JP2005347545A - Electrostatic chuck device - Google Patents

Electrostatic chuck device Download PDF

Info

Publication number
JP2005347545A
JP2005347545A JP2004165881A JP2004165881A JP2005347545A JP 2005347545 A JP2005347545 A JP 2005347545A JP 2004165881 A JP2004165881 A JP 2004165881A JP 2004165881 A JP2004165881 A JP 2004165881A JP 2005347545 A JP2005347545 A JP 2005347545A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
chuck device
electrode
semiconductor wafer
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004165881A
Other languages
Japanese (ja)
Inventor
Toru Takai
徹 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2004165881A priority Critical patent/JP2005347545A/en
Publication of JP2005347545A publication Critical patent/JP2005347545A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck device capable of suppressing wear of a surface of a suction stage projecting from a body to be sucked and sticking of reaction products even when the sucked body varies in size is handled. <P>SOLUTION: The electrostatic chuck device 101 comprises an electrostatic chuck stage 102, a power source 103 for an electrostatic chuck, and a changeover switch 104. Respective paired electrodes are arranged so that electrostatic charging regions do not project from a semiconductor wafer 5, and the changeover switch section 104 can apply voltages in pair units to switch the electrostatic regions in steps. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、プラズマエッチング装置やイオン注入装置等の半導体製造装置に備えられ、被吸着物としての半導体ウェーハを静電吸着する静電チャック装置に関する。   The present invention relates to an electrostatic chuck device that is provided in a semiconductor manufacturing apparatus such as a plasma etching apparatus or an ion implantation apparatus and that electrostatically adsorbs a semiconductor wafer as an object to be adsorbed.

従来の静電チャック装置を備えた半導体装置の一例としてのプラズマエッチング装置の要部断面図を図5に示す。尚、静電チャック装置には双極型と単極型があるが図5には一例として双極型の静電チャック装置を示す。   FIG. 5 shows a cross-sectional view of a main part of a plasma etching apparatus as an example of a semiconductor device provided with a conventional electrostatic chuck device. Although there are two types of electrostatic chuck devices, a bipolar type and a single type, FIG. 5 shows a bipolar type electrostatic chuck device as an example.

プラズマエッチング装置1は、主に、真空チャンバ2と、その内部に対向して配置された下部電極3および上部電極4と、下部電極3上に配置され被吸着物としての半導体ウェーハ5を吸着保持する静電チャック装置6と、外部に配置されたプラズマ発生用のRF電源7とで構成されている。   The plasma etching apparatus 1 mainly sucks and holds a vacuum chamber 2, a lower electrode 3 and an upper electrode 4 that are disposed opposite to each other, and a semiconductor wafer 5 that is disposed on the lower electrode 3 as an object to be adsorbed. And an RF power source 7 for generating plasma disposed outside.

また、真空チャンバ2には、反応性ガスを導入するガス導入口8と、不要ガスを排気するガス排気口9とが設けられている。そして、上部電極4は接地され、下部電極3はRF電源7と接続され、下部電極3に高周波電圧を加えることにより、下部電極3と上部電極4との間の空間にプラズマを励起する。   The vacuum chamber 2 is provided with a gas introduction port 8 for introducing a reactive gas and a gas exhaust port 9 for exhausting unnecessary gas. The upper electrode 4 is grounded, the lower electrode 3 is connected to the RF power source 7, and a high frequency voltage is applied to the lower electrode 3 to excite plasma in the space between the lower electrode 3 and the upper electrode 4.

このようなプラズマエッチング装置1の使用方法は、先ず、半導体ウェーハ5を静電チャック装置6上に載置し静電吸着し、次に、真空チャンバ2内を真空にしてガス導入口8より反応性ガスを導入した後、RF電源7をONにして下部電極3と上部電極4との間の空間にプラズマを励起させる。そして、プラズマ中に発生するイオンや中性ラジカルで半導体ウェーハ5表面をエッチングする。このとき、半導体ウェーハ5だけでなく、半導体ウェーハ5から、はみ出した静電チャック装置6表面もプラズマに晒されるため不所望にもエッチングされ減耗する。   The plasma etching apparatus 1 is used in such a manner that the semiconductor wafer 5 is first placed on the electrostatic chuck apparatus 6 and electrostatically adsorbed, and then the inside of the vacuum chamber 2 is evacuated to react from the gas inlet 8. After introducing the property gas, the RF power source 7 is turned on to excite plasma in the space between the lower electrode 3 and the upper electrode 4. Then, the surface of the semiconductor wafer 5 is etched with ions or neutral radicals generated in the plasma. At this time, not only the semiconductor wafer 5 but also the surface of the electrostatic chuck device 6 that protrudes from the semiconductor wafer 5 is exposed to the plasma, and is undesirably etched and worn down.

