JP2005351782A - Detector and method for detecting particle in liquid - Google Patents

Detector and method for detecting particle in liquid Download PDF

Info

Publication number
JP2005351782A
JP2005351782A JP2004173516A JP2004173516A JP2005351782A JP 2005351782 A JP2005351782 A JP 2005351782A JP 2004173516 A JP2004173516 A JP 2004173516A JP 2004173516 A JP2004173516 A JP 2004173516A JP 2005351782 A JP2005351782 A JP 2005351782A
Authority
JP
Japan
Prior art keywords
particle
liquid
particles
bubbles
sample liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004173516A
Other languages
Japanese (ja)
Inventor
Masataka Yagi
正隆 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004173516A priority Critical patent/JP2005351782A/en
Publication of JP2005351782A publication Critical patent/JP2005351782A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-liquid particle detector capable of eliminating incompleteness in discrimination between an in-liquid particle and a bubble in a conventional in-liquid particle detector to measure only the in-liquid particle, by simple constitution. <P>SOLUTION: In this in-liquid particle detector of the present invention, a sample liquid containing the particle of a measuring object and the bubble is made to flow in a particle-bubble separation means 3 arranged in an upstream of a detection cell 2 in a flow passage 1 and is irradiated with a detecting light from a particle detecting means 4 arranged in a downstream of the detection cell 2, the particle 13 in a liquid is detected by a light scattering method, and an output signal of the detected particle is transmitted to a signal processing means 5 to measure a particle size and to count the particle number. Electrodes are provided respectively between a flow-in port side and a flow-out port side of the particle-bubble separation means 3, and Lorentz force due to an electric field impressed between the electrodes and a magnetic field impressed perpendicularly thereto is imparted to the particle 13 to be separated from an orbit 11 of the bubble. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粒子と気泡が混在している液中の粒子と気泡を分離して粒子の粒径及び粒数を検出する液中粒子検出装置とその検出方法に関するものである。   The present invention relates to an in-liquid particle detection apparatus and a detection method for detecting a particle size and the number of particles by separating particles and bubbles in a liquid in which particles and bubbles are mixed.

従来の液中の粒子と気泡を分離して粒子と気泡の粒径及び粒数を検出する液中粒子検出装置としては、温度変化を利用する方法や液中の圧力を変化させることで、変化前後での光強度の差を利用したものがあった。   Conventional particle detectors that separate particles and bubbles in the liquid and detect the particle size and number of particles are changed by changing the pressure in the liquid using a method that uses temperature changes. Some used the difference in light intensity between before and after.

例えば、特許文献1には、測定セル内に試料液を流通させた状態で測定セルに対して光を照射し、試料液に含まれる微粒子から生ずる散乱光を光検出器で検出し、その出力に基づいて微粒子の数を計数する液中微粒子測定システムであって、前記測定セルの上流側に、試料液を冷却して試料液中に混在する気泡を溶解させるための冷却装置と、試料液中に混在する気泡を試料液から分離除去するための脱泡装置とを互いに直列にした状態で設けるとともに、前記脱泡装置の上部に設けられる気泡排出口を前記測定セルの下流側に接続することにより、粒子だけを検出することが可能になる構成が開示されている。   For example, in Patent Document 1, light is irradiated to a measurement cell in a state in which the sample liquid is circulated in the measurement cell, and scattered light generated from fine particles contained in the sample liquid is detected by a photodetector, and the output thereof In-liquid particle measurement system for counting the number of particles on the basis of the above, a cooling device for cooling the sample liquid and dissolving bubbles mixed in the sample liquid upstream of the measurement cell, and the sample liquid A defoaming device for separating and removing bubbles mixed in from the sample solution is provided in series with each other, and a bubble discharge port provided at an upper portion of the defoaming device is connected to the downstream side of the measurement cell. Thus, a configuration is disclosed in which only particles can be detected.

また、特許文献2には、流路を通過する試料液体中に存在する粒子や泡などの粒径に対応した信号を出力する第1および第2の光散乱式粒子検出器と、第1および第2の光散乱式粒子検出器の間の流路に設置されて通過する試料液体を所定温度に冷却する冷却器と、第1および第2の光散乱式粒子検出器の出力信号を比較演算処理して粒子や泡などの粒径及び粒数を算出する信号処理部を備えることにより、粒子だけを検出することが可能になる構成が開示されている。   Patent Document 2 discloses first and second light scattering particle detectors that output signals corresponding to particle diameters such as particles and bubbles present in a sample liquid passing through a flow path, Comparing the output signals of the cooler, which is installed in the flow path between the second light scattering particle detectors, and cools the sample liquid passing therethrough to a predetermined temperature, and the first and second light scattering particle detectors A configuration is disclosed in which only a particle can be detected by providing a signal processing unit that processes and calculates the particle size and number of particles such as particles and bubbles.

特許文献3には、測定対象となる試料液体を収納する密閉容器で形成される検知セルと、この検知セルに収納された測定対象液に所定の圧力を付与する圧力付与部が加圧し、この圧力付与部が付与する圧力を変化させるように制御する圧力制御部が変化させ、前記収納手段に収納された液体に光学検出部が光を照射して検出光を検出信号として出力し、前記変化させた圧力状態の前後で検出された検出信号に基づいて演算処理部が液体に含有される気泡を除く微粒子のみの検出データを演算することにより、液体に含有される気泡を除く微粒子のみの検出データを抽出して、粒子と気泡の選別を行う構成が開示されている。
特開平11−316185号公報 特開平10−104150号公報 特開2000−105186号公報
In Patent Document 3, a detection cell formed of a sealed container that stores a sample liquid to be measured, and a pressure applying unit that applies a predetermined pressure to the measurement target liquid stored in the detection cell pressurize, The pressure control unit that controls the pressure applied by the pressure applying unit to change is changed, the optical detection unit irradiates light to the liquid stored in the storage unit, and the detection light is output as a detection signal. Based on detection signals detected before and after the pressure state, the calculation processing unit calculates detection data for only fine particles excluding bubbles contained in the liquid, thereby detecting only fine particles excluding bubbles contained in the liquid. A configuration for extracting data and selecting particles and bubbles is disclosed.
JP-A-11-316185 JP-A-10-104150 JP 2000-105186 A

しかしながら、特許文献1に開示された液中粒子検出装置では、気泡を完全に除去できない場合があり、また、特許文献2に開示された構成では、検出器が2個以上必要で第一の検出器で検出した粒子が第2以降の検出器で検出したとき同じ粒子である保証が出来ないかぎり粒子と気泡の判別は困難であった。さらに特許文献3に開示された圧力変化による気泡の選別方式では、圧力を変化させるために密閉にする必要があり、インラインなどでの液中の粒子と気泡の判別は困難である。したがって、粒子と気泡が混在した試料液体の粒子数を検出することは困難である。   However, in the liquid particle detection device disclosed in Patent Document 1, bubbles may not be completely removed. In the configuration disclosed in Patent Document 2, two or more detectors are required and the first detection is performed. It was difficult to discriminate between particles and bubbles unless it was guaranteed that the particles detected by the vessel were the same particles as detected by the second and subsequent detectors. Furthermore, in the method of selecting bubbles by changing the pressure disclosed in Patent Document 3, it is necessary to seal the bubbles in order to change the pressure, and it is difficult to discriminate particles and bubbles in the liquid in-line. Therefore, it is difficult to detect the number of sample liquid particles in which particles and bubbles are mixed.

本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的は、試料液体中の粒子と気泡とを区別して粒子数を計数する液中粒子検出装置および検出方法を提供するものである。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to detect an in-liquid particle detector and a detector for counting the number of particles by distinguishing between particles in a sample liquid and bubbles. A method is provided.

上記課題を解決するために、本発明の液中粒子検出装置は、流路に設けられた検出セルと、前記検出セルの上流側に配設された流路を通過する試料液体中に存在する粒子や泡などを分離する粒子・気泡分離手段と、前記検出セルの下流側に配設された試料液体中に存在する粒子や泡などの粒径に対応した信号を出力する粒子検出手段と、粒子検出手段の出力信号を演算処理して粒子や泡などの粒径及び粒数を算出する信号処理手段を具備したことを特徴とする。   In order to solve the above-described problems, the in-liquid particle detection device of the present invention exists in a detection cell provided in a flow channel and a sample liquid passing through a flow channel disposed on the upstream side of the detection cell. Particle / bubble separating means for separating particles and bubbles, and particle detecting means for outputting a signal corresponding to the particle diameter of particles and bubbles present in the sample liquid disposed on the downstream side of the detection cell; It is characterized by comprising signal processing means for calculating the particle size and the number of particles such as particles and bubbles by computing the output signal of the particle detecting means.

