JP2005353966A - Scanning aligner - Google Patents

Scanning aligner Download PDF

Info

Publication number
JP2005353966A
JP2005353966A JP2004175323A JP2004175323A JP2005353966A JP 2005353966 A JP2005353966 A JP 2005353966A JP 2004175323 A JP2004175323 A JP 2004175323A JP 2004175323 A JP2004175323 A JP 2004175323A JP 2005353966 A JP2005353966 A JP 2005353966A
Authority
JP
Japan
Prior art keywords
optical system
substrate
scanning
exposure
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004175323A
Other languages
Japanese (ja)
Inventor
Hiroshi Shinkai
洋 新開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004175323A priority Critical patent/JP2005353966A/en
Publication of JP2005353966A publication Critical patent/JP2005353966A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a measurement of illuminance unevenness at optional timing except exposing time. <P>SOLUTION: A scanning aligner comprises a projecting optical system projecting a pattern on an original plate to substrate top surface, an illuminating optical system illuminating the original plate by converting a light from a light source into a flux of light of designated illumination distribution, and a scanning means for transferring the original plate and the substrate in single dimension by synchronizing them with respect to the above-mentioned projecting optical system. In a scanning type projecting optical device exposing the pattern on original plate surface to the substrate with a scanning exposing system, the device has an illumination measuring system for measuring an illuminance of the above-mentioned flux, and a transferring means for transferring at least one portion of the illumination measuring system inside the above-mentioned flux in the above-mentioned illuminating optical system or the above-mentioned projecting optical system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ICやLSI等の半導体素子、液晶表示素子または薄膜磁気ヘッド等をフォトリソグラフィ工程で製造する際に使用される走査型投影露光装置に関するものである。   The present invention relates to a scanning projection exposure apparatus used when manufacturing a semiconductor element such as an IC or LSI, a liquid crystal display element, a thin film magnetic head or the like in a photolithography process.

半導体素子や液晶表示素子および薄膜磁気ヘッドを製造する際に、リソグラフィ技術を利用して、マスクあるいはレチクルと呼ばれる原版(以下、原版と呼ぶ)に形成されたパターンを、レジストと呼ばれる感光材をシリコンウエハやガラス基板の表面に塗布した基板(以下、基板と呼ぶ)上に投影露光する投影露光装置が使用されている。   When manufacturing semiconductor elements, liquid crystal display elements, and thin-film magnetic heads, a pattern formed on an original plate called a mask or a reticle (hereinafter referred to as an original plate) using a lithography technique, a photosensitive material called a resist is made of silicon. A projection exposure apparatus that performs projection exposure on a substrate (hereinafter referred to as a substrate) coated on the surface of a wafer or a glass substrate is used.

従来、投影露光装置には原版と基板を密着または近接させて一括露光を行うプロキシミティ露光方式や、円孤状の照明光で原版を照明し、反射光学系を介して基板を走査露光するミラープロジェクション露光方式や、基板上の各露光領域を投影光学系の露光領域に順次移動させながら原版の縮小露光像を一括露光するというステップ・アンド・リピート方式の縮小投影型露光装置(所謂、ステッパ)が使用されてきた。   Conventionally, in a projection exposure apparatus, a proximity exposure system that performs batch exposure by bringing an original and a substrate into close contact with each other, or a mirror that illuminates an original with circular illumination light and scans and exposes the substrate through a reflective optical system. Projection exposure method or step-and-repeat reduction projection type exposure apparatus (so-called stepper) that performs batch exposure of a reduced exposure image of an original while moving each exposure region on the substrate sequentially to the exposure region of the projection optical system. Has been used.

一括露光方式であるステップ・アンド・リピート方式の露光装置では、投影光学系がレンズによって構成されている場合、有効な結像領域は円形状となるが、半導体集積回路は一般的に矩形であるため、使用される原版も当然のごとく矩形形状をなしており、一括露光の場合の転写領域を最大限に確保しようとすれば、投影光学系の有する円形の結像領域に内接する矩形の領域となり、最も大きな転写領域でも円の直径の1/√2の辺の正方形である。   In a step-and-repeat exposure apparatus that is a batch exposure method, when the projection optical system is constituted by a lens, an effective imaging region is circular, but a semiconductor integrated circuit is generally rectangular. Therefore, the original plate to be used has a rectangular shape as a matter of course, and if it is intended to secure the maximum transfer area in the case of batch exposure, a rectangular area inscribed in the circular imaging area of the projection optical system. Thus, even the largest transfer region is a square with sides of 1 / √2 of the diameter of the circle.

これに対して、投影光学系の有する円形状の結像領域のほぼ直径の寸法を有する矩形形状の露光領域を用いて、原版と基板とを同期させながら走査移動させることによって、転写領域を拡大させる走査露光方式である所謂スリットスキャン露光方式またはステップ・アンド・スキャン方式(以下、代表してスリットスキャン方式と呼ぶ)が提案されている。   On the other hand, the transfer area is expanded by scanning and moving the original and the substrate in synchronization with each other using a rectangular exposure area having a diameter approximately equal to the diameter of the circular imaging area of the projection optical system. A so-called slit scan exposure method or a step-and-scan method (hereinafter referred to as a slit scan method) has been proposed.

スリットスキャン方式の投影露光装置については、例えばOplusEの1993年2月号の96〜99頁に詳しく紹介されているが、該露光装置は矩形の露光領域を有し、各ショットに対し該スリットをスキャン(走査)して走査露光が行われ、1つのショットの走査露光が終了すると基板は次のショットにステップし、次のショットの走査露光が同様に繰り返され、次のショットヘのステップと露光のためのスキャンとを繰り返すことによって、ウエハ全体の露光が完了するという露光工程を有している。   The slit scanning type projection exposure apparatus is described in detail in, for example, pages 96 to 99 of the February 1993 issue of Oplus E. The exposure apparatus has a rectangular exposure area, and the slit is provided for each shot. The scanning exposure is performed by scanning, and when the scanning exposure of one shot is completed, the substrate steps to the next shot, and the scanning exposure of the next shot is repeated in the same manner. The exposure process of completing the exposure of the entire wafer is performed by repeating the scan for this.

このようなスリットスキャン方式では、同一の大きさの結像領域を有する投影光学系を用いた場合、投影レンズを用いて転写領域毎に一括露光を行うステップ・アンド・リピート方式に比べてより大きな転写領域を確保することができる。すなわち、走査方向に対しては光学系による制限がなくなるので走査ステージのストローク分だけ確保することができ、走査方向に対して直角な方向には概ね√2倍の転写領域を確保することができる。   In such a slit scanning method, when a projection optical system having an imaging region of the same size is used, the slit scanning method is larger than a step-and-repeat method that performs batch exposure for each transfer region using a projection lens. A transfer area can be secured. In other words, since there is no restriction by the optical system in the scanning direction, it is possible to ensure only the stroke of the scanning stage, and it is possible to ensure a transfer area approximately √2 times in the direction perpendicular to the scanning direction. .

半導体集積回路を製造するための露光装置は、高い集積度のチップの製造に対応するために、転写領域の拡大と解像力の向上が望まれており、より小さい投影光学系を採用できることは、光学性能上からも、コスト的にも有利であり、スリットスキャン方式の露光方法は、今後の露光装置の主流として注目されている。
このようなスリットスキャン方式ではスキャン方向のスリット幅を積分した露光量がスキャン方向に対して直交する方向で均一であることが求められる。
An exposure apparatus for manufacturing a semiconductor integrated circuit is required to expand a transfer region and improve resolution in order to cope with manufacture of a highly integrated chip. From the viewpoint of performance, it is advantageous in terms of cost, and the exposure method of the slit scan method is attracting attention as a mainstream of future exposure apparatuses.
In such a slit scanning method, it is required that the exposure amount obtained by integrating the slit width in the scanning direction is uniform in the direction orthogonal to the scanning direction.

このために、スリット幅を形成するスリットとよばれる部材にはスキャン方向にスリット幅を調整出来る機能を持たせてある。   For this reason, a member called a slit for forming the slit width has a function of adjusting the slit width in the scanning direction.