そして、プラズマエッチング終了後、RF電源7をOFFにして不要ガスをガス排気口9から排気した後、半導体ウェーハ5を静電チャック装置6から離脱させる。以上の動作を繰返し、順次、次の半導体ウェーハ5に対してプラズマエッチング作業を行う。   Then, after the plasma etching is completed, the RF power source 7 is turned off and unnecessary gas is exhausted from the gas exhaust port 9, and then the semiconductor wafer 5 is detached from the electrostatic chuck device 6. The above operation is repeated, and the plasma etching operation is sequentially performed on the next semiconductor wafer 5.

次に、静電チャック装置の構成の詳細について図6〜図8を用いて説明する。尚、図6,図7は双極型の静電チャック装置を示し、図8は単極型の静電チャック装置を示す。また、図6(a)は平面図、図6(b)は図6(a)のX−X線における側断面図、図7,図8は側断面図である。   Next, details of the configuration of the electrostatic chuck device will be described with reference to FIGS. 6 and 7 show a bipolar electrostatic chuck device, and FIG. 8 shows a unipolar electrostatic chuck device. 6A is a plan view, FIG. 6B is a side sectional view taken along line XX of FIG. 6A, and FIGS. 7 and 8 are side sectional views.

先ず、双極型の静電チャック装置6は、図6に示すように、静電チャックステージ部10と静電チャック用電源部11とで構成されている。静電チャックステージ部10は、例えば、略半円形の一対の平板電極12,13を所定間隔L1(例えば、数mm)だけ離間させて誘電率の高い絶縁物14中に配置した組立体であり、静電チャック用電源部11は、平板電極12,13に接続され、平板電極12,13に電位差を付与可能となっている。   First, as shown in FIG. 6, the bipolar electrostatic chuck device 6 includes an electrostatic chuck stage unit 10 and an electrostatic chuck power supply unit 11. The electrostatic chuck stage unit 10 is an assembly in which, for example, a pair of substantially semicircular flat plate electrodes 12 and 13 are separated from each other by a predetermined distance L1 (for example, several mm) and placed in an insulator 14 having a high dielectric constant. The electrostatic chuck power supply unit 11 is connected to the plate electrodes 12 and 13 and can apply a potential difference to the plate electrodes 12 and 13.

尚、間隔L1は、平板電極12,13と半導体ウェーハとの対向面積をあまり減少させない程度で、かつ、平板電極12,13間の耐圧を確保できる寸法とする。また、充分なクーロン力を得るために半導体ウェーハを載置する静電チャックステージ部10の表面側の絶縁物14の厚さは比較的薄く成形してある。   The distance L1 is set to such a size that the opposing area between the flat plate electrodes 12 and 13 and the semiconductor wafer is not reduced so much that the withstand voltage between the flat plate electrodes 12 and 13 can be secured. Further, in order to obtain a sufficient Coulomb force, the insulator 14 on the surface side of the electrostatic chuck stage portion 10 on which the semiconductor wafer is placed is formed to be relatively thin.

このような双極型の静電チャック装置6で半導体ウェーハを吸着した時の各部の帯電状態及び帯電領域を図7に示す。静電チャック用電源部11をONにして平板電極12,13間に直流電圧(例えば、1kv程度)を印加すると平板電極12,13はそれぞれ正・負に帯電し、その上の絶縁物14を誘電分極させ、クーロン力を利用して半導体ウェーハ5を静電吸着する。この場合、平板電極12,13のほぼ真上全域が強い帯電領域となる。   FIG. 7 shows the charged state and charged region of each part when the semiconductor wafer is attracted by such a bipolar electrostatic chuck device 6. When the electrostatic chuck power supply unit 11 is turned on and a DC voltage (for example, about 1 kv) is applied between the flat plate electrodes 12 and 13, the flat plate electrodes 12 and 13 are charged positively and negatively, respectively, and the insulator 14 thereon is Dielectric polarization is performed, and the semiconductor wafer 5 is electrostatically adsorbed using Coulomb force. In this case, the entire region almost directly above the plate electrodes 12 and 13 is a strong charged region.

次に、単極型の静電チャック装置15は、図8に示すように、絶縁物14の内部に単一の平板電極16(例えば、円形)を備えており、半導体ウェーハ5は接地されている。そして、静電チャック用電源部11により平板電極16に直流電圧を印加して帯電させ、その上の絶縁物14を誘電分極させ、クーロン力を利用して半導体ウェーハ5を静電吸着する。この場合、平板電極16のほぼ真上全域が強い帯電領域となる。   Next, as shown in FIG. 8, the monopolar electrostatic chuck device 15 includes a single plate electrode 16 (for example, a circle) inside the insulator 14, and the semiconductor wafer 5 is grounded. Yes. Then, the electrostatic chuck power supply unit 11 applies a DC voltage to the plate electrode 16 to charge it, dielectrically polarizes the insulator 14 thereon, and electrostatically attracts the semiconductor wafer 5 using Coulomb force. In this case, the region directly above the plate electrode 16 is a strong charged region.

