JP2006038597A - Inspection method for buried pipe - Google Patents

Inspection method for buried pipe Download PDF

Info

Publication number
JP2006038597A
JP2006038597A JP2004217832A JP2004217832A JP2006038597A JP 2006038597 A JP2006038597 A JP 2006038597A JP 2004217832 A JP2004217832 A JP 2004217832A JP 2004217832 A JP2004217832 A JP 2004217832A JP 2006038597 A JP2006038597 A JP 2006038597A
Authority
JP
Japan
Prior art keywords
frequency
pipe
spectrum
integrated
buried pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004217832A
Other languages
Japanese (ja)
Inventor
Takushi Minaki
卓士 皆木
Toshiro Kamata
敏郎 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
Sekisui Chemical Co Ltd
Original Assignee
Gifu University NUC
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University NUC, Sekisui Chemical Co Ltd filed Critical Gifu University NUC
Priority to JP2004217832A priority Critical patent/JP2006038597A/en
Priority to AU2005265697A priority patent/AU2005265697B2/en
Priority to KR1020077001807A priority patent/KR101121283B1/en
Priority to EP05767417.8A priority patent/EP1780540A4/en
Priority to PCT/JP2005/013655 priority patent/WO2006011484A1/en
Priority to US11/658,658 priority patent/US7690258B2/en
Priority to CA2575036A priority patent/CA2575036C/en
Publication of JP2006038597A publication Critical patent/JP2006038597A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Pipeline Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely inspect discrimination among deterioration phenomena in a buried pipe such as a buried pipe and a ceramic pipe constituting a sewer pipe line, an agricultural water pipe line or the like. <P>SOLUTION: In this method of inspecting a deterioration condition in the buried pipe, from its pipe inside, a propagation wave is measured by carrying out an impact elastic wave test, a frequency spectrum is analyzed as to the propagation wave, and at least a spectral area value of the first frequency section (for example, 0.5-4kHz) of the frequency spectrum, and a spectral area value of the second frequency section (for example, 0.5-10kHz) are evaluated to determine the discrimination of the deterioration conditions in the buried pipe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、埋設管の劣化状態を検査する埋設管の検査方法に関する。   The present invention relates to a buried pipe inspection method for inspecting a deterioration state of a buried pipe.

下水管路や農水管路においては、埋設管の経年に伴う腐食摩耗や破損により陥没や漏水などの事故が増加してきている。このため適切な劣化度診断とその調査結果に基づく、適切な修繕・更新が望まれている。   In sewage pipes and agricultural water pipes, accidents such as depressions and water leakage are increasing due to corrosive wear and breakage of buried pipes over time. For this reason, appropriate repair and renewal based on the appropriate deterioration degree diagnosis and the survey results are desired.

下水管路や農水管路の診断調査においては、一般に、修繕・改築工事の順番及び工事方法を決定するために、調査流域を構成する要素区域間の劣化進行度の順位付け、及び定量的な劣化レベルの進行度の把握が必要となる。   In the diagnosis survey of sewage pipelines and agricultural water pipelines, in general, in order to determine the order of repair and reconstruction work and the construction method, ranking of the degree of deterioration between the element areas constituting the survey basin, and quantitative It is necessary to grasp the progress of the deterioration level.

このため、従来では、目視やTVカメラを用いて外観調査を行い、必要となればコアを抜いて物性を調査するという方法が一般に行われている。しかし、このような手法では、目に見える劣化しか捉えることができず、管外周や内部の劣化については見逃されてしまい、劣化現象を適切に定量的に把握することが困難であった。また、定量的なデータを集めるためにはコアを大量に抜く必要があり、下水管路や農水管路の強度を損ねたり、作業に手間がかかるという欠点がある。   For this reason, conventionally, a method is generally used in which an appearance inspection is performed using visual observation or a TV camera, and a physical property is investigated by removing the core if necessary. However, with such a method, only visible deterioration can be detected, and deterioration on the outer periphery and inside of the pipe is overlooked, and it is difficult to appropriately and quantitatively grasp the deterioration phenomenon. In addition, in order to collect quantitative data, it is necessary to remove a large amount of cores, and there is a disadvantage that the strength of the sewage pipe and the agricultural water pipe is impaired and work is troublesome.

一方、コンクリート構造物で行われている検査方法の応用も考えられている。例えば、弾性波を利用したひび割れ幅及び深さを予測するシステムが提案されている(例えば、特許文献1参照。)。しかし、この検査システムによれば、弾性波の振幅値や、弾性波のカウント数(所定以上の振幅のカウント数)の減少を利用しているため、埋設管が埋設されている周囲状況の影響を受けやすく、検査精度が悪いという問題がある。
特開平10−142200号公報
On the other hand, application of inspection methods performed on concrete structures is also considered. For example, a system for predicting crack width and depth using elastic waves has been proposed (see, for example, Patent Document 1). However, according to this inspection system, since the elastic wave amplitude value or the decrease in the elastic wave count number (the count number of the amplitude greater than or equal to the predetermined value) is used, the influence of the surrounding situation where the buried pipe is buried is used. There is a problem that the inspection accuracy is poor.
JP-A-10-142200

本発明は、以上のような問題点を解消するためになされたもので、下水管路や農水管路等を構築している埋設管の劣化現象の区別を、埋設環境に影響されずに高精度で検査することが可能な埋設管の検査方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and it is possible to distinguish the deterioration phenomenon of buried pipes that construct sewage pipes and agricultural water pipes without being affected by the buried environment. An object of the present invention is to provide an embedded pipe inspection method capable of inspecting with accuracy.

本発明の埋設管の検査方法は、埋設管の劣化状態を管内部から検査する方法であって、衝撃弾性波試験を行って検査対象管の伝播波を測定し、この伝播波について周波数スペクトルを解析し、その周波数スペクトルの少なくとも第1周波数区間のスペクトル面積値と第2周波数区間のスペクトル面積値とから、劣化現象の区別を判定することを特徴としている。   The method for inspecting a buried pipe according to the present invention is a method for inspecting the deterioration state of a buried pipe from the inside of the pipe, performing a shock elastic wave test to measure a propagation wave of the examination target pipe, and calculating a frequency spectrum for the propagation wave. Analysis is performed, and the distinction of the deterioration phenomenon is determined from at least the spectrum area value of the first frequency section and the spectrum area value of the second frequency section of the frequency spectrum.

本発明の埋設管の検査方法において、スペクトル面積値を算出するための周波数区間を設定する手法としては、例えば、状態が異なる複数種の供試管についてそれぞれ衝撃弾性波試験を行って伝播波を測定し、その各伝播波についてそれぞれ周波数スペクトルを解析し、その各周波数スペクトルについて一定の微小周波数区間ごとに積分を行うとともに、その積分値を順次積算して積分積算値を求めていき、当該積分積算値が大きく変化するポイントの周波数を判定して、前記スペクトル面積値を求める周波数区間を設定するという手法を挙げることができる。   In the buried pipe inspection method of the present invention, as a method of setting a frequency section for calculating a spectrum area value, for example, a propagation wave is measured by performing a shock elastic wave test on each of a plurality of types of test tubes having different states. Then, analyze the frequency spectrum for each propagation wave, integrate each frequency spectrum for each fixed minute frequency interval, and sequentially integrate the integrated values to obtain the integrated integrated value. A method of determining a frequency at a point where the value greatly changes and setting a frequency section for obtaining the spectrum area value can be mentioned.

本発明の埋設管の検査方法において、前記スペクトル面積値を求める周波数区間は、第1周波数区間の始点が0〜2.5kHz、終点が3〜5.5kHzで、第2周波数区間の始点が前記第1周波数区間と同じ値であり、終点が7〜10kHzである範囲を満たす周波数区間であることが好ましい。   In the buried pipe inspection method of the present invention, the frequency section for obtaining the spectrum area value is a first frequency section starting point of 0 to 2.5 kHz, an ending point of 3 to 5.5 kHz, and a second frequency section starting point of the frequency section. It is preferable that it is the frequency section which is the same value as the first frequency section and satisfies the range where the end point is 7 to 10 kHz.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本出願人は、鉄筋コンクリート管などの管体について、衝撃弾性波試験を行って管体の伝播波を測定し、この伝播波について周波数スペクトルを解析し、その周波数スペクトルから管体の劣化状態を判定する技術を提案している。   First, the applicant conducted a shock elastic wave test on a tubular body such as a reinforced concrete pipe, measured the propagation wave of the tubular body, analyzed the frequency spectrum of the propagation wave, and determined the deterioration state of the tubular body from the frequency spectrum. We propose a technique to determine

本発明では、このような衝撃弾性波試験によって得られた周波数スペクトルに対して一定の微小周波数区間ごとに積分し、その積分値を順次積算して積分積算値(スペクトル面積値)を求めていくと、積分積算値が大きく変化するポイントがあり、しかも、その変化ポイントが現れる現象が、図10のグラフに示すように、「管体の軸方向クラック」、「周方向クラック」及び「管肉厚減少」などに関係があることを見出したものである。   In the present invention, the frequency spectrum obtained by such a shock elastic wave test is integrated for each fixed minute frequency section, and the integrated values are sequentially integrated to obtain an integrated integrated value (spectrum area value). In addition, as shown in the graph of FIG. 10, there are points at which the integrated integrated value changes greatly, and the phenomenon in which the change point appears is “Axial crack in tubular body”, “Circumferential crack”, and “Tube meat” It has been found that this is related to “thickness reduction”.

そして、本発明では、そのような現象を利用して、上記したように、衝撃弾性波試験を行って検査対象管の伝播波を測定し、この伝播波について周波数スペクトルを解析し、その周波数スペクトルにおける第1周波数区間(例えば0.5〜4kHz)のスペクトル面積値と第2周波数区間(例えば0.5〜10kHz)のスペクトル面積値を評価することにより、検査対象管の劣化現象の区別が、「健全」、「軸方向クラック」、「周方向クラック」、「軸方向+周方向クラック」または「管肉厚減少」のいずれであるのかを特定することを特徴としている。   In the present invention, using such a phenomenon, as described above, the shock elastic wave test is performed to measure the propagation wave of the inspection target tube, the frequency spectrum is analyzed for the propagation wave, and the frequency spectrum is analyzed. By evaluating the spectrum area value of the first frequency section (for example, 0.5 to 4 kHz) and the spectrum area value of the second frequency section (for example, 0.5 to 10 kHz) in FIG. It is characterized by specifying whether it is “sound”, “axial crack”, “circumferential crack”, “axial + circumferential crack” or “reduced tube thickness”.

次に、本発明において、スペクトル面積を求める際に用いる周波数区間の設定手法について説明する。   Next, in the present invention, a method for setting a frequency section used when obtaining a spectrum area will be described.

まず、状態(劣化状態)が異なる複数種の供試管として、「健全管」、「軸方向クラック導入管」、「周方向クラック導入管」、「軸方向+周方向クラック導入管」、「管肉厚減少管」を作製しておき、これら供試管についてそれぞれ衝撃弾性波試験を行って伝播波を測定し、その各伝播波についてそれぞれ周波数スペクトルを解析する。   First, as multiple types of test tubes with different states (degraded states), “sound tube”, “axial crack introduction tube”, “circumferential crack introduction tube”, “axial direction + circumferential crack introduction tube”, “tube” “Thickness reduction tubes” are prepared, and each of these test tubes is subjected to a shock elastic wave test to measure a propagation wave, and a frequency spectrum is analyzed for each of the propagation waves.

次に、各管体の周波数スペクトルについて、それぞれ、一定の微小周波数区間(例えば0.5kHz)ごとに積分を行うとともに、その積分値を順次積算して積分積算値を求める。このようにして得られた各管体の積分積算値を、周波数をパラメータとしてグラフ上にプロットすると、図10のグラフに示すような結果が得られる。なお、図10のグラフは、後述するサンプルS1〜S5について衝撃弾性波試験を行った結果をモデル化したグラフである。   Next, with respect to the frequency spectrum of each tubular body, integration is performed for each fixed minute frequency section (for example, 0.5 kHz), and the integrated values are sequentially integrated to obtain an integrated integrated value. When the integrated integral value of each tubular body obtained in this way is plotted on a graph using the frequency as a parameter, the result shown in the graph of FIG. 10 is obtained. Note that the graph of FIG. 10 is a graph obtained by modeling the result of a shock elastic wave test performed on samples S1 to S5 described later.

図10のグラフについて検討すると、まず、「軸方向クラック導入管」の積分積算値が大きく変化するポイントを含む周波数区間F1までの各管体の積分積算値は、積分積算値が大きな第1群(「健全管」、「管肉厚減少管」、「軸クラック導入管」)と、積分積算値が小さな第2群(「周方向クラック導入管」、「軸方向+周方向クラック導入管」)の2つの群に分かれる。なお、第1群において、「健全管」よりも「管肉厚減少管」の方が積分積算値が大きいのは、管厚が薄い方が低周波成分が多いことによる。   Considering the graph of FIG. 10, first, the integrated integrated value of each tubular body up to the frequency section F1 including the point at which the integrated integrated value of the “axial crack introducing pipe” changes greatly is the first group with a large integrated integrated value. ("Sound pipe", "Pipe thickness reducing pipe", "Axial crack introduction pipe") and the second group with small integral integrated values ("Circumferential crack introduction pipe", "Axial + circumferential crack introduction pipe") ) Divided into two groups. In the first group, the integrated integral value is larger in the “thickness-reduced pipe” than in the “sound pipe” because the lower frequency component is more in the thinner pipe thickness.

さらに検討すると、「管肉厚減少管」の積分積算値が大きく変化(減少)するポイントと、「周方向クラック導入管」の積分積算値が大きく変化(増大)するポイントとを含む周波数区間F2までの積分積算値は、「健全管」が「管肉厚減少管」よりも僅かに大きくなり、「軸方向クラック導入管」が「健全管」及び「管肉厚減少管」に対して極端に小さくなる。また、「周方向クラック導入管」が「軸方向+周方向クラック導入管」よりも大きくなる。   Further examination shows that the frequency interval F2 includes a point at which the integrated integrated value of the “tube thickness reducing pipe” greatly changes (decreases) and a point at which the integrated integrated value of the “circumferential crack introduction pipe” greatly changes (increases). The integrated value up to is slightly greater for the “sound pipe” than for the “thickness reduction pipe”, and the “axial crack introduction pipe” for the “sound pipe” and “thickness reduction pipe” Becomes smaller. Further, the “circumferential crack introduction pipe” is larger than the “axial direction + circumferential crack introduction pipe”.

以上のことから、「軸方向クラック導入管」の積分積算値が大きく変化するポイントを含む周波数区間F1を第1周波数区間とし、「管肉厚減少管」及び「周方向クラック導入管」の積分積算値が大きく変化するポイントを含む周波数区間F2を第2周波数区間とすることにより、劣化現象の区別を判定することができる。   From the above, the frequency section F1 including the point where the integrated integrated value of the “axial crack introducing pipe” greatly changes is defined as the first frequency section, and the integration of the “pipe thickness reducing pipe” and the “circumferential crack introducing pipe” is integrated. The distinction of the deterioration phenomenon can be determined by setting the frequency section F2 including the point at which the integrated value greatly changes as the second frequency section.

具体的には、「健全管」を基準として、第1周波数区間の積分積算値(スペクトル面積)が、「健全管」に対して大きい場合を「大」、同程度もしくは少し小さい場合を「中」、極端に小さい場合を「小」とし、また、第2周波数区間の積分積算値(スペクトル面積)が、「健全管」に対して、同程度もしくは少しだけ小さい場合を「大」、小さい場合を「中」、極端に小さい場合を「小」とすると、後述する表2に示す判定条件で、劣化現象の区別を判定することができる。   Specifically, with “sound pipe” as a reference, the integrated integrated value (spectrum area) of the first frequency section is “large” when it is larger than “sound pipe”, and “middle” when the same or a little smaller "Small" when the case is extremely small, and "Large" when the integral integrated value (spectrum area) of the second frequency interval is the same or slightly smaller than the "sound tube" Is “medium” and extremely small is “small”, it is possible to determine the distinction of the deterioration phenomenon under the determination conditions shown in Table 2 described later.

なお、スペクトル面積値を求める周波数区間は、上記した第1周波数区間と第2周波数区間の2つの区間に限られることなく、3つ以上の周波数区間を設定してもよい。   The frequency section for obtaining the spectrum area value is not limited to the two sections of the first frequency section and the second frequency section described above, and three or more frequency sections may be set.

ここで、本発明の検査方法を適用する埋設管としては、例えば、コンクリート管、鉄筋コンクリート管、陶管、金属管、樹脂管またはFRPM管(モルタルとFRPの複合管)などが挙げられる。また、埋設管の断面形状としては、例えば円形、卵形、矩形、馬蹄形などが挙げられる。   Here, examples of the buried pipe to which the inspection method of the present invention is applied include a concrete pipe, a reinforced concrete pipe, a ceramic pipe, a metal pipe, a resin pipe, or an FRPM pipe (composite pipe of mortar and FRP). Examples of the cross-sectional shape of the buried pipe include a circular shape, an oval shape, a rectangular shape, and a horseshoe shape.

本発明の埋設管の検査方法によれば、衝撃弾性波試験を行って検査対象管の伝播波を測定し、この伝播波について周波数スペクトルを解析し、その周波数スペクトルの少なくとも第1周波数区間のスペクトル面積値と第2周波数区間のスペクトル面積値を評価して埋設管の劣化状態を検査するので、弾性波の振幅値や、弾性波のカウント数(所定以上の振幅のカウント数)の減少などを利用する検査方法と比べて、埋設管の周囲状況の影響を受けにくく、劣化現象の区別を精度良く判定することができる。   According to the buried pipe inspection method of the present invention, a shock wave test is performed to measure the propagation wave of the pipe to be inspected, the frequency spectrum of the propagation wave is analyzed, and the spectrum of at least the first frequency section of the frequency spectrum. Since the area value and the spectrum area value of the second frequency section are evaluated and the deterioration state of the buried pipe is inspected, the amplitude value of the elastic wave and the decrease in the elastic wave count number (count number of amplitudes greater than or equal to the predetermined value) Compared to the inspection method to be used, it is less affected by the surrounding situation of the buried pipe, and the deterioration phenomenon can be accurately distinguished.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<実施形態1>
この実施形態において衝撃弾性波試験は以下のようにして行う。
<Embodiment 1>
In this embodiment, the shock elastic wave test is performed as follows.

[入力方法]
入力装置としてはハンマや鋼球またはインパルスハンマなどの打撃具が使用できる。特に、入力装置としては、入力情報を解析時に反映させるために、入力情報を数値データとして計測できる打撃具、例えばシュミットハンマや、バネ、ピストン等を用いて一定の力で打撃を行うことが望ましい。また、例えばシュミットハンマや、バネ、ピストン等を用いて一定の力でハンマ、鋼球等を打ち出す方法、または一定の高さから鋼球等を落下させる方法が望ましい。
[input method]
As the input device, a hammer, a steel ball, or an impact hammer such as an impulse hammer can be used. In particular, as an input device, in order to reflect input information at the time of analysis, it is desirable to perform striking with a constant force using a striking tool that can measure input information as numerical data, such as a Schmitt hammer, a spring, a piston, or the like . Further, for example, a method of driving a hammer, a steel ball, or the like with a constant force using a Schmitt hammer, a spring, a piston, or the like, or a method of dropping the steel ball or the like from a certain height is desirable.

[受信方法]
受信子としては加速度センサやAEセンサ及び振動センサ等が使用できる。受信子のセット方法としては、テープや接着剤等で固定してもよいし、手や押さえ治具等を使って圧着させてもよい。
[Reception method]
As the receiver, an acceleration sensor, an AE sensor, a vibration sensor, or the like can be used. As a method for setting the receiver, the receiver may be fixed with a tape, an adhesive, or the like, or may be crimped using a hand or a holding jig.

これらの入力装置や受信装置は、水や酸性水、塩基性水に接触することがあるためステンレスなどの耐食性に優れた材料で形成されていることが望ましい。   Since these input devices and receiving devices may come into contact with water, acidic water, or basic water, it is desirable that the input device and the receiving device be formed of a material having excellent corrosion resistance such as stainless steel.

[計測方法」
インパルスハンマなどで管体内面に弾性波を入力し、一方で管内にセットした受信子により、管体を伝播した伝播波を計測し、記録装置により波形記憶を行わせる(受信データの計測)。入射位置と受信子の位置は、検査対象管の管長の1/4以上離して設置するのが望ましい。これは、亀裂などの劣化による管全体の振動現象の変化が捉えやすいからである。また、入射位置と受信位置は相対的な位置が同じになるように設置するのが望ましい。
[Measurement method]
An elastic wave is input to the inner surface of the tube with an impulse hammer or the like. On the other hand, a propagation wave propagated through the tube is measured by a receiver set in the tube, and a waveform is stored by a recording device (measurement of received data). It is desirable that the incident position and the receiver position be separated from each other by 1/4 or more of the tube length of the inspection target tube. This is because changes in the vibration phenomenon of the entire tube due to deterioration such as cracks are easily captured. Further, it is desirable that the incident position and the receiving position are installed so that the relative positions are the same.

[解析方法]
上記計測位置で計測した入力と受信のデータについて、入力(打撃側)と出力(受信側)の関係を考慮した周波数スペクトルを描かせる。この周波数スペクトル分布において、第1周波数区間(0.5〜4kHz)のスペクトル面積値と、第2周波数区間(0.5〜10kHz)のスペクトル面積値とを求める。この解析法を採用する場合、インパルスハンマの打撃力(入力情報)を数値化しておく必要がある。
[analysis method]
For the input and reception data measured at the measurement position, a frequency spectrum in consideration of the relationship between the input (striking side) and the output (receiving side) is drawn. In this frequency spectrum distribution, a spectrum area value in the first frequency section (0.5 to 4 kHz) and a spectrum area value in the second frequency section (0.5 to 10 kHz) are obtained. When this analysis method is adopted, it is necessary to digitize the impact force (input information) of the impulse hammer.

ここで、入力と出力との関係を考慮した周波数スペクトルとは、例えば、入力のフーリエスペクトルをA(f)、出力のフーリエスペクトルをB(f)、伝達関数(周波数応答関数)をH(f)とすると、H(f)=B(f)/A(f)の関係で表され、このH(f)を描かせたのがここでの周波数スペクトルの分布となる。   Here, the frequency spectrum considering the relationship between the input and the output is, for example, the input Fourier spectrum A (f), the output Fourier spectrum B (f), and the transfer function (frequency response function) H (f ), It is represented by the relationship of H (f) = B (f) / A (f), and this H (f) is drawn as the distribution of the frequency spectrum here.

<実施例1>
本発明の具体的な実施例を説明する。
<Example 1>
Specific examples of the present invention will be described.

[サンプル準備]
JIS A 5372のB型1種の規格に基づいた、呼び径250mm(管長:2m)のコンクリート製ヒューム管(日本ヒューム管製の製品)を用いて、以下のようなサンプルを準備した。
・サンプルS1:無処理管(管肉厚:平均28mm)。なお、管肉厚は管端面付近で片端10点ずつ、計20点をノギスで測定した。
・サンプルS2:軸方向クラック導入管
サンプルに線荷重を加えることができる積荷試験機を用いて、軸方向に4本のクラック(クラック幅=0.15mm)を発生させたもの(図1参照)。なお、クラックの本数は片端面で内面外面に発生していたクラック本数を目視で確認した。
・サンプルS3:周方向クラック導入管
図2に示すような導入方法にてクラック幅1.3mmのクラックを導入したもの(図3参照)。なお、クラック幅は、管外周においてスケール付きルーペで拡大して測定した(5点の平均値)。
・サンプルS4:軸方向+周方向クラック導入管
サンプルS2と同様の方法で軸方向クラックを導入した後、サンプルS3と同様な方法で周方向クラックを導入したもの(図4参照)。
・サンプルS5:管肉厚減少管
特殊成形により、外径は無処理管と同じとし、内径を大きくして平均の管肉厚が13mmとなるようにしたもの(図5参照)。なお、管肉厚は管端面付近で片端10点ずつ、計20点をノギスで測定した。
[Sample preparation]
The following samples were prepared using a concrete fume pipe (product made from Nippon Hume Pipe) having a nominal diameter of 250 mm (pipe length: 2 m) based on JIS A 5372 B type 1 standard.
Sample S1: Untreated tube (tube thickness: average 28 mm). The tube thickness was measured with calipers at 10 points on each end near the end surface of the tube, for a total of 20 points.
Sample S2: Axial crack introduction tube Using a load tester capable of applying a linear load to the sample, four cracks (crack width = 0.15 mm) were generated in the axial direction (see FIG. 1). . In addition, the number of cracks visually confirmed the number of cracks generated on the inner surface and outer surface at one end surface.
Sample S3: Circumferential crack introduction tube A crack having a crack width of 1.3 mm introduced by the introduction method shown in FIG. 2 (see FIG. 3). Note that the crack width was measured by enlarging with a magnifier with a scale on the outer periphery of the pipe (average value of 5 points).
Sample S4: Axial direction + circumferential crack introduction tube After introducing an axial crack by the same method as sample S2, a circumferential crack was introduced by the same method as sample S3 (see FIG. 4).
Sample S5: Reduced tube thickness tube By special molding, the outer diameter is the same as that of the untreated tube, and the inner diameter is increased so that the average tube thickness is 13 mm (see FIG. 5). The tube thickness was measured with calipers at 10 points on each end near the end surface of the tube, for a total of 20 points.

サンプルの一覧を下記の表1に示す。   A list of samples is shown in Table 1 below.

Figure 2006038597
[入射及び受信位置]
入射装置と受信装置を図6に示す位置に配置して弾性波の入射及び伝播波の受信を行った。
Figure 2006038597
[Incoming and receiving position]
The incident device and the receiving device were arranged at the positions shown in FIG. 6 to receive the elastic wave and receive the propagation wave.

[使用機器]
入射装置:インパルスハンマ
受信子:振動センサGH−313A(キーエンス製)の雄ねじ部に、直径10mm、高さ15mmの円柱物をねじ込んで使用した。
[Used equipment]
Incident device: Impulse hammer Receiver: Vibration sensor GH-313A (manufactured by Keyence) was used by screwing a cylindrical object having a diameter of 10 mm and a height of 15 mm.

受信用アンプ:キーエンス製GA−245
データロガー(記録装置):キーエンス製NR−2000
[計測条件]
実管路を想定して、上記したサンプルS1〜S5を図7に示すような条件にて埋設した状態で計測を行った。
Receiver amplifier: Keyence GA-245
Data logger (recording device): NR-2000 manufactured by Keyence
[Measurement conditions]
Assuming an actual pipeline, measurement was performed in a state where the above-described samples S1 to S5 were embedded under the conditions shown in FIG.

[データ解析]
上記入射装置(インパルスハンマ)の打撃力から入力フーリエスペクトルA(f)を求めるとともに、上記した受信子で受信・記録した伝播波の波形データから出力フーリエスペクトルB(f)を求め、それら入力フーリエスペクトルA(f)と出力フーリエスペクトルB(f)を用いて、入力と出力との間の伝達関数(周波数応答関数)H(f)(H(f)=B(f)/A(f))を求めて、入力と出力との関係を考慮した周波数スペクトルを各サンプルS1〜S5ごとに描いた。
[Data analysis]
The input Fourier spectrum A (f) is obtained from the impact force of the incident device (impulse hammer), and the output Fourier spectrum B (f) is obtained from the waveform data of the propagation wave received and recorded by the receiver, and the input Fourier spectrum is obtained. Using the spectrum A (f) and the output Fourier spectrum B (f), the transfer function (frequency response function) H (f) (H (f) = B (f) / A (f) between the input and the output ) And a frequency spectrum in consideration of the relationship between the input and the output was drawn for each of the samples S1 to S5.

これらのサンプルのうち、サンプルS1(無処理管(健全管))の周波数スペクトルの分布グラフを図8に示す。また、サンプルS1の周波数スペクトルについて、微小周波数区間(0.5kHz)ごとの積分値(スペクトル面積値)を算出し、この積分値を順次積算した積分積算値を、周波数をパラメータにしてグラフ上のプロットすると、図9に示すようなグラフが得られる。さらに、同様な手法により、サンプルS2〜S5について周波数スペクトルの積分積算値を求めて、周波数−積分積算値のグラフを作成し、これら全てのサンプルS1〜S5の積分積算値を同一のグラフ上に表すと、図10に示すような傾向が現れる。その詳細については、前述したので、ここでの説明は省略する。なお、図10のグラフは、各サンプルS1〜S5の積分積算値の変化をモデル化して示している。   Among these samples, the distribution graph of the frequency spectrum of sample S1 (untreated tube (healthy tube)) is shown in FIG. Further, with respect to the frequency spectrum of the sample S1, an integral value (spectrum area value) for each minute frequency interval (0.5 kHz) is calculated, and the integral integration value obtained by sequentially integrating the integration values is used as a parameter on the graph. When plotted, a graph as shown in FIG. 9 is obtained. Further, the integrated integrated value of the frequency spectrum is obtained for the samples S2 to S5 by the same method, and a graph of the frequency-integrated integrated value is created. The integrated integrated values of all the samples S1 to S5 are put on the same graph. If it represents, the tendency as shown in FIG. 10 will appear. Since the details have been described above, the description thereof is omitted here. In addition, the graph of FIG. 10 has modeled and shown the change of the integral integration value of each sample S1-S5.

そして、この実施例においては、各サンプルS1〜S5の周波数スペクトルについて、第1周波数区間0.5〜4kHzのスペクトル面積値と、第2周波数区間0.5〜10kHzのスペクトル面積値を算出する。その結果をそれぞれ図11及び図12に示す。   In this embodiment, the spectrum area value of the first frequency interval 0.5 to 4 kHz and the spectrum area value of the second frequency interval 0.5 to 10 kHz are calculated for the frequency spectra of the samples S1 to S5. The results are shown in FIGS. 11 and 12, respectively.

次に、第1周波数区間0.5〜4kHzのスペクトル面積値を評価する(以下、第1の評価という)。具体的には、「無処理管(健全管)」を基準として、スペクトル面積値が「無処理管」に対して大きい場合を「大」、同程度もしくは少し小さい場合を「中」、極端に小さい場合を「小」として評価する。その評価結果を下記の表2に示す。   Next, the spectrum area value in the first frequency interval 0.5 to 4 kHz is evaluated (hereinafter referred to as the first evaluation). Specifically, with reference to “no-treatment pipe (healthy pipe)”, the spectrum area value is “large” when the spectrum area value is larger than “no-treatment pipe”, “medium” when the spectrum area value is the same or slightly smaller, and extremely The small case is evaluated as “small”. The evaluation results are shown in Table 2 below.

さらに、第2周波数区間0.5〜10kHzのスペクトル面積値を評価する。具体的には、「無処理管(健全管)」を基準として、スペクトル面積値が「無処理管」に対して、同程度もしくは少しだけ小さい場合を「大」、小さい場合を「中」、極端に小さい場合を「小」として評価する(以下、第2の評価という)。その評価結果を下記の表2に示す。   Further, the spectrum area value of the second frequency section 0.5 to 10 kHz is evaluated. Specifically, with reference to “no treatment pipe (healthy pipe)”, the spectrum area value is “large” when the spectrum area value is the same or slightly smaller than “no treatment pipe”, “medium” when the spectrum area is small, An extremely small case is evaluated as “small” (hereinafter referred to as a second evaluation). The evaluation results are shown in Table 2 below.

Figure 2006038597
以上の表2の結果から、サンプルS1〜S5の劣化現象の区別を特定することできる。すなわち、上記第1の評価が「中」で第2の評価が「中」である場合、劣化現象の区別が「軸方向クラック」であると特定することができる。また、第1の評価が「小」で第2の評価が「中」である場合は劣化現象の区別が「周方向クラック」、第1の評価が「小」で第2の評価が「小」である場合は劣化現象の区別が「軸方向+周方向クラック」、第1の評価が「大」で第2の評価が「大」である場合は劣化現象の区別が「管肉厚減少」であると特定することができる。なお、基準となる「無処理管(健全管)」の場合は、第1の評価が「中」で第2の評価が「大」となる。
Figure 2006038597
From the results in Table 2 above, it is possible to specify the distinction between the deterioration phenomena of the samples S1 to S5. That is, when the first evaluation is “medium” and the second evaluation is “medium”, the deterioration phenomenon can be identified as “axial crack”. Further, when the first evaluation is “small” and the second evaluation is “medium”, the deterioration phenomenon is distinguished from “circumferential crack”, the first evaluation is “small”, and the second evaluation is “small”. ”Is“ Axial + circumferential crack ”, the first evaluation is“ Large ”, and the second evaluation is“ Large ”, the deterioration phenomenon is“ Tube thickness reduction ”. Can be specified. In addition, in the case of the standard “non-treated pipe (sound pipe)”, the first evaluation is “medium” and the second evaluation is “large”.

従って、予め無処理管(供試管)について衝撃弾性波試験を行って、上記した第1周波数区間0.5〜4kHzのスペクトル面積値と、第2周波数区間0.5〜10kHzのスペクトル面積値とを算出・記録しておき、検査対象管(埋設管)について、衝撃弾性波試験を実施することにより得られた周波数スペクトルから、上記した周波数区間0.5〜4kHz及び0.5〜10kHzの各スペクトル面積値を求め、その実測のスペクトル面積値の大きさを、先に記録済みのスペクトル面積値(基準となる無処理管のスペクトル面積値)を基に、上記第1と第2の2段階で評価することにより、検査対象管の劣化現象の区別を特定することが可能になる。   Therefore, a shock elastic wave test is performed on an untreated tube (test tube) in advance, and the spectrum area value of the first frequency section 0.5 to 4 kHz and the spectrum area value of the second frequency section 0.5 to 10 kHz are Is calculated and recorded, and each of the above-described frequency sections of 0.5 to 4 kHz and 0.5 to 10 kHz is obtained from the frequency spectrum obtained by performing the shock elastic wave test on the inspection target pipe (buried pipe). The spectrum area value is obtained, and the magnitude of the actually measured spectrum area value is determined based on the previously recorded spectrum area value (the spectrum area value of the reference non-processed tube). It is possible to specify the distinction of the deterioration phenomenon of the inspection target pipe.

なお、以上の第1と第2の評価において判断基準となる「大」、「中」、「小」を決定するための閾値は、各サンプルS1〜S5について衝撃弾性波試験を予め行って、図10に示すようなグラフを作成し、そのグラフに基づいて求めるようにすればよい。   In addition, the threshold value for determining “large”, “medium”, and “small”, which are judgment criteria in the first and second evaluations described above, is performed by performing a shock elastic wave test on each of the samples S1 to S5 in advance. A graph as shown in FIG. 10 may be created and obtained based on the graph.

以上の実施例では、スペクトル面積を求める第1周波数区間を0.5〜4kHz、第2周波数区間を0.5〜10kHzとしているが、本発明はこれに限定されることなく、第1周波数区間の始点が0〜2.5kHz、終点が3〜5.5kHzで、第2周波数区間の始点が前記第1周波数区間と同じ値であり、終点が7〜10kHzである範囲を満たす周波数区間としても本発明は実施可能である。   In the above embodiment, the first frequency section for obtaining the spectrum area is 0.5 to 4 kHz and the second frequency section is 0.5 to 10 kHz. However, the present invention is not limited to this, and the first frequency section The start point of 0 to 2.5 kHz, the end point is 3 to 5.5 kHz, the start point of the second frequency interval is the same value as the first frequency interval, and the frequency interval satisfying the range where the end point is 7 to 10 kHz The present invention can be implemented.

また、スペクトル面積値を求める周波数区間は、上記した第1周波数区間と第2周波数区間の2つの区間に限られることなく、3つ以上の周波数区間を設定してもよい。   Further, the frequency section for obtaining the spectrum area value is not limited to the two sections of the first frequency section and the second frequency section described above, and three or more frequency sections may be set.

本発明の検査方法は、下水管路や農水管路などの埋設管において、修繕・改築工事の順番及び工事方法を決定するに際して、調査流域を構成する要素区域間の劣化現象の区別をの判定するのに有効に利用することができる。   In the inspection method of the present invention, when determining the order of repair and reconstruction work and the construction method for buried pipes such as sewage pipes and agricultural water pipes, it is determined whether or not the deterioration phenomenon is distinguished between the element areas constituting the survey basin. Can be used effectively.

軸方向クラック導入管の模式図である。It is a schematic diagram of an axial crack introducing tube. 本発明の実施例で採用する周方向クラックの導入方法を模式的に示す図である。It is a figure which shows typically the introduction method of the circumferential crack employ | adopted in the Example of this invention. 周方向クラック導入管の模式図である。It is a schematic diagram of the circumferential crack introduction pipe. 軸方向+周方向クラック導入管の模式図である。It is a schematic diagram of an axial direction + circumferential crack introduction pipe. 管肉厚減少管の模式図である。It is a schematic diagram of a pipe thickness reduction pipe. サンプルへの計測機器の配置を示す図である。It is a figure which shows arrangement | positioning of the measurement apparatus to a sample. 本発明の実施例のサンプル埋設条件を模式的に示す図である。It is a figure which shows typically the sample embedding conditions of the Example of this invention. 無処理管(健全管)の周波数スペクトルの分布グラフである。It is a distribution graph of the frequency spectrum of an untreated pipe (healthy pipe). 図8の周波数スペクトルの積分積算値を示すグラフである。It is a graph which shows the integral integration value of the frequency spectrum of FIG. 状態が異なる複数種の管体の周波数スペクトルの積分積算値を示すグラフである。It is a graph which shows the integral integration value of the frequency spectrum of the multiple types of tubular body from which a state differs. 本発明の実施例の結果を示す図で各サンプルの周波数区間0.5〜4kHzにおけるスペクトル面積値を示すグラフである。It is a figure which shows the result of the Example of this invention, and is a graph which shows the spectrum area value in the frequency area of 0.5-4 kHz of each sample. 本発明の実施例の結果を示す図で各サンプルの周波数区間0.5〜10kHzにおけるスペクトル面積値を示すグラフである。It is a figure which shows the result of the Example of this invention, and is a graph which shows the spectrum area value in the frequency area of 0.5-10 kHz of each sample.

符号の説明Explanation of symbols

S1〜S5 埋設管のサンプル


S1-S5 Sample of buried pipe


Claims (3)

埋設管の劣化状態を管内部から検査する方法であって、衝撃弾性波試験を行って検査対象管の伝播波を測定し、この伝播波について周波数スペクトルを解析し、その周波数スペクトルの少なくとも第1周波数区間のスペクトル面積値と第2周波数区間のスペクトル面積値とから、劣化現象の区別を判定することを特徴とする埋設管の検査方法。   A method of inspecting a deterioration state of a buried pipe from the inside of the pipe, performing a shock elastic wave test to measure a propagation wave of the pipe to be inspected, analyzing a frequency spectrum of the propagation wave, and at least a first of the frequency spectrum. A method for inspecting a buried pipe, wherein a distinction of a deterioration phenomenon is determined from a spectrum area value in a frequency section and a spectrum area value in a second frequency section. 請求項1記載の埋設管の検査方法において、状態が異なる複数種の供試管についてそれぞれ衝撃弾性波試験を行って伝播波を測定し、その各伝播波についてそれぞれ周波数スペクトルを解析し、その各周波数スペクトルについて一定の微小周波数区間ごとに積分を行うとともに、その積分値を順次積算して積分積算値を求めていき、当該積分積算値が大きく変化するポイントの周波数を判定して、前記スペクトル面積値を求める周波数区間を設定することを特徴とする埋設管の検査方法。   2. The buried pipe inspection method according to claim 1, wherein a plurality of types of test tubes having different states are subjected to shock elastic wave tests to measure the propagation waves, the frequency spectrum of each of the propagation waves is analyzed, and each frequency is analyzed. The spectrum is integrated for each fixed minute frequency interval, and the integrated values are sequentially integrated to obtain an integrated integrated value. The frequency of the point at which the integrated integrated value greatly changes is determined, and the spectrum area value is determined. A method for inspecting a buried pipe, characterized in that a frequency section for obtaining the frequency is set. 請求項1記載の埋設管の検査方法において、第1周波数区間の始点が0〜2.5kHz、終点が3〜5.5kHzで、第2周波数区間の始点が前記第1周波数区間と同じ値であり、終点が7〜10kHzである範囲を満たす周波数区間であることを特徴とする埋設管の検査方法。

2. The buried pipe inspection method according to claim 1, wherein the first frequency section has a start point of 0 to 2.5 kHz, an end point of 3 to 5.5 kHz, and the second frequency section has a start point that is the same value as the first frequency section. A method for inspecting a buried pipe, which is a frequency section satisfying a range in which an end point is 7 to 10 kHz.

JP2004217832A 2004-07-26 2004-07-26 Inspection method for buried pipe Pending JP2006038597A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004217832A JP2006038597A (en) 2004-07-26 2004-07-26 Inspection method for buried pipe
AU2005265697A AU2005265697B2 (en) 2004-07-26 2005-07-26 Buried pipe examining method
KR1020077001807A KR101121283B1 (en) 2004-07-26 2005-07-26 Buried pipe examining method
EP05767417.8A EP1780540A4 (en) 2004-07-26 2005-07-26 Buried pipe examining method
PCT/JP2005/013655 WO2006011484A1 (en) 2004-07-26 2005-07-26 Buried pipe examining method
US11/658,658 US7690258B2 (en) 2004-07-26 2005-07-26 Buried pipe examining method
CA2575036A CA2575036C (en) 2004-07-26 2005-07-26 Buried pipe examining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217832A JP2006038597A (en) 2004-07-26 2004-07-26 Inspection method for buried pipe

Publications (1)

Publication Number Publication Date
JP2006038597A true JP2006038597A (en) 2006-02-09

Family

ID=35903749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217832A Pending JP2006038597A (en) 2004-07-26 2004-07-26 Inspection method for buried pipe

Country Status (1)

Country Link
JP (1) JP2006038597A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263668A (en) * 2006-03-28 2007-10-11 Sekisui Chem Co Ltd Method of inspecting buried pipe
JP2008026162A (en) * 2006-07-21 2008-02-07 Sekisui Chem Co Ltd Inspection method for inspecting deterioration state of embedded pipe
JP2009047553A (en) * 2007-08-20 2009-03-05 National Maritime Research Institute System, apparatus, method and program for evaluating deterioration/damage by ultrasonic wave
US7690258B2 (en) 2004-07-26 2010-04-06 Sekisui Chemical Co., Ltd. Buried pipe examining method
JP2012118047A (en) * 2010-07-21 2012-06-21 Sekisui Chem Co Ltd Inspection method and regeneration method for underground pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183893B2 (en) * 1996-04-18 2001-07-09 ロック マシアス Method and apparatus for determining the strength of a vertically anchored column
WO2003096007A1 (en) * 2002-05-08 2003-11-20 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183893B2 (en) * 1996-04-18 2001-07-09 ロック マシアス Method and apparatus for determining the strength of a vertically anchored column
WO2003096007A1 (en) * 2002-05-08 2003-11-20 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7690258B2 (en) 2004-07-26 2010-04-06 Sekisui Chemical Co., Ltd. Buried pipe examining method
JP2007263668A (en) * 2006-03-28 2007-10-11 Sekisui Chem Co Ltd Method of inspecting buried pipe
JP2008026162A (en) * 2006-07-21 2008-02-07 Sekisui Chem Co Ltd Inspection method for inspecting deterioration state of embedded pipe
JP2009047553A (en) * 2007-08-20 2009-03-05 National Maritime Research Institute System, apparatus, method and program for evaluating deterioration/damage by ultrasonic wave
JP2012118047A (en) * 2010-07-21 2012-06-21 Sekisui Chem Co Ltd Inspection method and regeneration method for underground pipe

Similar Documents

Publication Publication Date Title
AU2005265697B2 (en) Buried pipe examining method
US7360462B2 (en) Method and equipment for inspecting reinforced concrete pipe
EP1333277A3 (en) Method and apparatus for investigating pipes with ultrasonic phased array sensors
JP2004028976A (en) Method and apparatus for inspecting reinforced concrete pipe
JP4515848B2 (en) Inspection method for buried pipes
JP5735369B2 (en) Inspection method and rehabilitation method for buried pipe
JP4598433B2 (en) Inspection method for buried pipes
JP2006038597A (en) Inspection method for buried pipe
JP7249145B2 (en) Conduit health diagnostic method
JP5114104B2 (en) Inspection method for inspecting the curing state of fiber reinforced plastic materials with buried pipes
JP4756150B2 (en) Inspection method for buried pipes
KR101920691B1 (en) Deteriorated concrete pipe diagnosis method
EP0981047A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
JP2008026162A (en) Inspection method for inspecting deterioration state of embedded pipe
GB2482973A (en) Evaluating the condition of a collection of similar elongated hollow objects
JP2006038588A (en) Inspection method and inspection instrument for buried pipe
JP4413082B2 (en) Inspection method for buried pipes
JP4413089B2 (en) Inspection method for buried pipes
Tse et al. Guided-waves technique for inspecting the health of wall-covered building risers
RU2194967C2 (en) Procedure determining residual service life of pipe-line
RU2607359C1 (en) Method of determining accurate volume of remote metal of corrosion defects by ultrasonic ili data
RU2260175C1 (en) Method of measuring thickness of ice layer at inner surface of pulp feed-line
Ficquet et al. Structural health monitoring on a girth welded pipe with residual stress measurements
CN114002331A (en) Method for detecting damage degree of steel strand
Romac1a et al. Characterisation of the Effect of Corrosion on the Residual Stresses in Girth Weld Pipe Using Ultrasonic Calibrated with Strain-relieving Measurement Techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706