JP2005345116A - Buried pipe inspecting method - Google Patents
Buried pipe inspecting method Download PDFInfo
- Publication number
- JP2005345116A JP2005345116A JP2004161515A JP2004161515A JP2005345116A JP 2005345116 A JP2005345116 A JP 2005345116A JP 2004161515 A JP2004161515 A JP 2004161515A JP 2004161515 A JP2004161515 A JP 2004161515A JP 2005345116 A JP2005345116 A JP 2005345116A
- Authority
- JP
- Japan
- Prior art keywords
- frequency spectrum
- pipe
- wave
- received
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 26
- 238000001228 spectrum Methods 0.000 claims abstract description 103
- 238000012937 correction Methods 0.000 claims abstract description 47
- 230000006866 deterioration Effects 0.000 claims abstract description 21
- 238000003745 diagnosis Methods 0.000 abstract description 17
- 238000012360 testing method Methods 0.000 abstract description 14
- 230000000644 propagated effect Effects 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 54
- 238000007689 inspection Methods 0.000 description 27
- 230000002950 deficient Effects 0.000 description 23
- 230000007547 defect Effects 0.000 description 16
- 230000035939 shock Effects 0.000 description 16
- 239000004576 sand Substances 0.000 description 12
- 239000002689 soil Substances 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 238000005452 bending Methods 0.000 description 5
- 238000013016 damping Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000003517 fume Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000009933 burial Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009527 percussion Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
本発明は衝撃弾性波法により埋設管を検査して劣化診断を行う埋設管の検査方法に関す
るものである。
The present invention relates to a buried pipe inspection method for performing deterioration diagnosis by inspecting a buried pipe by a shock elastic wave method.
近来、下水管路や農水管路においては、埋設管の経年に伴う腐食摩耗や破損により陥没
や漏水等の事故が増加しつつある。このため適切な劣化診断とその診断結果に基づく適切
な修繕・更新が要請されている。
この下水管路や農水管路の劣化診断においては、一般に、修繕・改築工事の順番及び工
事方法を決定するために、調査流域を構成する要素区域間の劣化進行度の順位付けや定量
的な劣化レベルの進行度の把握が必要である。
従来では、目視やTVカメラを用いて外観調査を行い、必要に応じコア抜きにより得た
試料の物性を調査しているが、直視し得る劣化しか捉えることができず、管外周や肉厚内
の劣化が見逃されてしまい、劣化の程度を適切に定量的に把握することが困難である。ま
たは、定量的なデータを収集するには、コアを大量に抜く必要があり、健全管体の強度低
下が余儀なくされ、作業コストの過大化も避けられない。
Recently, in sewage pipes and agricultural water pipes, accidents such as depression and water leakage are increasing due to corrosive wear and breakage of buried pipes over time. For this reason, appropriate deterioration diagnosis and appropriate repair / updating based on the diagnosis result are required.
In this deterioration diagnosis of sewage pipes and agricultural water pipes, in general, in order to determine the order of repair and reconstruction works and the construction method, ranking of the degree of deterioration between the element areas constituting the survey basin and quantitative It is necessary to grasp the progress of the deterioration level.
Conventionally, visual inspection or visual inspection is performed using a TV camera, and the physical properties of the sample obtained by removing the core are investigated as necessary. It is difficult to accurately and quantitatively grasp the degree of deterioration. Or, in order to collect quantitative data, it is necessary to remove a large number of cores, and the strength of the healthy tubular body is inevitably lowered, and the work cost is inevitably increased.
非破壊試験法として、超音波法、打音法、衝撃弾性波法が知られている。
しかしながら、超音波法では、入力波としての超音波が高周波であり、エネルギーも小
さいので、入力波をコンクリート中に伝播させ難く、コンクリート製品の検査には適さな
い。
打音法では、マイクロフォン等の非接触式の音響機器で信号を受信しているために、周
囲の雑音の影響を受け易い、打撃点の裏面側の影響を受け易い、定量的な解析・診断に個
人差が生じ易い等の不都合があり、診断精度に問題がある。
衝撃弾性波法は、被検査体に打撃等の機械的衝撃で弾性波を入力し、被検査体に接触さ
せた振動子が受振した波形の周波数スペクトルを求め、その周波数スペクトルの解析・判
定により劣化診断を行う方法であり、本出願人においては、衝撃弾性波法を利用した埋設
管の診断システムを既に提案している。(例えば、特許文献1、非特許文献1)
As a nondestructive test method, an ultrasonic method, a percussion method, and a shock elastic wave method are known.
However, in the ultrasonic method, since the ultrasonic wave as an input wave has a high frequency and low energy, it is difficult for the input wave to propagate through the concrete, and it is not suitable for the inspection of concrete products.
In the percussion method, the signal is received by a non-contact acoustic device such as a microphone, so it is easily affected by ambient noise, and is easily affected by the back side of the impact point. Quantitative analysis and diagnosis However, there are problems such as easy individual differences, and there is a problem in diagnostic accuracy.
The shock elastic wave method is a method in which an elastic wave is input to an object to be inspected by mechanical impact such as hitting, a frequency spectrum of a waveform received by a vibrator in contact with the object to be inspected, and analysis and determination of the frequency spectrum is performed. The present applicant has already proposed a diagnosis system for buried pipes using the shock elastic wave method. (For example,
この診断システムの基本的構成を説明すれば、次の通りである。
図17の(イ)において、pは地中埋設管、aはインパルスハンマー等により弾性波を
入力させる入力点、bは伝播弾性波を振動センサで受振する受振点(出力点)を示してい
る。
弾性波の伝播は、質量m、バネ定数k、減衰係数c等で論じられ、バネ定数kは作用力
と変位との比で与えられるから、管の場合、バネ定数は管の曲げ剛性EIで評価される。
今、入力点での入力を図17の(ロ)に示すインパルスIとすると、このインパルスI
が管端での反射、クラック等の欠陥箇所での反射・透過を経て受振点に到来し、その到来
波xには、出力点と受振点との相対的位置関係、入力点や出力点と管端との相対的位置関
係、入力点や出力点と欠陥箇所との相対的位置関係、管体の曲げ剛性、減衰係数、管の比
重、経過時間等が関与し、出力点と受振点との相対的位置関係や入力点や出力点と管端と
の相対的位置関係に関する変数をL、入力点や出力点と欠陥箇所との相対的位置関係に関
する変数をL’、管体の曲げ剛性をEI、減衰係数をc、管の比重をm、経過時間tとする
と
The basic configuration of this diagnostic system will be described as follows.
In FIG. 17A, p is an underground pipe, a is an input point for inputting an elastic wave by an impulse hammer or the like, and b is a receiving point (output point) for receiving a propagating elastic wave by a vibration sensor. .
The propagation of elastic waves is discussed in terms of mass m, spring constant k, damping coefficient c, etc., and since spring constant k is given by the ratio of acting force and displacement, in the case of a tube, the spring constant is the bending stiffness EI of the tube. Be evaluated.
If the input at the input point is an impulse I shown in FIG.
Arrives at the receiving point through reflection at the tube end, reflection and transmission at a defect such as a crack, and the incoming wave x includes the relative positional relationship between the output point and the receiving point, and the input and output points. Relative positional relationship with the pipe end, relative positional relationship between the input and output points and the defective part, bending rigidity of the tube, damping coefficient, specific gravity of the tube, elapsed time, etc. are involved. L is a variable related to the relative positional relationship between the input point, the output point, and the pipe end, L ′ is a variable related to the relative positional relationship between the input point or the output point, and the defect location, and the bending rigidity of the tube EI, damping coefficient c, pipe specific gravity m, elapsed time t
x=x(EI,c,m,L,L’,t)
で表すことができる。
而して、入力弾性波が図17の(ハ)に示すようにf(t)であるとすると、
出力Xは
と管端との相対的位置関係L、入力点や出力点と欠陥箇所との相対的位置関係L’、管体
の曲げ剛性EI、減衰係数c、管の比重m等によって異なる。
x = x (EI, c, m, L, L ′, t)
Can be expressed as
Thus, if the input elastic wave is f (t) as shown in FIG.
Output X is
図18の(イ)はJISA 5303B型1種の呼び径250mm、長さ2mのコンク
リートヒューム管について入力点と受振点との距離を1950mmとし、入力弾性波を時
間長さ120μsのインパルスハンマーで発生させたときの受振弾性波の波形を示してい
る。図18の(ロ)はその波形を高速フーリエ変換して求めた周波数スペクトルを示し、
固有振動周波数で最大ピークを呈している。
この周波数スペクトルにおいて、健全品と欠陥品とでは次のような差異が生じる(勿論
、入力値、入力点と受振点との相対的位置関係、管内水量等の環境条件は同じとしての対
比である)。
(1)最大ピークのスペクトル強度値
劣化品は健全品に較べ最大ピークのスペクトル強度値(固有振動数におけるスペクトル
強度値)が小さくなる。この理由は、クラック等の欠陥が在ると、弾性波が伝播し難くな
るためと推定される。
(2)固有振動周波数
劣化品は健全品に較べ固有振動周波数が低周波域側にシフトする。この理由は、クラッ
ク等の欠陥が在ると、管体の曲げ剛性が低下するためと推定される。
(3)ピーク本数
特に欠陥が管軸方向クラックである場合、ある強度以上のピーク本数が少なくなる。そ
の理由は、管軸方向クラックにより分割された質量のことなるコンクリート部分が別個に
振動するものの連成振動における相互作用により減衰が顕著になるためと推定される。
Fig. 18 (b) shows a
It has a maximum peak at the natural vibration frequency.
In this frequency spectrum, the following difference occurs between the healthy product and defective product (of course, the input value, the relative positional relationship between the input point and the receiving point, and the environmental conditions such as the amount of water in the pipe are the same comparison) ).
(1) Spectral intensity value of maximum peak The deteriorated product has a smaller peak peak spectral intensity value (spectrum intensity value at the natural frequency) than a healthy product. The reason for this is presumed that the presence of defects such as cracks makes it difficult for elastic waves to propagate.
(2) Natural vibration frequency The natural vibration frequency of the deteriorated product shifts to the low frequency side compared to the healthy product. The reason for this is presumably because the bending rigidity of the tubular body decreases when there are defects such as cracks.
(3) Number of peaks Particularly when the defect is a crack in the tube axis direction, the number of peaks having a certain strength or more is reduced. The reason is presumed that although the concrete portion having a mass divided by the crack in the axial direction of the pipe vibrates separately, the attenuation becomes remarkable due to the interaction in the coupled vibration.
これら(1)〜(3)を判定点として例えば図19に示すフローに従って劣化診断を行
っている。
すなわち、検査しようとする埋設管の区間の各管体の受振波周波数スペクトルを得、各
周波数スペクトルから最大ピークのスペクトル強度値40%以上の値のスペクトル本数を
求め、ピーク本数が2本以下のものでは軸方向クラックと判定し、ピーク本数が3本以上
のもののうち、健全品の受振波周波数スペクトルと比較して最大ピークの強度値が顕著に
減少しているものは周方向クラックと判定し、減少の程度が小さいものは管厚み減少と判
定している。
With these (1) to (3) as determination points, deterioration diagnosis is performed according to the flow shown in FIG. 19, for example.
That is, the received wave frequency spectrum of each pipe body in the section of the buried pipe to be inspected is obtained, the number of spectra having a maximum peak spectral intensity value of 40% or more is obtained from each frequency spectrum, and the number of peaks is 2 or less. For those with axial cracks, those with 3 or more peaks are marked as circumferential cracks if the maximum peak intensity value is significantly reduced compared to the sound wave frequency spectrum of healthy products. If the degree of decrease is small, it is determined that the tube thickness is reduced.
前記埋設管における弾性波において、埋設土も弾性波の伝播フィールドとなる。この場
合、通常の埋設深さでは、前記(1)〜(3)の特徴が埋設深さにより実質的に影響され
ることはなく、管直上の土被りの存在に関係なく、埋設管に存在するクラック等の欠陥を
受振弾性波の周波数スペクトルの解析より診断できることを確認済みである。
In the elastic wave in the buried pipe, the buried soil also becomes a propagation field of the elastic wave. In this case, at the normal embedment depth, the characteristics (1) to (3) are not substantially affected by the embedment depth, and exist in the buried pipe regardless of the presence of the earth covering just above the pipe. It has been confirmed that defects such as cracks can be diagnosed by analyzing the frequency spectrum of the received elastic wave.
しかしながら、土被り深さが2mにも達すると、土被りの影響を無視し難くなる。
そこで、コンクリートヒューム管及び土被り砂をそれぞれ弾性体と見做してモデルを作
成し、このモデルに実際に弾性波を入力し、実際の受振位置で時刻暦応答波形をFEM解
析により求めてみたが、モデルでは、コンクリートヒューム管と土被り砂との境界を実際
の状態にシュミレートし難く、埋設深さと受振波周波数スペクトルとの関係を正確に把握
することは困難である。
しかしながら、本発明者においては、埋設管と土被りとの間での土砂の圧縮状態が前記
の受振波周波数スペクトルに影響を与えるため、一定の圧縮状態を基準として受振波周波
数スペクトルのスペクトル強度の補正係数を求めておけば、埋設深さが異なっても、その
埋設深さの影響をよく排除して管の欠陥を同一の基準で判定できることを知った。
However, when the soil covering depth reaches 2 m, it becomes difficult to ignore the influence of the soil covering.
Therefore, the concrete fume pipe and the sand covered with sand were regarded as elastic bodies, models were created, and elastic waves were actually input to this model, and the time calendar response waveform was obtained by FEM analysis at the actual receiving position. However, in the model, it is difficult to simulate the boundary between the concrete fume pipe and the soil covering sand to an actual state, and it is difficult to accurately grasp the relationship between the buried depth and the received wave frequency spectrum.
However, in the present inventor, since the compression state of the earth and sand between the buried pipe and the earth covering affects the above-described received wave frequency spectrum, the spectrum intensity of the received wave frequency spectrum is determined based on a certain compressed state. It was found that if the correction factor was calculated, pipe defects could be judged on the same basis, even if the burial depth was different, by eliminating the influence of the burial depth.
本発明の目的は、埋設管路の相互に接続された各管体に対し衝撃弾性波試験を順次に行
い、各試験における受振波の周波数スペクトルを解析・判定して劣化診断を行う場合、管
埋設深さが異なっても、その埋設深さに見合った周波数スペクトルの補正によって統一基
準で劣化診断を行い得るようにすることにある。
The object of the present invention is to perform a shock elastic wave test sequentially on each pipe body connected to each other in the buried pipe line, analyze and judge the frequency spectrum of the received wave in each test, Even if the embedment depth is different, deterioration diagnosis can be performed based on a unified standard by correcting the frequency spectrum corresponding to the embedment depth.
本発明に係る埋設管の検査方法は、埋設管の所定の内面箇所に弾性波を入力し、その入
力箇所から所定の間隔を隔てた管内面箇所で伝播弾性波を受振し、この受振波の周波数ス
ペクトルの強度値を予め求めた管埋設深さに対する補正係数で補正してその受振波の基準
埋設深さに対する周波数スペクトルを求め、この周波数スペクトルを解析して埋設管の劣
化診断を行うことを特徴とする。
In the buried pipe inspection method according to the present invention, an elastic wave is input to a predetermined inner surface portion of the embedded tube, and a propagating elastic wave is received at a tube inner surface portion spaced from the input portion by a predetermined distance. The frequency spectrum intensity is corrected with the correction coefficient for the pipe embedment depth obtained in advance, the frequency spectrum for the reference embedment depth of the received wave is obtained, and this frequency spectrum is analyzed to diagnose deterioration of the buried pipe. Features.
検査しようとする埋設管の埋設深さが各管体ごとに異なっても、各管体について求めた
受振波周波数スペクトルを基準埋設深さ(例えば、埋設深さ0.5m)のときの受振波周
波数スペクトルに補正でき、埋設管の劣化診断を管埋設深さの影響を受けることなく行う
ことができる。
Even if the embedment depth of the buried pipe to be inspected is different for each tubular body, the received wave frequency spectrum obtained for each tubular body is the reference wave (for example, embedment depth 0.5 m). The frequency spectrum can be corrected, and the deterioration diagnosis of the buried pipe can be performed without being affected by the depth of the buried pipe.
以下、本発明の実施の形態を図面を参照しつつ説明する。
図1は本発明において使用する衝撃弾性波試験法を説明するための図面である。
図1において、pは管体、Aは管体内面の所定箇所に弾性波を入力するための打撃具、
Bは入力点から所定の距離を隔てた管内面の所定箇所に接触させた振動センサー、Cは振
動センサーの受振波を記録し、高速フーリエ変換により周波数スペクトルを表示するコン
ピュータである。
前記打撃具Aには、常に同じ力・時間長さで打撃できるもの、例えばシュミットハンマ
ーやバネ、ピストン等により一定の力でハンマー、鋼球を打ち出すもの(例えばインパル
スハンマー)、一定の高さから鋼球を落下させるもの等を使用でき、特に入力情報の記録
データを計測し、解析時に反映できるものを使用することが好ましい。
前記振動センサーBには、振動加速度、振動速度、振動変位をピックアップする何れの
方式であってもよく、センサー素子には抵抗線ひずみゲージ、ピエゾ効果を利用した半導
体ゲージ、圧電磁器等の圧電型加速度ピックアップ等を使用でき、AE波検波用のAEセ
ンサーも使用できる。振動センサーの管内面への接触には粘着テープ、接着剤、手での押
え付けで行うこともできるが、後述のアームで振動センサーやハンマーをハンドリングす
る検査ロボットを使用することが好ましい。
振動センサーBやハンマーAにおいては、水や酸性水や塩基性水に接触されることがあ
るので、耐食金属製、例えばアルミ合金製、SUS製とすることが好ましい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a drawing for explaining a shock elastic wave test method used in the present invention.
In FIG. 1, p is a tubular body, A is an impact tool for inputting an elastic wave to a predetermined location on the inner surface of the tubular body,
B is a vibration sensor brought into contact with a predetermined location on the inner surface of the tube at a predetermined distance from the input point, and C is a computer that records the received wave of the vibration sensor and displays a frequency spectrum by fast Fourier transform.
The hitting tool A can always be hit with the same force and length of time, for example, a hammer or a steel ball that strikes a hammer or steel ball with a constant force (for example, an impulse hammer), from a certain height. What can drop a steel ball can be used, and it is particularly preferable to use one that can measure the recorded data of input information and reflect it at the time of analysis.
The vibration sensor B may be any method of picking up vibration acceleration, vibration speed, and vibration displacement, and the sensor element is a piezoelectric type such as a resistance wire strain gauge, a semiconductor gauge utilizing the piezo effect, and a piezoelectric ceramic. An acceleration pickup or the like can be used, and an AE sensor for AE wave detection can also be used. The vibration sensor can be brought into contact with the inner surface of the tube by using an adhesive tape, an adhesive, or pressing by hand, but it is preferable to use an inspection robot that handles the vibration sensor or hammer with an arm described later.
Since the vibration sensor B and the hammer A may be in contact with water, acidic water, or basic water, it is preferable that the vibration sensor B or the hammer A is made of a corrosion-resistant metal such as an aluminum alloy or SUS.
管体の衝撃弾性波試験を行うには、図1において、打撃具Aにより弾性波を入力し、伝
播されて来る弾性波を振動センサーBで受振し、その受振波をコンピュータCに記録する
と共にその記録波形を高速フーリエ変換して受振波の周波数スペクトルを求める。
入力の持続時間100〜150μsに対し、受振時間が0〜800×10μsとされ、
周波数スペクトルの周波数は0〜10kHz、好ましくは0.5〜8kHzとされる。(
0.5kHz未満のカットは雑音排除のため)
埋設管路の検査区間における互いに接続された管体を順次に衝撃弾性波試験していくと
きの各管体に対する試験条件を同じにするために入力、入力位置と受振位置との相対的位
置関係は実質的に同じにされる。この場合、入力位置と受振位置との間隔が短いと、出力
位置からの伝播弾性波が管体欠陥箇所を反射して受振位置に至るまでの距離が長くなり、
その伝播中での減衰が大きくなって受振波形に管体の欠陥情報が反映され難くなるので、
入力位置と受振位置との間隔は管体長さの1/4以上とすることが望ましい。
また、入力の大きさ影響を排除するために、受振波/入力波で求められる伝達関数を受
振情報として使用することが好ましい。
In order to perform a shock elastic wave test of a tubular body, in FIG. 1, an elastic wave is input by a striking tool A, a propagated elastic wave is received by a vibration sensor B, and the received wave is recorded in a computer C. The recorded waveform is subjected to fast Fourier transform to obtain the frequency spectrum of the received wave.
For the input duration of 100 to 150 μs, the vibration receiving time is set to 0 to 800 × 10 μs,
The frequency of the frequency spectrum is 0 to 10 kHz, preferably 0.5 to 8 kHz. (
(A cut of less than 0.5 kHz is to eliminate noise)
Relative positional relationship between input, input position and receiving position in order to make the test condition for each pipe body the same when conducting the shock elastic wave test sequentially on the pipes connected to each other in the inspection section of the buried pipe Are made substantially the same. In this case, if the interval between the input position and the vibration receiving position is short, the distance from the propagation elastic wave from the output position to the vibration receiving position by reflecting the tube defect portion becomes long.
Because the attenuation during propagation becomes large and it becomes difficult to reflect the defect information of the tube in the received waveform.
The interval between the input position and the vibration receiving position is preferably ¼ or more of the tube length.
In order to eliminate the influence of the magnitude of the input, it is preferable to use a transfer function obtained by the received wave / input wave as the received wave information.
本発明は、欠陥管体の埋設深さに差があっても、その受振波の固有振動周波数、同受振
波の周波数スペクトルのピーク本数等の欠陥情報が実質的に殆ど変わず、受振波の波高値
が実質的に異なるだけであり、その差異の比は健全管体でのそれに実質的に等しく、従っ
て、健全管体について管埋設深さと受振波周波数スペクトルの波高値との関係をあらかじ
め求めておけば、ある埋設深さの管体の受振波の周波数スペクトルのスペクト強度を補正
して基準埋設深さ(通常0.5m)での周波数スペクトルを求め得るという事実を基礎と
している。
この事実は、埋設管に前記弾性波を入力すると、その入力弾性波の一部が管周囲の土砂
中に伝播し、管周囲の周囲の土砂の圧縮度が高い程、その土砂中への弾性波の伝播割合が
多くなるので、管埋設深さが深い程、土砂中への弾性波の漏れ量が増し、それだけ受振弾
性波の強度が低くなる結果であると推定でき、従って、管埋設深さと受振弾性波の周波数
スペクトルとの間には一定の関係があり、この関係からある管埋設深さの受振弾性波の周
波数スペクトルを基準埋設深さでの受振弾性波周波数スペクトルに補正できる。
In the present invention, even if there is a difference in the embedding depth of the defective tube, the defect information such as the natural vibration frequency of the received wave, the number of peaks of the frequency spectrum of the received wave is substantially unchanged, and The crest values are only substantially different, and the ratio of the differences is substantially equal to that of the healthy pipe. Therefore, the relationship between the pipe embedment depth and the crest value of the received wave frequency spectrum is determined in advance for the healthy pipe. In this case, it is based on the fact that the frequency spectrum at the reference embedment depth (usually 0.5 m) can be obtained by correcting the spectral intensity of the frequency spectrum of the received wave of the tube having a certain embedment depth.
This fact is that when the elastic wave is input to the buried pipe, a part of the input elastic wave propagates in the earth and sand around the pipe, and the higher the degree of compression of the earth and sand around the pipe, the more elastic the sand and sand. As the wave propagation ratio increases, it can be estimated that the deeper the pipe embedment depth, the greater the amount of elastic wave leakage into the soil and the lower the intensity of the received elastic wave. There is a certain relationship between the frequency spectrum of the received elastic wave and the frequency spectrum of the received elastic wave. From this relationship, the frequency spectrum of the received elastic wave at the pipe embedment depth can be corrected to the received elastic wave frequency spectrum at the reference embedded depth.
まず、前記の基礎的事項を検証する。
(A)埋設条件の設定
実験に使用した試料は次の通りである。
健全管体試料に、JISA 5303のB型1種に基づく呼び径250mm、長さ2m
のコンクリート製ヒューム管を使用し、図2の(イ)に示すように厚み200mmの敷砂
上に健全管体試料を配設し、更に図2の(ロ)に示すように厚み300mmの盛砂を施し
た状態をベースとし、埋設深さ0.5m、1.0m、1.5m、2.0mの土圧状態(管
外面の土圧が0.5m、1.0m、1.5m、2.0m埋設時の土圧と等圧となる状態)
をシュミレートするために、図3の(ハ)に示すように所要枚数の鋼板mを木板スペーサ
cを介して載置した。使用した鋼板の重量は5kN/枚であり、使用した土砂の比重は1
7.8kN/m3であって、所定の埋設深さを設定するための鋼板の総重量(枚数)は表1
の通りとした。
(A) Setting of embedding conditions Samples used in the experiment are as follows.
For a healthy tube sample, a nominal diameter of 250 mm and a length of 2 m based on Type B of JISA 5303
2 is used, and a sound pipe sample is disposed on a sand of 200 mm thickness as shown in FIG. 2 (a), and a sand of 300mm thickness as shown in FIG. 2 (b). The earth pressure state where the embedding depth is 0.5 m, 1.0 m, 1.5 m, and 2.0 m (the earth pressure on the outer surface of the pipe is 0.5 m, 1.0 m, 1.5 m, 2 m (Same pressure as earth pressure when buried in 0m)
In order to simulate the above, as shown in FIG. 3C, a required number of steel plates m were placed through a wood plate spacer c. The weight of the steel plate used is 5 kN / sheet, and the specific gravity of the earth and sand used is 1
Table 1 shows the total weight (number of steel plates) of 7.8 kN /
It was as follows.
(B)健全管体における受振波の管埋設深さに対する補正式の算出
この補正式は次のようにして算出した。
弾性波の入力位置と受振位置とは管内面の頂上で1950mm離れた位置とし、検査装
置には、図3に示すように台車上に第1アーム11aと第2アーム11bとを有し、第1
アーム11aの先端にインパルスハンマーAを支持し、第2アーム11bの先端に振動セ
ンサーBを支持した検査ロボットを使用し、振動センサーにキーエンス社製GH−313
Aを使用し、受信アンプにキーエンス社製GA−245を、データロガーにキーエンス社
製NR−2000をそれぞれ使用し、高速フーリエ変換プログラムに株式会社アブティッ
ク製を使用した。
鋼板の載置により埋設深さを0.5m、1.0m、1.5m、2.0m相当にに設定し
た各試料について、試料内に前記検査ロボットを導入し(インパクトハンマーの打撃箇所
から受振箇所までの距離を1950mmにしてある)、衝撃弾性波試験を行って受振波の
波形を記録した。図4の(イ)は埋設深さ0.5mm相当試料での受振波の波形を示して
いる。
各埋設深さに対する受振波形を絶対値に変換し〔図4の(ロ)は図4の(イ)に示す波
形の絶対値変換を行った波形〕、0〜700×10μsの時間区間で積分し、
積分値の比率y=(埋設深さxmでの受振波の積分値)/(埋設深さ0.5mでの受振
波の積分値)
を算出し、図4の(ハ)に示す、
〔式2〕 y=−0.28x+1.14
を得た。
この積分値の比率yは(埋設深さxmでの受振波のエネルギー)/(埋設深さ0.5m
での受振波のエネルギー)を意味している。
同様にして、前記埋設深さの異なる各試料の受振波の周波数スペクトルを求め(図5の
(イ)埋設深さ0.5m相当試料の受振波の周波数スペクトルを示し、図5の(ロ)は埋
設深さ2.0m相当試料の受振波の周波数スペクトルを示している)、周波数0〜10k
Hzの区間で積分し、
積分値の比率y=(埋設深さxmでの受振波周波数スペクトルの積分値)/(埋設深さ
0.5mでの受振波周波数スペクトルの積分値)
を算出したところ、前記〔式2〕と同じ式を得た。
この補正式から、0.5m単位で変えた埋設深さに対する補正係数を示せば次の通りで
ある。
The elastic wave input position and the vibration receiving position are 1950 mm apart on the top of the inner surface of the tube, and the inspection apparatus has a
An inspection robot having an impulse hammer A supported at the tip of the
A, Keyence Corporation GA-245 was used for the receiving amplifier, Keyence Corporation NR-2000 was used for the data logger, and Abu Boutique Co., Ltd. was used for the fast Fourier transform program.
For each sample in which the embedding depth is set to 0.5 m, 1.0 m, 1.5 m, or 2.0 m by placing a steel plate, the inspection robot is introduced into the sample (receiving vibration from the impact hammer impact location) The distance to the location was 1950 mm), and the shock elastic wave test was performed to record the waveform of the received wave. FIG. 4 (a) shows the waveform of the received wave in a sample corresponding to an embedding depth of 0.5 mm.
The received waveform for each embedding depth is converted into an absolute value ((B) in FIG. 4 is a waveform obtained by converting the absolute value of the waveform shown in (A) in FIG. 4), and is integrated over a time interval of 0 to 700 × 10 μs. And
Ratio of integral value y = (integrated value of received wave at buried depth xm) / (integrated value of received wave at buried depth of 0.5 m)
Is calculated and shown in FIG.
[Formula 2] y = −0.28x + 1.14
Got.
The ratio y of the integral value is (the energy of the received wave at the embedment depth xm) / (the embedment depth 0.5 m).
The energy of the received wave at
Similarly, the frequency spectrum of the received wave of each sample with different embedment depth is obtained ((b) in FIG. 5 shows the frequency spectrum of the received wave of the sample corresponding to the embedded depth of 0.5 m, and (b) in FIG. Indicates the frequency spectrum of the received wave of the sample corresponding to the embedding depth of 2.0 m),
Integrate over the interval of Hz,
Ratio of integral value y = (integrated value of received wave frequency spectrum at buried depth xm) / (integrated value of received wave frequency spectrum at buried depth of 0.5 m)
As a result, the same formula as [Formula 2] was obtained.
From this correction formula, the correction coefficient for the buried depth changed in units of 0.5 m is as follows.
(C)補正式yと欠陥管体の受振波周波数スペクトルとの相関性
次のようにして相関性のあることを確認した。
欠陥管体試料として、前記ヒューム管を図6に示すように落下して管体中央に周方向ク
ラックを巾0.15mm(周方向等間隔5点での平均値)の寸法で入れたものを使用した
。
この欠陥管体試料の埋設深さを前記した鋼板載置により異ならしめても、次のように前
記補正式yによりその欠陥管体の受振波周波数スペクトルのスペクトル強度(波高値)を
補正して基準埋設深さ(補正係数1の埋設深さ0/5m)での受振波周波数スペクトルに
ほぼ等しい周波数スペクトルを求めることができる。
図7の(イ)の左側図は欠陥管体の埋設深さ0.5mでの受振波周波数スペクトルを示
し、右側図は前記補正式に基づく補正係数1で補正した補正後受振波周波数スペクトルを
示している。
図7の(ロ)の左側図は欠陥管体の埋設深さ2.0mでの受振波周波数スペクトルを示
し、右側図は前記補正式に基づく補正係数1.72で補正した補正後受振波周波数スペク
トルを示している。
(C) Correlation between the correction formula y and the received wave frequency spectrum of the defective tube body It was confirmed that there was a correlation as follows.
As a defective tube sample, the fume tube was dropped as shown in FIG. 6 and a crack in the circumferential direction was placed in the center of the tube with a width of 0.15 mm (average value at five equally spaced circumferential points). used.
Even if the embedment depth of the defective pipe sample is made different by placing the steel plate, the spectral intensity (crest value) of the received wave frequency spectrum of the defective pipe is corrected by the correction equation y as follows. A frequency spectrum substantially equal to the received wave frequency spectrum at the embedment depth (
The left side of FIG. 7 (a) shows the received wave frequency spectrum at a depth of 0.5 m of the defective tube, and the right side shows the corrected received wave frequency spectrum corrected by the
The left side of (b) in FIG. 7 shows the received wave frequency spectrum when the defective pipe is embedded at a depth of 2.0 m, and the right side is the corrected received wave frequency corrected by the correction coefficient 1.72 based on the correction equation. The spectrum is shown.
図8の(イ)は埋設深さ0.5mと2.0mの健全品試料及び前記した周方向クラック
試料についての受振波周波数スペクトルの補正前の最大ピーク値と最大ヒーク値との比を
、図8の(ロ)は埋設深さ0.5mと2.0mの健全品試料及び前記した周方向クラック
試料についての受振波周波数スペクトルの補正後の最大ピーク値と最大ヒーク値との比を
それぞれ示し、埋設深さが異なっても補正により最大ピーク値がほぼ一致され、埋設深さ
が異なっても補正により最大ピーク値による劣化診断を同一基準で行い得ることが明らか
である。
また、埋設深さの異なる図5の(イ)と(ロ)または埋設深さの異なる図7の(イ)と
(ロ)との場合の受振波周波数スペクトルの対比から、最大ピーク値周波数(固有振動周
波数)、ピーク本数も実質的に殆ど変わらないことが明らかである。
(A) in FIG. 8 shows the ratio between the maximum peak value and the maximum heak value before correction of the received wave frequency spectrum for the healthy sample having an embedding depth of 0.5 m and 2.0 m and the circumferential crack sample described above. (B) in FIG. 8 shows the ratio between the maximum peak value and the maximum heak value after correction of the received wave frequency spectrum for the healthy sample having the embedment depth of 0.5 m and 2.0 m and the above-described circumferential crack sample, respectively. It is clear that the maximum peak values are almost the same by the correction even when the embedment depth is different, and that the deterioration diagnosis by the maximum peak value can be performed by the same standard by the correction even if the embedment depth is different.
Further, from the comparison of the received wave frequency spectrum in the cases (a) and (b) of FIG. 5 having different embedment depths or (b) and (b) of FIG. 7 having different embedment depths, the maximum peak value frequency ( It is clear that the natural vibration frequency) and the number of peaks are substantially unchanged.
従って、管体の埋設深さが異なっても、その受振波の固有振動周波数、同受振波の周波
数スペクトルのピーク本数等の欠陥情報が実質的に殆ど変わず、受振波の波高値が実質的
に異なるだけであり、その差異の比は健全管体でのそれに実質的に等しく、従って、健全
管体について埋設深さと受振波波高値との関係を求めておけば、埋設深さが異なる欠陥管
体の受振波の周波数スペクトルのスペクト強度を補正して基準埋設深さ(通常0.5m)
での周波数スペクトルを求め得る。
Therefore, even if the embedment depth of the tube is different, defect information such as the natural vibration frequency of the received wave and the number of peaks of the frequency spectrum of the received wave is substantially unchanged, and the peak value of the received wave is substantially unchanged. The ratio of the difference is substantially equal to that of a healthy pipe. Therefore, if the relationship between the buried depth and the wave height is determined for a healthy pipe, defects with different buried depths can be obtained. The reference embedding depth (usually 0.5m) by correcting the spectral intensity of the frequency spectrum of the tube's received wave
The frequency spectrum at can be obtained.
本発明に係る埋設管の検査方法により埋設管の劣化診断を行うには、図3に示す検査ロ
ボットを使用することが好ましい。この検査ロボットは図3の(ロ)に示すように、中折
り可能とし、マンホールから管路に至る間の直角空間に円滑に挿通できるようにしてある
。
In order to perform the deterioration diagnosis of the buried pipe by the buried pipe inspection method according to the present invention, it is preferable to use the inspection robot shown in FIG. As shown in FIG. 3B, this inspection robot can be folded in the middle so that it can be smoothly inserted into a right angle space from the manhole to the pipeline.
本発明に係る埋設管の検査方法により埋設管の劣化診断を行うには、例えば図9に示す
ように検査ロボット1を使用し、図10に示すフローに従って進めることができる。この
場合、一本の管体の衝撃弾性波試験を行えば、次の管体内に検査装置を移行させるが、陥
没が過酷な場合は衝撃弾性波試験を行うまでもなく重劣化と判定する。
図9において、3はTVカメラを示し、陥没の程度はTVカメラの監視により行い、管
路内面を監視しつつ検査装置を移行させる。4は制御ユニット、cは操作信号を入力した
り、データ記録、高速フーリエ変換を行うパソコンやTVカメラモニタを示している。
各管体の埋設深さHは、管体中央点位置での埋設深さとすることができ、例えば図11
に示す各管体の傾斜角θm(m=1,2…)を測定し、マンホールでの深さをH0、管体
長さをLとして
取付け、その信号をパソコン5に入力して受振波周波数スペクトルの埋設深さに対する補
正を行い得るようにしてもよい。
In order to perform the deterioration diagnosis of the buried pipe by the buried pipe inspection method according to the present invention, for example, the
In FIG. 9, 3 indicates a TV camera, and the degree of depression is monitored by the TV camera, and the inspection apparatus is shifted while monitoring the inner surface of the pipe.
The embedment depth H of each tube can be the embedment depth at the tube center point position, for example, FIG.
The inclination angle θm (m = 1, 2,...) Of each tube shown in FIG.
埋設管の劣化診断を行うには、図9において、まず、埋設管路の各管体に対し、検査ロ
ボット1を使用して衝撃弾性波試験を行い、振動センサーBが受振する入力弾性波をパソ
コン5に保存し、高速フーリエ変換ソフトによりその入力弾性波をフーリエ変換して周波
数スペクトルを求める。傾斜計6で埋設深さx(m)を測定し、前記の式2により補正係
数を算出し、埋設深さに対する補正を行い、補正された周波数スペクトルを求める。
この補正した周波数スペクトルを解析し、最大ピークのスペクトル強度値40%以上の
ピーク本数を求め、ピーク本数が2本以下であれば〔図12の(ロ)参照〕、軸方向クラ
ック在りと診断し、ピーク本数が3本以上であれば〔図12の(ハ)、図12の(ニ)参
照〕、最大ピークの強度値を解析し、予め求めておいた健全管体の周波数スペクトル〔図
12の(イ)参照〕と比較して最大ピークの強度値が顕著に減少しているもの〔図12の
(ハ)参照〕では周方向クラック在りと診断し、最大ピークの強度値の減少程度が小さな
もの〔図12の(ニ)参照〕では管厚み減少と診断することができる。
In order to perform the deterioration diagnosis of the buried pipe, in FIG. 9, first, an impact elastic wave test is performed on each pipe body of the buried pipe using the
This corrected frequency spectrum is analyzed to obtain the number of peaks having a maximum peak spectral intensity value of 40% or more. If the number of peaks is 2 or less (see (b) in FIG. 12), it is diagnosed that there is an axial crack. If the number of peaks is 3 or more (see (c) in FIG. 12, (d) in FIG. 12), the intensity spectrum of the maximum peak is analyzed and the frequency spectrum of the healthy tube obtained in advance [FIG. (See (b) of FIG. 12), the maximum peak intensity value is significantly reduced (see (c) of FIG. 12), and it is diagnosed that there is a crack in the circumferential direction. A small one (see FIG. 12D) can be diagnosed as a decrease in tube thickness.
前記した埋設深さに対する補正式は、土砂の種類により異なる。従って、前記の砂質土
について計算式を求めたのと同様にして礫質土、粘性土についても補正式を求めておき、
土質に対応することが好ましい。
The correction formula for the above-described embedding depth varies depending on the type of earth and sand. Therefore, in the same manner as the calculation formula for the sandy soil described above, a correction formula is also calculated for gravelly soil and viscous soil,
It is preferable to deal with soil quality.
管内水量は伝播弾性波を減衰したり、管体質量の実質的な増加をもたらすから、前記し
た振動波形の基本式〔数1〕から明らかなように、管内水量は受振波形に影響を及ぼし、
その周波数スペクトルに異同をもたらす。
而るに、検査区間の水抜きは、管内水量0%を基準にして水量に対する環境条件を揃え
る意義を有し、診断精度を高めるのに有効であって上記実施例では、図9に示すように、
検査管路区間に燐在する区間をエアーバッグG等で止水し、検査区間内を水抜きして管内
水量0%を検査基準としている。
Since the amount of water in the pipe attenuates the propagation elastic wave and brings about a substantial increase in the mass of the pipe body, the amount of water in the pipe affects the received waveform, as is apparent from the basic equation of the vibration waveform [Equation 1],
It makes a difference in its frequency spectrum.
Thus, draining the test section has the significance of aligning the environmental conditions with respect to the amount of water with reference to 0% of the amount of water in the pipe, and is effective in improving the diagnostic accuracy. In the above embodiment, as shown in FIG. In addition,
The section existing in the inspection pipeline section is stopped with an airbag G or the like, the inspection section is drained, and the inspection water amount is 0%.
本発明者においては、実際の埋設管路において管内水量が前記受振波周波数スペクトル
に及ぼす影響を鋭意検討し、受振波周波数スペクトルの固有振動周波数、ピーク本数が殆
ど変わらず、スペクトルの強度(波高値)の変化にとどまることを確認済みである。
この事実は、管内水量の上昇に比例して管内水中に出力弾性波の一部が放出されること
による受振弾性波の波高値減少が、減衰係数の変化や質量の変化による受振弾性波の変化
よりも強く現れる結果と推定される。
The present inventor has intensively studied the influence of the amount of water in the pipe on the received wave frequency spectrum in an actual buried pipe, and the natural vibration frequency and the number of peaks of the received wave frequency spectrum are hardly changed, and the intensity of the spectrum (the peak value). ).
This fact indicates that the decrease in the peak value of the received elastic wave due to the release of a part of the output elastic wave in the pipe water in proportion to the increase in the amount of water in the pipe, the change in the received elastic wave due to the change in the damping coefficient or mass. It is presumed that the result appears stronger.
この事実を検証する。
(A)健全管体における受振波の管内水量に対する補正式の算出
この補正式は次のようにして算出した。
基準埋設深さ(0.5m)の健全管体試料の管体内水位を0%、10%、30%、50
%とし、各水位ごとに衝撃弾性波試験を行って受振波の波形を記録した。図13の(イ)
は水位0%での受振波の波形を示している。
各水位に対する受振波形を絶対値に変換し〔図13の(ロ)は図13の(イ)に示す波
形の絶対値変換を行った波形〕、0〜700×10μsの時間区間で積分し、
積分値の比率y=(水位x%での受振波の積分値)/(水位0%での受振波の積分値)
を算出し、図13の(ハ)に示す、
〔式3〕 y=−0.005x+1
を得た。
この積分値の比率yは(水位x%での受振波のエネルギー)/(水位0%での受振波の
エネルギー)を意味している。
同様にして、水位を変えて受振波の周波数スペクトルを求め(図14の(イ)は水位2
0%での受振波の周波数スペクトルを示し、図14の(ロ)は水位50%での受振波の周
波数スペクトルを示している)、周波数0.5〜10kHzの区間で積分し、
積分値の比率y=(水位x%での受振波周波数スペクトルの積分値)/(水位0%での
受振波周波数スペクトルの積分値)
を算出したところ、前記〔式3〕と同じ式を得た。
この補正式から、10%単位で変えた水位に対する補正係数を示せば次の通りである。
(A) Calculation of correction formula for pipe water volume of received wave in healthy pipe This correction formula was calculated as follows.
The water level in the pipe of a healthy pipe sample with a reference embedding depth (0.5 m) is 0%, 10%, 30%, 50
%, A shock elastic wave test was performed for each water level, and the waveform of the received wave was recorded. (A) in FIG.
Indicates the waveform of the received wave at a water level of 0%.
The received waveform for each water level is converted into an absolute value ((b) in FIG. 13 is a waveform obtained by converting the absolute value of the waveform shown in (b) in FIG. 13), integrated over a time interval of 0 to 700 × 10 μs,
Integral value ratio y = (integrated value of received wave at water level x%) / (integrated value of received wave at 0% water level)
Is calculated and shown in FIG.
[Formula 3] y = −0.005
Got.
The ratio y of the integral values means (received wave energy at water level x%) / (received wave energy at
Similarly, the frequency spectrum of the received wave is obtained by changing the water level ((b) in FIG.
The frequency spectrum of the received wave at 0% is shown, and (b) in FIG. 14 shows the frequency spectrum of the received wave at the water level of 50%).
Integral value ratio y = (integrated value of received wave frequency spectrum at water level x%) / (integrated value of received wave frequency spectrum at 0% water level)
As a result, the same formula as [Formula 3] was obtained.
From this correction equation, the correction coefficient for the water level changed in units of 10% is as follows.
(B)補正式yと欠陥管体の受振波周波数スペクトルとの相関性
次のようにして相関性のあることを確認した。
欠陥管体として、前記と同様にヒューム管を前記の図6に示すように落下して管体中央
に周方向クラックを巾0.15mm(周方向等間隔5点での平均値)の寸法で入れたもの
を使用した。
この欠陥管体内に水量が存在しても、次のように前記補正式yによりその欠陥管体の受
振波周波数スペクトルのスペクトル強度(波高値)を補正して基準水位(通常0水位)で
の受振波周波数スペクトルを求めることができる。
図15の(イ)の左側図は欠陥管体の管内水位が20%での受振波周波数スペクトルを
示し、右側図は前記補正式に基づく補正係数1.11で補正した補正後受振波周波数スペ
クトルを示している。
図15の(ロ)の左側図は欠陥管体の管内水位が50%での受振波周波数スペクトルを
示し、右側図は前記補正式に基づく補正係数1.33で補正した補正後受振波周波数スペ
クトルを示している。
図15の(イ)の左側図で示す補正後の受振波周波数スペクトルの最大ピーク値と図1
5の(ロ)の左側図で示す補正後の受振波周波数スペクトルの最大ピーク値とは共に8.
4であって一致しており、最大ピーク値周波数(固有振動周波数)、ピーク本数も実質的
に一致している。
(B) Correlation between the correction equation y and the received wave frequency spectrum of the defective tube body It was confirmed that there was a correlation as follows.
As a defective tube body, the fume tube is dropped as shown in FIG. 6 and a circumferential crack is formed at the center of the tube body with a width of 0.15 mm (average value at five equally spaced circumferential points). We used what we put.
Even if the amount of water is present in the defective pipe, the spectrum intensity (crest value) of the received wave frequency spectrum of the defective pipe is corrected by the correction equation y as follows, at the reference water level (usually 0 water level). A received wave frequency spectrum can be obtained.
The left side of FIG. 15 (a) shows the received wave frequency spectrum when the in-pipe water level of the defective pipe body is 20%, and the right side figure shows the corrected received wave frequency spectrum corrected by the correction coefficient 1.11 based on the correction formula. Is shown.
The left side of (b) in FIG. 15 shows the received wave frequency spectrum when the in-pipe water level of the defective pipe body is 50%, and the right side shows the corrected received wave frequency spectrum corrected by the correction coefficient 1.33 based on the correction formula. Is shown.
The maximum peak value of the received wave frequency spectrum after correction shown in the left side of FIG.
5 together with the maximum peak value of the received frequency spectrum after correction shown in the left diagram of (b) of FIG.
4, the maximum peak value frequency (natural vibration frequency) and the number of peaks substantially match.
従って、欠陥管体内に水量が在っても、その受振波の固有振動周波数、同受振波の周波
数スペクトルのピーク本数等の欠陥情報が実質的に殆ど変わず、受振波の波高値が実質的
に異なるだけであり、その差異の比は健全管体でのそれに実質的に等しく、従って、健全
管体について管内水量と受振波波高値との関係を求めておけば、水量が存在する欠陥管体
の受振波の周波数スペクトルのスペクト強度を補正して基準水量(通常0%水量)での周
波数スペクトルを求め得る。
この理由は、前記した補正係数、すなわち、(水位x%での試料の受振波周波数スペク
トルの積分値)/(水位0%での試料の受振波周波数スペクトルの積分値)の比が、(水
位x%での受振波のエネルギー)と(水位0%での受振波のエネルギー)との比であり、
弾性波出力のエネモルギーが管内水位に比例して管内水に放出され、この放出分だけ受振
波のエネルギーが小さくなることによると推定される。
Therefore, even if there is water in the defective pipe, the defect information such as the natural vibration frequency of the received wave and the number of peaks of the frequency spectrum of the received wave is substantially unchanged, and the peak value of the received wave is substantially unchanged. The ratio of the difference is substantially equal to that of a healthy pipe. Therefore, if the relationship between the amount of water in the pipe and the peak value of the received wave is obtained for the healthy pipe, the defective pipe where the amount of water exists is obtained. The frequency spectrum at the reference water amount (usually 0% water amount) can be obtained by correcting the spectral intensity of the frequency spectrum of the body vibration wave.
The reason for this is that the ratio of the correction coefficient described above, that is, the (integrated value of the received wave frequency spectrum of the sample at the water level x%) / (the integrated value of the received wave frequency spectrum of the sample at the 0% water level) is (water level). is the ratio of the received wave energy at x%) to the received wave energy at 0% water level,
It is estimated that the energy of the elastic wave output is released into the pipe water in proportion to the water level in the pipe, and the energy of the received wave is reduced by this amount.
本発明に係る埋設管の検査方法の別実施例により埋設管の劣化診断を行うには、例えば
図16に示すフローに従って進めることができる。
まず、埋設管路の各管体に対し、検査ロボットに前記した傾斜計の外、水位計を取り付
け、管内に水量を存在させたままで前記検査ロボットを使用して衝撃弾性波試験を行い、
振動センサーが受振する入力弾性波をパソコンに保存し、高速フーリエ変換ソフトにより
その入力弾性波をフーリエ変換して周波数スペクトルの伝達関数を求める。埋設深さH(
m)を測定し、また管内水位x(%)を測定して、前記の式2及び式3により補正係数を
算出し、埋設深さに対する補正及び管内水位による補正を行い、補正された周波数スペク
トルの伝達関数を求める。
この補正した周波数スペクトルの伝達関数を解析し、最大ピークのスペクトル強度値4
0%以上のピーク本数を求め、ピーク本数が2本以下であれば、軸方向クラック在りと診
断し、ピーク本数が3本以上であれば、最大ピークの強度値を解析し、予め求めておいた
健全管体の周波数スペクトル伝達関数と比較して最大ピークの強度値が顕著に減少してい
るものでは周方向クラック在りと診断し、最大ピークの強度値の減少程度が小さなもので
は管厚み減少と診断することができる。
In order to perform the deterioration diagnosis of the buried pipe according to another embodiment of the buried pipe inspection method according to the present invention, for example, the flow shown in FIG. 16 can be followed.
First, for each tube of the buried pipeline, in addition to the inclinometer, the water level meter is attached to the inspection robot, and the shock elastic wave test is performed using the inspection robot while the amount of water remains in the pipe.
The input elastic wave received by the vibration sensor is stored in a personal computer, and the input elastic wave is Fourier-transformed by fast Fourier transform software to obtain the transfer function of the frequency spectrum. Embedding depth H (
m) is measured, the pipe water level x (%) is measured, the correction coefficient is calculated by the
The transfer function of this corrected frequency spectrum is analyzed, and the spectrum intensity value of the maximum peak is 4
The number of peaks of 0% or more is obtained. If the number of peaks is 2 or less, it is diagnosed that there is an axial crack. If the number of peaks is 3 or more, the intensity value of the maximum peak is analyzed and obtained in advance. If the maximum peak intensity value is significantly reduced compared to the frequency spectrum transfer function of a healthy tube, it is diagnosed that there is a circumferential crack, and if the decrease in the maximum peak intensity value is small, the tube thickness is reduced. Can be diagnosed.
A 打撃具
B 振動センサー
1 検査ロボット
p 管体
6 傾斜計
A Impact tool
Claims (1)
箇所で伝播弾性波を受振し、この受振波の周波数スペクトルの強度値を予め求めた管埋設
深さに対する補正係数で補正してその受振波の基準埋設深さに対する周波数スペクトルを
求め、この周波数スペクトルを解析して埋設管の劣化診断を行うことを特徴とする埋設管
の検査方法。 An elastic wave is input to a predetermined inner surface portion of the buried pipe, a propagation elastic wave is received at the inner surface portion of the pipe spaced from the input portion, and the intensity of the frequency spectrum of the received wave is obtained in advance. A method for inspecting a buried pipe, characterized in that a frequency spectrum with respect to a reference burying depth of the received wave is obtained by correcting with a correction coefficient for the depth, and the deterioration of the buried pipe is diagnosed by analyzing the frequency spectrum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004161515A JP4413082B2 (en) | 2004-05-31 | 2004-05-31 | Inspection method for buried pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004161515A JP4413082B2 (en) | 2004-05-31 | 2004-05-31 | Inspection method for buried pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005345116A true JP2005345116A (en) | 2005-12-15 |
JP4413082B2 JP4413082B2 (en) | 2010-02-10 |
Family
ID=35497660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004161515A Expired - Fee Related JP4413082B2 (en) | 2004-05-31 | 2004-05-31 | Inspection method for buried pipes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4413082B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101121283B1 (en) | 2004-07-26 | 2012-03-23 | 고꾸리츠 다이가꾸호오징 기후다이가꾸 | Buried pipe examining method |
WO2015174067A1 (en) * | 2014-05-14 | 2015-11-19 | 日本電気株式会社 | Information processing device, anomaly detection method and recording medium |
JP2019124691A (en) * | 2018-01-18 | 2019-07-25 | 原子燃料工業株式会社 | Quality evaluation method for concrete member |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004028976A (en) * | 2001-10-12 | 2004-01-29 | Sekisui Chem Co Ltd | Method and apparatus for inspecting reinforced concrete pipe |
-
2004
- 2004-05-31 JP JP2004161515A patent/JP4413082B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004028976A (en) * | 2001-10-12 | 2004-01-29 | Sekisui Chem Co Ltd | Method and apparatus for inspecting reinforced concrete pipe |
Non-Patent Citations (1)
Title |
---|
皆木卓志 他: "弾性波によるコンクリート下水管路の劣化診断手法に関する基礎研究", コンクリート工学年次論文集, vol. 24, no. 1, JPN6009038500, 2002, pages 1539 - 1544, ISSN: 0001382675 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101121283B1 (en) | 2004-07-26 | 2012-03-23 | 고꾸리츠 다이가꾸호오징 기후다이가꾸 | Buried pipe examining method |
WO2015174067A1 (en) * | 2014-05-14 | 2015-11-19 | 日本電気株式会社 | Information processing device, anomaly detection method and recording medium |
US10719778B2 (en) | 2014-05-14 | 2020-07-21 | Nec Corporation | Anomaly detection based on relational expression between vibration strengths at various frequencies |
JP2019124691A (en) * | 2018-01-18 | 2019-07-25 | 原子燃料工業株式会社 | Quality evaluation method for concrete member |
JP7273517B2 (en) | 2018-01-18 | 2023-05-15 | 原子燃料工業株式会社 | Quality evaluation method for concrete members |
Also Published As
Publication number | Publication date |
---|---|
JP4413082B2 (en) | 2010-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4667228B2 (en) | Pile inspection method and sensor crimping device | |
AU2005265697B2 (en) | Buried pipe examining method | |
JP6371409B2 (en) | Method for evaluating the condition of members | |
US20040123665A1 (en) | Nondestructive detection of reinforcing member degradation | |
JP6406013B2 (en) | Defect analysis apparatus, defect analysis method and program | |
JP3340702B2 (en) | A method for measuring deterioration of a concrete structure and a measuring device therefor. | |
CA2783089A1 (en) | Damage detection in pipes and joint systems | |
JP5666334B2 (en) | Quality diagnosis method for concrete structures | |
JP3198840U (en) | Prop road boundary inspection system | |
JP6364742B2 (en) | Structure diagnosis apparatus, structure diagnosis method, and program | |
JP5735369B2 (en) | Inspection method and rehabilitation method for buried pipe | |
JP4413082B2 (en) | Inspection method for buried pipes | |
JP6061767B2 (en) | Method and apparatus for exploring delamination inside concrete | |
JP4515848B2 (en) | Inspection method for buried pipes | |
JP5114104B2 (en) | Inspection method for inspecting the curing state of fiber reinforced plastic materials with buried pipes | |
JP7249145B2 (en) | Conduit health diagnostic method | |
JP4413089B2 (en) | Inspection method for buried pipes | |
JP4756150B2 (en) | Inspection method for buried pipes | |
JP4598433B2 (en) | Inspection method for buried pipes | |
JP4391875B2 (en) | Inspection method for buried pipes | |
JP2008026162A (en) | Inspection method for inspecting deterioration state of embedded pipe | |
JP2006038597A (en) | Inspection method for buried pipe | |
JP4608257B2 (en) | Inspection method for buried pipes | |
JP2007051991A (en) | Method and system for measuring wall thickness of metal pipe | |
JP2024134335A (en) | How to diagnose clogged pipes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4413082 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |