JP2005349430A - Laser beam machine - Google Patents

Laser beam machine Download PDF

Info

Publication number
JP2005349430A
JP2005349430A JP2004171950A JP2004171950A JP2005349430A JP 2005349430 A JP2005349430 A JP 2005349430A JP 2004171950 A JP2004171950 A JP 2004171950A JP 2004171950 A JP2004171950 A JP 2004171950A JP 2005349430 A JP2005349430 A JP 2005349430A
Authority
JP
Japan
Prior art keywords
laser
light
chip semiconductor
semiconductor laser
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004171950A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakurai
努 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004171950A priority Critical patent/JP2005349430A/en
Publication of JP2005349430A publication Critical patent/JP2005349430A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1632Laser beams characterised by the way of heating the interface direct heating the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91631Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00141Protective gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Semiconductor Lasers (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machine capable of performing a stable resin joining, and being operated by an insulation type switching source. <P>SOLUTION: Working current with high speed intensity modulation applied is output from an E/O transmutation circuit 33 to a photo coupler 32, thus laser light with high speed intensity modulation applied is output from watt class one chip semiconductor laser 13, and further, variation in the output of the light is fed-back by a photodiode 28, and variation in the output of the light in accordance with variation in ambient temperature is compensated. In this way, stable resin joining can be performed to a resin in which the temperature difference between the melting point and the decomposition melting point is narrow. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、たとえばレンズを鏡筒内に嵌め込むレンズ固定装置に使用され、樹脂接合等を行うレーザ加工装置、特にその駆動回路に関するものである。   The present invention relates to a laser processing apparatus that is used in, for example, a lens fixing device for fitting a lens into a lens barrel and performs resin bonding or the like, and more particularly to a drive circuit thereof.

上記レーザ加工装置の駆動回路が、たとえば非特許文献1に開示されている。
この開示されたレーザ加工装置の駆動回路を図9に示す。
図9に示すように、内蔵フォトダイオード(PD)とレーザ素子(LD)とから構成される半導体レーザと、レーザ光出力を調整するための可変抵抗Rなどを備え、内蔵フォトダイオードからのモニタ電流により光出力を制御するCW(連続)動作APC回路により形成されており、このAPC回路の制御により温度の変化にかかわらず、一定のレーザ光出力を得ることができるように形成されている。
A driving circuit for the laser processing apparatus is disclosed in Non-Patent Document 1, for example.
A drive circuit of the disclosed laser processing apparatus is shown in FIG.
As shown in FIG. 9, includes a built-in photodiode (PD) and the semiconductor laser constructed from a laser element (LD), and the variable resistor R V for adjusting the laser beam output, a monitor from the internal photodiode It is formed by a CW (continuous) operation APC circuit that controls the light output by current, and it is formed so that a constant laser light output can be obtained regardless of the temperature change by the control of this APC circuit.

この構成のもと、レーザ光出力の調整は、まず可変抵抗Rを最大値に調整し、電源の出力レベルを徐々に規定電圧まで上昇し、その後、光パワーメータなどを用いて光出力をモニタしながら、可変抵抗Rを小さく調整して半導体レーザからのレーザ光出力を増大させることにより行われる。
株式会社東芝発行「東芝半導体レーザ Q&Aマニュアル」、1989年、p.17
Under this configuration, the laser light output is adjusted by first adjusting the variable resistor RV to the maximum value, gradually increasing the output level of the power supply to the specified voltage, and then using a power meter or the like to adjust the light output. While monitoring, the variable resistance RV is adjusted to a small value to increase the laser light output from the semiconductor laser.
“Toshiba Semiconductor Laser Q & A Manual” published by Toshiba Corporation, 1989, p. 17

しかし、上記従来のレーザ加工装置の駆動回路の構成によると、レーザ光出力はCW(連続)出力のために、動作APC回路の特性や半導体レーザの特性等によりレーザ光の強度が変動すると、融点と分解溶融点との温度差が小さい樹脂を接合する際、樹脂が分解されて接合できなくなるという問題がある。   However, according to the configuration of the drive circuit of the conventional laser processing apparatus, the laser beam output is a CW (continuous) output, so that if the intensity of the laser beam fluctuates due to the characteristics of the operating APC circuit or the characteristics of the semiconductor laser, the melting point When a resin having a small temperature difference between the melting point and the melting point is bonded, there is a problem that the resin is decomposed and cannot be bonded.

また、電源として通常市販されている安価な絶縁型スイッチング電源を用いるとノイズが多いため、半導体レーザが破損する恐れがある。
そこで本発明は、安定した樹脂接合を行うことができ、さらに絶縁型スイッチング電源による作動を可能としたレーザ加工装置を提供することを目的としたものである。
Further, when an inexpensive isolated switching power supply that is usually marketed as a power supply is used, there is a risk that the semiconductor laser may be damaged due to a lot of noise.
Therefore, an object of the present invention is to provide a laser processing apparatus that can perform stable resin bonding and that can be operated by an insulating switching power supply.

前記した目的を達成するために、本発明の請求項1記載のレーザ加工装置は、融点と分解溶融点または沸点との温度差が小さい物質に向けてこの物質を溶解させるライン状レーザ光を光軸センタを中心に出射するワンチップ半導体レーザ光源と、前記ワンチップ半導体レーザ光源より照射される前記レーザ光の強度を制御するレーザ駆動回路を設けるレーザ加工装置であって、前記レーザ駆動回路は、前記ワンチップ半導体レーザ光源からレーザ発振された前記レーザ光を受光して電気信号に変換する光変換素子と、発光素子と受光素子とから形成され、前記受光素子が前記光変換素子と直列に接続され、光変換素子とともに前記ワンチップ半導体レーザ光源に並列に接続された電気−光変換素子と、前記ワンチップ半導体レーザ光源に供給する電流を制御する前記ワンチップ半導体レーザ光源の駆動素子と、前記光変換素子と前記電気−光変換素子の前記受光素子との接続点に接続され、前記レーザ光の変化に伴う前記光変換素子の電気信号の変化に起因する前記接続点の電圧の変化により、前記駆動素子を駆動して前記レーザ光の強度を制御する出力制御回路を備え、前記レーザ光の強度の指令データとして前記電気−光変換素子の発光素子に高速強度変調をかけた動作電流を入力して、前記受光素子を介して前記接続点の電圧を変化させ、この接続点の電圧の変化により前記出力制御回路により前記駆動素子を駆動させ、前記レーザ光の強度の指令データに基づいて前記ワンチップ半導体レーザ光源から出力されるレーザ光を高速強度変調することを特徴としたものである。   In order to achieve the above-described object, a laser processing apparatus according to claim 1 of the present invention emits a line-shaped laser beam for dissolving a substance toward a substance having a small temperature difference between a melting point and a decomposition melting point or a boiling point. A laser processing apparatus comprising: a one-chip semiconductor laser light source that emits about an axis center; and a laser driving circuit that controls the intensity of the laser light emitted from the one-chip semiconductor laser light source, wherein the laser driving circuit includes: It is formed of a light conversion element that receives the laser light emitted from the one-chip semiconductor laser light source and converts it into an electrical signal, a light emitting element and a light receiving element, and the light receiving element is connected in series with the light converting element. And an electro-optical conversion element connected in parallel to the one-chip semiconductor laser light source together with the optical conversion element, and supplied to the one-chip semiconductor laser light source The light conversion element connected to a connection point between the driving element of the one-chip semiconductor laser light source for controlling a current to be generated, the light conversion element and the light receiving element of the electro-optical conversion element, and accompanying the change of the laser light An output control circuit for controlling the intensity of the laser beam by driving the drive element according to a change in the voltage at the connection point caused by the change in the electrical signal of the electric signal; An operating current subjected to high-speed intensity modulation is input to the light emitting element of the light conversion element, the voltage at the connection point is changed via the light receiving element, and the drive is performed by the output control circuit according to the change in the voltage at the connection point. The element is driven, and the laser light output from the one-chip semiconductor laser light source is subjected to high-speed intensity modulation based on the command data of the intensity of the laser light.

また請求項2記載のレーザ加工装置は、請求項1に記載の発明であって、外部からの前記レーザ光の強度の指令データに応じて、前記電器−光変換素子の前記発光素子へ高速強度変調をかけた前記動作電流を出力して、前記発光素子を駆動する指令回路を備えたことを特徴としたものである。   According to a second aspect of the present invention, there is provided the laser processing apparatus according to the first aspect, wherein the high-speed intensity is applied to the light-emitting element of the electric-light conversion element in accordance with external command data of the intensity of the laser beam. A command circuit for driving the light emitting element by outputting the modulated operating current is provided.

そして請求項3記載のレーザ加工装置は、請求項1または請求項2に記載の発明であって、前記高速強度変調は、光出力を短時間で、最高値である融点まで上昇させているとともに、最低値である分解溶融点以下まで下降させていることを特徴としたものである。   The laser processing apparatus according to claim 3 is the invention according to claim 1 or claim 2, wherein the high-speed intensity modulation raises the optical output to the maximum melting point in a short time. Further, the temperature is lowered to the decomposition melting point or less which is the lowest value.

さらに請求項4記載のレーザ加工装置は、請求項1〜請求項3のいずれか1項に記載の発明であって、前記ワンチップ半導体レーザ光源に印加される電圧を所定の値まで徐々に上昇させながら出力するスロースタート回路を設けたことを特徴としたものである。   Furthermore, a laser processing apparatus according to a fourth aspect is the invention according to any one of the first to third aspects, wherein the voltage applied to the one-chip semiconductor laser light source is gradually increased to a predetermined value. This is characterized in that a slow start circuit is provided for outputting the output.

また請求項5記載のレーザ加工装置は、請求項1〜請求項4のいずれか1項に記載の発明であって、筒状に形成された金属製の本体を備え、前記本体内に前記レーザ駆動回路を設けたことを特徴としたものである。   The laser processing apparatus according to claim 5 is the invention according to any one of claims 1 to 4, comprising a metal main body formed in a cylindrical shape, and the laser in the main body. A drive circuit is provided.

そして請求項6記載のレーザ加工装置は、請求項5に記載の発明であって、前記光変換素子を、前記本体内で、前記ワンチップ半導体レーザ光源のファースト方向レーザ光の前記光軸センタを中心としたビーム拡散角において30°〜90°の範囲内に配置したことを特徴としたものである。   According to a sixth aspect of the present invention, there is provided the laser processing apparatus according to the fifth aspect, wherein the optical conversion element is disposed within the main body at the optical axis center of the first direction laser light of the one-chip semiconductor laser light source. It is characterized in that it is arranged in the range of 30 ° to 90 ° at the central beam diffusion angle.

本発明のレーザ加工装置は、絶縁型の電気−光変換素子を備え、この電気−光変換素子の発光素子へ高速強度変調をかけた動作電流を出力し、ワンチップ半導体レーザ光源から出力されるレーザ光を高速強度変調することにより、融点と分解溶融点との温度差が小さい樹脂に対して、安定した樹脂接合を行うことができる。   The laser processing apparatus of the present invention includes an insulating electro-optical conversion element, outputs an operating current subjected to high-speed intensity modulation to the light emitting element of the electro-optical conversion element, and is output from a one-chip semiconductor laser light source. By performing high-speed intensity modulation of the laser light, stable resin bonding can be performed on a resin having a small temperature difference between the melting point and the decomposition melting point.

以下に、本発明の実施の形態におけるレーザ加工装置について、図面を参照しながら説明する。
このレーザ加工装置11には、融点と分解溶融点または沸点との温度差が小さい物質に向けてこの物質を溶解させるライン状レーザ光Lを光軸センタ22を中心に出射するワット級ワンチップ半導体レーザ13と、ワット級ワンチップ半導体レーザ13より照射されるレーザ光Lの強度を制御するレーザ駆動回路31が設けられている。
Hereinafter, a laser processing apparatus according to an embodiment of the present invention will be described with reference to the drawings.
The laser processing apparatus 11 includes a watt-class one-chip semiconductor that emits a line-shaped laser beam L that dissolves a substance having a small temperature difference between a melting point and a decomposition melting point or a boiling point around an optical axis center 22. A laser drive circuit 31 that controls the intensity of the laser beam L and the laser beam L emitted from the watt-class one-chip semiconductor laser 13 is provided.

図1に本発明の実施の形態におけるレーザ加工装置を用いたレンズ固定装置の概略図を示す。
図1において、1はレーザ加工対象物の鏡筒であり、この鏡筒1は、ファイバー強化された熱可塑性樹脂(融点と分解溶融点との温度差が小さい物質の一例;たとえば融点が250゜C、分解溶融点または沸点が300゜Cの樹脂)で形成されており、内方にカメラ用レンズ5が嵌め込まれる孔部4と、この孔部4の周囲上部に形成され、内側にカメラ用レンズ5と当接するかしめ面2Aを有し、孔部4に嵌め込まれたカメラ用レンズ5をかしめるためのかしめ部2とを設けている。またこの鏡筒1を前記かしめ部2が上向きとなるように固定する受け治具3が備えられている。なお、上記孔部4の径は、カメラ用レンズ5の径より僅かに大きく形成されており、カメラ用レンズ5が中心に配置されたとき、カメラ用レンズ5の両側面5Aと孔部4の内壁面4Aとの間に隙間6(約20μm)ができるよう形成されている。
FIG. 1 shows a schematic diagram of a lens fixing device using a laser processing apparatus according to an embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a lens barrel of a laser processing object. This lens barrel 1 is a fiber-reinforced thermoplastic resin (an example of a material having a small temperature difference between a melting point and a decomposition melting point; for example, a melting point of 250 °). C, a resin having a decomposition melting point or a boiling point of 300 ° C.), a hole 4 into which the camera lens 5 is fitted inward, and an upper portion around the hole 4, and a camera for the inside. A caulking surface 2A that comes into contact with the lens 5 and a caulking portion 2 for caulking the camera lens 5 fitted into the hole 4 are provided. A receiving jig 3 for fixing the lens barrel 1 so that the caulking portion 2 faces upward is provided. The diameter of the hole 4 is slightly larger than the diameter of the camera lens 5, and when the camera lens 5 is disposed at the center, the both side surfaces 5 </ b> A of the camera lens 5 and the hole 4 are formed. A gap 6 (about 20 μm) is formed between the inner wall surface 4A and the inner wall surface 4A.

また、かしめ部2は、カメラ用レンズ5の側面5Aの上端位置からかしめ部2の上端位置までの距離Kが、レーザ加工装置1によるかしめ部2の溶融を行ってもカメラ用レンズ5をかしめることが可能な距離(約1mm)となるよう形成されており、カメラ用レンズ5をかしめる際は、カメラ用レンズ5の側部の上端位置とかしめ部2の上端位置との中央部X位置(かしめ部の上端から約0.5mm)をレーザ光Lにより照射する。   Further, the caulking part 2 does not move the camera lens 5 even if the distance K from the upper end position of the side surface 5A of the camera lens 5 to the upper end position of the caulking part 2 melts the caulking part 2 by the laser processing apparatus 1. When the camera lens 5 is caulked, a central portion X between the upper end position of the side portion of the camera lens 5 and the upper end position of the caulking portion 2 is formed. The position (about 0.5 mm from the upper end of the caulking portion) is irradiated with the laser light L.

図1において、11は受け治具3の上方に配置されたレーザ加工装置であり、このレーザ加工装置11は、図1および図2(a),(b)に示すように、上記鏡筒1側が開放され筒状に形成された金属製の本体12と、この本体12内に2本の樹脂ねじ21により絶縁フィルム(絶縁体の一例)16を介して固定され、上記鏡筒1のかしめ部2を溶解させるレーザ光Lを光軸センタ22を中心に出射する出射部23を有する連続発振(CW)タイプのワット級ワンチップ半導体レーザ(LD)(ワンチップ半導体レーザ光源の一例)13と、本体12内で且つ鏡筒1とワット級ワンチップ半導体レーザ13との間で光軸センタ22上に配置され、ワット級ワンチップ半導体レーザ13の出射部23から出射されるレーザ光Lを集光させる非球面レンズ14と、本体12内で且つ開放された鏡筒1側で非球面レンズ14を保持し、調整具により光軸センタ22上における非球面レンズ14の位置を可変可能としたレンズ保持部15と、本体12に配置され、外方から引き込まれた給電線24により給電されて、ワット級ワンチップ半導体レーザ13を駆動するパワートランジスタ17{第1パワートランジスタ17A(Tr1),第2パワートランジスタ17B(Tr2),第3パワートランジスタ17C(Tr3),第4パワートランジスタ17D(Tr4)}と、本体12内で且つ本体12の後端部(鏡筒1とは反対の端部)に設けられた係合部25からワット級ワンチップ半導体レーザ13の近傍まで配置された水冷却配管26と、本体12内に配置され、給電線24により給電される回路基板27と、本体12内に配置され、ワット級ワンチップ半導体レーザ13に接続されたプラス電源ラインに一端が接続され、ワット級ワンチップ半導体レーザ13の出射部23からレーザ発振されたレーザ光Lを受光するフォトダイオード(PD)(光変換素子の一例)28などから構成されている。   In FIG. 1, reference numeral 11 denotes a laser processing apparatus disposed above the receiving jig 3, and the laser processing apparatus 11 includes the lens barrel 1, as shown in FIGS. 1, 2 (a) and 2 (b). A metal main body 12 having an open side and a cylindrical shape, and an insulating film (an example of an insulator) 16 fixed to the main body 12 by two resin screws 21, and the caulked portion of the lens barrel 1 A continuous wave (CW) type watt-class one-chip semiconductor laser (LD) (an example of a one-chip semiconductor laser light source) 13 having an emission portion 23 that emits a laser beam L that dissolves 2 around an optical axis center 22; A laser beam L, which is disposed on the optical axis center 22 in the main body 12 and between the lens barrel 1 and the watt-class one-chip semiconductor laser 13, and condenses the laser light L emitted from the emitting portion 23 of the watt-class one-chip semiconductor laser 13. Non-spherical A lens 14 and a lens holder 15 that holds the aspheric lens 14 in the main body 12 on the opened lens barrel 1 side, and allows the position of the aspheric lens 14 on the optical axis center 22 to be changed by an adjustment tool. , A power transistor 17 {first power transistor 17A (Tr1), second power transistor 17B (driven by a power supply line 24, which is disposed in the main body 12 and fed from the outside, and drives the watt-class one-chip semiconductor laser 13). Tr2), the third power transistor 17C (Tr3), the fourth power transistor 17D (Tr4)}, and the engagement provided in the main body 12 and at the rear end of the main body 12 (the end opposite to the lens barrel 1). A water cooling pipe 26 arranged from the joint portion 25 to the vicinity of the watt-class one-chip semiconductor laser 13 and the main body 12, and supplied by a feeder line 24. One end of the circuit board 27 and the positive power line connected to the watt-class one-chip semiconductor laser 13 are connected to the circuit board 27 and connected to the watt-class one-chip semiconductor laser 13. A photodiode (PD) (an example of a light conversion element) 28 that receives the laser light L is configured.

また、図3に示すように、本体12内には、ワット級ワンチップ半導体レーザ13、各パワートランジスタ17、回路基板27およびフォトダイオード28によりレーザ駆動回路31が形成されており、上記回路基板27は、LED(発光素子の一例)32Aとフォトトランジスタ(受光素子の一例)32Bとから形成され、フォトトランジスタ32Bの一端がフォトダイオード28の他端に接続され、フォトトランジスタ32Bの他端が抵抗39の一端に接続されるフォトカプラ(電気−光変換素子の一例)32と、入力端子SIGから入力される外部からのレーザ光の強度の指令データに応じて、フォトカプラ32のLED32Aへ高速強度変調をかけた動作電流を出力してLED32Aを駆動するE/O変換回路(指令回路の一例)33と、フォトダイオード28の他端とフォトカプラ32のフォトトランジスタ32Bとの一端との接続点であるA点に接続され、前記A点とマイナス電源ライン間の電圧に基づいて第1パワートランジスタ17Aを駆動してワット級ワンチップ半導体レーザ13の電流制御を行うAPC回路(出力制御回路の一例)34と、入力端がプラス電源ラインと接続され、出力端がワット級ワンチップ半導体レーザ13の一端と接続され、このワット級ワンチップ半導体レーザ13に印加される電圧を所定の値まで徐々に上昇させながら出力するスロースタート回路35と、第4パワートランジスタ17Dのベースおよびマイナス電源ラインと接続され、過電流が流れた場合などに回路を保護するサーマルオーバーカレントシャットダウン38などから形成されている。   As shown in FIG. 3, a laser drive circuit 31 is formed in the main body 12 by a watt-class one-chip semiconductor laser 13, each power transistor 17, a circuit board 27, and a photodiode 28. Is formed of an LED (an example of a light emitting element) 32A and a phototransistor (an example of a light receiving element) 32B. One end of the phototransistor 32B is connected to the other end of the photodiode 28, and the other end of the phototransistor 32B is a resistor 39. The photocoupler (an example of an electro-optical conversion element) 32 connected to one end of the photocoupler 32 and high-speed intensity modulation to the LED 32A of the photocoupler 32 according to external laser beam intensity command data input from the input terminal SIG E / O conversion circuit (an example of a command circuit) that drives the LED 32A by outputting an operating current multiplied by 3 And the other end of the photodiode 28 and one end of the phototransistor 32B of the photocoupler 32, the first power transistor 17A is connected based on the voltage between the point A and the negative power supply line. An APC circuit (an example of an output control circuit) 34 that drives and controls the current of the watt class one-chip semiconductor laser 13, an input terminal is connected to a positive power supply line, and an output terminal is one end of the watt class one-chip semiconductor laser 13. Connected to the slow start circuit 35 that outputs while gradually increasing the voltage applied to the watt class one-chip semiconductor laser 13 to a predetermined value, the base of the fourth power transistor 17D, and the negative power supply line. Is it a thermal overcurrent shutdown 38 that protects the circuit when a current flows? It is formed.

なお、上記第1パワートランジスタ17A(駆動素子の一例)は、ベースがAPC回路34と接続され、コレクタが抵抗39の他端およびワット級ワンチップ半導体レーザ13の他端と接続され、エミッタがマイナス電源ラインと接続されている。   The first power transistor 17A (an example of a drive element) has a base connected to the APC circuit 34, a collector connected to the other end of the resistor 39 and the other end of the watt-class one-chip semiconductor laser 13, and an emitter negative. Connected to the power line.

また、上記APC回路34は、例えばベースがA点と接続され、コレクタが第1パワートランジスタ17Aのベースおよび抵抗を介してマイナス電源ラインと接続され、エミッタがプラス電源ラインと接続されたトランジスタにより形成される。   The APC circuit 34 is formed of a transistor having a base connected to the point A, a collector connected to the negative power supply line via the base and resistor of the first power transistor 17A, and an emitter connected to the positive power supply line. Is done.

また上記スロースタート回路35は、一端がプラス電源ラインに接続され、他端がワット級ワンチップ半導体レーザ13と接続された出力電圧調整素子(ダーリントン接続された第2,第3パワートランジスタ17B,17C)と、一端がプラス電源ラインに接続され、他端が第3パワートランジスタ17Cのベースに接続された抵抗36と、プラス端子が抵抗36および第3パワートランジスタ17Cのベースに接続された電解コンデンサ37とから形成されている。   The slow start circuit 35 has an output voltage adjusting element (one Darlington-connected second and third power transistors 17B and 17C) having one end connected to the positive power supply line and the other end connected to the watt-class one-chip semiconductor laser 13. ), A resistor 36 having one end connected to the positive power supply line and the other end connected to the base of the third power transistor 17C, and an electrolytic capacitor 37 having a positive terminal connected to the resistor 36 and the base of the third power transistor 17C. And is formed from.

また、図2,図4に示すように、フォトダイオード28を、本体12内で、ワット級ワンチップ半導体レーザ13のファースト方向レーザ光Lの光軸センタ22を中心としたビーム拡散角において30°〜90°の範囲内に配置、すなわち本体12内におけるレーザ光Lの光軸センタ22から30°〜90°上方に位置する場所にフォトダイオード28を配置させており、このフォトダイオード28は可視光カットフィルタを備えている。   As shown in FIGS. 2 and 4, the photodiode 28 is 30 ° in the main body 12 at a beam diffusion angle centered on the optical axis center 22 of the first direction laser beam L of the watt class one-chip semiconductor laser 13. The photodiode 28 is disposed within a range of ˜90 °, that is, at a position 30 ° to 90 ° above the optical axis center 22 of the laser beam L in the main body 12, and the photodiode 28 is visible light. A cut filter is provided.

このように、レーザ発振領域A、すなわちLEDモードでない領域にフォトダイオード28を配置することにより、フォトダイオード28がレーザ光L(戻光)の影響を受けることを回避している。   In this manner, by arranging the photodiode 28 in the laser oscillation region A, that is, the region not in the LED mode, the photodiode 28 is avoided from being affected by the laser light L (return light).

以下に、上記した実施の形態における作用を説明する。
まず、図1に示すように、受け治具3にレーザ加工対象の鏡筒1を上向きに固定し、この鏡筒1の孔部4にレンズ5を嵌め込み、調芯を行う。この調芯の結果、隙間6は数10μm〜数μmとなる。そして、レーザ加工装置11から照射されるレーザ光Lを水平位置から上方へα(15°〜30°)傾けた状態で、レーザ光Lの集光部Mが鏡筒1のかしめ面2Aの中央部X位置に合うように、そしてスロー方向のレーザ光Lが水平となるように、レーザ加工装置11を調整する。
The operation in the above embodiment will be described below.
First, as shown in FIG. 1, the lens barrel 1 to be laser processed is fixed upward on the receiving jig 3, and the lens 5 is fitted into the hole 4 of the lens barrel 1 to perform alignment. As a result of this alignment, the gap 6 becomes several tens of μm to several μm. Then, the laser beam L irradiated from the laser processing apparatus 11 is tilted by α (15 ° to 30 °) upward from the horizontal position, and the condensing part M of the laser beam L is in the center of the caulking surface 2A of the lens barrel 1. The laser processing apparatus 11 is adjusted so that the laser beam L in the slow direction is horizontal so as to match the position of the part X.

そして、ワット級ワンチップ半導体レーザ13によりカメラ用レンズ5をかしめる際、かしめ面2Aの中央部Xに窒素ガスを噴き付けた窒素ガス雰囲気の中で、レーザ光Lを、水平位置から上方へα(15°〜30°)傾けた状態で、集光部Mであるかしめ面2Aの中央部X位置に対してスロー方向のレーザ光Lが水平となりファースト方向のレーザ光Lが集光するよう照射する。ファースト方向のレーザ光Lのビーム幅B(約20μm)が集光部である中央部Xの高さ方向の幅となる。   When the camera lens 5 is caulked by the watt class one-chip semiconductor laser 13, the laser beam L is moved upward from the horizontal position in a nitrogen gas atmosphere in which nitrogen gas is sprayed onto the central portion X of the caulking surface 2A. The laser beam L in the slow direction is horizontal with respect to the position of the central portion X of the caulking surface 2A, which is the light condensing part M, in a state where it is tilted by α (15 ° to 30 °) so that the laser light L in the first direction is condensed. Irradiate. The beam width B (about 20 μm) of the laser beam L in the first direction is the width in the height direction of the central portion X that is a condensing portion.

このときの、レーザ駆動回路31の作用を説明する。
レーザ光Lを出射するためにレーザ駆動回路31を作動させる際、通常市販されている安価な絶縁型スイッチング電源(図示せず)を用いて、給電線24を介してレーザ駆動回路31のワット級ワンチップ半導体レーザ13に電圧の供給を行う。ここで、レーザ駆動回路31はスロースタート回路35を備えているため、絶縁型スイッチング電源より入力された電圧は、所定の値まで徐々に増加されてワット級ワンチップ半導体レーザ13などへ印加される。これにより、絶縁型スイッチング電源によるワット級ワンチップ半導体レーザ13の安定した作動が可能となる。
The operation of the laser drive circuit 31 at this time will be described.
When operating the laser drive circuit 31 to emit the laser light L, a watt class of the laser drive circuit 31 is provided via the feeder line 24 using a commercially available inexpensive insulated switching power supply (not shown). A voltage is supplied to the one-chip semiconductor laser 13. Here, since the laser drive circuit 31 includes the slow start circuit 35, the voltage input from the isolated switching power supply is gradually increased to a predetermined value and applied to the watt class one-chip semiconductor laser 13 or the like. . Thereby, the stable operation | movement of the watt class one-chip semiconductor laser 13 by an insulation type switching power supply is attained.

上述の如くワット級ワンチップ半導体レーザ13は、レーザ光Lをかしめ面2Aへ出力するとともに、フォトダイオード28に対して光信号を出力し、この光信号を受けたフォトダイオード28は、その光信号を電気信号に変換してフォトカプラ32へ電流Iを流す。 As described above, the watt-class one-chip semiconductor laser 13 outputs the laser light L to the caulking surface 2A and outputs an optical signal to the photodiode 28. The photodiode 28 that receives this optical signal receives the optical signal. Is converted into an electric signal, and a current I 2 is supplied to the photocoupler 32.

これらフォトダイオード28とフォトカプラ32の接続点であるA点の電位は、ワット級ワンチップ半導体レーザ13の光出力の変化に伴い変化する前記電流I、およびE/O変換回路33からの動作電流により変動する。 Potential at point A which is the connection point of these photodiodes 28 and photocoupler 32, the operation from the current I 2, and E / O conversion circuit 33 varies with the change in the light output of watt class one-chip semiconductor laser 13 Varies with current.

i.E/O変換回路33から、フォトカプラ32内のLED32Aへ高速強度変調をかけた動作電流が出力されると、前記動作電流はLED32Aにより光信号に変換され、その光信号に応じてフォトカプラ32のフォトトランジスタ32Bにより前記電流Iは調整され電流Iとして抵抗39へ流れ、このときA点の電位は前記動作電流の変調に応じて高速で変動する。また入力端子SIGから入力された指令データに応じて前記高速強度変調をかけた動作電流の実効値が増加(減少)されると、A点の電位が増加(減少)する。 i. When an operating current subjected to high-speed intensity modulation is output from the E / O conversion circuit 33 to the LED 32A in the photocoupler 32, the operating current is converted into an optical signal by the LED 32A, and the photocoupler 32 is converted according to the optical signal. the current I 2 by the phototransistor 32B of flows as the current I 3 is adjusted to the resistor 39, the potential at this time point a is varied at high speed in accordance with the modulation of the operating current. When the effective value of the operating current subjected to the high-speed intensity modulation is increased (decreased) in accordance with the command data input from the input terminal SIG, the potential at the point A increases (decreases).

このとき、APC回路34は、A点の電位の変動に応答して第1トランジスタ17Aを駆動してワット級ワンチップ半導体レーザ13へ供給する電流Iを変動させ、レーザ光の光出力(強度)を前記動作電流の変調に応じて高速で変動させるとともに、高速強度変調をかけた動作電流が増加(減少)し、A点の電位が増加(減少)すると、ワット級ワンチップ半導体レーザ13へ供給する電流Iを増加(減少)させ、前記指令データに応じた出力を、ワット級ワンチップ半導体レーザ13より出力させる。このように、APC回路34は、常にE/O変換回路33から出力される動作電流により定められた電位(以下、基準電位と称す)に応答して、ワット級ワンチップ半導体レーザ13の光出力を制御している。 In this case, APC circuit 34, in response to variations in the potential at point A is varied the currents I 1 supplies a first transistor 17A is driven to watts one-chip semiconductor laser 13, the optical output of the laser light (intensity ) At a high speed according to the modulation of the operating current, and when the operating current subjected to the high-speed intensity modulation increases (decreases) and the potential at point A increases (decreases), the watt-class one-chip semiconductor laser 13 The supplied current I 1 is increased (decreased), and an output corresponding to the command data is output from the watt class one-chip semiconductor laser 13. As described above, the APC circuit 34 always responds to the potential determined by the operating current output from the E / O conversion circuit 33 (hereinafter referred to as the reference potential), and the optical output of the watt class one-chip semiconductor laser 13. Is controlling.

ii.ワット級ワンチップ半導体レーザ13の光出力が周囲温度により変化すると、フォトダイオード28の電気信号が変化し、これに起因してA点の電位が変化する。周囲温度が上昇(下降)し、ワット級ワンチップ半導体レーザ13の光出力が減少(増加)すると、逆にA点の電位は増加(減少)する。   ii. When the optical output of the watt-class one-chip semiconductor laser 13 changes depending on the ambient temperature, the electrical signal of the photodiode 28 changes, and the potential at point A changes accordingly. When the ambient temperature rises (falls) and the light output of the watt-class one-chip semiconductor laser 13 decreases (increases), the potential at point A increases (decreases).

このようにレーザ光の光出力が減少(増加)し、A点の電位が増加(減少)すると、APC回路34は、第1トランジスタ17Aのベース電流に対して電流制御を行い、第1トランジスタ17Aへ流れる電流Iを増加(減少)させ、ワット級ワンチップ半導体レーザ13の光出力を増加(減少)させる。したがって周囲温度が変化しても、フォトダイオード28の受光出力電圧、すなわちレーザ光の光出力が一定に維持される。 When the light output of the laser beam decreases (increases) and the potential at point A increases (decreases) in this way, the APC circuit 34 performs current control on the base current of the first transistor 17A, and the first transistor 17A. increasing the current I 1 that flows to the (reduced), increase the light output of watt class one-chip semiconductor laser 13 causes (reduced). Therefore, even if the ambient temperature changes, the light reception output voltage of the photodiode 28, that is, the light output of the laser light is maintained constant.

以上のように、ワット級ワンチップ半導体レーザ13の光出力の変化(フォトダイオード28によりフィードバックされる周囲温度の変動に伴う光出力の変化)、およびE/O変換回路33からの動作電流の変化(指令データの変更)によるA点の電位の変動に基づいて、APC回路34により第1トランジスタ17Aが駆動されてワット級ワンチップ半導体レーザ13へ供給される電流Iが制御され、ワット級ワンチップ半導体レーザ13の光出力が制御されている。 As described above, the change in the optical output of the watt-class one-chip semiconductor laser 13 (the change in the optical output accompanying the change in ambient temperature fed back by the photodiode 28) and the change in the operating current from the E / O conversion circuit 33. based on the change in the potential of the point a by (change in command data), the current I 1 first transistor 17A is supplied are driven to watts one-chip semiconductor laser 13 by the APC circuit 34 is controlled, watts one The light output of the chip semiconductor laser 13 is controlled.

レーザ加工装置11のワット級ワンチップ半導体レーザ13から出射されるレーザ光Lの入出力特性図を図5に示す。
上述した制御を行うことにより、図5に示すように、ワット級ワンチップ半導体レーザ13の入力電圧の上昇に比例して、ワット級ワンチップ半導体レーザ13から出力されるレーザ光の出力を上昇させることができ、すなわち入力電圧−光出力特性図において直線性をもたせたグラフを得ることができるため、ワット級ワンチップ半導体レーザ13から安定したレーザ光Lを出射することができる。
An input / output characteristic diagram of the laser beam L emitted from the watt-class one-chip semiconductor laser 13 of the laser processing apparatus 11 is shown in FIG.
By performing the control described above, as shown in FIG. 5, the output of the laser beam output from the watt-class one-chip semiconductor laser 13 is increased in proportion to the increase in the input voltage of the watt-class one-chip semiconductor laser 13. In other words, since a graph with linearity can be obtained in the input voltage-light output characteristic diagram, a stable laser beam L can be emitted from the watt-class one-chip semiconductor laser 13.

レーザ加工装置11のワット級ワンチップ半導体レーザ13から出射されるレーザ光Lの強度変動図を図6に示す。
図6に示すように、上記動作電流はE/O変換回路33によって高速強度変調がかけられ、光出力を短時間で最高値まで上昇させており、最高値で融点に達し、最低値で分解溶融点以下となるよう、ワット級ワンチップ半導体レーザ13からレーザ加工対象物1へ高速強度変調をかけたレーザ光が出射されている。これにより、集光部Mの周囲へ伝熱する前に融点に達するため、すなわち集光部Mの周囲への伝熱を小さくすることができるため、レーザ加工対象物1に対してこげをつくることなく、安定して強く溶かすことができ、したがって熱影響を減らして集光部Mにおける溶け込みを深くすることができる。
FIG. 6 shows an intensity fluctuation diagram of the laser light L emitted from the watt class one-chip semiconductor laser 13 of the laser processing apparatus 11.
As shown in FIG. 6, the operating current is subjected to high-speed intensity modulation by the E / O conversion circuit 33, increasing the optical output to the maximum value in a short time, reaching the melting point at the maximum value, and decomposing at the minimum value. Laser light subjected to high-speed intensity modulation is emitted from the watt-class one-chip semiconductor laser 13 to the laser processing object 1 so as to be below the melting point. Accordingly, the melting point is reached before the heat is transferred to the surroundings of the condensing part M, that is, the heat transfer to the surroundings of the condensing part M can be reduced. Therefore, it can be melted stably and strongly. Therefore, the influence of heat can be reduced and the penetration in the condensing part M can be deepened.

レーザ加工装置11のワット級ワンチップ半導体レーザ13から出射されるレーザ光Lの温度−光出力特性図を図7および図8に示す。
図7に示すように、広い温度範囲に亘って定光出力を行えるよう、周囲温度変化にともなって第1トランジスタ17Aのベース電流をAPC回路34によって自動的に変化させることにより、すなわちA点の電位をフィードバックしてワット級ワンチップ半導体レーザ13を制御することにより、所定時間内に5℃前後から35℃前後まで上昇させた後、再び5℃前後まで下降させた場合、すなわち40度変動環境においても、レーザ光Lの出力の誤差を±2%以内とすることができ、また、図8に示すように、温度調整が行われない状況のもと時間が経過してもレーザ光Lの出力の誤差を1%以内とすることができ、また絶縁型スイッチング電源によるワット級ワンチップ半導体レーザ13の安定した作動が可能となる。
FIG. 7 and FIG. 8 show temperature-light output characteristic diagrams of the laser light L emitted from the watt-class one-chip semiconductor laser 13 of the laser processing apparatus 11.
As shown in FIG. 7, the base current of the first transistor 17A is automatically changed by the APC circuit 34 according to the ambient temperature change so that constant light output can be performed over a wide temperature range, that is, the potential at the point A. Is fed back to control the watt-class one-chip semiconductor laser 13 so that the temperature is raised from around 5 ° C. to around 35 ° C. within a predetermined time and then lowered again to around 5 ° C., that is, in a 40-degree fluctuation environment. However, the error in the output of the laser beam L can be within ± 2%, and as shown in FIG. 8, the output of the laser beam L even if time elapses without temperature adjustment. 1 can be kept within 1%, and the watt-class one-chip semiconductor laser 13 can be stably operated by the insulating switching power supply.

以上のように実施の形態によれば、E/O変換回路33から高速強度変調をかけた動作電流をフォトカプラ32へ出力することにより、ワット級ワンチップ半導体レーザ13から高速強度変調をかけたレーザ光が出力され、よって上述したように集光部Mの周囲への伝熱を小さくすることができるため、レーザ加工対象物1に対してこげをつくることなく、安定して強く溶かすことができ、また光出力の変動がフォトダイオード28によりフィードバックされる周囲温度の変動に伴う光出力の変動が補償されるため、融点と分解溶融点との温度差が小さい樹脂に対して、安定した樹脂接合を行うことができる。   As described above, according to the embodiment, the operating current subjected to the high-speed intensity modulation is output from the E / O conversion circuit 33 to the photocoupler 32, so that the high-speed intensity modulation is applied from the watt-class one-chip semiconductor laser 13. Since the laser beam is output, and thus the heat transfer to the periphery of the condensing part M can be reduced as described above, the laser processing object 1 can be dissolved stably and strongly without causing burns. In addition, since the fluctuation of the light output is compensated for the fluctuation of the light output due to the fluctuation of the ambient temperature in which the fluctuation of the light output is fed back by the photodiode 28, the resin is stable against the resin having a small temperature difference between the melting point and the decomposition melting point. Bonding can be performed.

また、実施の形態によれば、レーザ駆動回路31はスロースタート回路35により、絶縁型スイッチング電源より入力された電圧を所定の値まで徐々に増加させることができるため、絶縁型スイッチング電源によるワット級ワンチップ半導体レーザ13の安定した作動が可能となる。   In addition, according to the embodiment, the laser drive circuit 31 can gradually increase the voltage input from the isolated switching power supply to the predetermined value by the slow start circuit 35. Stable operation of the one-chip semiconductor laser 13 is possible.

また、実施の形態によれば、ファースト方向のレーザ光Lの発光部における光軸センタ22を中心としたビーム拡散角において、30°〜90°の範囲内に位置する場所、すなわち本体12内におけるレーザ光Lの光軸センタ22から30°〜90°上方に位置する場所にフォトダイオード28を配置させ、その配置場所をレーザ発振領域A、すなわちLEDモードでない領域とすることにより、フォトダイオード28がレーザ光Lの戻光の影響を受けることを回避することができる。   Further, according to the embodiment, the position of the beam diffusion angle around the optical axis center 22 in the light emitting portion of the laser beam L in the first direction is located within a range of 30 ° to 90 °, that is, in the main body 12. The photodiode 28 is arranged at a location 30 to 90 ° above the optical axis center 22 of the laser light L, and the arrangement location is set as a laser oscillation region A, that is, a region not in the LED mode. It is possible to avoid being affected by the return light of the laser light L.

また、実施の形態によれば、フォトダイオード28がレーザ光L(戻光)の影響を受けず遮光されることにより、レーザ駆動回路31による自動電流制御動作(ACC動作ともいう)を正確に実行することが可能となる。   Further, according to the embodiment, the photodiode 28 is shielded from light without being influenced by the laser light L (return light), so that the automatic current control operation (also referred to as ACC operation) by the laser driving circuit 31 is accurately executed. It becomes possible to do.

なお、本実施の形態では、物質を融点と分解点との温度差の小さい熱可塑性樹脂としているが、このような可塑性樹脂に限ることはなく、融点と沸点との温度差の小さい金属、たとえば亜鉛ダイキャストなどでもよい。   In this embodiment, the substance is a thermoplastic resin having a small temperature difference between the melting point and the decomposition point, but is not limited to such a plastic resin, for example, a metal having a small temperature difference between the melting point and the boiling point, for example, Zinc die-casting etc. may be used.

また本実施の形態では、フォトカプラ32の発光素子としてLED32A、受光素子としてフォトトランジスタ32Bが使用されていたが、これに限るものではなく、受光素子がフォトダイオードやフォトサイリスタなどで構成されたフォトカプラを使用してもよい。   In this embodiment, the LED 32A is used as the light emitting element of the photocoupler 32 and the phototransistor 32B is used as the light receiving element. However, the present invention is not limited to this. A coupler may be used.

また本実施の形態では、E/O変換回路33は、本体12内に設けられていたが、これに限るものではなく、本体12の外部に設けてもよい。   In the present embodiment, the E / O conversion circuit 33 is provided in the main body 12, but is not limited thereto, and may be provided outside the main body 12.

本発明の実施の形態におけるレーザ加工装置を用いたレンズ固定装置の概略図である。It is the schematic of the lens fixing device using the laser processing apparatus in embodiment of this invention. 同レーザ加工装置であり、(a)は平面図、(b)は側面図である。It is the same laser processing apparatus, (a) is a plan view, (b) is a side view. 同レーザ加工装置のレーザ駆動回路の構成図である。It is a block diagram of the laser drive circuit of the laser processing apparatus. 同レーザ加工装置の発光部におけるレーザ光のファースト方向の強度分布図である。It is an intensity distribution figure of the first direction of the laser beam in the light emission part of the laser processing apparatus. 同レーザ加工装置のワット級ワンチップ半導体レーザから出射されるレーザ光の入出力特性図である。It is an input-output characteristic figure of the laser beam radiate | emitted from the watt class one-chip semiconductor laser of the same laser processing apparatus. 同レーザ加工装置のワット級ワンチップ半導体レーザから出射されるレーザ光の強度変動図である。It is an intensity fluctuation figure of the laser beam radiate | emitted from the watt class one-chip semiconductor laser of the laser processing apparatus. 同レーザ加工装置のワット級ワンチップ半導体レーザから出射されるレーザ光の温度−光出力特性図である。It is a temperature-light output characteristic view of the laser beam radiate | emitted from the watt class one-chip semiconductor laser of the laser processing apparatus. 同レーザ加工装置のワット級ワンチップ半導体レーザから出射されるレーザ光の温度−光出力特性図である。It is a temperature-light output characteristic view of the laser beam radiate | emitted from the watt class one-chip semiconductor laser of the laser processing apparatus. 従来のレーザ加工装置のレーザ駆動回路の構成図である。It is a block diagram of the laser drive circuit of the conventional laser processing apparatus.

符号の説明Explanation of symbols

11 レーザ加工装置
12 本体
13 ワット級ワンチップ半導体レーザ(ワンチップ半導体レーザ光源)
17 パワートランジスタ(駆動素子)
22 光軸センタ
28 フォトダイオード(光変換素子)
31 レーザ駆動回路
32 フォトカプラ(電気−光変換素子)
32A LED(発光素子)
32B フォトトランジスタ(受光素子)
33 E/O変換回路(指令回路)
34 APC回路(出力制御回路)
35 スロースタート回路
39 抵抗
L レーザ光
DESCRIPTION OF SYMBOLS 11 Laser processing apparatus 12 Main body 13 Watt class one-chip semiconductor laser (one-chip semiconductor laser light source)
17 Power transistor (driving element)
22 Optical axis center 28 Photodiode (light conversion element)
31 Laser Drive Circuit 32 Photocoupler (Electrical-Optical Conversion Element)
32A LED (light emitting device)
32B Phototransistor (light receiving element)
33 E / O conversion circuit (command circuit)
34 APC circuit (output control circuit)
35 Slow start circuit 39 Resistance L Laser beam

Claims (6)

融点と分解溶融点または沸点との温度差が小さい物質に向けてこの物質を溶解させるライン状レーザ光を光軸センタを中心に出射するワンチップ半導体レーザ光源と、前記ワンチップ半導体レーザ光源より照射される前記レーザ光の強度を制御するレーザ駆動回路を設けるレーザ加工装置であって、
前記レーザ駆動回路は、
前記ワンチップ半導体レーザ光源からレーザ発振された前記レーザ光を受光して電気信号に変換する光変換素子と、
発光素子と受光素子とから形成され、前記受光素子が前記光変換素子と直列に接続され、光変換素子とともに前記ワンチップ半導体レーザ光源に並列に接続された電気−光変換素子と、
前記ワンチップ半導体レーザ光源に供給する電流を制御する前記ワンチップ半導体レーザ光源の駆動素子と、
前記光変換素子と前記電気−光変換素子の前記受光素子との接続点に接続され、前記レーザ光の変化に伴う前記光変換素子の電気信号の変化に起因する前記接続点の電圧の変化により、前記駆動素子を駆動して前記レーザ光の強度を制御する出力制御回路
を備え、
前記レーザ光の強度の指令データとして前記電気−光変換素子の発光素子に高速強度変調をかけた動作電流を入力して、前記受光素子を介して前記接続点の電圧を変化させ、この接続点の電圧の変化により前記出力制御回路により前記駆動素子を駆動させ、前記レーザ光の強度の指令データに基づいて前記ワンチップ半導体レーザ光源から出力されるレーザ光を高速強度変調すること
を特徴とするレーザ加工装置。
A one-chip semiconductor laser light source that emits a line-shaped laser beam that melts this material toward a material having a small temperature difference between the melting point and the decomposition melting point or boiling point, centered on the optical axis center, and irradiated from the one-chip semiconductor laser light source A laser processing device provided with a laser drive circuit for controlling the intensity of the laser beam,
The laser driving circuit includes:
A light conversion element that receives the laser light laser-oscillated from the one-chip semiconductor laser light source and converts it into an electrical signal;
An electro-optical conversion element formed of a light emitting element and a light receiving element, wherein the light receiving element is connected in series with the light converting element, and connected in parallel to the one-chip semiconductor laser light source together with the light converting element;
A driving element of the one-chip semiconductor laser light source for controlling a current supplied to the one-chip semiconductor laser light source;
Due to a change in voltage at the connection point that is connected to a connection point between the light conversion element and the light-receiving element of the electro-light conversion element, and is caused by a change in an electrical signal of the light conversion element due to a change in the laser light An output control circuit for controlling the intensity of the laser beam by driving the drive element;
As the command data of the intensity of the laser beam, an operating current subjected to high-speed intensity modulation is input to the light emitting element of the electro-optical conversion element, and the voltage at the connection point is changed via the light receiving element. The drive element is driven by the output control circuit according to a change in the voltage of the laser beam, and the laser light output from the one-chip semiconductor laser light source is subjected to high-speed intensity modulation based on the command data of the intensity of the laser light. Laser processing equipment.
外部からの前記レーザ光の強度の指令データに応じて、前記電気−光変換素子の前記発光素子へ高速強度変調をかけた前記動作電流を出力して、前記発光素子を駆動する指令回路を備えたこと
を特徴とする請求項1に記載のレーザ加工装置。
A command circuit for driving the light-emitting element by outputting the operating current obtained by applying high-speed intensity modulation to the light-emitting element of the electro-optical conversion element in accordance with external command data of the laser beam intensity; The laser processing apparatus according to claim 1, wherein:
前記高速強度変調は、
光出力を短時間で、最高値である融点まで上昇させているとともに、最低値である分解溶融点以下まで下降させていること
を特徴とする請求項1または請求項2に記載のレーザ加工装置。
The fast intensity modulation is
3. The laser processing apparatus according to claim 1, wherein the optical output is raised to a melting point which is a maximum value in a short time and is lowered to a temperature equal to or lower than a decomposition melting point which is a minimum value. .
前記ワンチップ半導体レーザ光源に印加される電圧を所定の値まで徐々に上昇させながら出力するスロースタート回路を設けたこと
を特徴とする請求項1〜請求項3のいずれか1項に記載のレーザ加工装置。
The laser according to any one of claims 1 to 3, further comprising a slow start circuit that outputs the voltage applied to the one-chip semiconductor laser light source while gradually increasing the voltage to a predetermined value. Processing equipment.
筒状に形成された金属製の本体を備え、前記本体内に前記レーザ駆動回路を設けたこと
を特徴とする請求項1〜請求項4のいずれか1項に記載のレーザ加工装置。
The laser processing apparatus according to any one of claims 1 to 4, further comprising a metal main body formed in a cylindrical shape, wherein the laser drive circuit is provided in the main body.
前記光変換素子を、前記本体内で、前記ワンチップ半導体レーザ光源のファースト方向レーザ光の前記光軸センタを中心としたビーム拡散角において30°〜90°の範囲内に配置したこと
を特徴とする請求項5に記載のレーザ加工装置。
The light conversion element is arranged in a range of 30 ° to 90 ° in a beam diffusion angle around the optical axis center of the first direction laser light of the one-chip semiconductor laser light source in the main body. The laser processing apparatus according to claim 5.
JP2004171950A 2004-06-10 2004-06-10 Laser beam machine Pending JP2005349430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171950A JP2005349430A (en) 2004-06-10 2004-06-10 Laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171950A JP2005349430A (en) 2004-06-10 2004-06-10 Laser beam machine

Publications (1)

Publication Number Publication Date
JP2005349430A true JP2005349430A (en) 2005-12-22

Family

ID=35584316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171950A Pending JP2005349430A (en) 2004-06-10 2004-06-10 Laser beam machine

Country Status (1)

Country Link
JP (1) JP2005349430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429021B2 (en) 2013-04-04 2016-08-30 General Electric Technology Gmbh Method for welding rotors for power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429021B2 (en) 2013-04-04 2016-08-30 General Electric Technology Gmbh Method for welding rotors for power generation

Similar Documents

Publication Publication Date Title
JP2006013252A (en) Method and circuit for controlling laser diode, and optical transmitter
JPWO2018179306A1 (en) Optical transmitter
US20060002439A1 (en) Laser output control apparatus and method
JP2006278361A (en) Semiconductor light-emitting device module
US20030227694A1 (en) Laser diode module, laser diode device and optical transmitter incorporating the same
US20090141762A1 (en) Semiconductor device and semiconductor laser driving device
JP2009059418A (en) Laser diode output power controller, optical disk drive, and laser diode output power control method
JP2005349430A (en) Laser beam machine
JP3220656U (en) Control circuit used for output stabilization of light emitting diode
JP2006238185A (en) Light projection head for photoelectric switch
JP3186656U (en) Laser equipment
JP5070820B2 (en) Solid state laser equipment
JP2009289842A (en) Optical device
JP2008135491A (en) Solid-state laser device
JP2024521349A (en) Laser light source control
JP2010258432A (en) Device and method for driving peltier element
JP2002009388A (en) Laser heating device and laser heating method
JP2008009226A (en) Optical transmission module
CN206993124U (en) Luminous power stable optical module and optical communication equipment
JP2005072197A (en) High-temperature operation laser diode device
JP2007258491A (en) Temperature measurement method of light emitting element, transmitting method, light emitting device and transmitter
JP2009252910A (en) Solid-state laser device
JP2004296805A (en) Optical transmitter
CN107332620A (en) Luminous power stable optical module and optical communication equipment
JP2007183362A (en) Assembling method and assembling apparatus for optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224