JP2005341953A - Greenhouse cultivation plant residue reuse cogeneration system - Google Patents

Greenhouse cultivation plant residue reuse cogeneration system Download PDF

Info

Publication number
JP2005341953A
JP2005341953A JP2004196136A JP2004196136A JP2005341953A JP 2005341953 A JP2005341953 A JP 2005341953A JP 2004196136 A JP2004196136 A JP 2004196136A JP 2004196136 A JP2004196136 A JP 2004196136A JP 2005341953 A JP2005341953 A JP 2005341953A
Authority
JP
Japan
Prior art keywords
gas
facility
cultivation
engine
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004196136A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Yonekura
信義 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEC ENGINEERING SERVICE CO Ltd
Original Assignee
MEC ENGINEERING SERVICE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEC ENGINEERING SERVICE CO Ltd filed Critical MEC ENGINEERING SERVICE CO Ltd
Priority to JP2004196136A priority Critical patent/JP2005341953A/en
Publication of JP2005341953A publication Critical patent/JP2005341953A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system so designed that, in a greenhouse plant cultivation, plant residues left after harvesting fruits or the like are utilized as an energy source for a dynamo engine and converted to electric power, waste heat from the dynamo engine is utilized as a heat source necessary for the greenhouse cultivation, and exhaust gas from the engine is utilized for replenishing carbon dioxide into the greenhouse cultivation area. <P>SOLUTION: The greenhouse cultivation plant residue reuse cogeneration system works as follows: Plant residues 3 discharged from a plant cultivation facility 1 into the outside are made into slurry via a hopper 3 for temporarily storing the residues 3 therein and a residue crusher 6. The slurry is delivered via a heater 7 and a hydrothermal gasification reactor 8 to a steam separator 9. The gas extracted from the steam separator 9 is mixed with combustion gas from the outside and fed to a gas engine 13. The exhaust gas from the gas engine 13 is fed via a pressure control means 18 to the plant cultivation facility 1. The waste heat from the gas engine 13 is fed to a radiator 15 in the plant cultivation facility 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は外界環境と区画した環境で野菜、果物等の植物を栽培する施設栽培において発生する植物残渣を再利用する技術に関する。  The present invention relates to a technique for reusing plant residues generated in facility cultivation in which plants such as vegetables and fruits are cultivated in an environment partitioned from the external environment.

特開2001−292640号広報  JP 2001-292640 A 特平11−275965号広報  Tokuhira 11-275965 public information 「バイオマスハンドブック」 平成14年9月20日発行 編者 社団法人 日本エネルギー協会、 発行者 株式会社オーム  “Biomass Handbook” issued on September 20, 2002 Editor Japan Energy Association, publisher Ohm Corporation

コジェネレーションシステムは、発電機駆動原動機により発電を行うとともに、原動機駆動により発生する排熱を回収して、冷暖房や給湯などに使うことにより総合効率を改善する発電システムである。ところで、温室又はビニルハウス等外界環境から区画した環境において果物、野菜等を栽培する施設栽培においては、施設内の温度、照明、二酸化炭素濃度等を人為的に調整し、季節に関係なく作物の収穫を可能とし、また作物に適合した環境を作ることによって、市場における価値を高めるとともに、単位面積あたりの収穫量を増加する効果をあげている。このような栽培施設内環境を植物栽培に適したものとするには、施設維持や日照時間調整用の照明設備電力とともに暖房用にエネルギーを必要とするので、コジェネレーションシステムの適用は施設栽培におけるエネルギーコスト増加を抑制する効果が期待できる。  The cogeneration system is a power generation system that improves the overall efficiency by generating power with a generator-driven prime mover and collecting exhaust heat generated by driving the prime mover and using it for air conditioning and hot water supply. By the way, in facility cultivation where fruits, vegetables, etc. are cultivated in an environment partitioned from the outside environment such as a greenhouse or a vinyl house, the temperature, lighting, carbon dioxide concentration, etc. in the facility are artificially adjusted, By making it possible to harvest and creating an environment suitable for crops, it increases the value in the market and increases the yield per unit area. In order to make such a cultivation facility environment suitable for plant cultivation, energy is required for heating together with lighting equipment power for facility maintenance and sunshine duration adjustment, so the application of cogeneration system is in facility cultivation The effect of suppressing the increase in energy costs can be expected.

さらに、施設栽培用区画内では、大気との流通が制限されることから栽培植物の炭酸同化作用により消費される二酸化炭素ガスの大気からの供給が制限される結果、二酸化炭素不足を生ずるので、大気以外から二酸化炭素を補給する手段が必要となる。コジェネジェネレーションの発電機駆動原動機の排ガス中に含まれる二酸化炭素ガス(一酸化炭素ガスを酸化反応させて二酸化炭素ガスとしたものも含む)の利用により、施設栽培区画内において不足する二酸化炭素の不足量補充が可能である。  Furthermore, in the section for facility cultivation, since the circulation with the atmosphere is restricted, the supply from the atmosphere of carbon dioxide gas consumed by the carbon dioxide assimilation of the cultivated plant is restricted, resulting in a shortage of carbon dioxide. A means to replenish carbon dioxide from outside the atmosphere is required. Insufficient carbon dioxide in the facility cultivation section due to the use of carbon dioxide gas (including carbon monoxide gas oxidized by carbon monoxide gas) contained in the exhaust gas of the cogeneration generator drive motor Volume replenishment is possible.

かかる問題に対処する技術として、「特許文献1」に開示されているようにボイラーの燃焼排ガス中の二酸化炭素ガスを浄化して栽培施設に供給する方法がある。また、「特許文献2」においては、バイオマス物質を生物学的方法により分解、ガス化し、ガス化過程で排出される炭酸ガスを栽培施設に供給するとともに、発生ガスにより燃料電池を運転して発生する電気出力と熱を栽培施設の照明や暖房等の必要エネルギーとして利用する技術が提案されている。  As a technique for dealing with such a problem, there is a method of purifying carbon dioxide gas in a combustion exhaust gas of a boiler and supplying it to a cultivation facility as disclosed in “Patent Document 1”. Further, in “Patent Document 2”, the biomass material is decomposed and gasified by a biological method, carbon dioxide discharged in the gasification process is supplied to the cultivation facility, and the fuel cell is operated by the generated gas. Techniques have been proposed for using electrical output and heat as required energy for cultivation facilities such as lighting and heating.

施設栽培は、前記したエネルギーコスト増加および大気からの二酸化炭素ガス供給量不足を補充する手段を必要とすることが問題点であるが、さらに栽培植物の残渣(以下、栽培植物を構成する部分のうち、そのままの形態では商用、食用等産業上の利用が困難な部分、例えば、規格外果実、葉、茎、根等の部分を残渣と呼ぶ)の処理も問題である。例えばトマト栽培を例にとると、利用できるトマト果実の重量と残渣の重量はほぼ同量である。現在のところ、これら残渣は焼却か、農地への鋤き込みにより処理しているが、環境への悪影響があるばかりでなく、鋤き込みに必要な農地の確保を必要とするので、本来農地単位面積当りの収穫量増大を目的の一つとする施設栽培において、残渣処理の用地を余分に必要とする矛盾が生じている。残渣処理の問題は、トマト以外の施設栽培植物、例えばきゅうり、なす等果実を目的とする施設栽培に共通する。  The problem is that the facility cultivation requires means for supplementing the above-mentioned increase in energy costs and the shortage of carbon dioxide gas supply from the atmosphere, but the residue of the cultivated plant (hereinafter referred to as part of the cultivated plant) Of these, processing of parts that are difficult to use in commercial and edible industries, for example, non-standard fruits, leaves, stems, roots, etc., is called a residue. For example, taking tomato cultivation as an example, the weight of available tomato fruit and the weight of the residue are approximately the same. At present, these residues are processed by incineration or plowing into farmland. Not only does this have a negative impact on the environment, but it is necessary to secure the farmland necessary for plowing. There is a contradiction that requires an extra site for residue treatment in the greenhouse cultivation, which aims to increase the yield per unit area. The problem of residue treatment is common to institutional cultivation aimed at fruits such as cucumbers and eggplants other than tomato plants.

さらに、施設栽培の残渣処理については、施設栽培における主要作物の残渣は多量の水分を含むこと、および収穫期の終わりから時間をおかず次期の栽培植物植え替えを行うために収穫後の残渣処理を一時に大量に行う必要性があることを考慮しなければならない。ちなみに典型的な施設栽培作物であるであるトマトの残渣は40%から80%程度の水分を含む。Furthermore, with regard to the residue treatment for in-house cultivation, the residue of the main crop in the in-house cultivation contains a large amount of moisture, and the after-harvest residue treatment is carried out in order to carry out the replanting of the next cultivation plant without taking time from the end of the harvest season You must take into account the need to do it in large quantities at once. By the way, the residue of tomato, which is a typical cultivated crop, contains about 40% to 80% moisture.

従来技術、例えば前記{特許文献1}は栽培施設にボイラーからの排気ガスを利用して二酸化炭素を供給する課題に答えてはいるが、ボイラー運転の燃料を必要とし、栽培に要するエネルギーコスト増加となるばかりでなく、前記した残渣処理には対応できない。  The prior art, for example, {Patent Document 1} has answered the problem of supplying carbon dioxide to the cultivation facility using the exhaust gas from the boiler, but requires boiler operation fuel and increases the energy cost required for cultivation. In addition, it cannot cope with the above-described residue treatment.

前記「特許文献2」はバイマスを生物学的方法によりガス化する技術に基づくものであって反応が遅いため、一時に大量に発生する残渣の処理にはガス化反応容器が巨大なものとなり、実用に適さない場合がある。  The above-mentioned “Patent Document 2” is based on a technique for gasifying a biomass by a biological method, and the reaction is slow. Therefore, a gasification reaction vessel becomes enormous for the treatment of residues generated in large quantities at one time. It may not be suitable for practical use.

本発明は、施設栽培から発生する残渣処理をするにあたり、それらを燃焼処理する場合の環境への悪影響や、土地への鋤き込み処理する場合の土地利用効率低下を防止し、他方において、それら残渣を施設栽培において必要とする電気的及び熱的エネルギー供給、並びに二酸化炭素補給に植物残渣を再利用するコジェネレーションシステムを実用化するうえでの問題点の解決を課題とするものである。  The present invention prevents the adverse effects on the environment when burning and treating the residue generated from the facility cultivation, and the land use efficiency decline when rubbed into the land. An object of the present invention is to solve problems in putting a cogeneration system that reuses plant residues into electrical and thermal energy supply and carbon dioxide replenishment that require residues in greenhouse cultivation.

請求項1に記載する発明は、前記した課題である、施設栽培において発生する大量で、かつ水分含有量の多い植物残渣を短時間に、小容量の設備によって分解処理し、再利用するために、水熱ガス化プロセスを採用し、該プロセスにより、植物残渣を分解して得られた可燃性ガスを利用してガスエンジンを駆動するコジェネレーションシステムを構成することを特徴とする。  The invention described in claim 1 is the above-described problem, in order to decompose and recycle a large amount of plant residue generated in facility cultivation with a high water content in a short time with a small-capacity facility. A hydrothermal gasification process is adopted, and a cogeneration system that drives a gas engine using a combustible gas obtained by decomposing plant residues by the process is configured.

「非特許文献1」第2部7章、125および126ページに記述されているように、水熱ガス化プロセスとは、高温、高圧下で水熱状態(水の臨界温度、臨界圧力にある水の状態であって、水が液体か気体か区別できない状態にあること。すなわち、温度647K以上及び圧力22.1MPa以上である状態)にある水の中でバイオマス(動植物に由来する有機物であってエネルギーとして利用できるもの。本発明においては施設栽培の残渣を言う)を熱分解して、可燃性ガスを生成する反応(水熱ガス化反応と言う)を行うプロセスである。水熱状態においては、水が反応性に富むので、反応が迅速であり、残渣中に含まれる水分も反応に寄与するので、水分含有の多い残渣の処理に当たって事前処理としての残渣の乾燥工程を必要としない。  As described in “Non-patent Document 1”, Part 2, Chapter 7, pages 125 and 126, hydrothermal gasification process is a hydrothermal state (high water temperature, critical temperature, critical pressure) at high temperature and high pressure. It is in a state of water that is indistinguishable between liquid and gas, that is, it is biomass (organic matter derived from animals and plants) in water at a temperature of 647 K or higher and a pressure of 22.1 MPa or higher. In the present invention, it is a process for thermally decomposing the residue of facility cultivation) and generating a combustible gas (referred to as hydrothermal gasification reaction). In the hydrothermal state, water is rich in reactivity, so the reaction is quick, and the moisture contained in the residue also contributes to the reaction.Therefore, the residue drying step as a pretreatment is performed in the treatment of the residue containing a lot of moisture. do not need.

前記水熱ガス化反応を行う水熱ガス化反応装置には細い管状の反応器が使用されること、及び反応を迅速に行わせるためにも、反応物質である残渣は砕片に砕かれ、残渣の含有水分と混合したスラリー状にする処理が必要であって、水熱ガス化反応装置の前段階設備として粉砕スラリー化装置を設置する。  In the hydrothermal gasification reaction apparatus for performing the hydrothermal gasification reaction, a thin tubular reactor is used, and in order to perform the reaction quickly, the residue as a reactant is broken into pieces and the residue It is necessary to make a slurry mixed with the contained water, and a pulverization slurrying apparatus is installed as a pre-stage facility of the hydrothermal gasification reaction apparatus.

前記水熱ガス化反応装置により水と可燃性ガスの混合物として得られた生成物は分離回収手段、例えば汽水分離装置により可燃性ガスと水に分離される。可燃性ガスは主としてメタンであり、ガスエンジン(可燃性ガスを燃料とする内燃機関及びガスタービンを含む)の燃料として使用され、それらエンジン又はタービンに接続された発電機を駆動し、電気エネルギーに変換される。  The product obtained as a mixture of water and combustible gas by the hydrothermal gasification reactor is separated into combustible gas and water by a separation and recovery means, for example, a brackish water separator. The combustible gas is mainly methane, which is used as a fuel for gas engines (including internal combustion engines and gas turbines that use combustible gas as fuel), drives a generator connected to the engine or turbine, and generates electric energy. Converted.

ガスエンジンの燃焼排気ガスは、熱交換器を通過し、冷媒(一般的には冷却水)に熱エネルギーを与えて冷却される。冷却後の排気ガスはさらに窒素酸化物等有害成分除去手段を経由して施設栽培の区画内へ放出され、施設内で育成される植物の炭酸同化作用によって希薄化した二酸化炭素ガスを補充する。  The combustion exhaust gas of a gas engine passes through a heat exchanger and is cooled by giving thermal energy to a refrigerant (generally cooling water). The exhaust gas after cooling is further discharged into a facility cultivation section through means for removing harmful components such as nitrogen oxides, and supplemented with carbon dioxide gas diluted by carbon dioxide assimilation of plants grown in the facility.

ガスエンジンのシリンダー等の冷却用冷媒(一般的には水)が得た熱エネルギーと、前記排ガスの熱交換器の冷媒が得た熱エネルギーは、栽培施設の温度調整、主として暖房用の熱エネルギーとして利用される。  The heat energy obtained by the cooling refrigerant (generally water) of the cylinder of the gas engine and the heat energy obtained by the refrigerant of the exhaust gas heat exchanger are adjusted for the temperature of the cultivation facility, mainly for heating. Used as

植物残渣発生時期が該作物植物の収穫終了時期に集中するので、残渣を再利用することが可能な期間が限定される。また残渣の発生量が変動し残渣のみでは必要電力、熱等が供給できない時期もある。また、前記水熱ガス化反応装置起動時に必要なエネルギーを外部から供給することも必要である。このような場合に都市ガス等の燃料ガスを外部から取り入れ、補給して該コジェネレーションシステムを運転できるようにする手段を設ける。  Since the plant residue generation time is concentrated at the harvest end time of the crop plant, the period during which the residue can be reused is limited. In addition, there are times when the amount of residue generated fluctuates and the required power, heat, etc. cannot be supplied only with the residue. In addition, it is necessary to supply the energy necessary for starting the hydrothermal gasification reactor from the outside. In such a case, there is provided means for taking in fuel gas such as city gas from the outside and supplying it so that the cogeneration system can be operated.

請求項2に係わる発明は、植物残渣を圧搾手段により水分を減少させた後、固形分をボイラーで燃焼させ、ボイラーが発生した蒸気を利用して蒸気タービンを運転して、それに結合された発電機を駆動して栽培施設に必要な電力を得るとともに、ボイラーの燃焼排気ガスを廃熱ガスの熱交換器へ導き冷却し、さらに窒素酸化物等有害成分をそれらの除去手段を経由して、栽培施設区画内に放出するよう構成したコジェネレーションシステムに関する発明である。  In the invention according to claim 2, after reducing moisture by pressing the plant residue, the solid content is burned in the boiler, the steam generated by the boiler is used to operate the steam turbine, and the power generation coupled thereto Drive the machine to obtain the necessary power for the cultivation facility, cool the boiler combustion exhaust gas to the waste heat gas heat exchanger, further cool the harmful components such as nitrogen oxides through their removal means, It is invention regarding the cogeneration system comprised so that it may discharge | release in a cultivation facility division.

前記ボイラー排気ガス冷却熱交換器の冷却水は栽培施設に対する暖房用温水として利用する。  The cooling water of the boiler exhaust gas cooling heat exchanger is used as warm water for heating the cultivation facility.

一時的にかつ大量に発生する高い水分含有率を有する施設栽培の植物残渣を小容量の設備によって短時間に可燃性ガスに転換することを可能とする水熱ガス化プロセスを適用し、該プロセスで転換生成したガスをガスエンジンにより構成したコジェネレーションシステムの燃料として再利用する。コジェネレーションシステムのガスエンジン廃熱及びガスエンジン駆動発電機の発生する電力を栽培施設維持用のエネルギー源として利用し、また、ガスエンジン排気ガスを栽培施設内の二酸化炭素補充による収量増加に利用する。前記したように構成した「請求項1」に係る発明は、施設栽培植物残渣の再利用による環境汚染の防止、エネルギー利用及び栽培植物収量増加を小規模な施設で、かつ残渣発生状況に適合して形態で可能とするものである。  Applying a hydrothermal gasification process that makes it possible to convert plant residue of a facility-cultivated plant with a high moisture content, which is generated temporarily and in large quantities, into a combustible gas in a short time with a small-capacity facility, The gas produced in step 1 is reused as fuel for a cogeneration system composed of a gas engine. Use the cogeneration system gas engine waste heat and the power generated by the gas engine driven generator as an energy source for maintaining the cultivation facility, and use the gas engine exhaust gas to increase the yield by supplementing carbon dioxide in the cultivation facility. . The invention according to claim 1 configured as described above is suitable for prevention of environmental pollution, reuse of energy, and increase in yield of cultivated plants in a small-scale facility and residue generation situation. This is possible in the form.

「請求項2」に係わる発明の効果は、水分含有率の高い植物残渣を事前処理の工程において圧搾し含有水分を減少させた後ボイラーで燃焼させ、発生蒸気を利用してタービン発電機を駆動して施設栽培の必要電力を供給し、該タービン復水器等の冷却水やボイラー排気ガス冷却熱交換器冷却水等を利用した栽培施設への熱エネルギーの供給を行うとともに、ボイラー排気ガスから取り出した二酸化炭素ガスを同施設内に供給するものであり、より簡単な設備構成により施設栽培における植物残渣の再利用のよる環境汚染防止、エネルギー利用、栽培植物収量増加を可能とする効果がある。  The effect of the invention relating to “Claim 2” is that the plant residue having a high water content is squeezed in the pre-treatment process to reduce the water content and then burned in the boiler, and the turbine generator is driven using the generated steam. Supply the necessary power for cultivation in the facility, supply heat energy to the cultivation facility using the cooling water of the turbine condenser, the boiler exhaust gas cooling heat exchanger cooling water, etc., and from the boiler exhaust gas The extracted carbon dioxide gas is supplied into the facility, and it has the effect of enabling environmental pollution prevention, energy utilization, and increased yield of cultivated plants by reusing plant residues in facility cultivation with a simpler equipment configuration. .

図1に「請求項1」に係わる実施形態を示す。図1において、施設栽培区画1はガラス、塩化ビニル又は他の適当な材料の壁、屋根材で外界と区画されている。栽培区画1内では植物が栽培され、収穫終了時には、それら植物の残渣2が施設区画1から外部へ搬出される。ホッパー3は排出残渣を一時的に保管する容器である。  FIG. 1 shows an embodiment related to “claim 1”. In FIG. 1, a facility cultivation section 1 is partitioned from the outside by walls, roofing materials of glass, vinyl chloride or other suitable materials. Plants are cultivated in the cultivation section 1, and at the end of harvesting, the residues 2 of these plants are carried out from the facility section 1 to the outside. The hopper 3 is a container for temporarily storing the discharge residue.

ホッパー3底部から貯蔵された残渣を切り出し、次の工程へ送るカッターフィーダー5により、残渣粉砕機6に送られる。粉砕された残渣は残渣に含有された水分と混合しスラリー状になり次の工程である加熱器7に送られる。加熱器7で所要温度に加熱された後、水熱ガス化反応器8において、水ガス混合状態になり、汽水分離器9において、ガスと水の分離が行われる。The residue stored from the bottom of the hopper 3 is cut out and sent to the residue crusher 6 by the cutter feeder 5 that is sent to the next step. The pulverized residue is mixed with moisture contained in the residue to form a slurry, and is sent to the heater 7 which is the next step. After being heated to the required temperature by the heater 7, the hydrothermal gasification reactor 8 is in a water gas mixed state, and the brackish water separator 9 separates gas and water.

汽水分離器9により分離されたガスは、ガス混合器10において、外部からの可燃性ガス供給ライン11から供給されるガス(例えば液化石油ガス、都市ガス等)と混合されてガスエンジン13に可燃性ガス燃料として供給される。
外部可燃性ガス供給ライン11は植物残渣量が栽培施設の所要エネルギー量に対して不足する場合に補充を行うほか、水熱ガス化プラント(前記植物残渣の状態から可燃性ガス生成、分離の工程を構成する機器の組み合わせ全体を水熱ガス化プラントと呼ぶ)起動に必要なエネルギーの供給も行う。
The gas separated by the brackish water separator 9 is mixed with gas (for example, liquefied petroleum gas, city gas, etc.) supplied from an external combustible gas supply line 11 in the gas mixer 10 and combusted in the gas engine 13. Supplied as sex gas fuel.
The external flammable gas supply line 11 is replenished when the amount of plant residue is insufficient with respect to the required energy amount of the cultivation facility, and a hydrothermal gasification plant (a process of generating and separating flammable gas from the state of the plant residue (The entire combination of equipment that constitutes the plant is called a hydrothermal gasification plant).

ガスエンジンとしてはメタンガスを燃料とする内燃機関13とする。ガスエンジン13からの排気ガスは、排気ガス冷却装置14に導かれて栽培施設内への注入に適した温度に冷却されると同時に、冷却装置14のガス冷却に使用される冷却水を栽培施設内に設置した放熱器15に導き、施設内温度の調整に使用する。排気ガス冷却装置を通過した排気ガスは、圧縮装置16によって適当な圧力に調整されていったん二酸化炭素ガス貯蔵タンク17に貯留される。タンク17には圧力調整手段18及び二酸化炭素ガスを栽培施設区画内に放出する手段19が接続される。該圧力調整手段は、栽培施設内に設置した二酸化炭素ガス濃度検出手段19による栽培施設1内の二酸化炭素ガス濃度計測値に従い、タンク17に貯留されたガスを栽培施設内1へ放出するガス量を調整する。なお、栽培施設に排気ガスを供給しない場合は、ガスエンジン13の排ガスは閉切り弁21を経由して直接排ガス管20から大気に放出される。The gas engine is an internal combustion engine 13 using methane gas as fuel. The exhaust gas from the gas engine 13 is guided to the exhaust gas cooling device 14 and cooled to a temperature suitable for injection into the cultivation facility, and at the same time, the cooling water used for gas cooling of the cooling device 14 is supplied to the cultivation facility. It is led to a heat radiator 15 installed inside and used to adjust the temperature in the facility. The exhaust gas that has passed through the exhaust gas cooling device is adjusted to an appropriate pressure by the compression device 16 and temporarily stored in the carbon dioxide gas storage tank 17. The tank 17 is connected with pressure adjusting means 18 and means 19 for releasing carbon dioxide gas into the cultivation facility section. The pressure adjusting means is configured to release the gas stored in the tank 17 to the cultivation facility 1 in accordance with the measured value of the carbon dioxide gas concentration in the cultivation facility 1 by the carbon dioxide gas concentration detection means 19 installed in the cultivation facility. Adjust. When exhaust gas is not supplied to the cultivation facility, the exhaust gas of the gas engine 13 is released directly from the exhaust gas pipe 20 to the atmosphere via the shut-off valve 21.

ガスエンジン13のシリンダー冷却用等の冷却水は冷却水熱交換器22とエンジン13の間を循環する。一方、冷却水熱交換器22内でエンジン冷却水の冷却を行なう冷媒は栽培施設1内に設置された放熱器15との間を循環し、冷却水熱交換器22から得たエンジン13の廃熱エネルギーを栽培施設温度保持に使用する。冷却水熱交換器22用の冷媒流量を調整して栽培施設内温度を調整する手段を設ける(特に図示しない)。Cooling water for cooling the cylinder of the gas engine 13 circulates between the cooling water heat exchanger 22 and the engine 13. On the other hand, the coolant that cools the engine coolant in the coolant heat exchanger 22 circulates between the radiator 15 installed in the cultivation facility 1, and the engine 13 obtained from the coolant heat exchanger 22 is discarded. Thermal energy is used to maintain the cultivation facility temperature. Means for adjusting the temperature in the cultivation facility by adjusting the refrigerant flow rate for the cooling water heat exchanger 22 is provided (not particularly shown).

図2は「請求項2」に記載した発明に対応する実施形態をしめす。図2においては、図1に示す「請求項1」に対応する実施形態との相違点のみを図示する。
図1の栽培施設1から搬送されホッパー3に投入された植物残渣2は、圧搾手段31により残渣2中の水分を取り除き、固形分に富んだ状態にする。圧搾工程により発生した水分は水処理手段32により浄化した後に廃棄される。
FIG. 2 shows an embodiment corresponding to the invention described in claim 2. In FIG. 2, only the differences from the embodiment corresponding to “Claim 1” shown in FIG. 1 are shown.
The plant residue 2 transported from the cultivation facility 1 of FIG. 1 and put into the hopper 3 is made rich in solid content by removing moisture in the residue 2 by the pressing means 31. The water generated by the pressing process is discarded after being purified by the water treatment means 32.

前記工程により固形物に富んだ状態になった残渣は、必要により残渣を燃焼させるボイラーの排ガス又は該ボイラーの発生蒸気で乾燥する手段を通過してボイラー33で燃焼する。ボイラー33は外部から供給する燃料ガス又は液体燃料用のバーナー34を有し、外部供給ガス又は液体燃料供給ライン35から供給した燃料をバーナー34で燃焼させることができる。本発明に係るコジェネレネーションプラントの初期起動時には外部燃料でボイラー33を起動し、その後植物残渣を投入するとともに、外部燃料の供給を調整する。植物残渣量不足のときにも、必要に応じて外部燃料によるボイラー33の運転を行う。The residue that is in a solid-rich state by the above process passes through the boiler exhaust gas for burning the residue or a means for drying with the generated steam of the boiler, if necessary, and burns in the boiler 33. The boiler 33 has a burner 34 for fuel gas or liquid fuel supplied from the outside, and the fuel supplied from the external supply gas or liquid fuel supply line 35 can be burned by the burner 34. At the initial start-up of the cogeneration plant according to the present invention, the boiler 33 is started with external fuel, and then plant residue is introduced and the supply of external fuel is adjusted. Even when the amount of plant residue is insufficient, the boiler 33 is operated with external fuel as necessary.

ボイラー33が発生させた蒸気は蒸気タービン36に供給されタービン発電機37を駆動して栽培設備に電気エネルギーを供給する。また蒸気タービン36の復水器38の冷却水は復水器冷却水熱交換器39との間を循環し、同熱交換器において復水器冷却水の熱エネルギーを前記0024項で記載したと同様に栽培設備内の温度調整に利用される。The steam generated by the boiler 33 is supplied to the steam turbine 36 to drive the turbine generator 37 to supply electric energy to the cultivation facility. The cooling water of the condenser 38 of the steam turbine 36 circulates between the condenser cooling water heat exchanger 39 and the heat energy of the condenser cooling water is described in the above item 0024 in the same heat exchanger. Similarly, it is used for temperature adjustment in cultivation facilities.

ボイラー33が発生する燃焼排ガスは、前記0023項で記載したと同様に、栽培設備への二酸化炭素補給及び温度調節に利用される。The combustion exhaust gas generated by the boiler 33 is used for carbon dioxide supply to the cultivation facility and temperature control, as described in the above item 0023.

図2において特に表示した以外は、「請求項2」に係わる発明の実施の形態を示す図は、図2と同様である。A diagram showing an embodiment of the invention according to claim 2 is the same as that shown in FIG.

図1は「請求項1」に記載した本発明の構成を示したブロック図である。
図2は「請求項2」に記載した本発明の構成を示すブロック図であって、図1と相違する点のみを示す。
FIG. 1 is a block diagram showing a configuration of the present invention described in “Claim 1”.
FIG. 2 is a block diagram showing the configuration of the present invention described in “Claim 2”, and shows only differences from FIG.

符号の説明Explanation of symbols

1−−−植物栽培施設
2−−−植物残渣
3−−−ホッパー
5−−−カッターフィーダー
6−−−残渣粉砕機
7−−−加熱器
8−−−水熱ガス化反応装置
9−−−汽水分離器
10−−−ガス混合器
11−−−外部可燃性ガス供給ライン
13−−−ガスエンジン
14−−−排気ガス冷却装置
15−−−放熱器
16−−−圧縮装置
17−−−二酸化炭素ガス貯蔵タンク
18−−−圧力調整手段
19−−−二酸化炭素ガス濃度検出手段
20−−−排ガス管
21−−−閉切り弁
22−−−冷却水熱交換器
31−−−圧搾手段
32−−−水処理手段
33−−−ボイラー
34−−−バーナー
35−−−外部燃料供給ライン
36−−−蒸気タービン
37−−−タービン発電機
38−−−復水器
39−−−復水器冷却水熱交
1 --- plant cultivation facility 2 --- plant residue 3 --- hopper 5 --- cutter feeder 6--residue crusher 7--heater 8 --- hydrothermal gasification reactor 9-- -Brackish water separator 10-Gas mixer 11-External combustible gas supply line 13-Gas engine 14-Exhaust gas cooling device 15-Radiator 16-Compression device 17- -Carbon dioxide gas storage tank 18-Pressure adjusting means 19-Carbon dioxide gas concentration detecting means 20-Exhaust gas pipe 21-Closing valve 22-Cooling water heat exchanger 31-Squeezing Means 32 --- Water treatment means 33--Boiler 34 --- Burner 35 --- External fuel supply line 36 --- Steam turbine 37 --- Turbine generator 38 --- Condenser 39 --- Condenser cooling water heat exchange

Claims (2)

コジェネレーションシステムであって、以下の通り構成されたもの。
(1)施設栽培植物残渣を粉砕してスラリー化後、水熱ガス化反応プロセスにより可燃性ガスを生成し、
(2)該生成した可燃性ガスを燃料としてガスエンジン発電装置を運転して電力を発生させるよう設備し、かつ
(3)該ガスエンジン冷却冷媒に排出された同エンジン廃熱を栽培施設の温度調整に利用する手段、該ガスエンジンの排気ガスを冷却浄化して栽培施設内への二酸化炭素補給を行う手段、または該ガスエンジンの排ガスとの熱交換により熱を得た冷媒を栽培施設の温度調整に利用する手段、のいずれかの手段、又は前記手段のうちの二つ又は三つの手段を組み合わせたものを備える。
A cogeneration system configured as follows.
(1) After pulverizing the facility-cultivated plant residue into a slurry, the combustible gas is generated by the hydrothermal gasification reaction process,
(2) The gas engine power generator is operated using the generated combustible gas as fuel to generate electric power, and (3) the engine waste heat discharged to the gas engine cooling refrigerant is used as the temperature of the cultivation facility. Means used for adjustment, means for cooling and purifying the exhaust gas of the gas engine to replenish carbon dioxide in the cultivation facility, or refrigerant obtained by heat exchange with the exhaust gas of the gas engine is used for the temperature of the cultivation facility Any of the means used for adjustment, or a combination of two or three of the means.
コジェネレーションシステムであって、以下の通り構成されたもの。
(1)施設栽培植物残渣を圧搾して得た固形分に富む残渣とした後、ボイラーで燃焼し蒸気を発生させ、
(2)該発生した蒸気により蒸気タービン発電設備を運転して電力を発生させるよう設備し、かつ、
(3)該ボイラーの燃焼排ガスを冷却浄化して栽培施設内への二酸化炭素補給を行う手段、蒸気タービン復水器冷却冷媒が得た熱エネルギーを栽培施設の温度調整に利用する手段、又はボイラー排ガス冷却冷媒が得た熱エネルギーを栽培施設の温度調整に利用する手段、のいずれかの手段、又は前記手段のうちの二つ又は三つの手段を組み合わせたものを備える。
A cogeneration system configured as follows.
(1) After making into a residue rich in solid content obtained by squeezing the facility-cultivated plant residue, it burns with a boiler to generate steam,
(2) The steam turbine power generation facility is operated by the generated steam to generate electric power, and
(3) Means for cooling and purifying the combustion exhaust gas of the boiler to replenish carbon dioxide in the cultivation facility, means for utilizing the thermal energy obtained by the steam turbine condenser cooling refrigerant for temperature adjustment of the cultivation facility, or boiler One of the means for using the heat energy obtained by the exhaust gas cooling refrigerant for temperature adjustment of the cultivation facility, or a combination of two or three of the means.
JP2004196136A 2004-06-04 2004-06-04 Greenhouse cultivation plant residue reuse cogeneration system Pending JP2005341953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196136A JP2005341953A (en) 2004-06-04 2004-06-04 Greenhouse cultivation plant residue reuse cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196136A JP2005341953A (en) 2004-06-04 2004-06-04 Greenhouse cultivation plant residue reuse cogeneration system

Publications (1)

Publication Number Publication Date
JP2005341953A true JP2005341953A (en) 2005-12-15

Family

ID=35494881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196136A Pending JP2005341953A (en) 2004-06-04 2004-06-04 Greenhouse cultivation plant residue reuse cogeneration system

Country Status (1)

Country Link
JP (1) JP2005341953A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070066763A (en) * 2005-12-22 2007-06-27 재단법인 포항산업과학연구원 Green hous heater
JP2008099569A (en) * 2006-10-17 2008-05-01 Toyota Turbine & System:Kk Greenhouse cultivation system
JP2010158616A (en) * 2009-01-07 2010-07-22 Mitsubishi Heavy Industries Environment & Chemical Engineering Co Ltd Sludge drying apparatus and sludge drying method
JP2010246397A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Method and apparatus for cultivating plant
JP2010246402A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Plant cultivation apparatus
JP2010246401A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Plant cultivation apparatus
KR101194168B1 (en) 2011-03-25 2012-10-24 주식회사 포스코 Heating method and heating plant for agricultural facility using biogas and regenerator
JP2013094155A (en) * 2011-11-04 2013-05-20 Mitsui Eng & Shipbuild Co Ltd Greenhouse cultivation method
CN103374416A (en) * 2012-04-27 2013-10-30 四川绿冶科技有限责任公司 Airtight and continuous high-purity water gas production method
WO2014010561A1 (en) * 2012-07-10 2014-01-16 株式会社デンソー Carbon dioxide supply device
WO2015190213A1 (en) * 2014-06-10 2015-12-17 フタバ産業株式会社 Carbon dioxide application device
JP2016052285A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery apparatus
JP2016052632A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery device
JP2016052634A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery device
JP2016052286A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery apparatus
JP2016052630A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery device
JP2016131921A (en) * 2015-01-19 2016-07-25 本田技研工業株式会社 Carbon dioxide recovery device
JP2019041641A (en) * 2017-08-31 2019-03-22 フタバ産業株式会社 Carbon dioxide application device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070066763A (en) * 2005-12-22 2007-06-27 재단법인 포항산업과학연구원 Green hous heater
JP2008099569A (en) * 2006-10-17 2008-05-01 Toyota Turbine & System:Kk Greenhouse cultivation system
JP2010158616A (en) * 2009-01-07 2010-07-22 Mitsubishi Heavy Industries Environment & Chemical Engineering Co Ltd Sludge drying apparatus and sludge drying method
JP2010246397A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Method and apparatus for cultivating plant
JP2010246402A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Plant cultivation apparatus
JP2010246401A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Plant cultivation apparatus
KR101194168B1 (en) 2011-03-25 2012-10-24 주식회사 포스코 Heating method and heating plant for agricultural facility using biogas and regenerator
JP2013094155A (en) * 2011-11-04 2013-05-20 Mitsui Eng & Shipbuild Co Ltd Greenhouse cultivation method
CN103374416A (en) * 2012-04-27 2013-10-30 四川绿冶科技有限责任公司 Airtight and continuous high-purity water gas production method
CN104427858A (en) * 2012-07-10 2015-03-18 株式会社电装 Carbon dioxide supply device
WO2014010561A1 (en) * 2012-07-10 2014-01-16 株式会社デンソー Carbon dioxide supply device
JPWO2014010561A1 (en) * 2012-07-10 2016-06-23 株式会社デンソー Carbon dioxide supply device
WO2015190213A1 (en) * 2014-06-10 2015-12-17 フタバ産業株式会社 Carbon dioxide application device
JP2016052285A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery apparatus
JP2016052632A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery device
JP2016052634A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery device
JP2016052286A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery apparatus
JP2016052630A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery device
JP2016131921A (en) * 2015-01-19 2016-07-25 本田技研工業株式会社 Carbon dioxide recovery device
JP2019041641A (en) * 2017-08-31 2019-03-22 フタバ産業株式会社 Carbon dioxide application device

Similar Documents

Publication Publication Date Title
JP2005341953A (en) Greenhouse cultivation plant residue reuse cogeneration system
CA2730962C (en) Environmentally friendly methods and systems of energy production
US3628332A (en) Nonpolluting constant output electric power plant
US7143572B2 (en) Gas turbine system comprising closed system of fuel and combustion gas using underground coal layer
US8017366B1 (en) Self-contained biofuel production and water processing apparatus
EP1865249B1 (en) A gas pressure reducer, and an energy generation and management system including a gas pressure reducer
US20110127778A1 (en) Method and apparatus for extracting energy from biomass
WO2009104820A1 (en) Solar thermal energy storage method
RU2562112C2 (en) Device for thermochemical harmonisation and gasification of wet biomass and its application
JPS5947137B2 (en) Method of generating electricity from carbon-based or hydrocarbon-based fuels
KR20110137345A (en) Method and system for reclamation of biomass and block heating plant
EP2914904B1 (en) Structural configuration and method for environmentally safe waste and biomass processing to increase the efficiency of energy and heat generation
WO2009104813A1 (en) Method of converting solar heat energy
US8820080B2 (en) Nonfractionalized biomass-fueled refrigerant-based cogeneration
JP6777441B2 (en) Power generation system
KR20150005855A (en) Active carbon production system
CN107829825A (en) The gas turbine engine systems of coproduction water and the method for gas turbine coproduction water
TW201335078A (en) Method and device of refining biodiesel from cultivated microalgae based on power generated by biogas
JP2007245124A (en) Treatment apparatus of organic material and treatment method of organic material
DK2486169T3 (en) System for clean energy
KR20110131183A (en) Self-generated power integration for gasification
JP6651826B2 (en) Hydrogen utilization system and method
JP2005288320A (en) Method and apparatus for energy recovery of high moisture biomass
KR101543168B1 (en) Convergence power generation system using coal gasfication and fuel cell
GB2453384A (en) Energy generation from biomass