ここで、上述したような従来の双極型あるいは単極型の静電チャック装置6,15には以下の2つの問題点があった。先ず、第1の問題点は、プラズマエッチングの際に、半導体ウェーハ5から、はみ出した静電チャックステージ部10表面の絶縁物14が徐々にエッチングされ減耗していくことであった。   Here, the conventional bipolar or monopolar electrostatic chuck devices 6 and 15 as described above have the following two problems. First, the first problem is that the insulator 14 on the surface of the electrostatic chuck stage 10 protruding from the semiconductor wafer 5 is gradually etched and worn out during plasma etching.

特に、半導体ウェーハ5から、はみ出す領域の中でも、直下に帯電した平板電極12,13,16がある領域(図7,8中の領域A)は、誘導分極による電荷が多く分布しているためプラズマからのイオンやラジカルの物理的衝撃力が大きくなり、直下に帯電した平板電極12,13,16がない領域(図7,8中の領域B)に比較して減耗量が大きくなるおそれがあった。領域Aと領域Bの減耗量の差を模式的に図9に示す。図9(a)は双極型の静電チャック装置6の場合、図9(b)は単極型の静電チャック装置15の場合を示す。   In particular, in the region protruding from the semiconductor wafer 5, the region where the plate electrodes 12, 13, and 16 are charged immediately below (region A in FIGS. 7 and 8) has a large amount of charge due to induction polarization, and thus plasma. As a result, the physical impact force of ions and radicals from the substrate increases, and there is a risk that the amount of depletion will increase as compared to the region where there is no plate electrode 12, 13, 16 charged immediately below (region B in FIGS. 7 and 8). It was. FIG. 9 schematically shows the difference in the amount of wear between the region A and the region B. FIG. 9A shows the case of the bipolar electrostatic chuck device 6, and FIG. 9B shows the case of the monopolar electrostatic chuck device 15.

また、第2の問題点は、直下に帯電した平板電極12,13,16がある領域(領域A)には電界が生じているため、直下に帯電した平板電極12,13,16がない領域(領域B)に比較して、プラズマエッチングにより生じた反応生成物17が付着しやすいという点であった。領域Aと領域Bの反応生成物17の付着量の差を模式的に図10に示す。図10(a)は双極型の静電チャック装置6の場合、図10(b)は単極型の静電チャック装置15の場合を示す。   The second problem is that an electric field is generated in a region (region A) where the plate electrodes 12, 13 and 16 charged immediately below are present, and therefore there is no region where the plate electrodes 12, 13, and 16 charged directly below are present. Compared to (Region B), the reaction product 17 generated by plasma etching tends to adhere. FIG. 10 schematically shows the difference in the adhesion amount of the reaction product 17 in the region A and the region B. FIG. 10A shows the case of the bipolar electrostatic chuck device 6, and FIG. 10B shows the case of the monopolar electrostatic chuck device 15.

そして、さらに、第1の問題点である静電チャックステージ部10表面の絶縁物14の減耗が進行し、第2の問題点である反応生成物17の付着とが重なると、図11(a)に示すように、双極型の場合、平板電極12,13間(間隔L1部)の耐圧が劣化したり、単極型の場合であっても、図11(b)に示すように、平板電極16と半導体ウェーハ5間の耐圧が劣化したりして、その結果、静電吸着力の低下を招くおそれがあった。   Furthermore, when the depletion of the insulator 14 on the surface of the electrostatic chuck stage 10 as the first problem proceeds and the adhesion of the reaction product 17 as the second problem overlaps, FIG. As shown in FIG. 11B, in the case of the bipolar type, even if the withstand voltage between the flat plate electrodes 12 and 13 (interval L1 portion) is deteriorated or even in the case of the single pole type, As a result, the withstand voltage between the electrode 16 and the semiconductor wafer 5 may be deteriorated, and as a result, the electrostatic attraction force may be reduced.

このような課題を解決する手段の1つとして、図12に示すように、半導体ウェーハ5から、はみ出す領域下の平板電極12,13間の間隔を部分的に拡大(L1<L2)させる構成が提案されている。(例えば、特許文献1参照)。
特開2003−7811号公報
As one means for solving such a problem, as shown in FIG. 12, there is a configuration in which the distance between the flat plate electrodes 12 and 13 below the region protruding from the semiconductor wafer 5 is partially enlarged (L1 <L2). Proposed. (For example, refer to Patent Document 1).
JP 2003-7811 A

しかしながら、このように平板電極12,13の間隔を部分的に拡大させる構成では、寸法が固定的である点に加えて、平板電極12,13が対向する領域においては間隔を大きくすることで耐圧強化が可能であるが、依然として半導体ウェーハ5から、はみ出す帯電領域が存在するため十分とは言えなかった。   However, in such a configuration in which the distance between the plate electrodes 12 and 13 is partially enlarged, in addition to the fact that the dimensions are fixed, the withstand voltage can be increased by increasing the distance in the region where the plate electrodes 12 and 13 face each other. Although strengthening is possible, it cannot be said that it is sufficient because there is still a charged region protruding from the semiconductor wafer 5.

