JP2005353610A - Circular particle accelerator - Google Patents

Circular particle accelerator Download PDF

Info

Publication number
JP2005353610A
JP2005353610A JP2005246958A JP2005246958A JP2005353610A JP 2005353610 A JP2005353610 A JP 2005353610A JP 2005246958 A JP2005246958 A JP 2005246958A JP 2005246958 A JP2005246958 A JP 2005246958A JP 2005353610 A JP2005353610 A JP 2005353610A
Authority
JP
Japan
Prior art keywords
particle beam
particle
cavity
orbit
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005246958A
Other languages
Japanese (ja)
Other versions
JP3943578B2 (en
Inventor
Sadahiro Ishi
禎浩 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005246958A priority Critical patent/JP3943578B2/en
Publication of JP2005353610A publication Critical patent/JP2005353610A/en
Application granted granted Critical
Publication of JP3943578B2 publication Critical patent/JP3943578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compose a medical circular particle accelerator equipped with a tune shifter capable of extracting and stopping a high-speed particle beam in three-dimensional radiation and rapidly turning on and of the particle beam, and used for cancer treatment. <P>SOLUTION: This circular particle accelerator is equipped with: a particle beam orbit; a quadrupole magnet for circulating a particle beam along the particle beam orbit; a bending magnet; an acceleration cavity for accelerating the particle beam; a betatron oscillation amplitude amplification means for amplifying the betatron oscillation amplitude of the particle beam; and an emission septum for extracting the particle beam from the particle beam orbit. This circular particle accelerator is composed by having a tune shifter used for rapidly turning on and off the particle beam and formed with a high-frequency cavity that is so structured that the cavity is arranged on the upstream of the emission septum of the particle beam orbit, and electromagnetic waves are introduced into the cavity to excite a TM210 mode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、円形粒子加速器に関するものである。   The present invention relates to a circular particle accelerator.

一般的な円形粒子加速器は、図3のように構成されている。図3において、1は粒子ビームが入射される入射ダクト、2は入射された粒子ビームを周回方向に曲げる入射セプタム、3は粒子ビームが周回する粒子ビーム周回軌道、4は四極電磁石、5は粒子ビーム軌道の曲部に配置され粒子ビームを周回方向に曲げる偏向電磁石、6は粒子ビームを加速する加速空洞、7は高次モード空洞、8は加速された粒子ビームを出射ダクトに導く出射セプタム、9は六極電磁石、10は加速された粒子を出射する出射ダクトである。   A general circular particle accelerator is configured as shown in FIG. In FIG. 3, 1 is an incident duct into which a particle beam is incident, 2 is an incident septum that bends the incident particle beam in a circumferential direction, 3 is a particle beam orbit around the particle beam, 4 is a quadrupole electromagnet, and 5 is a particle A deflecting electromagnet arranged at a curved portion of the beam trajectory and bending the particle beam in a circumferential direction; 6 an acceleration cavity for accelerating the particle beam; 7 a higher-order mode cavity; 8 an exit septum for guiding the accelerated particle beam to the exit duct; Reference numeral 9 denotes a hexapole electromagnet, and 10 denotes an exit duct that emits accelerated particles.

図3に示すような円形粒子加速器から粒子ビームを取り出す方法には大きく分けて低エネルギーの粒子ビームを取り出す“早い取り出し”と、高エネルギーの粒子ビームを取り出す“遅い取り出し”と呼ばれる2つの方法があり、この発明は“遅い取り出し”に関するものである。   There are two main methods for extracting a particle beam from a circular particle accelerator as shown in FIG. 3, called “fast extraction” for extracting a low energy particle beam and “slow extraction” for extracting a high energy particle beam. Yes, this invention relates to "slow retrieval".

粒子ビーム周回軌道を周回する粒子ビームのセパラトリクスと呼ばれる安定領域と不安定領域の境界が形成されている場合、セパラトリクスの外側すなわち不安定領域に動かす方法としては、セパラトリクスを徐々に小さくする方法と、セパラトリクスは動かさずに安定領域にいた粒子ビームに高周波電場で振動を加えてセパラトリクスまでエミッタンスを増加させる方法があり、後者の方法がrfノックアウトを用いた遅い取り出しと呼ばれる。   When the boundary between the stable region and the unstable region called the separatrix of the particle beam orbiting the particle beam orbit is formed, as a method of moving outside the separatrix, that is, the unstable region, a method of gradually reducing the separatrix, There is a method of increasing the emittance to the separatrix by applying vibrations to the particle beam in a stable region without moving the separatrix with a high-frequency electric field, and the latter method is called slow extraction using rf knockout.

