JP2005343764A - Thermal insulating material composition, thermal insulating material and method of manufacturing the material - Google Patents

Thermal insulating material composition, thermal insulating material and method of manufacturing the material Download PDF

Info

Publication number
JP2005343764A
JP2005343764A JP2004167665A JP2004167665A JP2005343764A JP 2005343764 A JP2005343764 A JP 2005343764A JP 2004167665 A JP2004167665 A JP 2004167665A JP 2004167665 A JP2004167665 A JP 2004167665A JP 2005343764 A JP2005343764 A JP 2005343764A
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
material composition
weight
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004167665A
Other languages
Japanese (ja)
Inventor
Hitoshi Sasaki
仁 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOMEINSUL KK
Nitto Boseki Co Ltd
Paramount Glass Manufacturing Co Ltd
Original Assignee
HOMEINSUL KK
Nitto Boseki Co Ltd
Nittobo Togan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOMEINSUL KK, Nitto Boseki Co Ltd, Nittobo Togan Co Ltd filed Critical HOMEINSUL KK
Priority to JP2004167665A priority Critical patent/JP2005343764A/en
Publication of JP2005343764A publication Critical patent/JP2005343764A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal insulating material composition having excellent harmful material adsorption and high fire resistance, a thermal insulating material and a method of manufacturing the thermal insulating material. <P>SOLUTION: The thermal insulating material composition is provided with a mineral fiber and a carbonized material dispersed and mixed in the mineral fiber and having 30-80 wt.% ash when the composition is ashed. The carbonized material is obtained by carbonizing chaff. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主として建築用に用いられる断熱材組成物、断熱材、及び断熱材の製造方法に関する。   The present invention relates to a heat insulating material composition, a heat insulating material, and a heat insulating material manufacturing method mainly used for construction.

建築用の断熱材として、主材としてのグラスウールに木炭粒を分散混合したものが知られている(例えば、特許文献1参照)。この断熱材では、グラスウールにより断熱を図ると共に、木炭粒によりホルムアルデヒド等の有害化学物質を吸着し、また湿気を吸収することで、居室空間を良好に保つようにしている。
特開平2000−257177号公報
As a heat insulating material for construction, a material obtained by dispersing and mixing charcoal particles in glass wool as a main material is known (for example, see Patent Document 1). In this heat insulating material, heat insulation is achieved with glass wool, harmful chemical substances such as formaldehyde are adsorbed by charcoal particles, and moisture is absorbed to keep the living room in good condition.
Japanese Unexamined Patent Publication No. 2000-257177

ここで、建築用に用いられる断熱材には、高い難燃性が求められる。しかしながら、上記した従来の断熱材では、木炭粒の難燃性が低いため、断熱材としての難燃性が十分ではなかった。   Here, the high heat resistance is calculated | required by the heat insulating material used for construction. However, in the above-described conventional heat insulating material, the flame retardance of the charcoal particles is low, and thus the flame retardance as a heat insulating material is not sufficient.

本発明は、上記した事情に鑑みて為されたものであり、有害化学物質の吸着性に優れ、且つ難燃性の高い断熱材組成物、断熱材、及び断熱材の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides a heat insulating material composition, a heat insulating material, and a method for manufacturing a heat insulating material, which are excellent in adsorptive of harmful chemical substances and have high flame retardancy. With the goal.

本発明に係る断熱材組成物は、鉱物繊維と、鉱物繊維に分散混合され、灰化したときの灰分が30〜80重量%である炭化材と、を備える。   The heat insulating material composition according to the present invention includes mineral fibers and a carbonized material that is dispersed and mixed in the mineral fibers and has an ash content of 30 to 80% by weight when incinerated.

この断熱材組成物は、灰化したときの灰分が30重量%以上である炭化材が鉱物繊維中に分散混合されるため、難燃性が高い。また、炭化材は灰化したときの灰分が80重量%以下であるため、有害化学物質の吸着性にも優れている。   This heat insulating material composition has high flame retardancy because a carbonized material having an ash content of 30% by weight or more when dispersed into mineral fibers is dispersed and mixed. In addition, since the carbonized material has an ash content of 80% by weight or less when incinerated, it is also excellent in the adsorption of harmful chemical substances.

ここで、断熱材組成物100重量%に対し、炭化材が15重量%以下含まれると好ましい。炭化材が15重量%よりも多く含まれていると、自重により断熱材組成物が施工空間内で沈降して、断熱性が阻害される傾向にあるからである。   Here, it is preferable that the carbonized material is contained in an amount of 15% by weight or less with respect to 100% by weight of the heat insulating material composition. This is because if the carbonized material is contained in an amount of more than 15% by weight, the heat insulating material composition settles in the construction space due to its own weight, and the heat insulating property tends to be hindered.

炭化材は、籾殻を炭化処理して得られたものであると好ましい。籾殻を炭化処理して得られたものは、灰化したときの灰分が40〜50重量%程度であるため、炭化材として好適である。また、籾殻の炭化材は、鉱物繊維中に分散混合させるために賦形することなくそのまま利用できるため、経済性に優れている。   The carbonized material is preferably obtained by carbonizing rice husk. What was obtained by carbonizing rice husks is suitable as a carbonizing material because the ash content when ashing is about 40 to 50% by weight. In addition, since the carbonized material of rice husk can be used as it is without being shaped to be dispersed and mixed in the mineral fiber, it is excellent in economic efficiency.

また本発明に係る断熱材組成物は、鉱物繊維と、籾殻を炭化処理して得られ鉱物繊維に分散混合される炭化材と、を備える。   Moreover, the heat insulating material composition which concerns on this invention is equipped with mineral fiber and the carbonized material obtained by carbonizing a rice husk and disperse-mixing with mineral fiber.

籾殻を炭化処理して得られた炭化材は、灰化したときの灰分が40〜50重量%程度であるため、難燃性が高い。従って、このような炭化材を鉱物繊維中に含む断熱材組成物は、難燃性が高く、且つ有害化学物質の吸着性にも優れている。また、籾殻の炭化材は、鉱物繊維中に分散混合させるために賦形することなくそのまま利用できるため、経済性に優れている。   The carbonized material obtained by carbonizing the rice husk has high flame retardancy because the ash content when ashed is about 40 to 50% by weight. Therefore, a heat insulating material composition containing such a carbonized material in mineral fibers has high flame retardancy and excellent adsorptivity to harmful chemical substances. In addition, since the carbonized material of rice husk can be used as it is without being shaped to be dispersed and mixed in the mineral fiber, it is excellent in economic efficiency.

本発明に係る断熱材は、断熱材組成物を、施工面上或いは施工空間内にブローイングして形成される。このようにして形成された断熱材は、鉱物繊維中に炭化材が分散混合された状態で、施工面上或いは施工空間内に充填されており、難燃性が高く、有害化学物質の吸着性にも優れており、且つ断熱性が高い。   The heat insulating material according to the present invention is formed by blowing the heat insulating material composition on the construction surface or in the construction space. The heat insulating material formed in this way is filled in the construction surface or in the construction space with the carbonized material dispersed and mixed in the mineral fiber, has high flame resistance, and adsorbs harmful chemical substances. It is also excellent in heat insulation.

本発明に係る断熱材の製造方法は、上記した断熱材組成物を、施工面上或いは施工空間内にブローイングする。この方法によれば、現場において上記した断熱材組成物を施工面上或いは施工空間内にブローイングにより充填し、難燃性が高く、有害化学物質の吸着性にも優れており、且つ断熱性が高い断熱材を容易に形成することができる。   The manufacturing method of the heat insulating material which concerns on this invention blows above-described heat insulating material composition on a construction surface or in construction space. According to this method, the above-mentioned heat insulating material composition is filled on the construction surface or in the construction space by blowing on the site, has high flame retardancy, is excellent in adsorption of harmful chemical substances, and has heat insulation properties. A high heat insulating material can be easily formed.

本発明によれば、有害化学物質の吸着性に優れ、且つ難燃性の高い断熱材組成物、断熱材、及び断熱材の製造方法を提供することができる。   According to the present invention, it is possible to provide a heat insulating material composition, a heat insulating material, and a method for manufacturing the heat insulating material that are excellent in adsorptive of harmful chemical substances and have high flame retardancy.

以下、添付図面を参照して本発明の実施形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係る断熱材組成物を用いた断熱材の施工例を示す一部破断斜視図である。図1に示すように、本実施形態において断熱材10は、例えば壁の軸間(柱20と間柱22の間、間柱22と間柱22の間)の施工空間に断熱材組成物を充填して形成される。なお、図1においてシージングボード(或いは撥水性グラスウールボード)14の更に外側には、通気用の胴縁16を介して外壁材18が施工されている。   FIG. 1 is a partially broken perspective view showing a construction example of a heat insulating material using the heat insulating material composition according to the present embodiment. As shown in FIG. 1, in this embodiment, the heat insulating material 10 is filled with a heat insulating material composition in the construction space between the shafts of the walls (between the pillars 20 and 22, between the pillars 22 and 22), for example. It is formed. In FIG. 1, an outer wall material 18 is provided on the outer side of the shising board (or water-repellent glass wool board) 14 via a ventilating trunk edge 16.

断熱材組成物は、鉱物繊維と、鉱物繊維に分散混合される炭化材と、を備えている。鉱物繊維としては、グラスウール、ロックウールが挙げられる。グラスウールは、密度が33〜37kg/mであると好ましい。またロックウールは、密度が60〜70kg/mであると好ましい。 The heat insulating material composition includes mineral fibers and a carbide material dispersed and mixed in the mineral fibers. Examples of the mineral fiber include glass wool and rock wool. The glass wool preferably has a density of 33 to 37 kg / m 3 . The rock wool preferably has a density of 60 to 70 kg / m 3 .

炭化材は、灰化したときの灰分が30〜80重量%である。すなわち、灰化したときに灰分となる成分を30〜80重量%含んでいる。ここで灰分とは、空気中において800℃以上で焼成した後の灼熱残分をいう。灰分としては、二酸化珪素(SiO)や酸化カリウム(KO)、酸化カルシウム(CaO)、その他金属酸化物が挙げられる。 The carbonized material has an ash content of 30 to 80% by weight when incinerated. That is, it contains 30 to 80% by weight of a component that becomes ash when incinerated. Here, the ash content refers to a residual residue after baking at 800 ° C. or higher in the air. Examples of the ash include silicon dioxide (SiO 2 ), potassium oxide (K 2 O), calcium oxide (CaO), and other metal oxides.

このような炭化材としては、籾殻を炭化処理して得られたものであると好ましい。籾殻を炭化処理して得られたものは、灰化したときの灰分が40〜50重量%程度であるため、本実施形態における炭化材として好適である。また籾殻の炭化材は、長さが約6mm、幅が約2〜3mmで湾曲した薄片であり、嵩が略同一であるグラスウールやロックウール等の鉱物繊維に均一に分散混合させるのに極めて好適である。このように籾殻の炭化材は、鉱物繊維中に分散混合させるために賦形することなくそのまま利用できるため、経済性に優れている。なお、籾殻を炭化処理して得られる炭化材は、籾殻薫炭であってもよい。また、籾殻としては、特に米の籾殻が好ましい。米の籾殻の炭化材では、灰化したときの灰分のうち90重量%以上が二酸化珪素(SiO)であり、酸化鉄(Fe)が1.9重量%であり、以下微量の金属酸化物が含まれる。二酸化珪素は、炭化によりセラミックス多孔体になり、脱臭炭以上に広い表面積を持つ。従って、珪素分を多く含む米の籾殻の炭化材は、脱臭・吸着等の機能が高く好ましい。 Such carbonized material is preferably obtained by carbonizing rice husk. What was obtained by carbonizing rice husks is suitable as a carbonizing material in the present embodiment because the ash content when ashing is about 40 to 50% by weight. The carbonized material of rice husk is a thin piece curved with a length of about 6 mm and a width of about 2 to 3 mm, and is extremely suitable for uniformly dispersing and mixing into mineral fibers such as glass wool and rock wool having substantially the same bulk. It is. Thus, the carbonized material of rice husks is excellent in economic efficiency because it can be used as it is without being shaped to be dispersed and mixed in mineral fibers. The carbonized material obtained by carbonizing rice husk may be rice husk husk charcoal. The rice husk is particularly preferably rice husk. In the rice husk carbonized material, 90% by weight or more of the ash content when incinerated is silicon dioxide (SiO 2 ), iron oxide (Fe 2 O 3 ) is 1.9% by weight, Metal oxide is included. Silicon dioxide becomes a ceramic porous body by carbonization and has a larger surface area than deodorized charcoal. Therefore, rice rice husk charcoal containing a large amount of silicon is preferable because it has high functions such as deodorization and adsorption.

その他炭化材としては、竹炭を用いることができる。竹炭の灰化したときの灰分は、例えばモウソウ炭で30重量%程度である、チシマ笹炭で50重量%程度である、マ竹炭で40重量%程度である。   Other charcoal can be bamboo charcoal. The ash content when bamboo charcoal is ashed is, for example, about 30% by weight for Moso charcoal, about 50% by weight for Chishima charcoal, and about 40% for Matake charcoal.

上記したように本実施形態における炭化材は、灰化したときの灰分が30〜80重量%であるため、灰化したときの灰分が1〜3重量%である木炭(例えば、備長炭、ナラ炭、ウバメガシ炭、クリ炭)などの炭化材と比べて灰化したときの灰分が十分に大きい。従って、難燃性に優れている。また、灰化したときの灰分が80重量%以下であるため、有害化学物質の吸着性にも優れている。   As described above, the carbonized material according to the present embodiment has an ash content of 30 to 80% by weight when ashed, and thus charcoal (for example, Bincho charcoal and oak) having an ash content of 1 to 3% by weight when ashed. Compared with charcoal such as charcoal, Ubamegashi charcoal and chestnut charcoal), the ash content when ashing is sufficiently large. Therefore, it is excellent in flame retardancy. Moreover, since the ash content when incinerated is 80% by weight or less, the adsorptivity of harmful chemical substances is also excellent.

なお、籾殻や竹などの炭化は、無酸素環境下において約400〜600℃の温度で焼成により行うと好ましい。このようにすれば、微細孔が無数に形成された吸着性能に優れた炭化材を容易に得ることができる。また竹炭は、粒度が小さいため鉱物繊維中を沈降し易い傾向にある。従って、竹炭を使用する場合はバインダ等を使って籾殻炭程度の大きさに賦形すると好ましい。   Carbonization of rice husks and bamboo is preferably performed by firing at a temperature of about 400 to 600 ° C. in an oxygen-free environment. In this way, it is possible to easily obtain a carbonized material excellent in adsorption performance in which numerous fine holes are formed. Bamboo charcoal tends to settle in mineral fibers because of its small particle size. Therefore, when using bamboo charcoal, it is preferable to shape it to the size of rice husk charcoal using a binder or the like.

本実施形態において炭化材は、断熱材組成物100重量%に対し15重量%以下含まれると好ましい。炭化材が15重量%よりも多く含まれていると、自重により断熱材組成物が施工空間内で沈降して、断熱性が阻害される傾向にあるからである。なお、炭化材の含有割合は1〜10重量%であるとより好ましく、2〜8重量%であると更に好ましい。   In the present embodiment, the carbonized material is preferably contained in an amount of 15% by weight or less with respect to 100% by weight of the heat insulating material composition. This is because if the carbonized material is contained in an amount of more than 15% by weight, the heat insulating material composition settles in the construction space due to its own weight, and the heat insulating property tends to be hindered. In addition, the content rate of a carbide | carbonized_material is more preferable in it being 1-10 weight%, and it is still more preferable in it being 2-8 weight%.

次に、上記した断熱材組成物を利用した施工方法について説明する。   Next, the construction method using the above-described heat insulating material composition will be described.

断熱施工される壁体は、図1に示すように、通常、柱20及び間柱22の垂直材と、図示しない土台、横胴縁、胴差し、及び桁の水平材とから構成され、壁体内にはこれらで仕切られた縦長矩形の施工空間が複数形成されている。   As shown in FIG. 1, the wall body to be heat-insulated is usually composed of vertical members of pillars 20 and 22 and horizontal members of a base, a horizontal trunk edge, a girth, and a girder (not shown). A plurality of vertically long construction spaces partitioned by these are formed.

まず、図1に示すように、柱20及び間柱22の内表面側を施工用ネット26で覆う。施工用ネット26は、タッカー等により留められる。この施工用ネット26のメッシュは、例えば1mm×1mm程度であると好ましい。これにより、断熱材組成物を充填する空間が施工用ネット26により覆われる。   First, as shown in FIG. 1, the inner surfaces of the columns 20 and the inter-columns 22 are covered with a construction net 26. The construction net 26 is fastened by a tucker or the like. The mesh of the construction net 26 is preferably about 1 mm × 1 mm, for example. Thereby, the space filled with the heat insulating material composition is covered with the construction net 26.

次に、断熱材組成物をブローイングするための吹き込み穴を、施工用ネット26に開ける。次に、図2に示す吹き込み装置50を使用して、施工用ネット26で囲まれた施工空間内に、吹き込み穴を通して断熱材組成物をブローイングにより充填する。吹き込み装置50は、解繊機52と、調整機54と、ブロア56と、発電機58と、原動機60と、を備えている。   Next, a blow hole for blowing the heat insulating material composition is opened in the construction net 26. Next, using the blowing device 50 shown in FIG. 2, the heat insulating material composition is filled by blowing through the blowing hole into the construction space surrounded by the construction net 26. The blowing device 50 includes a defibrator 52, a regulator 54, a blower 56, a generator 58, and a prime mover 60.

解繊機52は、攪拌翼62により断熱材組成物を解きほぐす。この解繊機52は、断熱材組成物を受けるホッパー64を有している。ホッパー64内には、軸に固定されたプロペラ翼66が設けられており、このプロペラ翼66によりホッパー64内の断熱材組成物を解繊する。調整機54は、吹き込み用のホース68に供給する断熱材組成物の量を、回転翼70の回転により調整する。ブロア56は、解きほぐされた断熱材組成物をホース68を通して空気搬送する。発電機58は、原動機60を利用してこれらの装置を駆動するための電気エネルギーを生成する。この吹き込み装置50は、リモートコントロールスイッチ72により遠隔操作できるようになっている。   The defibrator 52 unwinds the heat insulating material composition with the stirring blade 62. The defibrator 52 has a hopper 64 that receives the heat insulating material composition. Propeller blades 66 fixed to the shaft are provided in the hopper 64, and the heat insulating material composition in the hopper 64 is defibrated by the propeller blades 66. The adjuster 54 adjusts the amount of the heat insulating material composition supplied to the blowing hose 68 by the rotation of the rotary blade 70. The blower 56 pneumatically conveys the unheated insulation composition through the hose 68. The generator 58 uses the prime mover 60 to generate electrical energy for driving these devices. The blowing device 50 can be remotely operated by a remote control switch 72.

ブローイングにおいては、まず断熱材組成物を構成する鉱物繊維(ここでは、グラスウールについて説明する)を、解繊機52のホッパー64に投入し、同時に炭化材(ここでは、籾殻炭について説明する)を投入する。投入量は、例えばグラスウール100重量%に対して籾殻炭を6重量%とする。解繊機52内では、グラスウールの解きほぐしと籾殻炭の混合とが同時に行われ、ほぼ均一な混合物が得られる。この混合物を、ホース68を通してブロア56により空気搬送して、吹き込み穴から施工空間内に充填する。このとき、搬送空気は施工用ネット26のメッシュ隙間から排気されるが、断熱材組成物がこのメッシュ隙間から抜け出ることはない。   In blowing, first, mineral fibers constituting the heat insulating material composition (here, glass wool will be explained) are put into the hopper 64 of the defibrator 52, and at the same time, carbonized material (here, rice husk charcoal is explained) is thrown in. To do. The input amount is, for example, 6% by weight of rice husk charcoal per 100% by weight of glass wool. In the defibrator 52, the unraveling of the glass wool and the mixing of the rice husk charcoal are performed simultaneously, and an almost uniform mixture is obtained. This mixture is pneumatically conveyed by the blower 56 through the hose 68 and filled into the construction space through the blow holes. At this time, the carrier air is exhausted from the mesh gap of the construction net 26, but the heat insulating material composition does not escape from the mesh gap.

施工空間内を隙間なく断熱材組成物で充填し、充填密度が例えば35±5kg/mになった時点で、リモートコントロールスイッチ72により吹き込み装置50の駆動を停止し、ホース68先端を吹き込み穴から抜き出す。他の区画の施工空間内も同様にして断熱材組成物を充填し、全ての施工空間に断熱材組成物が充填されて断熱材が形成された後、内側から防湿気密シート28と石膏ボード等の下地材12を取り付ける。これによって、各施工空間は剛性の高い建材で全面が囲まれ、通常の居住地域で受ける振動(車の往来等)では、充填された断熱材組成物が沈降することはない。また、籾殻炭は外形が比較的大きいため、沈降することなくグラスウール中に均一に分散混合される。 The construction space is filled with a heat insulating material composition without any gap, and when the filling density reaches, for example, 35 ± 5 kg / m 3 , the driving of the blowing device 50 is stopped by the remote control switch 72 and the tip of the hose 68 is blown into the blowing hole. Extract from. In the same way, the construction spaces in the other sections are filled with the heat insulating material composition, and after all the construction spaces are filled with the heat insulating material composition to form the heat insulating material, the moisture-proof airtight sheet 28 and the gypsum board are formed from the inside. A base material 12 is attached. As a result, each construction space is entirely surrounded by a highly rigid building material, and the filled heat insulating material composition does not settle down due to vibrations (car traffic, etc.) received in a normal living area. Moreover, since the outer shape of rice husk charcoal is relatively large, it is uniformly dispersed and mixed in glass wool without settling.

このように形成した断熱材では、充填厚みを100mmとすると施工面積1m当たり85mg以上のホルムアルデヒドを吸着する能力を持ち、しかも吸湿性にも優れている。このように有害化学物質の吸着性及び吸湿性に優れているため、外国製の鉱物繊維や内装材、壁材等を使用したときに出るホルムアルデヒドやVOC(volatile organic compounds)、及び湿気を吸着するのに効果的である。 The heat insulating material thus formed has an ability to adsorb 85 mg or more of formaldehyde per 1 m 3 of construction area when the filling thickness is 100 mm, and also has excellent hygroscopicity. In this way, it has excellent adsorptivity and hygroscopicity for harmful chemical substances, so it adsorbs formaldehyde, VOC (volatile organic compounds) and moisture generated when foreign mineral fibers, interior materials, wall materials, etc. are used. It is effective.

なお、上記実施形態では壁を断熱する施工例について説明したが、床を断熱するときも同様に行うことができる。一方、天井を断熱するときには、施工用ネットを使用することなく、図3に示すように天井板80を防湿気密シート82で覆い、その上に吹き込み装置50を用いて自然堆積により断熱材組成物を敷き詰め、断熱材84を形成する。この場合、断熱組成物の施工密度は、例えば18kg/m程度とすると好ましい。 In addition, although the said embodiment demonstrated the construction example which heat-insulates a wall, it can carry out similarly when heat-insulating a floor. On the other hand, when insulating the ceiling, without using a construction net, the ceiling plate 80 is covered with a moisture-proof and airtight sheet 82 as shown in FIG. The heat insulating material 84 is formed. In this case, the construction density of the heat insulating composition is preferably about 18 kg / m 3 , for example.

次に、本実施形態の作用及び効果について説明する。   Next, the operation and effect of this embodiment will be described.

本実施形態に係る断熱材組成物は、灰化したときの灰分が30重量%以上である炭化材が鉱物繊維中に分散混合されるため、難燃性が高い。また、炭化材は灰化したときの灰分が80重量%以下であるため、有害化学物質の吸着性にも優れている。また吸湿性にも優れている。   The heat insulating material composition according to the present embodiment has high flame retardancy because a carbonized material having an ash content of 30% by weight or more when dispersed into mineral fibers is dispersed and mixed. In addition, since the carbonized material has an ash content of 80% by weight or less when incinerated, it is also excellent in the adsorption of harmful chemical substances. It also has excellent hygroscopicity.

図4は、炭化材の不燃性試験とホルムアルデヒド吸着性試験の結果を示す図である。不燃性試験は、JISA9523の耐着火性試験に準拠して行った。ホルムアルデヒド吸着性試験は、5リットルのテドラーバックに炭化材1gを入れ、次に20ppm前後のホルムアルデヒドガスを4リットル注入し、封止する。このテドラーバックを28℃の恒温器に24時間放置した後、検知管でテドラーバック内のホルムアルデヒド濃度を測定した。ホルムアルデヒド吸着性試験の判定基準は、0.05ppm未満を○とし、0.05〜2.0ppmを△とし、2.0ppm超過を×とした。   FIG. 4 is a diagram illustrating the results of a non-flammability test and a formaldehyde adsorption test of a carbonized material. The nonflammability test was performed in accordance with the ignition resistance test of JIS A9523. In the formaldehyde adsorption test, 1 g of carbonized material is put into a 5 liter Tedlar bag, and then 4 liters of formaldehyde gas of about 20 ppm is injected and sealed. The Tedlar bag was left in a thermostat at 28 ° C. for 24 hours, and then the formaldehyde concentration in the Tedlar bag was measured with a detector tube. The judgment criteria for the formaldehyde adsorption test were ○ less than 0.05 ppm, Δ from 0.05 to 2.0 ppm, and x exceeding 2.0 ppm.

図4に示すように、灰化したときの灰分(ここでは、二酸化珪素)が30重量%以上である炭化材は、着火が認められず、不燃性に優れていることが分かる。また、灰化したときの灰分が80重量%以下である炭化材は、ホルムアルデヒド濃度が0.05ppm未満であり、有害化学物質の吸着性に優れていることが分かる。   As shown in FIG. 4, it can be seen that the carbonized material having an ash content (here, silicon dioxide) of 30% by weight or more is not ignited and is excellent in nonflammability. Further, it can be seen that the carbonized material having an ash content of 80% by weight or less when incinerated has a formaldehyde concentration of less than 0.05 ppm and is excellent in the adsorptivity of harmful chemical substances.

また図5は、籾殻炭と備長炭のホルムアルデヒド吸着性試験の結果を示す図である。このホルムアルデヒド吸着性試験では、米の籾殻炭及び備長炭を用いて、一定濃度のホルムアルデヒドに対する吸着性を時間を追って測定した。この試験では、検査試料を均一にするために、1mmの篩を通した後、60℃で2時間乾燥させたものを検査試料とした。これら検査試料を5リットルのテドラーバックにそれぞれ1g入れ、その後23ppmのホルムアルデヒドガスを4リットル注入した。このテドラーバックを28℃の恒温器に入れ、一定時間ごと(今回は、0時間、1時間、4時間、24時間後の4点)に検知管を使用してホルムアルデヒド濃度を測定し、濃度変化を記録した。なお、比較としてテドラーバックに検査試料を入れない空試験も行った。図5に示すように、籾殻炭は備長炭よりも吸着性に優れていることが分かる。   FIG. 5 is a diagram showing the results of a formaldehyde adsorption test for rice husk charcoal and Bincho charcoal. In this formaldehyde adsorption test, the adsorptivity to formaldehyde at a certain concentration was measured over time using rice husk charcoal and Bincho charcoal. In this test, in order to make the test sample uniform, the test sample was passed through a 1 mm sieve and then dried at 60 ° C. for 2 hours. 1 g of each of these test samples was put in a 5 liter Tedlar bag, and then 4 liters of 23 ppm formaldehyde gas were injected. This Tedlar bag is put in a 28 ° C incubator, and formaldehyde concentration is measured using a detector tube at regular intervals (this time, 4 points after 0 hours, 1 hour, 4 hours, and 24 hours). Recorded. For comparison, a blank test was also performed in which no test sample was placed in the tedlar bag. As shown in FIG. 5, it can be seen that rice husk charcoal is more adsorbable than Bincho charcoal.

その他、籾殻炭は、アンモニアや酢酸、アセトアルデヒド等の化学物質の吸着性に優れていることも確認されている。   In addition, rice husk charcoal has also been confirmed to be excellent in adsorption of chemical substances such as ammonia, acetic acid, and acetaldehyde.

特に本実施形態に係る断熱材組成物は、断熱材組成物100重量%に対し、炭化材が15重量%以下含まれるようにすれば、自重により断熱材組成物が施工空間内で沈降するおそれがなく、断熱性が高くなる。   In particular, in the heat insulating material composition according to the present embodiment, if the carbonized material is contained in an amount of 15% by weight or less with respect to 100% by weight of the heat insulating material composition, the heat insulating material composition may sink in the construction space due to its own weight. There is no heat insulation.

また炭化材は、籾殻を炭化処理して得られたものであるとすれば、灰化したときの灰分が40〜50重量%程度であるため、炭化材として好適である。また、籾殻の炭化材は、鉱物繊維中に分散混合させるために賦形することなくそのまま利用できるため、経済性に優れている。   Further, if the carbonized material is obtained by carbonizing rice husks, the ash content when ashed is about 40 to 50% by weight, and thus is suitable as a carbonized material. In addition, since the carbonized material of rice husk can be used as it is without being shaped to be dispersed and mixed in the mineral fiber, it is excellent in economic efficiency.

また本実施形態に係る断熱材は、上記した断熱材組成物を、施工面上或いは施工空間内にブローイングして形成されるため、鉱物繊維中に炭化材が分散混合された状態で、施工面上或いは施工空間内に充填されており、難燃性が高く、有害化学物質の吸着性にも優れており、且つ断熱性が高い。   Moreover, since the heat insulating material according to the present embodiment is formed by blowing the above heat insulating material composition on the construction surface or in the construction space, the construction surface is in a state where the carbonized material is dispersed and mixed in the mineral fiber. It is filled in the top or in the construction space, has high flame retardancy, excellent adsorptivity to harmful chemical substances, and high heat insulation.

また本実施形態に係る断熱材の製造方法は、上記した断熱材組成物を、現場において施工面上或いは施工空間内にブローイングし、施工面上或いは施工空間内に充填して容易に断熱材を施工することができる。このように施工された断熱材は、難燃性が高く、有害化学物質の吸着性及び吸湿性にも優れており、且つ断熱性が高い。   Moreover, the manufacturing method of the heat insulating material which concerns on this embodiment blows the above-mentioned heat insulating material composition on a construction surface or a construction space on the site, and fills the construction surface or the construction space to easily provide the heat insulating material. Can be constructed. The heat insulating material constructed in this way has high flame retardancy, is excellent in the adsorptivity and hygroscopicity of harmful chemical substances, and has high heat insulating properties.

なお、本発明は上記した実施形態に限定されることなく、種々の変形が可能である。例えば、炭化材として、籾殻炭と竹炭を混合して使用してもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, rice husk charcoal and bamboo charcoal may be mixed and used as the carbonizing material.

本実施形態に係る断熱材組成物を用いた断熱材の施工例を示す一部破断斜視図である。It is a partially broken perspective view which shows the construction example of the heat insulating material using the heat insulating material composition which concerns on this embodiment. 吹き込み装置の構成を示す図である。It is a figure which shows the structure of a blowing device. 天井への断熱材組成物の施工例を示す図である。It is a figure which shows the construction example of the heat insulating material composition to a ceiling. 炭化材の不燃性試験とホルムアルデヒド吸着性試験の結果を示す図である。It is a figure which shows the result of the nonflammability test of a carbonized material, and a formaldehyde adsorption test. 籾殻炭と備長炭のホルムアルデヒド吸着性試験の結果を示す図である。It is a figure which shows the result of the formaldehyde adsorption test of rice husk charcoal and Bincho charcoal.

符号の説明Explanation of symbols

10,84…断熱材、12…下地材、14…シージングボード(或いは撥水性グラスウールボード)、16…胴縁、18…外壁材、20…柱、22…間柱、28…防湿気密シート、26…施工用ネット、50…吹き込み装置、52…解繊機、54…調整機、56…ブロア、58…発電機、60…原動機、72…リモートスイッチ、64…ホッパー、68…ホース、80…天井板、82…防湿気密シート。   DESCRIPTION OF SYMBOLS 10,84 ... Heat insulating material, 12 ... Base material, 14 ... Sheathing board (or water-repellent glass wool board), 16 ... Body edge, 18 ... Outer wall material, 20 ... Column, 22 ... Intermediary column, 28 ... Moisture-proof airtight sheet, 26 ... Construction net, 50 ... Blowing device, 52 ... Defibrating machine, 54 ... Adjuster, 56 ... Blower, 58 ... Generator, 60 ... Motor, 72 ... Remote switch, 64 ... Hopper, 68 ... Hose, 80 ... Ceiling board, 82 ... Moisture-proof and airtight sheet.

Claims (6)

鉱物繊維と、
前記鉱物繊維に分散混合され、灰化したときの灰分が30〜80重量%である炭化材と、
を備える断熱材組成物。
Mineral fiber,
A carbonized material dispersed and mixed in the mineral fiber and having an ash content of 30 to 80% by weight when incinerated;
A heat insulating material composition comprising:
当該断熱材組成物100重量%に対し、前記炭化材が15重量%以下含まれる請求項1に記載の断熱材組成物。   The heat insulating material composition according to claim 1, wherein the carbonized material is contained in an amount of 15% by weight or less with respect to 100% by weight of the heat insulating material composition. 前記炭化材は、籾殻を炭化処理して得られたものである請求項1又は2に記載の断熱材組成物。   The heat insulating material composition according to claim 1, wherein the carbonized material is obtained by carbonizing rice husk. 鉱物繊維と、
前記鉱物繊維に分散混合され、籾殻を炭化処理して得られる炭化材と、
を備える断熱材組成物。
Mineral fiber,
A carbonized material dispersed and mixed in the mineral fiber and obtained by carbonizing rice husk;
A heat insulating material composition comprising:
請求項1〜4のいずれかに記載の断熱材組成物を、施工面上或いは施工空間内にブローイングして形成された断熱材。   The heat insulating material formed by blowing the heat insulating material composition in any one of Claims 1-4 on a construction surface or in construction space. 請求項1〜4のいずれかに記載の断熱材組成物を、施工面上或いは施工空間内にブローイングする断熱材の製造方法。   The manufacturing method of the heat insulating material which blows the heat insulating material composition in any one of Claims 1-4 on a construction surface or in construction space.
JP2004167665A 2004-06-04 2004-06-04 Thermal insulating material composition, thermal insulating material and method of manufacturing the material Pending JP2005343764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167665A JP2005343764A (en) 2004-06-04 2004-06-04 Thermal insulating material composition, thermal insulating material and method of manufacturing the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167665A JP2005343764A (en) 2004-06-04 2004-06-04 Thermal insulating material composition, thermal insulating material and method of manufacturing the material

Publications (1)

Publication Number Publication Date
JP2005343764A true JP2005343764A (en) 2005-12-15

Family

ID=35496479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167665A Pending JP2005343764A (en) 2004-06-04 2004-06-04 Thermal insulating material composition, thermal insulating material and method of manufacturing the material

Country Status (1)

Country Link
JP (1) JP2005343764A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256897A (en) * 2008-04-14 2009-11-05 Meisei Fudosan Kk Building material using chaff charcoal, and manufacturing method therefor
JP2011021321A (en) * 2009-07-13 2011-02-03 Yoshida Juken:Kk Chaff-wall heat-insulating construction method for wooden house
DE102016208978A1 (en) 2015-05-28 2016-12-01 Honda Motor Co., Ltd. Electrostrictive element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339587U (en) * 1989-08-28 1991-04-16
JPH11131606A (en) * 1997-11-04 1999-05-18 Etsuo Kobayashi Moisture keeping and adsorbent sheet
JPH11222947A (en) * 1998-02-06 1999-08-17 Etsuo Kobayashi Porous filler, building member, panel member, and manufacture thereof
JP2000257177A (en) * 1999-03-05 2000-09-19 Hokumon Constoruction Co Ltd Heat insulating wall structure for building
JP2000325733A (en) * 1999-05-21 2000-11-28 National House Industrial Co Ltd Charcoal humidity-controlling material and building material having humidity-controlling function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339587U (en) * 1989-08-28 1991-04-16
JPH11131606A (en) * 1997-11-04 1999-05-18 Etsuo Kobayashi Moisture keeping and adsorbent sheet
JPH11222947A (en) * 1998-02-06 1999-08-17 Etsuo Kobayashi Porous filler, building member, panel member, and manufacture thereof
JP2000257177A (en) * 1999-03-05 2000-09-19 Hokumon Constoruction Co Ltd Heat insulating wall structure for building
JP2000325733A (en) * 1999-05-21 2000-11-28 National House Industrial Co Ltd Charcoal humidity-controlling material and building material having humidity-controlling function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256897A (en) * 2008-04-14 2009-11-05 Meisei Fudosan Kk Building material using chaff charcoal, and manufacturing method therefor
JP2011021321A (en) * 2009-07-13 2011-02-03 Yoshida Juken:Kk Chaff-wall heat-insulating construction method for wooden house
DE102016208978A1 (en) 2015-05-28 2016-12-01 Honda Motor Co., Ltd. Electrostrictive element

Similar Documents

Publication Publication Date Title
RU2532487C2 (en) Panels comprising renewable elements and methods of their manufacturing
KR101440943B1 (en) Incombustible panel for interior decoration and facing of architectures and method thereof
CN1312848A (en) Fire retardant intumescent couting for lignocellulosic materials
KR101633779B1 (en) Panels including renewable components and methods for manufacturing
JP2005343764A (en) Thermal insulating material composition, thermal insulating material and method of manufacturing the material
JP2004010433A (en) Building board and raw material therefor
KR20070121147A (en) Flame Retardant Composition for Multifunctional Flame Retardant Foamed Polystyrene Foam
JP4550609B2 (en) Soundproof humidity control ceiling structure
KR102141001B1 (en) Porous lightweight composition
JPH11222947A (en) Porous filler, building member, panel member, and manufacture thereof
US20060142155A1 (en) Gas absorbing material
JP2003002624A (en) Active carbon, method and apparatus for manufacturing the same, and method for using the same
KR101899115B1 (en) composition
KR101478422B1 (en) Composite for humidity control porous board using water treatment sludge and manufacturing method of the humidity control porous board
KR20070121148A (en) Multifunctional flame retardant polystyrene foam and its manufacturing method
JP7093509B2 (en) Processing method of ceramic siding material, clinker raw material, cement manufacturing method
JP2007153627A (en) Production method of zeolite building material
KR100421069B1 (en) Novel material for building interior utilizing wasted coconut shell and manufacturing method of it
JP4099283B2 (en) Manufacturing method of wall panel and heat insulating wall structure for building
JP4004360B2 (en) Wall / floor core and building wall / floor structure and building
JP2007077717A (en) Construction board and its manufacturing method
EP1437916A1 (en) Heating element using charcoal
JP2005205123A (en) Char of discarded tatami (rush mat), discarded bamboo or the like and usage thereof
JPH10286459A (en) Gas adsorbent sealed material
KR101221071B1 (en) Furniture material and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A711 Notification of change in applicant

Effective date: 20080604

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Effective date: 20100525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A521 Written amendment

Effective date: 20110207

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20110301

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110422