また、このスリットの幅方向の積算露光量を測定するために、図3に示すように、照度むら測定器が前記基板を保持するステージ上に配置されていて、照度むらを測定する場合はステージをスキャン方向に対して直交する方向に駆動させて照度むらを測定し、その結果に基づき露光量が均一になるようにスリットの幅を調整するよう構成されている。
特開平5−47638号公報 特開平7−142306号公報
Further, in order to measure the integrated exposure amount in the width direction of the slit, as shown in FIG. 3, an illuminance unevenness measuring device is disposed on the stage holding the substrate, and the stage is used when measuring the illuminance unevenness. Is driven in a direction orthogonal to the scanning direction to measure illuminance unevenness, and based on the result, the width of the slit is adjusted so that the exposure amount becomes uniform.
Japanese Patent Laid-Open No. 5-47638 JP-A-7-142306

しかしながら、このような従来の方式では、照度むら測定器は基板が搭載される基板ステージ上に配置されていたために、照度むらを測定する場合は装置の露光処理を中断しなければならなかった。これは装置の処理効率を低下させるため、実際的には1日1回もしくは、異常が発生した場合に測定が行われていた。また、このように測定間隔が空いているためにその間に異常が発生した場合でも発見が遅れて、その間に大量の不良を発生するという問題があった。   However, in such a conventional method, the illuminance unevenness measuring device is arranged on the substrate stage on which the substrate is mounted. Therefore, when measuring the illuminance unevenness, the exposure processing of the apparatus has to be interrupted. Since this reduces the processing efficiency of the apparatus, the measurement is actually performed once a day or when an abnormality occurs. In addition, since the measurement interval is free as described above, there is a problem that even if an abnormality occurs during that time, discovery is delayed and a large number of defects are generated during that time.

本発明に係る第1の発明の目的は、上記問題点に鑑み、露光時以外の任意のタイミングで露光むらの測定を可能にすることである。   In view of the above problems, an object of the first invention according to the present invention is to enable measurement of exposure unevenness at any timing other than during exposure.

本発明は、原版上のパターンを基板上に投影する投影光学系と、光源からの光を所望の照度分布の光束に変換し原版を照明する照明光学系と、原版と基板とを前記投影光学系に対し同期させて一次元移動させる走査手段とを有し、原版面上のパターンを走査露光方式で基板に露光する走査型投影露光装置において、前記光束の照度を測定するための照度計測系と、該照度計測系の少なくとも一部を前記光束内で移動させる移動手段を前記照明光学系または前記投影光学系内に有することを特徴とする。   The present invention provides a projection optical system for projecting a pattern on an original onto a substrate, an illumination optical system for illuminating the original by converting light from a light source into a light beam having a desired illuminance distribution, and the projection optical system for the original and the substrate. And an illuminance measurement system for measuring the illuminance of the light beam in a scanning projection exposure apparatus that exposes a pattern on an original surface onto a substrate by a scanning exposure method. And a moving means for moving at least a part of the illuminance measurement system in the light beam in the illumination optical system or the projection optical system.

本発明によれば基板ステージの状態の如何に関わらず、露光時以外の任意のタイミングにおいて照度むら測定が出来、装置の稼働効率を低下させることなく照度むらの調整が可能となる。またこのことにより、照度むらによる露光不良基板の発生を防止することが出来る効果がある。   According to the present invention, the illuminance unevenness can be measured at any timing other than the exposure time regardless of the state of the substrate stage, and the illuminance unevenness can be adjusted without deteriorating the operation efficiency of the apparatus. This also has the effect of preventing the occurrence of poorly exposed substrates due to uneven illuminance.

(第1の実施例)
図1は本発明の特徴を最もよく表す図である。ランプ1で発生した光を楕円ミラー2は反射集光し、楕円ミラー2で反射集光された光を反射ミラー3で90°折り曲げ、光学系4により均一で矩形形状に整形する。反射ミラー5は光を原版方向に折り曲げ、矩形に整形された光を円弧状で且つスキャン方向に略一定の幅にスリット6で切り出し、スリット6の開口幅を調整機構7が調整する。光学系8は切り出された光を所定の倍率で原版9を照明する。投影光学系10はスリット状に照明された原版9のパターンを基板11上に投影する。基板ステージ12は基板を保持移動させる。
(First embodiment)
FIG. 1 is a diagram that best represents the features of the present invention. The light generated by the lamp 1 is reflected and collected by the elliptical mirror 2, and the light reflected and collected by the elliptical mirror 2 is bent 90 ° by the reflecting mirror 3, and is shaped into a uniform rectangular shape by the optical system 4. The reflection mirror 5 bends the light in the original direction, cuts out the light shaped in a rectangular shape with a slit 6 having an arc shape and a substantially constant width in the scanning direction, and the adjustment mechanism 7 adjusts the opening width of the slit 6. The optical system 8 illuminates the original 9 with a predetermined magnification of the cut light. The projection optical system 10 projects the pattern of the original 9 illuminated in a slit shape onto the substrate 11. The substrate stage 12 holds and moves the substrate.

原版9には微細な回路パターンが描画されており、このパターンは原版9と基板11をスキャン機構(不図示)で同期走査することにより投影光学系10を介して基板上に転写される。   A fine circuit pattern is drawn on the original 9, and this pattern is transferred onto the substrate via the projection optical system 10 by synchronously scanning the original 9 and the substrate 11 with a scanning mechanism (not shown).

ミラー15は、測定時以外は移動機構(不図示)により露光光を遮光しないような位置に退避している。照度むら測定を行う場合には前記移動機構を駆動して、ミラー15を露光光束中に移動させ、露光光を照度計16に導く。ミラー15はアーム17と駆動モーター18によって露光光束断面内を移動する。また、照度計16は基板11の焦点面と等価な位置に配置されているので実効的に基板上に照射される露光光の照度むらを測定することが出来る。この照度計14によって測定された照度むらの情報を演算器と駆動指令回路を通して調整機構7に指令を与えることにより自動的に照度むらを調整することが可能である。   The mirror 15 is retracted to a position that does not block exposure light by a moving mechanism (not shown) except during measurement. In the case of performing illuminance unevenness measurement, the moving mechanism is driven to move the mirror 15 into the exposure light beam and guide the exposure light to the illuminometer 16. The mirror 15 is moved in the exposure light beam cross section by the arm 17 and the drive motor 18. Further, since the illuminance meter 16 is arranged at a position equivalent to the focal plane of the substrate 11, it is possible to effectively measure the illuminance unevenness of the exposure light irradiated onto the substrate. It is possible to automatically adjust the illuminance unevenness by giving a command to the adjustment mechanism 7 through the calculator and the drive command circuit with the information on the illuminance unevenness measured by the illuminometer 14.

このように構成されているので、照度むら測定は基板ステージ12の状態の如何に係らず露光工程以外での任意の時期での照度むら測定及び調整が可能となり、万一照度むらの異常が発生した場合でもその補正が基板の処理効率を低下させずに直ちにおこなえ、基板の不良の発生を押えることが出来るようになった。   With this configuration, illuminance unevenness measurement can be measured and adjusted at any time other than the exposure process regardless of the state of the substrate stage 12, and an irregularity in illuminance should occur. Even in such a case, the correction can be performed immediately without degrading the processing efficiency of the substrate, and the occurrence of substrate defects can be suppressed.

また、本発明において従来例に構成されていた、ステージ上に埋設された照度むら測定器13はメンテナンス時の校正用として残存してもよい。   In addition, the uneven illuminance measuring instrument 13 embedded in the stage, which is configured in the conventional example in the present invention, may remain for calibration during maintenance.

(第2の実施例)
図2は本発明に係る第2の実施例を示す図である。照明光学系20は、原版9上に円弧状で均一な光量の露光光を照明する。照度計26は、照明光学系20内のスリットの直下に配置される。モーター18Aはアーム27を駆動して、前記照度むら測定器26を円弧状に移動させる。
(Second embodiment)
FIG. 2 is a diagram showing a second embodiment according to the present invention. The illumination optical system 20 illuminates the original plate 9 with exposure light having an arc shape and a uniform light amount. The illuminometer 26 is disposed immediately below the slit in the illumination optical system 20. The motor 18A drives the arm 27 to move the illuminance unevenness measuring device 26 in an arc shape.

上記構成において、照度むら測定器26は普段は円弧状スリットの開口以外の位置に退避しているので、露光の妨げにならない。照度むらを測定する場合は、アーム27につながった駆動モーター18Aにより照度むら測定器26はスリット6の有効範囲内に導かれ、かつ露光光の下を円弧状に走査し、照度むらを測定する。測定された照度むらの情報を演算器と駆動指令回路を通して調整機構7に指令を与えることにより自動的に照度むらを調整することが可能である。   In the above configuration, the illuminance unevenness measuring device 26 is normally retracted to a position other than the opening of the arc-shaped slit, so that exposure is not hindered. When measuring the illuminance unevenness, the illuminance unevenness measuring device 26 is guided within the effective range of the slit 6 by the drive motor 18A connected to the arm 27, and scans the exposure light in an arc shape to measure the illuminance unevenness. . It is possible to automatically adjust the illuminance unevenness by giving a command to the adjusting mechanism 7 through the calculator and the drive command circuit with the information on the measured illuminance unevenness.

第1の実施例を示す図。The figure which shows a 1st Example. 第2の実施例を示す図。The figure which shows a 2nd Example. 従来技術を説明する図。The figure explaining a prior art.

符号の説明Explanation of symbols

1 ランプ
2 楕円ミラー
3 折り曲げミラー
4 整形光学系
5 反射ミラー
6 スリット
7 スリット幅調整機構
8 投射光学系
9 原版
10 投影光学系
11 基板
12 基板ステージ
13,16,26 照度計
14 照度計
15 反射ミラー
17,27 アーム
18,18A 駆動モーター
20 照明光学系
DESCRIPTION OF SYMBOLS 1 Lamp 2 Elliptical mirror 3 Bending mirror 4 Shaping optical system 5 Reflection mirror 6 Slit 7 Slit width adjustment mechanism 8 Projection optical system 9 Original 10 Projection optical system 11 Substrate 12 Substrate stage 13, 16, 26 Illuminance meter 14 Illuminance meter 15 Reflection mirror 17, 27 Arm 18, 18A Drive motor 20 Illumination optical system

Claims (1)

原版上のパターンを基板上に投影する投影光学系と、光源からの光を所望の照度分布の光束に変換し原版を照明する照明光学系と、原版と基板とを前記投影光学系に対し同期させて一次元移動させる走査手段とを有し、原版面上のパターンを走査露光方式で基板に露光する走査型投影露光装置において、前記光束の照度を測定するための照度計測系と、該照度計測系の少なくとも一部を前記光束内で移動させる移動手段を前記照明光学系または前記投影光学系内に有することを特徴とする走査型投影露光装置。   The projection optical system that projects the pattern on the original onto the substrate, the illumination optical system that illuminates the original by converting the light from the light source into a luminous flux with a desired illuminance distribution, and the original and the substrate are synchronized with the projection optical system An illuminance measuring system for measuring the illuminance of the luminous flux, and a illuminance measuring system for measuring the illuminance of the luminous flux in a scanning projection exposure apparatus that exposes a pattern on the original plate onto the substrate by a scanning exposure method. A scanning projection exposure apparatus comprising: a moving means for moving at least a part of a measurement system within the light beam in the illumination optical system or the projection optical system.
JP2004175323A 2004-06-14 2004-06-14 Scanning aligner Withdrawn JP2005353966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175323A JP2005353966A (en) 2004-06-14 2004-06-14 Scanning aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175323A JP2005353966A (en) 2004-06-14 2004-06-14 Scanning aligner

Publications (1)

Publication Number Publication Date
JP2005353966A true JP2005353966A (en) 2005-12-22

Family

ID=35588152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175323A Withdrawn JP2005353966A (en) 2004-06-14 2004-06-14 Scanning aligner

Country Status (1)

Country Link
JP (1) JP2005353966A (en)

Similar Documents

Publication Publication Date Title
JP3093528B2 (en) Scanning exposure equipment
TW530333B (en) Exposure method and exposure apparatus
JP2008263194A (en) Exposure apparatus, exposure method, and method for manufacturing electronic device
JPWO2007100081A1 (en) Exposure method and apparatus, and device manufacturing method
JPH11111601A (en) Method and device for exposure
WO2003065427A1 (en) Exposure device and exposure method
JP2008263193A (en) Exposure method and manufacturing method for electronic device
US6873400B2 (en) Scanning exposure method and system
JP2006278820A (en) Exposure method and exposure device
JP2002353108A (en) Exposing method, aligner, photomask, device- manufacturing method and photomask manufacturing method
JP2004039697A (en) Scanning aligner, scanning exposure method, method for manufacturing device, and device
JP3796294B2 (en) Illumination optical system and exposure apparatus
JP2001244183A (en) Projection exposure system
JPH10284408A (en) Exposure method
JP2005191495A (en) Illuminating optical system, exposing equipment, and method for manufacturing device
JP3710321B2 (en) Exposure amount control method, exposure apparatus, and device manufacturing method
JPH11212266A (en) Scanning aligner
JP3564833B2 (en) Exposure method
JP3209294B2 (en) Exposure equipment
JP2000114164A (en) Scanning projection aligner and manufacture of device using the same
JP4174324B2 (en) Exposure method and apparatus
JP4482998B2 (en) Scanning exposure method, scanning exposure apparatus, and device manufacturing method
JP2001305745A (en) Scanning exposure system and scanning type exposure device
JP2012033921A (en) Exposure apparatus, and method for manufacturing device
JP2010272631A (en) Lighting apparatus, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904