JP2005351220A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP2005351220A
JP2005351220A JP2004174677A JP2004174677A JP2005351220A JP 2005351220 A JP2005351220 A JP 2005351220A JP 2004174677 A JP2004174677 A JP 2004174677A JP 2004174677 A JP2004174677 A JP 2004174677A JP 2005351220 A JP2005351220 A JP 2005351220A
Authority
JP
Japan
Prior art keywords
intake
exhaust gas
primary
passage
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004174677A
Other languages
Japanese (ja)
Inventor
Naoki Ishikawa
直樹 石川
Masaaki Miyata
昌明 宮田
Nobuhiko Iyoda
伸彦 伊与田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2004174677A priority Critical patent/JP2005351220A/en
Publication of JP2005351220A publication Critical patent/JP2005351220A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake device for an internal combustion engine, in which an introducing port to a recirculating exhaust gas intake pass can approach a throttle valve, weight of an intake system is reduced, and installation space and cost can be reduced. <P>SOLUTION: Primary and secondary side branch intake passes 21, 22 are connected to the intake manifolds 18, 19 of the V-shape internal combustion engine 11, superchargers 37, 38 for supercharging intake are arranged respectively in the course of both the branch intake passes 21, 22, and intercoolers 25, 26 are arranged in both the branch intake passes 21, 22 on a further downstream sides of the superchargers 37, 38. The throttle valves 27, 28 are provided in both the branch intake passes on the downstream sides of both the intercoolers 25, 26. An exhaust circulating device 43 is provided which circulates a part of exhaust gas to a confluent intake pass 29 on the further downstream sides of both the throttle valves. Primary and secondary side branch intake passes 21A, 22A between both the intercoolers 25, 26 and both the throttle valves 27, 28 are communicated with each other through a communicating pass 54. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の吸気装置に係り、特に、V型の内燃機関において、EGR(排気ガス再循環:Exhaust Gas Recirculaion)装置の排気還流通路から吸気系に還流された排気ガスのスロットルバルブへの吹き返しを抑制して、スロットルバルブの耐久性を向上することができるとともに、還流排気ガスの吸気系への供給量を適正に制御することができる内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine, and more particularly, to a throttle valve for exhaust gas recirculated from an exhaust gas recirculation passage of an EGR (Exhaust Gas Recirculation) device to an intake system in a V-type internal combustion engine. The present invention relates to an intake device for an internal combustion engine that can improve the durability of a throttle valve by suppressing the blow-back of the exhaust gas and can appropriately control the supply amount of the recirculated exhaust gas to the intake system.

V型の内燃機関は、側面視にてV字形状に配置された一次側及び二次側シリンダバンク(気筒列)を有するシリンダブロックに、一次側及び二次側シリンダヘッドが装着されている。又、V型の内燃機関には、各シリンダバンクに対応するように、吸気経路及び排気経路が二系統に分岐され、過給機等も二系統を備えるものが有る。詳しくは、以下のような例である。V型の内燃機関の吸気マニホールドには、一次側及び二次側分岐吸気通路を通して空気が導入されるようになっている。前記両分岐吸気通路の途中には、内燃機関の排気ガスの圧力を利用して吸気を過給することにより車両の発進性及び出力を向上するための一次側及び二次側過給機が設けられている。前記両分岐吸気通路の途中には、前記両過給機の下流側に位置するように過給された吸気を冷却するためのインタークーラーがそれぞれ設けられ、両インタークーラーの下流側の両分岐吸気通路には、スロットルバルブがそれぞれ設けられている。このように、各シンリンダバンクに対応し吸排気経路をニ系統にするケースとしては、吸排気経路を一系統とした場合、付随する過給機やスロットルバルブが大型化し、搭載性やコスト、応答性が不利になる場合等が挙げられる。   In a V-type internal combustion engine, primary and secondary cylinder heads are mounted on a cylinder block having primary and secondary cylinder banks (cylinder rows) arranged in a V shape in a side view. In some V-type internal combustion engines, an intake path and an exhaust path are branched into two systems corresponding to each cylinder bank, and a supercharger or the like is also provided with two systems. The details are as follows. Air is introduced into the intake manifold of the V-type internal combustion engine through the primary side and secondary side branch intake passages. In the middle of the two branched intake passages, primary and secondary superchargers are provided to improve the startability and output of the vehicle by supercharging intake air using the exhaust gas pressure of the internal combustion engine. It has been. In the middle of the two branch intake passages, an intercooler for cooling the supercharged intake air is provided so as to be positioned downstream of the two superchargers, and the two branch intake passages on the downstream side of the two intercoolers are provided. Each has a throttle valve. In this way, as a case where the intake and exhaust paths are dual systems corresponding to each cylinder bank, when the intake and exhaust paths are made one system, the accompanying turbocharger and throttle valve are enlarged, and the mountability and cost, The case where responsiveness becomes disadvantageous is mentioned.

又、内燃機関、特にディーゼルエンジンには、排気ガス中に含まれている窒素酸化物(NOx)を低減するため、排気ガスの一部を吸気通路に還流させる排気還流(EGR)装置が備えられている。一般には、還流排気ガスはスロットルバルブよりも下流側にて吸気通路内に還流される。シリンダバンク毎に分岐吸排気経路を有する前述のような内燃機関では、新規の空気量だけでなく還流排気ガス量も、各分岐吸気通路の吸気量に影響する。このため、複数の過給機の上流にて同等に排気ガスを取出す構造、あるいは、各分岐吸排気経路の各々に個別のEGR装置を設ける構造等が知られている。(特許文献1には、ニ個の過給機を備え、その上流にあたる各排気通路より還流排気ガスを取出す構造が開示され、特許文献2には、分岐吸排気経路に対応した別個の排気還流通路及び制御弁を備えたEGR装置が開示されている。)
一方、一次側4気筒、二次側4気筒、合わせて8気筒のV型内燃機関においては、一次側に奇数の第1、第3、第5、第7の各気筒が、二次側に偶数の第2、第4、第6、第8の各気筒が配列されている。そして、第1〜第8気筒の着火順序は内燃機関の運動系のバランスを考慮して、例えば第1、第2、第7、第3、第4、第5、第6、第8の気筒順に設定され、一次側及び二次側シリンダバンクで見ると、等間隔着火になっていないのが通例である。従って、吸気系及び排気系に各気筒内の連続爆発に起因するアンバランスの脈動がそれぞれ存在しているので、各気筒に供給される還流排気ガス量のバラツキが大きくなる。すなわち、吸気系の脈動は、横軸に内燃機関のクランク角、縦軸に圧力を表す図2のグラフに二点鎖線で示すように、変動幅が大きくかつ不規則となっている。
Further, an internal combustion engine, particularly a diesel engine, is provided with an exhaust gas recirculation (EGR) device that recirculates part of the exhaust gas to the intake passage in order to reduce nitrogen oxide (NOx) contained in the exhaust gas. ing. Generally, the recirculated exhaust gas is recirculated into the intake passage on the downstream side of the throttle valve. In the above-described internal combustion engine having a branch intake / exhaust path for each cylinder bank, not only a new air amount but also a recirculated exhaust gas amount affects the intake amount of each branch intake passage. For this reason, a structure in which exhaust gas is equally extracted upstream of a plurality of superchargers, or a structure in which individual EGR devices are provided in each of the branch intake and exhaust paths is known. (Patent Document 1 discloses a structure in which two superchargers are provided, and a reflux exhaust gas is taken out from each exhaust passage upstream thereof. Patent Document 2 discloses a separate exhaust gas recirculation corresponding to a branch intake and exhaust path. An EGR device with a passage and a control valve is disclosed.)
On the other hand, in a V-type internal combustion engine having four primary cylinders, four secondary cylinders, and eight cylinders in total, an odd number of first, third, fifth, and seventh cylinders are arranged on the primary side. Even-numbered second, fourth, sixth, and eighth cylinders are arranged. The first to eighth cylinders are ignited in consideration of the balance of the motion system of the internal combustion engine, for example, the first, second, seventh, third, fourth, fifth, sixth, eighth cylinders. It is usually set in order, and when viewed from the primary side and secondary side cylinder banks, it is customary that ignition is not performed at equal intervals. Therefore, since there are unbalanced pulsations caused by continuous explosion in each cylinder in the intake system and the exhaust system, variation in the amount of recirculated exhaust gas supplied to each cylinder increases. That is, the pulsation of the intake system has a large fluctuation range and is irregular as shown by a two-dot chain line in the graph of FIG. 2 in which the horizontal axis represents the crank angle of the internal combustion engine and the vertical axis represents the pressure.

又、排気系のアンバランスな脈動は図示しないが、吸気系のアンバランスな脈動と同様に発生する。
前述した吸気系のアンバランスな脈動を緩和するために、還流排気ガスの吸入通路への導入口よりも下流側において、一次側及び二次側吸気マニホールドを連通路により連通する構成が知られている。(特許文献3参照)
特開2003−129874号公報 特表2002−539358号公報 特開平04−232326号公報 」
Further, the unbalanced pulsation of the exhaust system is generated in the same manner as the unbalanced pulsation of the intake system (not shown).
In order to alleviate the aforementioned unbalanced pulsation of the intake system, a configuration is known in which the primary and secondary intake manifolds communicate with each other on the downstream side of the inlet of the recirculated exhaust gas to the intake passage. Yes. (See Patent Document 3)
JP 2003-129874 A Special table 2002-539358 gazette Japanese Patent Laid-Open No. 04-232326 "

上述のように、一次側及び二次側吸気マニホールドを連通路により連通することにより、吸気系の変動幅の大きいアンバランスな脈動が緩和されるので、一次側及び二次側排気還流通路から吸気マニホールドに還流排気ガスを直接導入する場合には、還流排気ガス量の変動が抑制され、各気筒に供給される還流排気ガス量のバラツキを小さくすることができる。しかし、還流排気ガスの導入口がスロットルバルブの直後の吸気通路に連通されている場合には、緩和されたとはいえまだ残存する吸入通路内のアンバランスな脈動と、排気系のアンバランスな脈動により還流排気ガスがスロットルバルブ側に逆流する吹き返しが発生し、還流排気ガスの高熱によりスロットルバルブが劣化して、耐久性が低下するという問題がある。又、還流排気ガスのスロットルバルブ側への吹き返し現象により、各気筒への還流排気ガスの供給量のバラツキがさらに大きくなるという問題もある。   As described above, by connecting the primary and secondary intake manifolds through the communication passage, unbalanced pulsations with a large fluctuation range of the intake system are alleviated, so intake air from the primary and secondary exhaust recirculation passages. When the recirculated exhaust gas is directly introduced into the manifold, fluctuations in the recirculated exhaust gas amount are suppressed, and variations in the recirculated exhaust gas amount supplied to each cylinder can be reduced. However, if the recirculated exhaust gas inlet is in communication with the intake passage immediately after the throttle valve, the remaining unbalanced pulsation in the intake passage and the unbalanced pulsation of the exhaust system are alleviated. As a result, the recirculated exhaust gas is blown back to the throttle valve side, and the throttle valve deteriorates due to the high heat of the recirculated exhaust gas, resulting in lower durability. There is also a problem that the variation in the amount of recirculated exhaust gas supplied to each cylinder further increases due to the reflow phenomenon of the recirculated exhaust gas toward the throttle valve.

ところで、新規の空気と還流排気ガスとを適正に混合するという観点からは、還流排気ガスの吸気通路への導入口を吸気マニホールドから離してスロットルバルブに近付け、還流排気ガスの導入口から吸気マニホールドまでの吸気通路を所定長さに設定する必要がある。又、前述した還流排気ガスの吹き返しによるスロットルバルブの劣化を回避するため、スロットルバルブから還流排気ガスの導入口までの吸気通路を長く設定する必要がある。従って、従来の内燃機関の吸気装置において、スロットルバルブの劣化を回避しようとすると、スロットルバルブから吸気マニホールドまでの吸気通路が長くなって、その重量が増大し、設置スペース及びコスト上不利になるという問題がある。   By the way, from the viewpoint of properly mixing the new air and the recirculated exhaust gas, the inlet of the recirculated exhaust gas to the intake passage is separated from the intake manifold and is brought closer to the throttle valve, and the recirculated exhaust gas inlet is connected to the intake manifold. It is necessary to set the intake passage to a predetermined length. In order to avoid the deterioration of the throttle valve due to the recirculation of the recirculated exhaust gas, it is necessary to set a long intake passage from the throttle valve to the recirculated exhaust gas inlet. Therefore, in the conventional intake device of an internal combustion engine, if it is attempted to avoid the deterioration of the throttle valve, the intake passage from the throttle valve to the intake manifold becomes longer, and its weight increases, which is disadvantageous in terms of installation space and cost. There's a problem.

さらに、一次及び二次側過給機のコンプレッサ部と、一次側及び二次側インタークーラーとの間の一次側及び二次側吸気通路を連通路により連通する構成も提案されている。
ところが、上記構成には吸気系のアンバランスな脈動により一次側及び二次側過給機のコンプレッサ部に一次側及び二次側吸気通路内の吸気が逆流して、コンプレッササージが発生するという別の問題がある。
Furthermore, the structure which connects the primary side and secondary side intake passage between the compressor part of a primary and secondary side supercharger, and a primary side and a secondary side intercooler by a communicating path is also proposed.
However, in the above-described configuration, an unbalanced pulsation of the intake system causes the intake air in the primary and secondary intake passages to flow back to the compressor parts of the primary and secondary turbochargers, resulting in a compressor surge. There is a problem.

本発明の第1の目的は、一次側及び二次側スロットルバルブと、吸気マニホールドとの間の吸気通路に生じる吸気系のアンバランスな脈動を無くして、還流排気ガスの吸気通路への導入口をスロットルバルブへ近づけることができ、吸気系の重量を低減し、設置スペース及びコストを低減することができ、さらに、還流排気ガスの各気筒への供給量を適正に制御することができる内燃機関の吸気装置を提供することにある。   The first object of the present invention is to eliminate the unbalanced pulsation of the intake system generated in the intake passage between the primary and secondary throttle valves and the intake manifold, and to introduce the recirculated exhaust gas into the intake passage. Can be brought closer to the throttle valve, the weight of the intake system can be reduced, the installation space and cost can be reduced, and the supply amount of the recirculated exhaust gas to each cylinder can be controlled appropriately It is to provide an air intake device.

本発明の第2の目的は、一次側及び二次側排気還流通路に生じる排気系のアンバランスな脈動を無くして、第1の目的をさらに向上することができる内燃機関の吸気装置を提供することにある。   A second object of the present invention is to provide an intake device for an internal combustion engine that can further improve the first object by eliminating the unbalanced pulsation of the exhaust system that occurs in the primary side and secondary side exhaust gas recirculation passages. There is.

上記問題点を解決するために、請求項1に記載の発明は、V字形状のシリンダブロックに一次側及び二次側シリンダヘッドを装着して構成された一次側及び二次側シリンダバンクを有するV型の内燃機関の吸気マニホールドに一次側及び二次側分岐吸気通路を接続し、前記両分岐吸気通路の途中に吸気を過給するための過給機をそれぞれ設け、過給機よりも下流側の両分岐吸気通路に冷却手段をそれぞれ設け、両冷却手段の下流側の両分岐吸気通路にスロットルバルブをそれぞれ設け、排気ガスの一部を前記両スロットルバルブよりも下流側の吸気通路に還流させる排気還流装置を備えた内燃機関の吸気装置において、前記両冷却手段と両スロットルバルブの間の一次側及び二次側分岐吸気通路を連通路により連通したことを要旨とする。   In order to solve the above-mentioned problems, the invention described in claim 1 has a primary side and secondary side cylinder bank configured by mounting a primary side and a secondary side cylinder head on a V-shaped cylinder block. A primary side and a secondary side branch intake passage are connected to an intake manifold of a V-type internal combustion engine, and a supercharger for supercharging intake air is provided in the middle of both of the branch intake passages, downstream of the supercharger. Cooling means are provided in both branch intake passages on the side, throttle valves are provided in both branch intake passages on the downstream side of both cooling means, and a part of the exhaust gas is recirculated to the intake passage on the downstream side of both throttle valves. In the intake device for an internal combustion engine provided with the exhaust gas recirculation device, the gist is that the primary side and secondary side branch intake passages between the cooling means and the throttle valves are communicated with each other by a communication passage.

請求項2に記載の発明は、V型の内燃機関の吸気マニホールドに一次側及び二次側分岐吸気通路を接続し、前記両分岐吸気通路の途中に吸気を過給するための過給機をそれぞれ設け、過給機よりも下流側の両分岐吸気通路にスロットルバルブをそれぞれ設け、排気ガスの一部を前記両スロットルバルブよりも下流側の吸気通路に還流させる排気還流装置を備えた内燃機関の吸気装置において、前記両過給機と両スロットルバルブの間にて、前記両スロットルバルブに隣接して、一次側及び二次側分岐吸気通路を連通する連通路を設けたことを要旨とする。   According to a second aspect of the present invention, there is provided a supercharger for connecting a primary side and a secondary side branch intake passage to an intake manifold of a V-type internal combustion engine, and for supercharging intake air in the middle of both the branch intake passages. An internal combustion engine provided with an exhaust gas recirculation device that is provided with throttle valves in both branched intake passages downstream of the turbocharger and recirculates part of the exhaust gas to the intake passage downstream of the throttle valves In the intake system of the present invention, a communication passage that communicates the primary side and secondary side branch intake passages is provided adjacent to the throttle valves between the turbochargers and the throttle valves. .

請求項3に記載の発明は、請求項1又は2において、前記一次側及び二次側分岐吸気通路の下流端は、合流吸気通路に接続され、該合流吸気通路の下流端は、分岐通路により一次側及び二次側吸気マニホールドに接続され、前記排気還流装置の排気還流通路の下流端は、前記合流吸気通路に連通されていることを要旨とする。   According to a third aspect of the present invention, in the first or second aspect, downstream ends of the primary side and secondary side branched intake passages are connected to a merged intake passage, and a downstream end of the merged intake passage is formed by a branched passage. The gist is that the downstream end of the exhaust gas recirculation passage of the exhaust gas recirculation device is connected to the primary side and secondary side intake manifolds and communicates with the merged air intake passage.

請求項4に記載の発明は、請求項1〜3のいずれか一項において、前記排気還流装置は内燃機関の一次側及び二次側排気マニホールドに接続された一次側及び二次側排気還流通路と、両排気還流通路にそれぞれ配設された一次側及び二次側流量制御弁と、一次側及び二次側排気還流通路の流量制御弁の下流側に設けられた排気クーラーとにより構成されていることを要旨とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the exhaust gas recirculation device includes a primary side and secondary side exhaust gas recirculation passage connected to the primary side and secondary side exhaust manifolds of the internal combustion engine. And primary and secondary flow control valves respectively provided in the exhaust recirculation passages, and an exhaust cooler provided on the downstream side of the flow control valves of the primary and secondary exhaust recirculation passages. It is a summary.

請求項5に記載の発明は、請求項4において、前記一次側及び二次側排気還流通路の下流端は、前記排気クーラーの内部において合流排気還流通路の上流端に接続され、前記合流排気還流通路の下流端は、前記両スロットルバルブの下流側の吸気通路に接続されていることを要旨とする。   According to a fifth aspect of the present invention, in the fourth aspect, the downstream ends of the primary side and secondary side exhaust gas recirculation passages are connected to the upstream end of the merged exhaust gas recirculation passage inside the exhaust cooler, and the combined exhaust gas recirculation flows The gist is that the downstream end of the passage is connected to the intake passage on the downstream side of the throttle valves.

請求項6に記載の発明は、請求項1〜5のいずれか一項において、前記連通路は前記両スロットルバルブの近傍の一次側及び二次側分岐吸気通路を連通するようにしたことを要旨とする。   A sixth aspect of the present invention is that, in any one of the first to fifth aspects, the communication path communicates with a primary side and a secondary side branch intake path in the vicinity of the throttle valves. And

請求項7に記載の発明は、請求項1〜6のいずれか一項において、前記排気還流通路の下流端は、両スロットルバルブに近接して前記吸気通路に連通されていることを要旨とする。   The gist of a seventh aspect of the present invention is that, in any one of the first to sixth aspects, the downstream end of the exhaust gas recirculation passage communicates with the intake passage in the vicinity of both throttle valves. .

請求項1,3〜7のいずれか1項に記載の発明は、前記両冷却手段と両スロットルバルブの間の一次側及び二次側分岐吸気通路を連通路により連通したので、吸気系に生じる変動幅の大きいアンバランスな脈動を無くすことができる。このため、吸入通路内に導入された還流排気ガスのスロットルバル側への吹き返し量を低減して還流排気ガスの吸気通路への導入口をスロットルバルブ側へ近づけることができる。従って、スロットルバルブと導入口の間の吸気通路の長さ寸法を短くして、その重量を低減し、設置スペース及びコストを低減することができる。さらに、還流排気ガスの吹き返し量が低減されるので、各気筒への排気ガスの供給量を適正に制御することができる。   The invention according to any one of claims 1 to 3 to 7 occurs in the intake system because the primary side and secondary side branch intake passages between the cooling means and the throttle valves are communicated by the communication passages. Unbalanced pulsations with large fluctuations can be eliminated. For this reason, it is possible to reduce the amount of recirculation of the recirculated exhaust gas introduced into the intake passage toward the throttle valve, and to bring the recirculated exhaust gas into the intake passage closer to the throttle valve. Therefore, the length dimension of the intake passage between the throttle valve and the introduction port can be shortened to reduce its weight, and the installation space and cost can be reduced. Furthermore, since the amount of recirculation of the recirculated exhaust gas is reduced, the amount of exhaust gas supplied to each cylinder can be controlled appropriately.

請求項2に記載の発明は、前記両過給機と両スロットルバルブの間にて、前記両スロットルバルブに隣接して、一次側及び二次側分岐吸気通路を連通する連通路を設けたので、吸気系に生じる変動幅の大きいアンバランスな脈動を無くすことができる。このため、請求項1に記載された効果と同様の効果を奏する。   In the invention according to claim 2, a communication passage that communicates the primary side and secondary side branch intake passages is provided between the turbochargers and the throttle valves adjacent to the throttle valves. Unbalanced pulsations with a large fluctuation range generated in the intake system can be eliminated. For this reason, there exists an effect similar to the effect described in Claim 1.

請求項3に記載の発明は、請求項1又は2記載の発明の効果に加えて、前記排気還流通路から合流吸気通路に供給された排気ガスは、該合流吸気通路の内部において新規の吸気と適正に混合されて吸気マニホールドに供給される。   In addition to the effect of the invention described in claim 1 or 2, the invention described in claim 3 allows the exhaust gas supplied from the exhaust gas recirculation passage to the merged intake passage to be a new intake air inside the merged intake passage. Properly mixed and supplied to the intake manifold.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の発明の効果に加えて、一次側及び二次側排気還流通路から一次側及び二次側流量制御弁を介して還流排気ガスを吸気通路に適正に供給することができる。   In addition to the effect of the invention according to any one of claims 1 to 3, the invention according to claim 4 is provided through the primary and secondary flow control valves from the primary and secondary exhaust recirculation passages. Thus, the recirculated exhaust gas can be properly supplied to the intake passage.

請求項5に記載の発明は、一次側及び二次側排気還流通路が連通路により連通されているので、排気系の変動幅の大きいアンバランスな脈動を無くして請求項1〜4のいずれか一項に記載の発明の効果をさらに向上することができる。   According to the fifth aspect of the present invention, since the primary side and secondary side exhaust gas recirculation passages are communicated with each other by the communication passage, any unbalanced pulsation with a large fluctuation range of the exhaust system is eliminated. The effects of the invention described in one item can be further improved.

請求項6に記載の発明は、前記連通路が両スロットルバルブの近傍の一次側及び二次側分岐吸気通路を連通しているので、スロットルバルブより下流側の吸気通路のアンバランスな脈動を無くす効果を高めることができる。   The invention according to claim 6 eliminates unbalanced pulsation in the intake passage downstream of the throttle valve since the communication passage communicates with the primary side and secondary side branched intake passages in the vicinity of both throttle valves. The effect can be enhanced.

以下、本発明を具体化した内燃機関の吸気装置の一実施形態を図1及び図2にしたがって説明する。
図1に示すように、内燃機関11を構成する複数の気筒12a〜12d、13a〜13dを有する一次側及び二次側シリンダブロック12,13は、全体としてV字形状に一体成型されている。前記二次側シリンダブロック12,13には、気筒12a〜12d、13a〜13dを覆うように一次側及び二次側シリンダヘッド14,15が装着され、一次側及び二次側シリンダバンクが構成されている。前記一次及び二次側シリンダヘッド14には、前記気筒12a〜12dと対応して燃料噴射弁16〜16が取り付けられ、前記二次側シリンダヘッド15には前記気筒13a〜13dと対応して燃料噴射弁17〜17が取り付けられている。前記一次側シリンダヘッド14には一次側吸気マニホールド18が接続され、前記二次側シリンダヘッド15には二次側吸気マニホールド19が接続されている。前記一次及び二次側吸気マニホールド18,19には一次及び二次側分岐吸気通路21,22から新規の空気が供給されるようになっている。前記一次及び二次側分岐吸気通路21,22の上流側には基幹吸気通路23を介してマフラー24が接続されている。前記一次及び二次側分岐吸気通路21,22の途中には、後述する一次及び二次側過給機37,38のコンプレッサ部40,42によって過給された熱をもった吸気を冷却して空気密度を上げるための冷却手段としての一次及び二次側インタークーラー25,26が介在されている。
An embodiment of an intake device for an internal combustion engine embodying the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the primary and secondary cylinder blocks 12 and 13 having a plurality of cylinders 12a to 12d and 13a to 13d constituting the internal combustion engine 11 are integrally formed in a V shape as a whole. Primary and secondary cylinder heads 14 and 15 are mounted on the secondary cylinder blocks 12 and 13 so as to cover the cylinders 12a to 12d and 13a to 13d, thereby forming primary and secondary cylinder banks. ing. Fuel injection valves 16 to 16 are attached to the primary and secondary cylinder heads 14 in correspondence with the cylinders 12a to 12d, and fuel to the secondary cylinder head 15 in correspondence with the cylinders 13a to 13d. Injection valves 17 to 17 are attached. A primary side intake manifold 18 is connected to the primary side cylinder head 14, and a secondary side intake manifold 19 is connected to the secondary side cylinder head 15. The primary and secondary intake manifolds 18 and 19 are supplied with new air from the primary and secondary branch intake passages 21 and 22. A muffler 24 is connected to the upstream side of the primary and secondary branch intake passages 21 and 22 via a basic intake passage 23. In the middle of the primary and secondary branch intake passages 21 and 22, the intake air having heat superposed by the compressor units 40 and 42 of the primary and secondary superchargers 37 and 38 described later is cooled. Primary and secondary intercoolers 25 and 26 are interposed as cooling means for increasing the air density.

前記一次及び二次側分岐吸気通路21,22の途中には一次及び二次側スロットルバルブ27,28が介在されている。前記一次及び二次側分岐吸気通路21,22の下流側端部は合流吸気通路29の上流端に接続され、合流吸気通路29の下流端は分岐通路30によって前記一次及び二次側吸気マニホールド18,19に接続されている。   Primary and secondary throttle valves 27 and 28 are interposed in the middle of the primary and secondary branch intake passages 21 and 22. The downstream ends of the primary and secondary branch intake passages 21 and 22 are connected to the upstream end of the merging intake passage 29, and the downstream end of the merging intake passage 29 is connected to the primary and secondary intake manifolds 18 by the branch passage 30. , 19.

前記一次側シリンダヘッド14には一次側排気マニホールド31が接続され、二次側シリンダヘッド15には二次側排気マニホールド32が接続されている。前記一次側排気マニホールド31には一次側排気通路33が接続され、前記二次側排気マニホールド32には二次側排気通路34が接続されている。一次及び二次側排気通路33,34にはマフラー35,36が接続されている。前記一次側排気通路33の途中には一次側過給機37を構成するタービン部39が介在され、一次側過給機37を構成するコンプレッサ部40は、前記一次側分岐吸気通路21の途中に介在されている。同様に、前記二次側排気通路34の途中には二次側過給機38を構成するタービン部41が介在され、二次側過給機38を構成するコンプレッサ部42は、前記二次側分岐吸気通路22の途中に介在されている。前記一次及び二次側過給機37,38は、一次及び二次側排気通路33,34を流れる排気流によって作動される可変ノズル式ターボチャージャーである。   A primary exhaust manifold 31 is connected to the primary cylinder head 14, and a secondary exhaust manifold 32 is connected to the secondary cylinder head 15. A primary exhaust passage 33 is connected to the primary exhaust manifold 31, and a secondary exhaust passage 34 is connected to the secondary exhaust manifold 32. Mufflers 35 and 36 are connected to the primary and secondary exhaust passages 33 and 34. A turbine part 39 constituting a primary supercharger 37 is interposed in the middle of the primary side exhaust passage 33, and a compressor part 40 constituting the primary side supercharger 37 is placed in the middle of the primary side branch intake passage 21. Intervened. Similarly, a turbine part 41 constituting a secondary supercharger 38 is interposed in the middle of the secondary exhaust passage 34, and the compressor part 42 constituting the secondary supercharger 38 is connected to the secondary side supercharger 38. It is interposed in the middle of the branch intake passage 22. The primary and secondary superchargers 37 and 38 are variable nozzle turbochargers that are actuated by exhaust flows flowing through the primary and secondary exhaust passages 33 and 34.

次に、排気還流(EGR)装置43について説明する。
この排気還流装置43を構成する一次及び二次側排気還流通路44,45の上流側端は、前記一次及び二次側排気マニホールド31,32に接続されている。前記一次及び二次側排気還流通路44,45の途中には排気ガス中のNOxを浄化するための触媒装置46,47が接続され、その下流側には一次及び二次側流量制御弁としてのEGRバルブ48,49が接続されている。前記一次及び二次側排気還流通路44,45の下流端は、合流排気還流通路50の上流端に接続されている。前記合流排気還流通路50の下流端は、吸気系の前記合流吸気通路29の上流側端部に接続されている。この合流吸気通路29と合流排気還流通路50の接続部を還流排気ガスの導入口51としている。前記一次及び二次側排気還流通路44,45と、合流排気還流通路50の接続部には高温の排気ガスを冷却してNOxの低減を促進するための排気クーラー52が装着されている。
Next, the exhaust gas recirculation (EGR) device 43 will be described.
The upstream ends of the primary and secondary exhaust recirculation passages 44 and 45 constituting the exhaust recirculation device 43 are connected to the primary and secondary exhaust manifolds 31 and 32. Catalytic devices 46 and 47 for purifying NOx in the exhaust gas are connected in the middle of the primary and secondary exhaust recirculation passages 44 and 45, and as downstream and primary flow control valves. EGR valves 48 and 49 are connected. The downstream ends of the primary and secondary exhaust recirculation passages 44 and 45 are connected to the upstream end of the merged exhaust recirculation passage 50. The downstream end of the merged exhaust gas recirculation passage 50 is connected to the upstream end of the merged intake passage 29 of the intake system. A connection portion between the merged intake passage 29 and the merged exhaust gas recirculation passage 50 serves as a recirculation exhaust gas introduction port 51. An exhaust cooler 52 for cooling the high-temperature exhaust gas and promoting the reduction of NOx is attached to the connection portion between the primary and secondary exhaust recirculation passages 44 and 45 and the combined exhaust recirculation passage 50.

前記一次側シリンダブロック12の奇数の第1,第3、第5、第7の気筒12a〜12dと、二次側シリンダブロック13の偶数の第2、第4、第6、第8の気筒13a〜13dの着火順序は、背景技術の項で述べたように内燃機関の運動系のバランスを考慮して、例えば第1、第2、第7、第3、第4、第5、第6、第8の気筒順に設定され、二次側シリンダブロック12,13で見ると、等間隔着火になっていない。従って、吸気系及び排気系に各気筒内の連続爆発に起因する変動幅の大きいアンバランスな脈動がそれぞれ発生する。吸気系の脈動は、図2のグラフに二点鎖線で示す。   The odd-numbered first, third, fifth, and seventh cylinders 12a to 12d of the primary-side cylinder block 12 and the even-numbered second, fourth, sixth, and eighth cylinders 13a of the secondary-side cylinder block 13 The ignition order of ˜13d is, for example, the first, second, seventh, third, fourth, fifth, sixth, in consideration of the balance of the motion system of the internal combustion engine as described in the background art section. The cylinders are set in the order of the eighth cylinder, and the secondary cylinder blocks 12 and 13 do not ignite at equal intervals. Therefore, unbalanced pulsations with a large fluctuation width due to continuous explosion in each cylinder are generated in the intake system and the exhaust system, respectively. The pulsation of the intake system is indicated by a two-dot chain line in the graph of FIG.

次に、上述した吸気系のアンバランスな脈動を低減するための構成について説明する。
前記一次側インタークーラー25と一次側スロットルバルブ27の間の一次側分岐吸気通路21Aと、前記二次側インタークーラー26と二次側スロットルバルブ28の間の二次側分岐吸気通路22Aは、本発明の要部構成である連通路54によって連通されている。この連通路54によって一次及び二次側分岐吸気通路21A,22A、合流吸気通路29及び分岐通路30内に発生する吸気系のアンバランスな脈動が無くなる。
Next, a configuration for reducing the above-described unbalanced pulsation of the intake system will be described.
The primary side branch intake passage 21A between the primary side intercooler 25 and the primary side throttle valve 27, and the secondary side branch intake passage 22A between the secondary side intercooler 26 and the secondary side throttle valve 28 are provided according to the present invention. It communicates with the communication path 54 which is a principal part structure. The communication passage 54 eliminates unbalanced pulsation of the intake system generated in the primary and secondary branch intake passages 21A and 22A, the merged intake passage 29, and the branch passage 30.

次に、内燃機関11の各部の制御を行う制御系について説明する。
前記一次側及び二次側分岐吸気通路21,22のコンプレッサ部40,42の下流側には一次側及び二次側エアフローメータ55,56が設けられ、この一次及び二次側エアフローメータ55,56によって検出された一次側及び二次側吸気通路21,22の空気量の検出信号は、コンピュータを備えた電子制御装置(ECU)57に入力されるようになっている。
Next, a control system that controls each part of the internal combustion engine 11 will be described.
Primary and secondary air flow meters 55 and 56 are provided on the downstream side of the compressor portions 40 and 42 in the primary and secondary branch intake passages 21 and 22, and the primary and secondary air flow meters 55 and 56 are provided. The detection signals of the air amounts in the primary and secondary intake passages 21 and 22 detected by the above are input to an electronic control unit (ECU) 57 having a computer.

電子制御装置57には、図示しないが内燃機関11の運転状態や、車両の走行状態を検出する各種センサが接続されている。このセンサとして、アクセルペダルのアクセル開度を検出するアクセルセンサ、内燃機関11の回転速度センサ、機関冷却水温センサ、一次及び二次側スロットルバルブ27,28の開度を検出するスロットルセンサ、車速センサなどがある。   Although not shown, the electronic control unit 57 is connected to various sensors that detect the operating state of the internal combustion engine 11 and the traveling state of the vehicle. As this sensor, an accelerator sensor for detecting the accelerator opening of the accelerator pedal, a rotation speed sensor for the internal combustion engine 11, an engine coolant temperature sensor, a throttle sensor for detecting the opening degree of the primary and secondary throttle valves 27 and 28, a vehicle speed sensor and so on.

前記一次及び二次側過給機37,38は、前記一次及び二次側エアフローメータ55,56によって検出された一次側及び二次側吸気通路21,22の空気量の検出信号及びその他の内燃機関の運転状態や車両の走行状態の検出信号に基づいて前記電子制御装置57から出力された制御信号により、タービン部39,41のベーン開度が制御される。これにより、常に最適な過給圧が得られ、低速域のトルクと発進性能の向上が図られる。   The primary and secondary superchargers 37 and 38 are used to detect signals of air amounts in the primary and secondary intake passages 21 and 22 detected by the primary and secondary airflow meters 55 and 56 and other internal combustion engines. The vane opening degree of the turbine portions 39 and 41 is controlled by the control signal output from the electronic control unit 57 based on the detection signal of the engine operating state and the vehicle traveling state. Thereby, the optimum supercharging pressure is always obtained, and the torque in the low speed region and the starting performance are improved.

前記電子制御装置57は、内燃機関11の運転状態や車両の走行状態を検出する各種センサからの検出信号に基づいて、現在の機関運転状態に適した排気再循環率(全吸入空気量に対する再循環排気量の割合)を算出する。そして、この排気再循環率に基づいて一次及び二次側EGRバルブ48,49の開度にかかる開度駆動指令値を算出する。この開度駆動指令値基づいて両EGRバルブ48,49の開度が制御され、機関運転状態に適した排気再循環が実行される。例えば、内燃機関11がアイドル運転状態に移行すると、電子制御装置57は一次及び二次側EGRバルブ48,49をほぼ全開状態となるようにこれを制御する。これによって、排気再循環率は例えば高い負荷運転時と比較して大きく設定され、大量の排気が再循環されるため、機関燃焼温度の上昇が抑えられてNOx排出が抑制されるようになる。   Based on detection signals from various sensors that detect the operating state of the internal combustion engine 11 and the traveling state of the vehicle, the electronic control unit 57 performs an exhaust gas recirculation rate suitable for the current engine operating state (recycle with respect to the total intake air amount). Calculate the ratio of the circulating exhaust volume). Then, based on the exhaust gas recirculation rate, the opening degree drive command value concerning the opening degree of the primary and secondary side EGR valves 48 and 49 is calculated. Based on this opening degree drive command value, the opening degree of both EGR valves 48 and 49 is controlled, and exhaust gas recirculation suitable for the engine operating state is executed. For example, when the internal combustion engine 11 shifts to an idle operation state, the electronic control unit 57 controls the primary and secondary EGR valves 48 and 49 so as to be almost fully opened. As a result, the exhaust gas recirculation rate is set to be larger than that during high load operation, for example, and a large amount of exhaust gas is recirculated, so that an increase in engine combustion temperature is suppressed and NOx emission is suppressed.

上記実施形態の内燃機関の吸気装置によれば、以下のような効果を得ることができる。
(1)上記実施形態では、一次側インタークーラー25と一次側スロットルバルブ27の間の一次側分岐吸気通路21Aと、二次側インタークーラー26と二次側スロットルバルブ28の間の二次側分岐吸気通路22Aとを連通路54によって連通した。このため、一次及び二次側吸気マニホールド18,19内に発生する吸気系のアンバランスな脈動を無くすことができ、前記合流排気還流通路50から導入口51を介して合流吸気通路29に導入された排気ガスの一次及び二次側スロットルバルブ27,28への吹き返し量を抑制することができる。従って、前記導入口51を一次及び二次側スロットルバルブ27,28へ近付けることができ、合流吸気通路29の長さ寸法を短くして吸気系の重量を低減し、設置スペース及びコストを低減することができる。
According to the intake device for an internal combustion engine of the above embodiment, the following effects can be obtained.
(1) In the above embodiment, the primary side branch intake passage 21A between the primary side intercooler 25 and the primary side throttle valve 27, and the secondary side branch intake passage between the secondary side intercooler 26 and the secondary side throttle valve 28. 22A was communicated with the communication path 54. Therefore, unbalanced pulsation of the intake system generated in the primary and secondary intake manifolds 18 and 19 can be eliminated, and the pulsation is introduced from the merging exhaust gas recirculation passage 50 into the merging intake passage 29 via the introduction port 51. Further, the amount of blowback to the primary and secondary throttle valves 27, 28 can be suppressed. Therefore, the introduction port 51 can be brought close to the primary and secondary throttle valves 27 and 28, the length of the combined intake passage 29 is shortened, the weight of the intake system is reduced, and the installation space and cost are reduced. be able to.

(2)上記実施形態では、一次及び二次側スロットルバルブ27,28側への還流排気ガスの吹き返し量が抑制されるので、排気ガスの供給量を適正に制御することができる。なお、還流排気ガスの高熱による一次及び二次側スロットルバルブ27,28の劣化を防止でき、排気ガスに含まれる不純物による一次及び二次側スロットルバルブ27,28の汚損を防止し、その耐久性を高めることができる。   (2) In the above embodiment, since the amount of recirculation of the recirculated exhaust gas to the primary and secondary throttle valves 27 and 28 is suppressed, the amount of exhaust gas supplied can be controlled appropriately. The primary and secondary throttle valves 27 and 28 can be prevented from deteriorating due to the high heat of the recirculated exhaust gas, and the primary and secondary throttle valves 27 and 28 can be prevented from being contaminated by impurities contained in the exhaust gas. Can be increased.

(3)上記実施形態では、前記排気還流装置43の合流排気還流通路50の下流端は、前記合流吸気通路29の上流端部に連通されている。このため、合流吸気通路29の長さ寸法を限られた設置スペース内で最長に設定することができ、新規の空気と還流排気ガスとの混合を効率よく適正に行うことができる。   (3) In the above embodiment, the downstream end of the combined exhaust gas recirculation passage 50 of the exhaust gas recirculation device 43 communicates with the upstream end portion of the combined intake air passage 29. For this reason, the length dimension of the merging intake passage 29 can be set to the longest in a limited installation space, and the new air and the recirculated exhaust gas can be mixed efficiently and appropriately.

(4)上記実施形態では、一次側及び二次側排気還流通路44,45の下流端は、合流排気還流通路50に接続されている。このため、一次及び二次側排気還流通路44,45が合流排気還流通路50によって互いに連結されることになり、一次及び二次側排気マニホールド31,32に発生する排気系のアンバランスな脈動が解消される。従って、合流排気還流通路50から導入口51を通して合流吸気通路29内に供給される還流排気ガスに作用するアンバランスな脈動が解消され、合流吸気通路29内における還流排気ガスの一次及び二次側スロットルバルブ27,28側への吹き返し量が低減される。従って、前記導入口51を一次及び二次側スロットルバルブ27,28側へさらに近付けることができ、前述した(1)の効果を高めることができる。   (4) In the above embodiment, the downstream ends of the primary side and secondary side exhaust recirculation passages 44 and 45 are connected to the combined exhaust recirculation passage 50. For this reason, the primary and secondary side exhaust gas recirculation passages 44 and 45 are connected to each other by the merged exhaust gas recirculation passage 50, and the unbalanced pulsation of the exhaust system generated in the primary and secondary side exhaust manifolds 31 and 32 occurs. It will be resolved. Accordingly, the unbalanced pulsation acting on the recirculated exhaust gas supplied from the merged exhaust gas recirculation passage 50 to the merged intake air passage 29 through the inlet 51 is eliminated, and the primary and secondary sides of the recirculated exhaust gas in the merged intake air passage 29 are eliminated. The amount of blowback to the throttle valves 27 and 28 is reduced. Accordingly, the introduction port 51 can be further moved closer to the primary and secondary throttle valves 27 and 28, and the effect (1) described above can be enhanced.

なお、上記実施形態は以下のように変更してもよい。
○図3に示すように、一次及び二次側スロットルバルブ27,28の下流側の一次及び二次側分岐吸気通路21,22を直接一次及び二次側吸気マニホールド18,19に連通するとともに、一次及び二次側排気還流通路44,45を合流しないで、一次及び二次側分岐吸気通路21,22にそれぞれ連通するようにしてもよい。なお、この実施形態においては、一次及び二次側吸気マニホールド18,19を直接連通する連通路を設けても良い。
In addition, you may change the said embodiment as follows.
As shown in FIG. 3, the primary and secondary branch intake passages 21 and 22 downstream of the primary and secondary throttle valves 27 and 28 are directly communicated with the primary and secondary intake manifolds 18 and 19, The primary and secondary side exhaust recirculation passages 44 and 45 may be communicated with the primary and secondary side branch intake passages 21 and 22 without joining. In this embodiment, a communication path that directly communicates the primary and secondary intake manifolds 18 and 19 may be provided.

○過給機として、内燃機関11の回転運動を利用したスーパーチャージャーを用いてもよい。
○前記導入口51の配設位置は、前記合流吸気通路29の上流側端部に設けるのが望ましいが、合流吸気通路29の中間部に設定してもよい。
A supercharger that uses the rotational motion of the internal combustion engine 11 may be used as the supercharger.
The placement position of the introduction port 51 is preferably provided at the upstream end of the merging intake passage 29, but may be set at an intermediate portion of the merging intake passage 29.

○前記連通路54を一次及び二次側スロットルバルブ27,28に近接した一次及び二次側分岐吸気通路21A,22Aを連通するようにしてもよい。又、連通路54を複数カ所に配設してもよい。   The communication passage 54 may communicate with the primary and secondary branch intake passages 21A and 22A adjacent to the primary and secondary throttle valves 27 and 28. Further, the communication path 54 may be disposed at a plurality of locations.

○前記一次及び二次側排気還流通路44,45の下流端を前記合流吸気通路29にそれぞれ離して連通するようにしてもよい。
○前記実施形態では、可変容量式の一次及び二次側過給機37,38を搭載する内燃機関11に適用したが、可変容量式でない一次及び二次側過給機を搭載する内燃機関11にも適用できる。
The downstream ends of the primary and secondary side exhaust gas recirculation passages 44 and 45 may be separated from the merging intake passage 29 and communicate with each other.
In the above embodiment, the present invention is applied to the internal combustion engine 11 equipped with the variable capacity primary and secondary superchargers 37, 38, but the internal combustion engine 11 equipped with the primary and secondary superchargers that are not variable capacity. It can also be applied to.

○一次及び二次側排気還流通路44,45のいずれか一方を省略した内燃機関11に具体化してもよい。
○一次及び二次側吸気マニホールド18,19を一体化した吸気マニホールドとしてもよい。
O You may actualize to the internal combustion engine 11 which abbreviate | omitted any one of the primary and secondary side exhaust gas recirculation passages 44 and 45.
A primary manifold and a secondary side intake manifold 18, 19 may be integrated into an intake manifold.

○冷却手段としての一次及び二次側インタークーラー25,26を省略してもよい。この場合には、前記両過給機37,38と両スロットルバルブ27,28の間にて、前記両スロットルバルブ27,28に隣接して、一次側及び二次側分岐吸気通路21A,21Bを連通する連通路54を設ける。この別例においても前述した効果と同様の効果を奏する。   The primary and secondary intercoolers 25 and 26 as cooling means may be omitted. In this case, between the turbochargers 37 and 38 and the throttle valves 27 and 28, adjacent to the throttle valves 27 and 28, the primary side and secondary side branch intake passages 21A and 21B are provided. A communication path 54 that communicates is provided. This another example also has the same effect as described above.

この発明の内燃機関の吸気装置を具体化した一実施形態を示す略体平面図。1 is a schematic plan view showing an embodiment of an intake device for an internal combustion engine according to the present invention. 内燃機関のクランク角度と吸気系の圧力と関係を示すグラフ。The graph which shows the relationship between the crank angle of an internal combustion engine, and the pressure of an intake system. この発明の別の実施形態を示す部分略体平面図。The partial approximate body top view which shows another embodiment of this invention.

符号の説明Explanation of symbols

11…内燃機関、14,15…二次側シリンダヘッド、18,19…一次側及び二次側吸気マニホールド、21,21A,22,22A…一次側及び二次側分岐吸気通路、29…合流吸気通路、30…分岐通路、31,32…一次側及び二次側排気マニホールド、37,38…一次側及び二次側過給機、43…排気還流装置、44,45…一次側及び二次側排気還流通路、50…合流排気還流通路、52…排気クーラー、54…連通路。   DESCRIPTION OF SYMBOLS 11 ... Internal combustion engine, 14, 15 ... Secondary side cylinder head, 18, 19 ... Primary side and secondary side intake manifold, 21, 21A, 22, 22A ... Primary side and secondary side branch intake passage, 29 ... Confluence intake Passage, 30 ... branch passage, 31, 32 ... primary and secondary exhaust manifolds, 37, 38 ... primary and secondary superchargers, 43 ... exhaust recirculation device, 44, 45 ... primary and secondary sides Exhaust gas recirculation passage, 50 ... Merge exhaust gas recirculation passage, 52 ... Exhaust cooler, 54 ... Communication passage.

Claims (7)

V字形状のシリンダブロックに一次側及び二次側シリンダヘッドを装着して構成された一次側及び二次側シリンダバンクを有するV型の内燃機関の吸気マニホールドに一次側及び二次側分岐吸気通路を接続し、前記両分岐吸気通路の途中に吸気を過給するための過給機をそれぞれ設け、過給機よりも下流側の両分岐吸気通路に冷却手段をそれぞれ設け、両冷却手段の下流側の両分岐吸気通路にスロットルバルブをそれぞれ設け、排気ガスの一部を前記両スロットルバルブよりも下流側の吸気通路に還流させる排気還流装置を備えた内燃機関の吸気装置において、
前記両冷却手段と両スロットルバルブの間の一次側及び二次側分岐吸気通路を連通路により連通したことを特徴とする内燃機関の吸気装置。
Primary and secondary branch intake passages in an intake manifold of a V-type internal combustion engine having a primary and secondary cylinder bank constructed by mounting primary and secondary cylinder heads on a V-shaped cylinder block And a supercharger for supercharging intake air in the middle of the two branch intake passages, cooling means are provided in both branch intake passages downstream of the supercharger, and downstream of both cooling means. In the intake device for an internal combustion engine provided with an exhaust gas recirculation device for providing a throttle valve in each of the two branched intake passages on the side and returning a part of the exhaust gas to the intake passage on the downstream side of the two throttle valves,
An intake system for an internal combustion engine, characterized in that a primary side and a secondary side branched intake passage between the cooling means and the throttle valves are communicated by a communication passage.
V型の内燃機関の吸気マニホールドに一次側及び二次側分岐吸気通路を接続し、前記両分岐吸気通路の途中に吸気を過給するための過給機をそれぞれ設け、過給機よりも下流側の両分岐吸気通路にスロットルバルブをそれぞれ設け、排気ガスの一部を前記両スロットルバルブよりも下流側の吸気通路に還流させる排気還流装置を備えた内燃機関の吸気装置において、
前記両過給機と両スロットルバルブの間にて、前記両スロットルバルブに隣接して、一次側及び二次側分岐吸気通路を連通する連通路を設けたことを特徴とする内燃機関の吸気装置。
A primary side and a secondary side branch intake passage are connected to an intake manifold of a V-type internal combustion engine, and a supercharger for supercharging intake air is provided in the middle of both of the branch intake passages, downstream of the supercharger. In the intake device for an internal combustion engine provided with an exhaust gas recirculation device for providing a throttle valve in each of the two branched intake passages on the side and returning a part of the exhaust gas to the intake passage on the downstream side of the two throttle valves,
An intake system for an internal combustion engine, characterized in that a communication passage that communicates a primary side and a secondary side branch intake passage is provided between both the turbochargers and both throttle valves, adjacent to both the throttle valves. .
請求項1又は2において、前記一次側及び二次側分岐吸気通路の下流端は、合流吸気通路に接続され、該合流吸気通路の下流端は、分岐通路により一次側及び二次側吸気マニホールドに接続され、前記排気還流装置の排気還流通路の下流端は、前記合流吸気通路に連通されていることを特徴とする内燃機関の吸気装置。 3. The downstream end of the primary side and secondary side branch intake passages is connected to a merged intake passage, and the downstream end of the merged intake passage is connected to the primary side and secondary side intake manifolds by the branch passages. An intake system for an internal combustion engine, wherein the downstream end of an exhaust gas recirculation passage of the exhaust gas recirculation device is connected to the combined intake air passage. 請求項1〜3のいずれか一項において、前記排気還流装置は内燃機関の一次側及び二次側排気マニホールドに接続された一次側及び二次側排気還流通路と、両排気還流通路にそれぞれ配設された一次側及び二次側流量制御弁と、一次側及び二次側排気還流通路の流量制御弁の下流側に設けられた排気クーラーとにより構成されていることを特徴とする内燃機関の吸気装置。 The exhaust gas recirculation device according to any one of claims 1 to 3, wherein the exhaust gas recirculation devices are respectively disposed in a primary side and a secondary side exhaust gas recirculation passage connected to a primary side and a secondary side exhaust manifold of the internal combustion engine, and both the exhaust gas recirculation passages. An internal combustion engine comprising: primary and secondary flow control valves provided; and an exhaust cooler provided downstream of the flow control valves of the primary and secondary exhaust recirculation passages. Intake device. 請求項4において、前記一次側及び二次側排気還流通路の下流端は、前記排気クーラーの内部において合流排気還流通路の上流端に接続され、前記合流排気還流通路の下流端は、前記両スロットルバルブの下流側の吸気通路に接続されていることを特徴とする内燃機関の吸気装置。 5. The downstream end of the primary side and secondary side exhaust gas recirculation passages is connected to the upstream end of the merged exhaust gas recirculation passage inside the exhaust cooler, and the downstream end of the merged exhaust gas recirculation passage is connected to both throttles. An intake device for an internal combustion engine, wherein the intake device is connected to an intake passage downstream of the valve. 請求項1〜5のいずれか一項において、前記連通路は前記両スロットルバルブの近傍の一次側及び二次側分岐吸気通路を連通するようにしたことを特徴とする内燃機関の吸気装置。 6. The intake system for an internal combustion engine according to claim 1, wherein the communication passage communicates with a primary side and a secondary side branch intake passage in the vicinity of the throttle valves. 請求項1〜6のいずれか一項において、前記排気還流通路の下流端は、両スロットルバルブに近接して前記吸気通路に連通されていることを特徴とする内燃機関の吸気装置。 The intake device for an internal combustion engine according to any one of claims 1 to 6, wherein a downstream end of the exhaust gas recirculation passage is communicated with the intake passage in the vicinity of both throttle valves.
JP2004174677A 2004-06-11 2004-06-11 Intake device for internal combustion engine Pending JP2005351220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004174677A JP2005351220A (en) 2004-06-11 2004-06-11 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004174677A JP2005351220A (en) 2004-06-11 2004-06-11 Intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005351220A true JP2005351220A (en) 2005-12-22

Family

ID=35585889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004174677A Pending JP2005351220A (en) 2004-06-11 2004-06-11 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005351220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091542A1 (en) * 2006-02-08 2007-08-16 Toyota Jidosha Kabushiki Kaisha Air intake control device of v-diesel engine
CN102562371A (en) * 2011-01-03 2012-07-11 通用汽车环球科技运作有限责任公司 Intake system for an internal combustion engine
JP2017066888A (en) * 2015-09-28 2017-04-06 株式会社豊田自動織機 Exhaust gas recirculation device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091542A1 (en) * 2006-02-08 2007-08-16 Toyota Jidosha Kabushiki Kaisha Air intake control device of v-diesel engine
US7953540B2 (en) 2006-02-08 2011-05-31 Toyota Jidosha Kabushiki Kaisha Air intake control device of V-diesel engine
CN101379280B (en) * 2006-02-08 2012-01-18 丰田自动车株式会社 Air intake control device of V-diesel engine
CN102562371A (en) * 2011-01-03 2012-07-11 通用汽车环球科技运作有限责任公司 Intake system for an internal combustion engine
US8813728B2 (en) 2011-01-03 2014-08-26 GM Global Technology Operations LLC Intake system for an internal combustion engine
JP2017066888A (en) * 2015-09-28 2017-04-06 株式会社豊田自動織機 Exhaust gas recirculation device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5259822B2 (en) Exhaust turbocharger for automobile internal combustion engine
JP5812102B2 (en) Internal combustion engine with a supercharger
JP4432891B2 (en) Internal turbocharged engine
JP5136654B2 (en) Control device for internal combustion engine
JP4429359B2 (en) Device for controlling exhaust pressure pulsation in an internal combustion engine
JP2011080396A (en) Egr device
JP2007239493A (en) Internal combustion engine with supercharger
JP5998901B2 (en) Turbocharged engine
JP2014001703A (en) Cooling system of internal combustion engine
JP2008138598A (en) Egr system for internal combustion engine
JP4737151B2 (en) Exhaust system for internal combustion engine
JP2005351220A (en) Intake device for internal combustion engine
JP2009108693A (en) Control device for internal combustion engine
JP6593082B2 (en) Intake and exhaust system for internal combustion engine
JP5974805B2 (en) Multi-cylinder engine with turbocharger
JP6520366B2 (en) Internal combustion engine supercharging system
JP4983144B2 (en) Internal combustion engine equipped with an EGR device
JP5983285B2 (en) Turbocharged engine
JP2012189063A (en) Cooling apparatus for internal combustion engine
JP2009250209A (en) Exhaust gas recirculating device of internal combustion engine
JP2010031687A (en) Spark ignition internal combustion engine
JP2017089585A (en) Control method and device for vehicle
JP5747807B2 (en) EGR gas cooling system for internal combustion engine
JP6032802B2 (en) EGR device
JP2012132337A (en) Control device of internal combustion engine with supercharger