従来の円形粒子加速器から粒子ビームを取り出すrfノックアウトを用いた取り出しは、例えば、特許文献1に開示された方法がある。図4に粒子ビームの粒子ビーム周回軌道の直線部にrfノックアウト電極が挿入された状態の模式図を示す。   Extraction using a rf knockout for extracting a particle beam from a conventional circular particle accelerator is, for example, a method disclosed in Patent Document 1. FIG. 4 is a schematic view showing a state in which the rf knockout electrode is inserted in the linear portion of the particle beam orbit of the particle beam.

円形粒子加速器では、リング状の粒子ビーム周回軌道11の中を周回する粒子ビームは粒子ビーム周回軌道11の水平方向と垂直方向に微小振動して周回している。この微小振動をベータトロン振動と呼び、リング状の粒子ビーム周回軌道11の1周当たりの振動数をベータトロンチューンまたは単にチューン呼んでいる。このチューンは粒子ビームが安定に周回するように選ばれるが、粒子ビームの取り出しには不安定になるチューンを選んで行われる。例えばチューンを1/3整数に選び、六極電磁石により粒子ビームに動を与えて位相空間上にセパラトリクスを形成した場合、セパラトリクスの外側すなわち不安定領域に出た粒子ビームが粒子ビーム周回軌道11を周回する毎に振幅が大きくなり、最終的に取り出し用に設置された出射セプタム14に到達し、出射セプタム14に形成されている静的な電場または磁場により外側に蹴り出されて下流に設置されたデフレクター15により出射ダクトに導かれる。 In the circular particle accelerator, the particle beam that circulates in the ring-shaped particle beam orbit 11 is oscillated with slight vibration in the horizontal and vertical directions of the particle beam orbit 11. This minute vibration is called betatron vibration, and the number of vibrations per round of the ring-shaped particle beam orbit 11 is called betatron tune or simply tune. This tune is selected so that the particle beam circulates stably, but it is selected by selecting a tune that becomes unstable for extraction of the particle beam. For example to select the tune 1/3 to the integer, the case of forming the separatrix in phase space given the dynamic vibration particle beam by sextupole electromagnets, outer or particle beam enters the unstable region is particles separatrix beam orbit 11 Each time it circulates, the amplitude increases and finally reaches the exit septum 14 installed for extraction, and is kicked outward by a static electric or magnetic field formed on the exit septum 14 and installed downstream. The deflector 15 is guided to the exit duct.

rfノックアウト電極12は一対の平行平板からなり、この間に周波数Frfの高周波電圧が加えられる。この周波数Frfはベータトロンチューンの小数部分をn、周回周波数をFrev、任意の整数をmとすると、(式1)で表される。   The rf knockout electrode 12 is composed of a pair of parallel plates, and a high frequency voltage having a frequency Frf is applied therebetween. This frequency Frf is expressed by (Equation 1), where n is the decimal part of the betatron tune, Frev is the circulation frequency, and m is an arbitrary integer.

Figure 2005353610
Figure 2005353610

rfノックアウト電極12の間の電場により蹴られる角度θは(式2)の関係になる。   The angle θ kicked by the electric field between the rf knockout electrodes 12 has the relationship of (Equation 2).

Figure 2005353610
Figure 2005353610

ここでそれぞれのパラメータの値が次の表1の場合について電場を求める。   Here, the electric field is obtained for each parameter value shown in Table 1 below.

Figure 2005353610
Figure 2005353610

この条件において、電極間のギャップが100mmの場合、高周波電圧は10kVを加える必要がある。このように電場による運動量pが10GeV/cを越えるような領域では、必要な高周波電圧は10kVよりも高くなり、非常に高い値が必要となる。この電圧を印加するためには、発生させる高周波電源およびrfノックアウト電極は高電圧に耐える絶縁構成となる。   Under this condition, when the gap between the electrodes is 100 mm, it is necessary to apply 10 kV as the high frequency voltage. Thus, in the region where the momentum p due to the electric field exceeds 10 GeV / c, the necessary high-frequency voltage is higher than 10 kV, and a very high value is required. In order to apply this voltage, the generated high-frequency power source and the rf knockout electrode have an insulating configuration that can withstand high voltages.

がん治療等に供される医療用の円形粒子加速器では、三次元照射時に高速の粒子ビームの取り出し、停止を行う必要がある。このような場合、粒子ビーム周回軌道に沿って横方向に微小振動しながら周回している粒子ビームのベータトロン振動の1周当たりの振動数のチューンを100μs〜数msで変化させる必要がある。通常、偏向電磁石、四極電磁石の電源リップルにより、チューンが変化してセパラトリクスが脈動し、取り出された粒子ビームの強度がそのリップルに同期して変動することがある。この場合リップルの成分は早いもので1200Hz(電源が60Hzの場合は1440Hz)である。このような粒子ビームの取り出しでは、チューンをシフトする場合、通常、図5に示すような磁場分布の四極電磁石が用いられ、その動作速度は数10ms程度であり、十分な高速応答性が得られない。   In medical circular particle accelerators used for cancer treatment and the like, it is necessary to take out and stop a high-speed particle beam during three-dimensional irradiation. In such a case, it is necessary to change the tune of the frequency per revolution of the betatron oscillation of the particle beam that is orbiting along the orbit of the particle beam in the lateral direction from 100 μs to several ms. Usually, due to the power supply ripple of the deflection electromagnet and the quadrupole electromagnet, the tune changes and the separatrix pulsates, and the intensity of the extracted particle beam may fluctuate in synchronization with the ripple. In this case, the ripple component is fast and is 1200 Hz (1440 Hz when the power source is 60 Hz). In such particle beam extraction, when the tune is shifted, a quadrupole electromagnet having a magnetic field distribution as shown in FIG. 5 is usually used, and its operation speed is about several tens of ms, and sufficient high-speed response can be obtained. Absent.

特公平5−198397号公報Japanese Patent Publication No. 5-198397

がん治療等に供される医療用の円形粒子加速器では、三次元照射時に高速の粒子ビームの取り出し、停止を行うチューンシフターが必要である。通常チューンシフターとしては、四極電磁石が用いられ、動作速度は数10ms程度であり、高速で粒子ビームをon/offさせる高エネルギーの粒子ビームを取り出す遅い取り出しに必要な高速応答性が得られないという問題点があった。   A medical circular particle accelerator used for cancer treatment or the like requires a tune shifter that takes out and stops a high-speed particle beam during three-dimensional irradiation. Normally, a quadrupole electromagnet is used as the tune shifter, the operation speed is about several tens of ms, and the high-speed response necessary for the slow extraction that takes out the high-energy particle beam that turns the particle beam on / off at high speed cannot be obtained. There was a problem.

この発明は、三次元照射時に高速の粒子ビームの取り出し、停止ができる高速で粒子ビームをon/offできるチューンシフターを備えたがん治療に供される医療用の円形粒子加速器を構成することも目的とする。   The present invention also constitutes a circular particle accelerator for medical use for cancer treatment, equipped with a tune shifter that can turn on / off the particle beam at high speed that can take out and stop the particle beam at high speed during three-dimensional irradiation. Objective.

この発明の請求項1に係る円形粒子加速器は、粒子ビーム周回軌道の出射セプタムの上流に空洞を配置し、この空洞に電磁波を導入して、TM210モードを励振した高周波空洞で構成され、粒子ビームを高速でon/offするチューンシフターを備えた構成としたものである。   According to a first aspect of the present invention, a circular particle accelerator includes a high-frequency cavity in which a cavity is disposed upstream of an exit septum of a particle beam orbit, an electromagnetic wave is introduced into the cavity, and a TM210 mode is excited. Is configured to include a tune shifter for turning on / off at high speed.

粒子ビーム周回軌道の出射セプタムの上流に配置された空洞に電磁波を導入して、TM210モードを励振した高周波空洞で構成された粒子ビームを高速でon/offするチューンシフターを備えた構成としたので、磁場が高周波磁場であり、数10〜数100μsのオーダでon/off動作が可能となり、誤照射のないがん治療等に供される円形粒子加速器が構成できる。   Since the electromagnetic wave is introduced into the cavity disposed upstream of the exit septum of the particle beam orbit, the tune shifter that turns the particle beam composed of the high-frequency cavity excited by the TM210 mode at high speed is provided. The magnetic field is a high-frequency magnetic field, and an on / off operation is possible on the order of several tens to several hundreds of μs, and a circular particle accelerator used for cancer treatment without misirradiation can be configured.

実施の形態1.
実施の形態1は、がん治療等に供される円形粒子加速器のビーム周回軌道に配置された出射セプタムの上流に配置するチューンシフターとして、粒子ビームを高速でon/offするHOM空洞を配置し、電磁波を導入してTM210モードを励振し、四極電磁石と同様の磁場を形成する構成としたものである。
Embodiment 1 FIG.
In the first embodiment, a HOM cavity for turning on / off a particle beam at high speed is arranged as a tune shifter arranged upstream of an exit septum arranged in a beam orbit of a circular particle accelerator used for cancer treatment or the like. The electromagnetic wave is introduced to excite the TM210 mode to form a magnetic field similar to that of a quadrupole electromagnet.

図1にビーム周回軌道にTM210モードを励振したHOM空洞を配置した構成を示す。図2にHOM空洞内の粒子ビーム、磁場の分布状況を示す。
この構成の粒子ビーム軌道11、出射セプタム14、デフレクタ15は、従来の粒子ビーム周回軌道にrfノックアウト電極を配置した構成と同一である。
この構成は、周回軌道にHOM空洞41、高周波電源43を備え、電磁波を導入する導波管45、HOM空洞41内にTM210モードを励振するループカプラー46を設けている。
FIG. 1 shows a configuration in which a HOM cavity in which a TM210 mode is excited is arranged on a beam orbit. FIG. 2 shows the distribution of the particle beam and magnetic field in the HOM cavity.
The particle beam trajectory 11, the exit septum 14 and the deflector 15 having this configuration are the same as the conventional configuration in which the rf knockout electrode is disposed on the particle beam orbit.
In this configuration, a HOM cavity 41 and a high-frequency power source 43 are provided in a circular orbit, and a waveguide 45 for introducing electromagnetic waves and a loop coupler 46 for exciting the TM210 mode are provided in the HOM cavity 41.

図3のHOM空洞41に電磁波を導入してTM210モードを励振すると図2のように粒子ビームが通過する中心部の磁場分布が従来の技術欄に示した図5の四極電磁石の磁場分布の中心部と同様の分布になり、数10〜数100μsの高速でon/off動作するチューンシフターが得られる。   When the electromagnetic wave is introduced into the HOM cavity 41 of FIG. 3 to excite the TM210 mode, the magnetic field distribution of the central part through which the particle beam passes as shown in FIG. 2 is the center of the magnetic field distribution of the quadrupole electromagnet of FIG. And a tune shifter that operates on / off at a high speed of several tens to several hundreds of μs.

円形粒子加速器のチューンシフターとしてTM210モードを励振したHOM空洞41を使用することにより、磁場が高周波磁場であり、数10〜数100μsのオーダでon/off動作が可能であり、誤照射のないがん治療等に供される円形粒子加速器が構成できる。   By using the HOM cavity 41 excited with the TM210 mode as a tune shifter of the circular particle accelerator, the magnetic field is a high-frequency magnetic field, and can be turned on / off in the order of several tens to several hundreds μs, and there is no erroneous irradiation. A circular particle accelerator for cancer treatment can be constructed.

実施の形態1のチューンシフターの構成を模式的に示した構成図である。FIG. 3 is a configuration diagram schematically showing a configuration of a tune shifter according to the first embodiment. 図1のHOM空洞のビームと磁場の状況を示す横断面図である。It is a cross-sectional view which shows the condition of the beam and magnetic field of the HOM cavity of FIG. 従来の粒子加速器の構成図である。It is a block diagram of the conventional particle accelerator. 従来の粒子ビームのベータトロン振動振幅を増幅する増幅手段の構成を模式的に示した構成図である。It is the block diagram which showed typically the structure of the amplification means which amplifies the betatron oscillation amplitude of the conventional particle beam. 従来の粒子加速器に使用されている四極電磁石の磁場分布図である。It is a magnetic field distribution map of the quadrupole electromagnet used for the conventional particle accelerator.

符号の説明Explanation of symbols

11 粒子ビーム周回軌道、14 出射セプタム、15 デフレクター、
41 HOM空洞、43 高周波電源、45 導波管、46 ループカプラー。
11 particle beam orbit, 14 exit septum, 15 deflector,
41 HOM cavity, 43 high frequency power supply, 45 waveguide, 46 loop coupler.

Claims (1)

粒子ビーム周回軌道、粒子ビームを粒子ビーム周回軌道に沿って周回させる四極電磁石、偏向電磁石、粒子ビームを加速させる加速空洞、粒子ビームのベータトロン振動振幅を増幅するベータトロン振動振幅増幅手段、粒子ビームを粒子ビーム周回軌道から取り出す出射セプタムを備えた円形粒子加速器において、粒子ビーム周回軌道の出射セプタムの上流に配置された空洞に電磁波を導入して、TM210モードを励振した高周波空洞で構成された粒子ビームを高速でon/offするチューンシフターを備えたことを特徴とする円形粒子加速器。 Particle beam orbit, quadrupole electromagnet that makes the particle beam circulate along the particle beam orbit, deflecting electromagnet, acceleration cavity that accelerates the particle beam, betatron oscillation amplitude amplification means that amplifies the betatron oscillation amplitude of the particle beam, particle beam In a circular particle accelerator equipped with an exit septum for extracting the particle beam from the particle beam orbit, a particle composed of a high-frequency cavity excited by the TM210 mode by introducing electromagnetic waves into the cavity disposed upstream of the exit septum of the particle beam orbit A circular particle accelerator comprising a tune shifter for turning on and off a beam at high speed.
JP2005246958A 2005-08-29 2005-08-29 Circular particle accelerator Expired - Fee Related JP3943578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246958A JP3943578B2 (en) 2005-08-29 2005-08-29 Circular particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246958A JP3943578B2 (en) 2005-08-29 2005-08-29 Circular particle accelerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18756098A Division JP3729645B2 (en) 1998-07-02 1998-07-02 Circular particle accelerator

Publications (2)

Publication Number Publication Date
JP2005353610A true JP2005353610A (en) 2005-12-22
JP3943578B2 JP3943578B2 (en) 2007-07-11

Family

ID=35587852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246958A Expired - Fee Related JP3943578B2 (en) 2005-08-29 2005-08-29 Circular particle accelerator

Country Status (1)

Country Link
JP (1) JP3943578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282951A (en) * 2017-12-28 2018-07-13 华中科技大学 A kind of beam extractor, parameter acquiring method and cyclotron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282951A (en) * 2017-12-28 2018-07-13 华中科技大学 A kind of beam extractor, parameter acquiring method and cyclotron
CN108282951B (en) * 2017-12-28 2020-07-10 华中科技大学 Beam extraction device, parameter acquisition method and cyclotron

Also Published As

Publication number Publication date
JP3943578B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP4691576B2 (en) Particle beam therapy system
JP4174508B2 (en) Charged particle accelerator
JP4988516B2 (en) Particle beam therapy system
JP2005332794A (en) Charged-particle beam accelerator, particle beam radiation therapy system using it, and method of operating particle beam radiation therapy system
JP6169254B2 (en) Circular accelerator, operation method of circular accelerator, and particle beam therapy system
JP2007311125A (en) Beam emission control method of charged particle beam accelerator, and particle beam irradiation system using charged beam accelerator
JP3736343B2 (en) DC electron beam accelerator and DC electron beam acceleration method thereof
WO2016174700A1 (en) Circular accelerator
EP2881142A1 (en) Circular accelerator and particle beam therapy apparatus
JP4650382B2 (en) Charged particle beam accelerator and particle beam irradiation system using the charged particle beam accelerator
JP2019096404A (en) Circular accelerator and particle therapy system
CN107211523B (en) Radio frequency cavity
JP3943578B2 (en) Circular particle accelerator
US10850132B2 (en) Particle therapy system
JP2016110941A (en) Accelerator and particle beam medical treatment device
JP3943579B2 (en) Circular particle accelerator
JP6180976B2 (en) Ion accelerator, ion acceleration control method, and particle beam therapy system
JPH07111199A (en) Accelerator, beam radiation method, and medical device
JP3943568B2 (en) Circular particle accelerator
JP3729645B2 (en) Circular particle accelerator
JP2004296164A (en) Power source for deflection electromagnet and power source for acceleration core of charged particle accelerator
JP5622225B2 (en) Beam control apparatus, particle beam irradiation apparatus, and control method thereof
JP5565798B2 (en) Bending electromagnet system with acceleration function
JP3650354B2 (en) Electron accelerator
JP2002305100A (en) Microtron electron accelerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees