分割ピース12aを軸方向に複数組み合わせることによって界磁束発生源となる回転子鉄心12を形成し、かかる回転子鉄心12を回転子軸11に対して一体に固定する。回転子軸11への固定方法としては、溶接やかしめ加工、圧入等の公知の技術を採用することができる。このようにして、本実施形態に係る電動機用回転子10を製造することが可能である。   A plurality of rotor core split pieces 12 a are combined in the axial direction to form a rotor core 12 that serves as a field magnetic flux generation source, and the rotor core 12 is integrally fixed to the rotor shaft 11. As a method of fixing to the rotor shaft 11, known techniques such as welding, caulking, and press-fitting can be employed. In this manner, the electric motor rotor 10 according to the present embodiment can be manufactured.

以上、本発明の好適な実施形態について説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態には、多様な変更又は改良を加えることが可能である。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although preferred embodiment of this invention was described, the technical scope of this invention is not limited to the range as described in the said embodiment. Various modifications or improvements can be added to the above embodiment. It is apparent from the description of the scope of claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.

回転子鉄心の材質を構造用鋼板に変更した場合の鉄損悪化率を示す図である。It is a figure which shows the iron loss deterioration rate at the time of changing the material of a rotor iron core into the structural steel plate. Nd−Fe−B系磁石と各種構造用鋼の直流磁気特性を示す図である。It is a figure which shows the direct-current magnetic characteristic of a Nd-Fe-B type magnet and various structural steel. 回転子鉄心を2層構造にした場合における直流磁気特性の積層比率依存性を表す図である。It is a figure showing the lamination | stacking ratio dependence of a DC magnetic characteristic at the time of making a rotor core into 2 layer structure. 積層比率が鉄損に及ぼす影響について示す図であり、2層構造のものと3層構造のものを比較した結果を示す図である。It is a figure which shows about the influence which a lamination ratio has on an iron loss, and is a figure which shows the result of having compared the thing of a 2 layer structure, and the thing of a 3 layer structure. 本実施形態に係る電動機用回転子が用いられる電動機の概略図である。It is the schematic of the electric motor in which the rotor for electric motors which concerns on this embodiment is used. 図5Aにおける(A−A)断面を示す縦断面図である。It is a longitudinal cross-sectional view which shows the (AA) cross section in FIG. 5A.

符号の説明Explanation of symbols

10 電動機用回転子、11 回転子軸、12 回転子鉄心、12a 回転子鉄心分割ピース、13 積層鉄心、13a 磁性鋼板、14 構造用鋼、15 開口部、16 磁石、17 エンドプレート、18 樹脂。   DESCRIPTION OF SYMBOLS 10 Rotor for motors, 11 Rotor shafts, 12 Rotor cores, 12a Rotor core split pieces, 13 Laminated cores, 13a Magnetic steel plates, 14 Structural steels, 15 Openings, 16 Magnets, 17 End plates, 18 Resins.

Claims (4)

回転子軸と、
前記回転子軸に一体に固定されて界磁束発生源となる回転子鉄心と、
を含む電動機用回転子であって、
磁性鋼板を軸方向に複数積層して形成される積層鉄心と、
前記積層鉄心と略同一断面形状を有する構造用鋼と、
前記積層鉄心および前記構造用鋼の周方向に所定の間隔を介して配置されるとともに、軸方向に開口して形成される複数の開口部と、
前記複数の開口部にそれぞれ嵌挿される磁石と、
によって形成される回転子鉄心分割ピースを有し、
前記回転子鉄心は、前記回転子鉄心分割ピースが前記回転子軸の軸方向に複数組み合わされることによって構成されていることを特徴とする電動機用回転子。
A rotor shaft;
A rotor core fixed integrally with the rotor shaft and serving as a field magnetic flux generation source;
A rotor for an electric motor including
A laminated iron core formed by laminating a plurality of magnetic steel plates in the axial direction;
Structural steel having substantially the same cross-sectional shape as the laminated core;
A plurality of openings formed in the circumferential direction of the laminated iron core and the structural steel with a predetermined interval therebetween, and opened in the axial direction;
Magnets that are respectively inserted into the plurality of openings,
Having a rotor core split piece formed by
The rotor core is configured by combining a plurality of rotor core split pieces in the axial direction of the rotor shaft.
請求項1に記載の電動機用回転子において、
前記回転子鉄心分割ピース同士が接触する面では、前記開口部を磁性鋼板が閉鎖し、
前記回転子鉄心の両端を形成する面では、前記開口部を非磁性材料から成るエンドプレートが閉鎖することにより、
前記磁石は、前記回転子軸の軸方向に複数組み合わされる前記回転子鉄心分割ピース間で接触しないように固定嵌挿されていることを特徴とする電動機用回転子。
The rotor for an electric motor according to claim 1,
On the surface where the rotor core split pieces contact each other, the magnetic steel plate closes the opening,
On the surfaces forming both ends of the rotor core, the end plate made of a non-magnetic material closes the opening,
The rotor for an electric motor, wherein the magnet is fixedly inserted so as not to contact between the rotor core divided pieces combined in the axial direction of the rotor shaft.
周方向に所定の間隔を介して配置されるとともに、軸方向に開口して形成される複数の開口部を有する磁性鋼板を、軸方向に複数積層して積層鉄心を形成するステップと、
前記積層鉄心と略同一断面形状を有する構造用鋼と、前記積層鉄心とを軸方向に組み合わせ、前記複数の開口部それぞれに対して磁石を嵌挿することによって回転子鉄心分割ピースを形成するステップと、
前記回転子鉄心分割ピースを軸方向に複数組み合わせることによって界磁束発生源となる回転子鉄心を形成し、かかる回転子鉄心を回転子軸に対して一体に固定するステップと、
を実行することを特徴とする電動機用回転子の製造方法。
A step of forming a laminated iron core by laminating a plurality of magnetic steel plates in the axial direction and arranged in the circumferential direction with a predetermined interval and having a plurality of openings formed in the axial direction;
A step of forming a rotor core split piece by combining structural steel having substantially the same cross-sectional shape as the laminated iron core and the laminated iron core in the axial direction, and inserting magnets into each of the plurality of openings. When,
Forming a rotor core as a field magnetic flux generation source by combining a plurality of the rotor core split pieces in the axial direction, and fixing the rotor core integrally to the rotor shaft;
The manufacturing method of the rotor for electric motors characterized by performing these.
請求項3に記載の電動機用回転子の製造方法において、
前記回転子鉄心分割ピース同士が接触する面では、磁性鋼板によって前記開口部を閉鎖させ、
前記回転子鉄心の両端を形成する面では、非磁性材料から成るエンドプレートによって前記開口部を閉鎖させることにより、
前記磁石が、前記回転子軸の軸方向に複数組み合わされる前記回転子鉄心分割ピース間で接触しないように固定嵌挿されていることを特徴とする電動機用回転子の製造方法。

In the manufacturing method of the rotor for electric motors according to claim 3,
On the surface where the rotor core split pieces contact each other, the magnetic steel plate closes the opening,
On the surfaces forming both ends of the rotor core, by closing the opening by an end plate made of a nonmagnetic material,
A method of manufacturing a rotor for an electric motor, wherein the magnet is fixedly inserted so as not to contact between the rotor core divided pieces combined in the axial direction of the rotor shaft.

JP2004172623A 2004-06-10 2004-06-10 Rotor for electric motor and its manufacturing method Pending JP2005354806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172623A JP2005354806A (en) 2004-06-10 2004-06-10 Rotor for electric motor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172623A JP2005354806A (en) 2004-06-10 2004-06-10 Rotor for electric motor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005354806A true JP2005354806A (en) 2005-12-22

Family

ID=35588786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172623A Pending JP2005354806A (en) 2004-06-10 2004-06-10 Rotor for electric motor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005354806A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282358A (en) * 2006-04-05 2007-10-25 Mitsui High Tec Inc Rotor laminated core and its manufacturing method
JP2007282392A (en) * 2006-04-07 2007-10-25 Mitsui High Tec Inc Rotor laminated core and its manufacturing method
JP2010154590A (en) * 2008-12-24 2010-07-08 Jfe Steel Corp Rotor core material for ipm motors, and rotor core for ipm motors
CN102780968A (en) * 2012-08-20 2012-11-14 嘉善星龙电讯产品有限公司 Magnetic steel separation device
CN102891550A (en) * 2011-07-20 2013-01-23 苏州泰铎电气有限公司 Inner rotor core of surface-mounted type permanent magnet motor and segmentation component of inner rotor core
CN105245047A (en) * 2015-11-03 2016-01-13 中科盛创(青岛)电气股份有限公司 Unit magnetic pole structure of permanent magnet motor rotor
CN107465316A (en) * 2017-09-07 2017-12-12 宁德时代电机科技有限公司 A kind of new energy motor quickly inserts steel magnet device automatically with multilayer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919090A (en) * 1995-06-29 1997-01-17 Sawafuji Electric Co Ltd Laminated core for electric rotary machine and its manufacture
JP2002191143A (en) * 2000-12-20 2002-07-05 Nissan Motor Co Ltd Permanent magnet synchronous motor and car with the motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919090A (en) * 1995-06-29 1997-01-17 Sawafuji Electric Co Ltd Laminated core for electric rotary machine and its manufacture
JP2002191143A (en) * 2000-12-20 2002-07-05 Nissan Motor Co Ltd Permanent magnet synchronous motor and car with the motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282358A (en) * 2006-04-05 2007-10-25 Mitsui High Tec Inc Rotor laminated core and its manufacturing method
JP2007282392A (en) * 2006-04-07 2007-10-25 Mitsui High Tec Inc Rotor laminated core and its manufacturing method
JP2010154590A (en) * 2008-12-24 2010-07-08 Jfe Steel Corp Rotor core material for ipm motors, and rotor core for ipm motors
CN102891550A (en) * 2011-07-20 2013-01-23 苏州泰铎电气有限公司 Inner rotor core of surface-mounted type permanent magnet motor and segmentation component of inner rotor core
CN102780968A (en) * 2012-08-20 2012-11-14 嘉善星龙电讯产品有限公司 Magnetic steel separation device
CN105245047A (en) * 2015-11-03 2016-01-13 中科盛创(青岛)电气股份有限公司 Unit magnetic pole structure of permanent magnet motor rotor
CN107465316A (en) * 2017-09-07 2017-12-12 宁德时代电机科技有限公司 A kind of new energy motor quickly inserts steel magnet device automatically with multilayer

Similar Documents

Publication Publication Date Title
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
US9099905B2 (en) Radially embedded permanent magnet rotor and methods thereof
JP5605388B2 (en) Synchronous motor
JP4169055B2 (en) Rotating electric machine
JP5234202B2 (en) Rotor and rotating electric machine using the same
JP5259927B2 (en) Permanent magnet rotating electric machine
US20140103768A1 (en) Radially embedded permanent magnet rotor and methods thereof
JP2009136040A (en) Rotor of rotary electric machine
US20140103769A1 (en) Radially embedded permanent magnet rotor and methods thereof
JP2010148235A (en) Permanent magnet type rotary electric machine
US20140103772A1 (en) Radially embedded permanent magnet rotor and methods thereof
JP2003339128A (en) Motor, stator core and rotor core, and manufacturing methods of motor, stator core and rotor core
JP2012115016A (en) Rotating electric machine
JP5651924B2 (en) Stator core and motor
JP2003319575A (en) Stator core for synchronous machine
CN110729868A (en) Magnetic steel built-in type double-U-shaped fractional slot concentrated winding permanent magnet motor
JP2005354806A (en) Rotor for electric motor and its manufacturing method
JP2010158095A (en) Electric motor
JP2008029130A (en) Rotating electric machine
JP2006081338A (en) Rotor of rotary electric machine
JP2008017634A (en) Permanent magnet motor
JP5691451B2 (en) Rotor for rotating electrical machines
JP2002345182A (en) Laminated iron core and dynamo-electric machine
JP2010045872A (en) Permanent magnet rotary machine
JP4323941B2 (en) Exciter, field machine, and synchronous machine using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622