前記粒子・気泡分離手段は、前記試料液体の流入口及び流出口にそれぞれ電極を備え、かつ前記電極間で発生する電解と垂直な方向に磁界を印加するための磁界発生手段を有することが好ましい。   The particle / bubble separating means preferably includes electrodes at the inlet and outlet of the sample liquid, respectively, and magnetic field generating means for applying a magnetic field in a direction perpendicular to the electrolysis generated between the electrodes. .

前記流路の途中には、前記試料液体の流れと平行な方向に分離壁が設けられており、前記分離壁で分離された前記流路の一方側に前記粒子検出手段が配置されていることが好ましい。   In the middle of the flow path, a separation wall is provided in a direction parallel to the flow of the sample liquid, and the particle detection means is disposed on one side of the flow path separated by the separation wall. Is preferred.

本発明の液中粒子の検出方法は、流路中に設けられた検出セルに測定対象とする試料液体を流す工程と、前記検出セルの上流側に配設された流路において、前記流路と平行な方向に電界を印加し、かつ前記電界と垂直な方向に磁界を印加して、前記試料液体中に含まれる粒子と気泡との軌道を変えることにより前記粒子と前記気泡を分離する工程とを備えている。   The liquid particle detection method of the present invention includes a step of flowing a sample liquid to be measured in a detection cell provided in a flow channel, and a flow channel disposed upstream of the detection cell. Separating the particles from the bubbles by applying an electric field in a direction parallel to the magnetic field and applying a magnetic field in a direction perpendicular to the electric field to change the trajectory between the particles and the bubbles contained in the sample liquid. And.

本発明の液中粒子検出装置および方法は、上記構成を有し、流路内を流れる液中の粒子と気泡を分離することが可能になり、液中の粒子数を正確に計測することができる。   The submerged particle detection apparatus and method of the present invention have the above-described configuration, and can separate the particles in the liquid flowing through the flow path from the bubbles, and can accurately measure the number of particles in the liquid. it can.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態における液中粒子検出装置の構成概略図であり、図2は本発明の実施の形態における液中粒子検出装置を用いた粒子検出方法の原理説明図である。   FIG. 1 is a schematic configuration diagram of a submerged particle detection apparatus according to an embodiment of the present invention, and FIG. 2 is a principle explanatory diagram of a particle detection method using the submerged particle detection apparatus according to the embodiment of the present invention.

図1において、検出対象である粒子や気泡を含有する試料液体を流路1の検出セル2の上流に配設した粒子気泡分離手段3内に流す。この粒子気泡分離手段3の流入口側と流出口側の間には電極がそれぞれ設けられており、これらの電極はそれぞれ図示していない電源に接続されている。検出セル2の下流側に配設した粒子検出手段4から検出光を照射し、液中の粒子を光散乱方式により検出する。ここで検出された粒子の出力信号は信号処理手段5に伝達され、粒径及び粒数として計数される。   In FIG. 1, a sample liquid containing particles and bubbles to be detected is passed through particle bubble separation means 3 disposed upstream of the detection cell 2 in the flow path 1. Electrodes are respectively provided between the inlet side and the outlet side of the particle bubble separation means 3, and these electrodes are connected to a power source (not shown). Detection light is irradiated from particle detection means 4 arranged on the downstream side of the detection cell 2, and particles in the liquid are detected by a light scattering method. The output signal of the particle detected here is transmitted to the signal processing means 5 and counted as the particle size and the number of particles.

次に、図2を使って液中粒子検出装置内で粒子と気泡を分離する方法の原理について説明する。   Next, the principle of a method for separating particles and bubbles in the liquid particle detection apparatus will be described with reference to FIG.

試料液体中の粒子13が持っているエネルギーをEとすると、次式で示される。   Assuming that the energy of the particles 13 in the sample liquid is E, the following equation is obtained.

E=q・e・V=1/2・m・v2 (式1)
ここで、qは試料液体中の粒子13の電荷数、eは電子の電荷、Vはそれぞれの電極間の印加電圧、mは粒子13の質量、vは試料液体の流れの速さである。
E = q · e · V = 1/2 · m · v 2 (Formula 1)
Here, q is the number of charges of the particles 13 in the sample liquid, e is the charge of electrons, V is the applied voltage between the electrodes, m is the mass of the particles 13, and v is the flow speed of the sample liquid.

また、粒子気泡分離手段3には、試料液体の流れに直交するように磁界6を印加しているので、試料液体中の粒子13には、ローレンツ力が作用する。磁界6の向きは紙面の奥から手前に向かう方向であり、磁界は、例えば、流路を挟んで磁石を配置することにより発生させることができる。ローレンツ力は(式2)で示される。   Further, since the magnetic field 6 is applied to the particle bubble separating means 3 so as to be orthogonal to the flow of the sample liquid, Lorentz force acts on the particles 13 in the sample liquid. The direction of the magnetic field 6 is a direction from the back to the front of the page, and the magnetic field can be generated by, for example, arranging a magnet with a flow path interposed therebetween. The Lorentz force is expressed by (Equation 2).

F1=v・q・e・B (式2)
ここで、F1はローレンツ力であり、ローレンツ力F1を受けた粒子の軌道8を図中に示した。Bは磁界の強さである。
F1 = v · q · e · B (Formula 2)
Here, F1 is the Lorentz force, and the trajectory 8 of the particle that has received the Lorentz force F1 is shown in the figure. B is the strength of the magnetic field.

ローレンツ力を受けた粒子13は軌道半径7の円運動をとるため遠心力が作用する。遠心力は(式3)で示される。   Since the particles 13 that have received the Lorentz force take a circular motion with an orbital radius of 7, a centrifugal force acts. The centrifugal force is expressed by (Equation 3).

F2=m・v2/R (式3)
ここで、F2は遠心力であり、遠心力を受けた粒子の軌道9を図中に示した。Rは粒子13の軌道半径7である。
F2 = m · v 2 / R (Formula 3)
Here, F2 is a centrifugal force, and the trajectory 9 of the particles subjected to the centrifugal force is shown in the figure. R is the orbital radius 7 of the particle 13.

粒子気泡分離手段3中での平衡状態では、ローレンツ力8と遠心力9が釣り合った状態、すなわちF1=F2が成り立つので、粒子気泡分離手段3中の磁界6を通る粒子13には次式のような関係が成り立つ。   In the equilibrium state in the particle bubble separation means 3, the Lorentz force 8 and the centrifugal force 9 are balanced, that is, F1 = F2 holds. Such a relationship holds.

BR=k((mE)/q)1/2 (式4)
(式4)から分かるように、粒子気泡分離手段3中の粒子13の軌道半径7は、試料液体の流れの速さvを一定、すなわち粒子13が持っているエネルギーEを一定にすれば磁界6の強さに反比例するため、粒子気泡分離手段3中を通過する粒子13は磁界6の強さに応じた軌道10を通ることになる。
BR = k ((mE) / q) 1/2 (Formula 4)
As can be seen from (Equation 4), the orbit radius 7 of the particle 13 in the particle bubble separating means 3 is a magnetic field if the flow velocity v of the sample liquid is constant, that is, the energy E of the particle 13 is constant. Since it is inversely proportional to the strength of 6, the particles 13 passing through the particle bubble separating means 3 pass through the trajectory 10 corresponding to the strength of the magnetic field 6.

この磁界印加部より下流側に分離壁12を設け、液中の粒子13は分離壁12の一方側を流れ、気泡14は分離壁12の他方側を流れることにより分離することができる。   A separation wall 12 is provided on the downstream side of the magnetic field application unit. The particles 13 in the liquid can be separated by flowing on one side of the separation wall 12 and the bubbles 14 can be separated by flowing on the other side of the separation wall 12.

液中の粒子13と気泡14を分離したのち、粒子13のみを検出セル2の下流側で分離壁12の一方側に配設した粒子検出手段4から検出光を照射し、液中の粒子13を光散乱方式により検出する。ここで検出された粒子13の出力信号は信号処理手段5に伝達され、粒径及び粒数として計数される。   After the particles 13 and the bubbles 14 in the liquid are separated, the particles 13 alone in the liquid are irradiated with the detection light from the particle detection means 4 disposed only on one side of the separation wall 12 on the downstream side of the detection cell 2. Is detected by a light scattering method. The output signal of the particle | grains 13 detected here is transmitted to the signal processing means 5, and is counted as a particle size and a particle number.

液中の粒子13と気泡14を分離したのち、粒子13のみを係数するため、粒子検出手段4は光散乱方式以外の方法でもかまわない。   After separating the particles 13 and the bubbles 14 in the liquid, the particle detection means 4 may be a method other than the light scattering method in order to calculate only the particles 13.

なお、上記粒子検出手段4は光源と光検出器とを配設し、光源から発せられた光が粒子13を含む試料液中を透過し粒子13から発生する散乱光を検出し、この散乱光強度値から粒子13の径、数を求めるものとしてもよい。   The particle detecting means 4 is provided with a light source and a light detector, detects the scattered light generated from the particles 13 by transmitting the light emitted from the light source through the sample liquid containing the particles 13, and this scattered light. The diameter and number of the particles 13 may be obtained from the intensity value.

あるいは、CCDカメラでローレンツ力8により移動する粒子13を計測し、粒子13の径、数を求めるものとしてもよい。   Alternatively, the particle 13 moving with the Lorentz force 8 may be measured with a CCD camera, and the diameter and number of the particles 13 may be obtained.

本発明の液中粒子検出装置及び方法は、液中粒子計測分野において液中の粒子と気泡を選別して、粒子のみの計測ができる点で有用である。   The submerged particle detection apparatus and method of the present invention are useful in that only particles can be measured by selecting particles and bubbles in the liquid in the submerged particle measurement field.

本発明の実施の形態における液中粒子検出装置の構成概略図Configuration schematic diagram of liquid particle detection device in an embodiment of the present invention 本発明の実施の形態における液中粒子検出装置を用いた粒子検出方法の原理説明図Explanatory drawing of the principle of the particle | grain detection method using the particle | grain detection apparatus in a liquid in embodiment of this invention

符号の説明Explanation of symbols

1 流路
2 検出セル
3 粒子気泡分離手段
4 粒子検出手段
5 信号処理手段
6 磁界
7 粒子の軌道半径
8 ローレンツ力を受けた粒子の軌道
9 遠心力を受けた粒子の軌道
10 実際の粒子の軌道
11 気泡の軌道
12 分離壁
13 粒子
14 気泡
DESCRIPTION OF SYMBOLS 1 Flow path 2 Detection cell 3 Particle bubble separation means 4 Particle detection means 5 Signal processing means 6 Magnetic field 7 Particle orbit radius 8 Orbit of particle subjected to Lorentz force 9 Orbit of particle subjected to centrifugal force 10 Actual orbit of particle 11 Bubble Orbit 12 Separation Wall 13 Particle 14 Bubble

Claims (4)

流路に設けられた検出セルと、
前記検出セルの上流側に配設された流路を通過する試料液体中に存在する粒子や泡などを分離する粒子・気泡分離手段と、
前記検出セルの下流側に配設された試料液体中に存在する粒子や泡などの粒径に対応した信号を出力する粒子検出手段と、
前記粒子検出手段の出力信号を演算処理して粒子や泡などの粒径及び粒数を算出する信号処理手段を具備したことを特徴とする液中粒子検出装置。
A detection cell provided in the flow path;
Particle / bubble separating means for separating particles or bubbles present in the sample liquid passing through the flow path disposed on the upstream side of the detection cell;
Particle detection means for outputting a signal corresponding to the particle size of particles or bubbles present in the sample liquid disposed on the downstream side of the detection cell;
An in-liquid particle detection apparatus comprising signal processing means for calculating the particle size and the number of particles such as particles and bubbles by computing the output signal of the particle detection means.
前記粒子・気泡分離手段は、前記試料液体の流入口及び流出口にそれぞれ電極を備え、かつ前記電極間で発生する電解と垂直な方向に磁界を印加するための磁界発生手段を有することを特徴とする請求項1記載の液中粒子検出装置。 The particle / bubble separating means includes a magnetic field generating means for providing electrodes at the inlet and outlet of the sample liquid, respectively, and applying a magnetic field in a direction perpendicular to electrolysis generated between the electrodes. The in-liquid particle detector according to claim 1. 前記流路の途中には、前記試料液体の流れと平行な方向に分離壁が設けられており、前記分離壁で分離された前記流路の一方側に前記粒子検出手段が配置されていることを特徴とする請求項2記載の液中粒子検出装置。 In the middle of the flow path, a separation wall is provided in a direction parallel to the flow of the sample liquid, and the particle detection means is disposed on one side of the flow path separated by the separation wall. The in-liquid particle detection device according to claim 2. 流路中に設けられた検出セルに測定対象とする試料液体を流す工程と、
前記検出セルの上流側に配設された流路において、前記流路と平行な方向に電界を印加し、かつ前記電界と垂直な方向に磁界を印加して、前記試料液体中に含まれる粒子と気泡との軌道を変えることにより前記粒子と前記気泡を分離する工程と、
分離された前記粒子の粒径、粒数を計数する工程を備えた液中粒子検出方法。
Flowing a sample liquid to be measured into a detection cell provided in the flow path;
Particles contained in the sample liquid by applying an electric field in a direction parallel to the flow path and applying a magnetic field in a direction perpendicular to the electric field in a flow path disposed upstream of the detection cell Separating the particles and the bubbles by changing the trajectory between the bubbles and the bubbles;
A liquid particle detection method comprising a step of counting the particle size and the number of particles of the separated particles.
JP2004173516A 2004-06-11 2004-06-11 Detector and method for detecting particle in liquid Pending JP2005351782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173516A JP2005351782A (en) 2004-06-11 2004-06-11 Detector and method for detecting particle in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173516A JP2005351782A (en) 2004-06-11 2004-06-11 Detector and method for detecting particle in liquid

Publications (1)

Publication Number Publication Date
JP2005351782A true JP2005351782A (en) 2005-12-22

Family

ID=35586387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173516A Pending JP2005351782A (en) 2004-06-11 2004-06-11 Detector and method for detecting particle in liquid

Country Status (1)

Country Link
JP (1) JP2005351782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021101153A (en) * 2019-12-06 2021-07-08 大平研究所株式会社 Measuring method and measuring system of fine bubble-dispersed liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021101153A (en) * 2019-12-06 2021-07-08 大平研究所株式会社 Measuring method and measuring system of fine bubble-dispersed liquid
JP7334957B2 (en) 2019-12-06 2023-08-29 大平研究所株式会社 Measurement method and measurement system for microbubble dispersion

Similar Documents

Publication Publication Date Title
JP7255049B2 (en) Automatic output control liquid particle counter with flow and bubble detection system
JP5443787B2 (en) A device that counts fibers in the air with high accuracy
JP5770255B2 (en) Particle measuring apparatus and particle measuring method
KR20100041580A (en) Condensation particle counting device
WO2017067971A1 (en) Measurement cell for saxs measurements and for dls measurements
JPH06241977A (en) Fine particle measuring instrument
JPS61102541A (en) Method and instrument for analyzing impurity in liquid
JP2005351782A (en) Detector and method for detecting particle in liquid
JP5326120B2 (en) Apparatus and method for measuring particle mass concentration in fluid, and apparatus and method for measuring particle density in fluid
TW202217265A (en) Flow nanoparticle measurement device and method of determining nanoparticle using the same
CN216082480U (en) Aerosol concentration detection device and system
JP3909050B2 (en) Blood cell counter
JP3153132B2 (en) Liquid particle detector
US20220155116A1 (en) Optical fluid flow velocity measurement
US11604122B2 (en) Curtain flow design for optical chambers
CN208140680U (en) Heavy metal ion content detection device in a kind of water
JP2013142625A (en) Particle detector and particle detection method
JPH07318476A (en) Particulate analyzer
JP4793413B2 (en) Differential refractive index detector
RU2801784C1 (en) Method for control of content of mechanical impurities in aerosols and liquids and device of optical cell for its implementation
JP2005337780A (en) Method and apparatus for detecting particles in liquid
RU2359250C1 (en) Method of liquid purity control
CN113504166A (en) Aerosol concentration detection method, device and system
JPH0526797A (en) Method and device for measuring break-down particle type material
JP2022018585A (en) Physical quantity measuring device