従来の静電チャック装置では、被吸着物から、はみ出す領域で、かつ、直下に帯電した平板電極がある領域は、プラズマエッチング等の処理の際に、誘導分極による電荷が多く分布しているためイオンやラジカルの物理的衝撃力が大きくなり減耗量が大きくなったり、その電界のために反応生成物が付着しやすい傾向があり、各平板電極間、あるいは、平板電極と被吸着物間の耐圧が劣化し、その結果、静電吸着力の低下を招くおそれがあった。   In a conventional electrostatic chuck device, a region that protrudes from an object to be adsorbed and a region that has a charged plate electrode directly below has a large amount of charge due to induction polarization during processing such as plasma etching. The physical impact force of ions and radicals increases and the amount of wear increases, and the reaction product tends to adhere due to the electric field, and the pressure resistance between each plate electrode or between the plate electrode and the adsorbed material As a result, there is a possibility that the electrostatic attraction force is reduced.

本発明の目的は、さまざまな大きさの被吸着物を取り扱う場合でも、被吸着物から、はみ出す吸着ステージ部表面の減耗、及び、反応生成物の付着を抑制することのできる静電チャック装置を提供することである。   An object of the present invention is to provide an electrostatic chuck device capable of suppressing the depletion of the surface of the adsorption stage portion protruding from the object to be adsorbed and the adhesion of the reaction product even when handling the object to be adsorbed of various sizes. Is to provide.

本発明の静電チャック装置は、絶縁物の内部に配置した電極に電圧を印加し帯電させ、絶縁物上に載置した被吸着物を静電吸着する静電チャック装置において、帯電領域は、被吸着物の大きさに応じて可変であることを特徴とする静電チャック装置である。   In the electrostatic chuck device of the present invention, a voltage is applied to an electrode disposed inside an insulator to be charged, and an electrostatic chuck device that electrostatically adsorbs an object to be attracted placed on the insulator. The electrostatic chuck device is variable according to the size of the object to be attracted.

本発明の静電チャック装置によると、さまざまな大きさの被吸着物を取り扱う場合でも、被吸着物から、はみ出す吸着ステージ部表面の減耗、及び、反応生成物の付着を抑制することができ、各電極間、あるいは、電極と被吸着物間の耐圧劣化を防止し、その結果として静電吸着力を維持できる。   According to the electrostatic chuck device of the present invention, even when handling an object to be adsorbed of various sizes, it is possible to suppress the surface of the adsorption stage portion protruding from the object to be adsorbed, and the adhesion of the reaction product, It is possible to prevent the deterioration of pressure resistance between the electrodes or between the electrode and the object to be adsorbed, and as a result, the electrostatic attraction force can be maintained.

本発明は、さまざまな大きさの被吸着物を取り扱う場合でも、被吸着物から、はみ出す吸着ステージ部表面の減耗、及び、反応生成物の付着を抑制すると言う目的を、被吸着物の大きさに応じて帯電領域を可変とすることで実現した。   The present invention aims at suppressing the desorption of the surface of the adsorption stage portion protruding from the adsorbed material and the adhesion of the reaction product even when handling the adsorbed material of various sizes. This was realized by changing the charging area according to the conditions.

本発明の静電チャック装置の一例を図1〜図4を用いて説明する。尚、図1,図2は双極型の静電チャック装置を示し、図3,図4は単極型の静電チャック装置を示す。また、図1(a)は平面図、図1(b)は図1(a)のX−X線における側断面図、図2は側断面図、図3(a)は平面図、図3(b)は図3(a)のX−X線における側断面図、図4は側断面図である。   An example of the electrostatic chuck device of the present invention will be described with reference to FIGS. 1 and 2 show a bipolar electrostatic chuck device, and FIGS. 3 and 4 show a monopolar electrostatic chuck device. 1A is a plan view, FIG. 1B is a side sectional view taken along line XX in FIG. 1A, FIG. 2 is a side sectional view, FIG. 3A is a plan view, and FIG. (B) is a sectional side view taken along line XX in FIG. 3 (a), and FIG. 4 is a sectional side view.

本発明の双極型の静電チャック装置101は、図1に示すように、静電チャックステージ部102と静電チャック用電源部103と切換スイッチ部104とで構成されている。尚、ここでは、取り扱う半導体ウェーハ5の大きさが3種類と仮定して、帯電領域を3段階に可変する例で説明する。   As shown in FIG. 1, the bipolar electrostatic chuck device 101 of the present invention includes an electrostatic chuck stage unit 102, an electrostatic chuck power source unit 103, and a changeover switch unit 104. Here, it is assumed that there are three types of sizes of the semiconductor wafer 5 to be handled, and an example in which the charging area is changed in three stages will be described.

静電チャックステージ部102は、誘電率の高い絶縁物14中に、複数の部分電極群105a,105b,105c,106a,106b,106cが配置された組立体であり、部分電極105aと部分電極106aとが静電チャック位置中央に所定間隔L1だけ離間して対称的にペアで配置(ペア電極1と呼ぶ)され、その外側に部分電極105bと部分電極106bとが対称的にペアで配置(ペア電極2と呼ぶ)され、さらに、その外側に部分電極105cと部分電極106cとが対称的にペアで配置(ペア電極3と呼ぶ)されている。   The electrostatic chuck stage unit 102 is an assembly in which a plurality of partial electrode groups 105a, 105b, 105c, 106a, 106b, and 106c are arranged in an insulator 14 having a high dielectric constant. The partial electrode 105a and the partial electrode 106a are assembled. Are symmetrically arranged in pairs (referred to as pair electrode 1) at a predetermined distance L1 in the center of the electrostatic chuck position, and the partial electrode 105b and partial electrode 106b are symmetrically arranged in pairs (outside the pair). Further, the partial electrode 105c and the partial electrode 106c are symmetrically arranged in pairs (referred to as the pair electrode 3) on the outside thereof.

ここで、各ペア電極の組合せ(ペア電極1,ペア電極1+ペア電極2,ペア電極1+ペア電極2+ペア電極3)で形成される3段階の帯電領域の各大きさが、取り扱う3種類の大きさの半導体ウェーハ5から、それぞれ、はみ出さない大きさとなるように、各ペア電極は配置されている。尚、隣合う各部分電極間の間隔L2は、両者を絶縁できる寸法とする。   Here, each size of the three-stage charged region formed by the combination of each pair of electrodes (pair electrode 1, pair electrode 1 + pair electrode 2, pair electrode 1 + pair electrode 2 + pair electrode 3) has three kinds of sizes handled. Each pair of electrodes is arranged so as not to protrude from the semiconductor wafer 5. In addition, the space | interval L2 between each adjacent partial electrode is taken as the dimension which can insulate both.

また、静電チャック用電源部103は、各部分電極群105a,105b,105c,106a,106b,106cに接続され、切換スイッチ部104により、それぞれのペア電極にペア単位で電圧を印加可能となっており、ペア電極を組合せて選択して電圧印加することで帯電領域を段階的に切替えることができるようになっている。   The electrostatic chuck power supply unit 103 is connected to each of the partial electrode groups 105a, 105b, 105c, 106a, 106b, and 106c, and the changeover switch unit 104 can apply a voltage to each paired electrode in pairs. The charging region can be switched stepwise by selecting a combination of paired electrodes and applying a voltage.

例えば、このような双極型の静電チャック装置101の使用方法は、図2(a)に示すように、小さな半導体ウェーハ5(大きさA1)の場合には、最小の帯電領域を形成するペア電極1(105a,106a)だけに電圧を印加するようにして、帯電領域が半導体ウェーハ5から、はみ出さないようにする。   For example, as shown in FIG. 2 (a), the bipolar electrostatic chuck apparatus 101 is used in a pair of forming a minimum charged region in the case of a small semiconductor wafer 5 (size A1). A voltage is applied only to the electrode 1 (105a, 106a) so that the charged region does not protrude from the semiconductor wafer 5.

次に、もう少し大きい半導体ウェーハ5(大きさA2)の場合には、図2(b)に示すように、ペア電極1(105a,106a)とペア電極2(105b,106b)とを組合せて電圧を印加して帯電領域が半導体ウェーハ5から、はみ出さないようにする。   Next, in the case of a slightly larger semiconductor wafer 5 (size A2), as shown in FIG. 2B, the voltage is obtained by combining the pair electrode 1 (105a, 106a) and the pair electrode 2 (105b, 106b). Is applied so that the charged region does not protrude from the semiconductor wafer 5.

このようにして、適宜、帯電領域が取り扱う半導体ウェーハ5から、はみ出さず、かつ、最大の帯電領域が得られるようにペア電極を選択しながら電圧を印加し半導体ウェーハ5を静電吸着する。そして、このように半導体ウェーハ5から、はみ出す帯電領域をなくすことで、プラズマエッチング等の際の不所望な静電チャックステージ部102表面の減耗や反応生成物の付着が抑制できる。   In this way, the semiconductor wafer 5 is electrostatically adsorbed by applying a voltage while selecting a pair of electrodes so as not to protrude from the semiconductor wafer 5 handled by the charged region and to obtain the maximum charged region. Further, by eliminating the charged region that protrudes from the semiconductor wafer 5 in this way, it is possible to suppress undesired wear of the surface of the electrostatic chuck stage 102 and adhesion of reaction products during plasma etching or the like.

尚、上記では、帯電領域の大きさを3段階に切替える例で説明したが、特にこれに限るものではなく、取り扱う半導体ウェーハの大きさの種類に応じてペア電極数を変えればよい。また、各部分電極の形状も特に限定するものではなく、半導体ウェーハ5との対向面積の点で、所望の静電吸着力が確保できる形状であれば何でもよい。   In the above description, the example in which the size of the charged region is switched to three levels has been described. However, the present invention is not limited to this, and the number of pair electrodes may be changed according to the type of size of the semiconductor wafer to be handled. Further, the shape of each partial electrode is not particularly limited, and may be any shape as long as a desired electrostatic attraction force can be secured in terms of the area facing the semiconductor wafer 5.

次に、本発明の単極型の静電チャック装置201は、図3に示すように、静電チャックステージ部202と静電チャック用電源部203と切換スイッチ部204とで構成されている。尚、ここでは、取り扱う半導体ウェーハ5の大きさが3種類と仮定して、帯電領域を3段階に可変する例で説明する。   Next, as shown in FIG. 3, the single-pole type electrostatic chuck device 201 of the present invention includes an electrostatic chuck stage unit 202, an electrostatic chuck power source unit 203, and a changeover switch unit 204. Here, it is assumed that there are three types of sizes of the semiconductor wafer 5 to be handled, and an example in which the charging area is changed in three stages will be described.

静電チャックステージ部202は、誘電率の高い絶縁物14中に、複数の部分電極群205a,205b,205cが配置された組立体であり、静電チャック位置中央に円形の部分電極205a、その外側にドーナツ状の部分電極205b、さらにその外側にドーナツ状の部分電極205cが同心円状に配置されている。   The electrostatic chuck stage unit 202 is an assembly in which a plurality of partial electrode groups 205a, 205b, and 205c are arranged in an insulator 14 having a high dielectric constant. A circular partial electrode 205a is formed at the center of the electrostatic chuck position. A donut-shaped partial electrode 205b is arranged on the outer side, and a donut-shaped partial electrode 205c is arranged concentrically on the outer side.

ここで、各部分電極の組合せ(205a,205a+205b,205a+205b+205c)で形成される3段階の帯電領域の各大きさが、取り扱う3種類の大きさの半導体ウェーハ5から、それぞれ、はみ出さない大きさとなるように、各部分電極は配置されている。尚、隣合う各部分電極間の間隔L2は、両者を絶縁できる寸法とする。   Here, each size of the three-stage charged area formed by the combination of the partial electrodes (205a, 205a + 205b, 205a + 205b + 205c) is a size that does not protrude from the three types of semiconductor wafers 5 to be handled. Thus, each partial electrode is arrange | positioned. In addition, the space | interval L2 between each adjacent partial electrode is taken as the dimension which can insulate both.

また、静電チャック用電源部203は、各部分電極群205a,205b,205cに接続され、切換スイッチ部204により、各部分電極毎に電圧を印加可能となっており、部分電極を組合せて選択して電圧印加することで帯電領域を段階的に切替えることができるようになっている。   The electrostatic chuck power supply unit 203 is connected to each of the partial electrode groups 205a, 205b, and 205c, and the changeover switch unit 204 can apply a voltage to each partial electrode. Thus, the charging region can be switched stepwise by applying a voltage.

例えば、このような単極型の静電チャック装置201の使用方法は、図4(a)に示すように、小さな半導体ウェーハ5(大きさA1)の場合には、最小の帯電領域を形成する部分電極205aだけに電圧を印加するようにして、帯電領域が半導体ウェーハ5から、はみ出さないようにする。   For example, the method of using such a monopolar electrostatic chuck apparatus 201 forms a minimum charged region in the case of a small semiconductor wafer 5 (size A1) as shown in FIG. A voltage is applied only to the partial electrode 205 a so that the charged region does not protrude from the semiconductor wafer 5.

次に、もう少し大きい半導体ウェーハ5(大きさA2)の場合には、図4(b)に示すように、部分電極205aと部分電極205bとを組合せて電圧を印加して帯電領域が半導体ウェーハ5から、はみ出さないようにする。   Next, in the case of a slightly larger semiconductor wafer 5 (size A2), as shown in FIG. 4B, a voltage is applied by combining the partial electrode 205a and the partial electrode 205b so that the charged region is the semiconductor wafer 5 Do not stick out.

このようにして、適宜、帯電領域が、取り扱う半導体ウェーハ5から、はみ出さず、かつ、最大の帯電領域が得られるように部分電極を選択しながら電圧を印加し半導体ウェーハ5を静電吸着する。そして、このように半導体ウェーハ5から、はみ出す帯電領域をなくすことで、プラズマエッチング等の際の不所望な静電チャックステージ部202表面の減耗や反応生成物の付着が抑制できる。   Thus, the semiconductor wafer 5 is electrostatically adsorbed by applying a voltage while selecting a partial electrode so that the charged area does not protrude from the semiconductor wafer 5 to be handled and the maximum charged area is obtained. . In addition, by eliminating the charged region that protrudes from the semiconductor wafer 5 in this way, it is possible to suppress undesired wear of the surface of the electrostatic chuck stage 202 and adhesion of reaction products during plasma etching or the like.

尚、上記では、帯電領域の大きさを3段階に切替える例で説明したが、特にこれに限るものではなく、取り扱う半導体ウェーハの大きさの種類に応じて部分電極数を変えればよい。また、各部分電極の形状も特に限定するものではなく被吸着物との対向面積が所望の静電吸着力が確保できる形状であれば何でもよい。   In the above description, the example in which the size of the charged region is switched in three stages has been described. However, the present invention is not limited to this, and the number of partial electrodes may be changed according to the type of size of the semiconductor wafer to be handled. Further, the shape of each partial electrode is not particularly limited, and may be any shape as long as the area facing the object to be attracted can secure a desired electrostatic attraction force.

尚、上記では、静電チャック装置を具備する半導体製造装置としてプラズマエッチング装置を用いて説明してきたが、プラズマエッチング装置に限らず例えばイオン注入装置などの処理装置においてもイオンビームによって静電チャックステージ表面の絶縁物が削られるという課題を有している処理装置であれば同様の効果を得ることができることは言うまでもない。   In the above description, the plasma etching apparatus has been described as the semiconductor manufacturing apparatus including the electrostatic chuck apparatus. However, the electrostatic chuck stage is not limited to the plasma etching apparatus but may be used in, for example, a processing apparatus such as an ion implantation apparatus by an ion beam. It goes without saying that the same effect can be obtained if the processing apparatus has a problem that the surface insulator is removed.

本発明は、さまざまな大きさの被吸着物を取り扱う場合でも、被吸着物から、はみ出す吸着ステージ部表面の減耗、及び、反応生成物の付着を抑制することのできる静電チャック装置に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to an electrostatic chuck device that can suppress the desorption of the surface of the adsorption stage portion protruding from the adsorbed material and the adhesion of the reaction product even when handling the adsorbed material of various sizes. .

本発明の双極型の静電チャック装置の一例の平面図及び側断面図The top view and side sectional view of an example of the bipolar electrostatic chuck device of the present invention 本発明の双極型の静電チャック装置の一例の側断面図Side sectional view of an example of the bipolar electrostatic chuck device of the present invention 本発明の単極型の静電チャック装置の一例の平面図及び側断面図The top view and sectional side view of an example of the monopolar electrostatic chuck apparatus of this invention 本発明の単極型の静電チャック装置の一例の側断面図Side sectional view of an example of a monopolar electrostatic chuck device of the present invention 従来の静電チャック装置、を備えたプラズマエッチング装置の要部断面図Cross-sectional view of the main part of a plasma etching apparatus equipped with a conventional electrostatic chuck device 従来の双極型の静電チャック装置の平面図及び側断面図Plan view and sectional side view of a conventional bipolar electrostatic chuck device 従来の双極型の静電チャック装置の一例の側断面図Side sectional view of an example of a conventional bipolar electrostatic chuck device 従来の単極型の静電チャック装置の一例の側断面図Side sectional view of an example of a conventional monopolar electrostatic chuck device 従来の静電チャック装置における課題の説明図Explanatory drawing of problems in a conventional electrostatic chuck device 従来の静電チャック装置における課題の説明図Explanatory drawing of problems in a conventional electrostatic chuck device 従来の静電チャック装置における課題の説明図Explanatory drawing of problems in a conventional electrostatic chuck device 従来の静電チャック装置の平面図Plan view of a conventional electrostatic chuck device

符号の説明Explanation of symbols

1 プラズマエッチング装置
2 真空チャンバ
3 下部電極
4 上部電極
5 半導体ウェーハ
6 従来の静電チャック装置
7 プラズマ発生用のRF電源
8 ガス導入口
9 ガス排気口
10 静電チャックステージ部
11 静電チャック用電源部
12,13 平板電極
14 絶縁物
15 従来の単極型の静電チャック装置
16 単一の平板電極
17 反応生成物
101 本発明の双極型の静電チャック装置
102 静電チャックステージ部
103 静電チャック用電源部
104 切換スイッチ部
105a〜105c,106a〜106c 部分電極群
201 本発明の単極型の静電チャック装置
202 静電チャックステージ部
203 静電チャック用電源部
204 切換スイッチ部
205a〜205c 部分電極群
DESCRIPTION OF SYMBOLS 1 Plasma etching apparatus 2 Vacuum chamber 3 Lower electrode 4 Upper electrode 5 Semiconductor wafer 6 Conventional electrostatic chuck apparatus 7 RF power source for plasma generation 8 Gas introduction port 9 Gas exhaust port 10 Electrostatic chuck stage unit 11 Power source for electrostatic chuck Portions 12 and 13 Plate electrode 14 Insulator 15 Conventional monopolar electrostatic chuck device 16 Single plate electrode 17 Reaction product 101 Bipolar electrostatic chuck device 102 Electrostatic chuck stage portion 103 Electrostatic of the present invention Power supply unit for chuck 104 Changeover switch unit 105a to 105c, 106a to 106c Partial electrode group 201 Monopolar electrostatic chuck device of the present invention 202 Electrostatic chuck stage unit 203 Power supply unit for electrostatic chuck 204 Changeover switch unit 205a to 205c Partial electrode group

Claims (6)

絶縁物の内部に配置した電極に電圧を印加し帯電させ、前記絶縁物上に載置した被吸着物を静電吸着する静電チャック装置において、前記帯電領域は、前記被吸着物の大きさに応じて可変であることを特徴とする静電チャック装置。   In an electrostatic chuck apparatus that applies a voltage to an electrode disposed inside an insulator to be charged, and electrostatically attracts an object to be adsorbed placed on the insulator, the charging area is the size of the object to be adsorbed An electrostatic chuck device that is variable according to the conditions. 前記帯電領域は、前記被吸着物の上方から見て、前記被吸着物から、はみ出さない領域とすることを特徴とする請求項1に記載の静電チャック装置。   The electrostatic chuck device according to claim 1, wherein the charging region is a region that does not protrude from the object to be adsorbed when viewed from above the object to be adsorbed. 前記帯電領域は、前記被吸着物の大きさの種類と同じ数だけ段階的に可変であることを特徴とする請求項1または請求項2に記載の静電チャック装置。   The electrostatic chuck apparatus according to claim 1, wherein the charging area is variable stepwise by the same number as the size of the object to be adsorbed. 前記電極は、個別に電圧を印加可能な複数の部分電極群から成り、前記部分電極群から任意の部分電極を選択して電圧を印加することで帯電領域を可変とすることを特徴とする請求項1から3のいずれかに記載の静電チャック装置。   The electrode is composed of a plurality of partial electrode groups to which a voltage can be individually applied, and an arbitrary partial electrode is selected from the partial electrode group and a voltage is applied to make the charging region variable. Item 4. The electrostatic chuck device according to any one of Items 1 to 3. 前記部分電極群は、双極型の静電チャック装置の場合、静電チャック位置中央に対して対称的に配置された複数組のペア電極で成ることを特徴とする請求項4に記載の静電チャック装置。   5. The electrostatic electrode according to claim 4, wherein in the case of a bipolar electrostatic chuck device, the partial electrode group is composed of a plurality of pairs of electrodes arranged symmetrically with respect to the center of the electrostatic chuck position. Chuck device. 前記部分電極群は、単極型の静電チャック装置の場合、静電チャック位置中央に配置された円形電極と、それを同心円状に取り巻くように配置された少なくとも1つ以上のドーナツ状電極とで成ることを特徴とする請求項4に記載の静電チャック装置。   In the case of a monopolar electrostatic chuck apparatus, the partial electrode group includes a circular electrode disposed at the center of the electrostatic chuck position, and at least one or more donut-shaped electrodes disposed so as to surround the concentric circle. The electrostatic chuck device according to claim 4, comprising:
JP2004165881A 2004-06-03 2004-06-03 Electrostatic chuck device Pending JP2005347545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165881A JP2005347545A (en) 2004-06-03 2004-06-03 Electrostatic chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165881A JP2005347545A (en) 2004-06-03 2004-06-03 Electrostatic chuck device

Publications (1)

Publication Number Publication Date
JP2005347545A true JP2005347545A (en) 2005-12-15

Family

ID=35499627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165881A Pending JP2005347545A (en) 2004-06-03 2004-06-03 Electrostatic chuck device

Country Status (1)

Country Link
JP (1) JP2005347545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160111338A (en) 2015-03-16 2016-09-26 가부시기가이샤 디스코 Reduced-pressure processing apparatus
CN111788670A (en) * 2018-03-07 2020-10-16 应用材料公司 Bipolar electrostatic chuck having electrodes on portions thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160111338A (en) 2015-03-16 2016-09-26 가부시기가이샤 디스코 Reduced-pressure processing apparatus
CN111788670A (en) * 2018-03-07 2020-10-16 应用材料公司 Bipolar electrostatic chuck having electrodes on portions thereof

Similar Documents

Publication Publication Date Title
JP7357664B2 (en) Substrate support with multiple embedded electrodes
KR100886272B1 (en) Plasma processing apparatus
JP4330315B2 (en) Plasma processing equipment
KR101731017B1 (en) Substrate for electrostatic chuck and electrostatic chuck
US10410902B2 (en) Plasma processing apparatus
US7767055B2 (en) Capacitive coupling plasma processing apparatus
KR20050085729A (en) Method, apparatus and magnet assembly for enhancing and localizing a capacitively coupled plasma
US20100190350A1 (en) Plasma etching apparatus, plasma etching method and storage medium
JP6407694B2 (en) Plasma processing equipment
KR20160011564A (en) Plasma processing apparatus and plasma processing method
JP2001338912A (en) Plasma processing equipment and method for processing thereof
JP7059064B2 (en) Plasma processing equipment
JP3847363B2 (en) Semiconductor wafer processing apparatus and semiconductor wafer processing method
JP2006186323A (en) Plasma processing apparatus
US7142406B2 (en) Electrostatic chuck of semiconductor fabrication equipment and method for chucking wafer using the same
JP2006339391A (en) Dry-etching apparatus
TW201535511A (en) Plasma processing device
JP2005347545A (en) Electrostatic chuck device
JP2003031553A (en) Plasma etching apparatus
TWI770331B (en) reactive ion etching equipment
JPH04186863A (en) Electrostatic attracting equipment
JP4026702B2 (en) Plasma etching apparatus and plasma ashing apparatus
JPH0620794A (en) Method and device for generation of plasma
JP2019009185A (en) Plasma processing apparatus
JP4090841B2 (en) Electrode for plasma CVD