JP2005288320A - Method and apparatus for energy recovery of high moisture biomass - Google Patents

Method and apparatus for energy recovery of high moisture biomass Download PDF

Info

Publication number
JP2005288320A
JP2005288320A JP2004107110A JP2004107110A JP2005288320A JP 2005288320 A JP2005288320 A JP 2005288320A JP 2004107110 A JP2004107110 A JP 2004107110A JP 2004107110 A JP2004107110 A JP 2004107110A JP 2005288320 A JP2005288320 A JP 2005288320A
Authority
JP
Japan
Prior art keywords
biomass
water content
fuel
energy
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004107110A
Other languages
Japanese (ja)
Other versions
JP4385375B2 (en
Inventor
Toshiyuki Hino
俊之 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2004107110A priority Critical patent/JP4385375B2/en
Publication of JP2005288320A publication Critical patent/JP2005288320A/en
Application granted granted Critical
Publication of JP4385375B2 publication Critical patent/JP4385375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for energy recovery of high moisture biomass having a quick processing speed. <P>SOLUTION: The high moisture biomass 1 is allowed to enter an airtight adiabatic vessel 11 and moisture of the biomass 1 is continuously vaporized and sucked from the inside of the vessel 11 by a water vapor compressor 12. The vaporized moisture is adiabatically compressed by the compressor 12, thereby, pressure and temperature of the vaporized moisture is elevated and the pressure-elevated steam is allowed to pass through a steam condenser 13 that is thermally connected to the inside of the vessel 11. Heat exchange is performed between the pressure-elevated steam and the biomass 1 and the moisture in the vessel 11 is vaporized. At the same time, the pressure-elevated steam releases condensation latent heat by itself, turns to distilled water 4 and is discharged from the condenser 13. Thus, the biomass 1 is separated into a low moisture biomass fuel 33 and distilled water 4. The biomass fuel 33 is taken out of the vessel 11 and is transduced into motive power (energy) 6 by a power generator 5 and meanwhile, the distilled water 4 is used as water for the power generator 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は高含水バイオマスのエネルギー回収方法及び装置に関し、とくに高含水バイオマスをバイオマス燃料と蒸留水とに分けた上でその燃料と蒸留水とによりエネルギーを回収する方法及び装置に関する。   The present invention relates to a method and an apparatus for recovering energy of a high water content biomass, and more particularly to a method and a device for recovering energy from the fuel and distilled water after dividing the high water content biomass into biomass fuel and distilled water.

バイオマスは光合成により太陽エネルギーを蓄えた生物体を構成する有機物であり、その形態は薪等の固形燃料から生ごみ、下水汚泥等の流動性廃棄物に至るまで多様であり、その種類も動物性・植物性等多岐にわたる。地球上における現在のバイオマス存在量は約2兆トンとされ、石油・石炭の埋蔵量に匹敵すると考えられており、更に毎年約2千億トンが光合成により再生産されている。   Biomass is an organic substance that composes organisms that store solar energy through photosynthesis, and its form varies from solid fuels such as firewood to garbage and fluid waste such as sewage sludge.・ Various types such as plants. The present biomass abundance on the earth is about 2 trillion tons, which is considered to be comparable to the reserves of oil and coal, and about 200 billion tons are regenerated every year by photosynthesis.

わが国におけるバイオマスの利用量は、石油や石炭といった化石燃料に比べると圧倒的に少ない。しかし、化石燃料の有限性が認識されるにつれ、その代替エネルギーとしての重要性に注目が集まっている。またバイオマスは、たとえ燃焼により二酸化炭素(C02)を一旦大気中に放散させても、同量のバイオマスを再生産すれば、再生産バイオマスが同量の大気中C02を吸収・固定するため大気のカーボン汚染を生じないという特質(カーボン・ニュートラル特質)を持つ。このためバイオマスは、地球温暖化対策において大気のカーボン汚染が生じない重要なエネルギー源として位置付けられている。従来のバイオマスからエネルギーを取り出す技術は、研究開発段階のものを含めると、以下の(a)〜(c)のように整理することができる。 The amount of biomass used in Japan is far less than fossil fuels such as oil and coal. However, as the finite nature of fossil fuels is recognized, attention is focused on its importance as an alternative energy. In addition, even if carbon dioxide (C0 2 ) is once released into the atmosphere by combustion, if the same amount of biomass is regenerated, the regenerated biomass absorbs and fixes the same amount of C0 2 in the atmosphere. It has the characteristic of not causing atmospheric carbon contamination (carbon neutral characteristic). For this reason, biomass is positioned as an important energy source that does not cause atmospheric carbon contamination in global warming countermeasures. Conventional technologies for extracting energy from biomass can be arranged as shown in the following (a) to (c) including those in the research and development stage.

(a)直接燃焼
例えばボイラーで直接バイオマスを燃焼して水蒸気を発生させ、蒸気タービンと発電機とを駆動して発電する方法である。直接燃焼によるエネルギー回収の一例を示す非特許文献1は、図9に示すように、製材屑40aやバークヤード(樹皮)40b等のバイオマスをボイラー41で直接に燃焼し、蒸気タービン42を介して出力5.7MWの発電機37を駆動し、工場内乾燥設備43、空冷復水器44、給水塔45、ボイラー41への給水加熱器46、純水装置52等が付属した発電設備を開示している。但しこの発電設備は、暖房燃料の多様性確保のために設けたバイオマス(製材屑40a・樹皮40b等)を利用するものであり、発電コスト抑制のため出力増大を図るには燃料集荷上の困難があるとされる。
(A) Direct combustion In this method, for example, biomass is directly burned in a boiler to generate water vapor, and a steam turbine and a generator are driven to generate power. As shown in FIG. 9, Non-Patent Document 1 showing an example of energy recovery by direct combustion directly burns biomass such as sawdust 40a and barkyard (bark) 40b in a boiler 41, and passes through a steam turbine 42. Disclose power generation equipment that drives a generator 37 with an output of 5.7 MW and includes a factory drying equipment 43, an air-cooled condenser 44, a water tower 45, a feed water heater 46 to the boiler 41, a pure water device 52, etc. Yes. However, this power generation facility uses biomass (sawdust 40a, bark 40b, etc.) provided to ensure the diversity of heating fuel, and it is difficult to collect fuel to increase output to reduce power generation costs. It is said that there is.

(b)熱化学的転換
固形のバイオマスを熱分解や超臨界水熱分解によりガス燃料化、液体燃料化、バイオディーゼル燃料化して利用する方法である。バイオマスの熱化学的転換時におけるダイオキシンの発生量は少なく、ガス化や液化により発電方式の選択の幅が広がり、蒸気タービン駆動発電以外にガスエンジン、ディーゼルエンジン、ガスタービン、スターリングエンジン、燃料電池等が使用可能になる。非特許文献2は、図10に示すように、バイオマスの熱化学的転換の一例である廃棄物熱分解ガス化用STAR-MEETシステムを開示する。図示例では、廃棄物40cを熱分解ガス化・改質装置30の熱分解ガス化炉38に投入し、比較的低い温度で熱分解によりガス化する。
(B) Thermochemical conversion In this method, solid biomass is converted into gas fuel, liquid fuel, or biodiesel fuel by thermal decomposition or supercritical hydrothermal decomposition. The amount of dioxins generated during thermochemical conversion of biomass is small, and the choice of power generation methods is expanded by gasification and liquefaction. In addition to steam turbine drive power generation, gas engines, diesel engines, gas turbines, Stirling engines, fuel cells, etc. Becomes available. Non-Patent Document 2, as shown in FIG. 10, discloses a STAR-MEET system for waste pyrolysis gasification, which is an example of thermochemical conversion of biomass. In the illustrated example, the waste 40c is charged into the pyrolysis gasification furnace 38 of the pyrolysis gasification / reformer 30 and gasified by pyrolysis at a relatively low temperature.

図10の方法では、熱分解ガス中にCO(一酸化炭素)やH2(水素)等の可燃性ガスに加えてタール分や煤等の可燃分が含まれており、タール分は冷却すると凝固するため、熱分解ガスをそのまま冷却・洗浄することは困難である。そこで熱分解ガスを改質器39へ導き水蒸気と反応させることにより、以下の反応によってタール分や煤等をCOとH2とへ改質する。しかし、これらの反応には800℃程度以上の高温が必要であり、100℃の水蒸気の注入のみでは改質反応を起こせない。そこで高温水蒸気/空気加熱器48から水蒸気と酸素又は空気との混合気体を改質器39へ送り、これらの発熱反応の改質に必要な熱エネルギーを供給する。 In the method of FIG. 10, the pyrolysis gas contains flammable gases such as CO (carbon monoxide) and H 2 (hydrogen) in addition to flammable components such as tar and soot. Since it solidifies, it is difficult to cool and clean the pyrolysis gas as it is. Therefore, by introducing the pyrolysis gas to the reformer 39 and reacting with water vapor, tar and soot are reformed to CO and H 2 by the following reaction. However, these reactions require a high temperature of about 800 ° C. or higher, and a reforming reaction cannot be caused only by injection of water vapor at 100 ° C. Therefore, a mixed gas of water vapor and oxygen or air is sent from the high-temperature steam / air heater 48 to the reformer 39, and heat energy necessary for reforming these exothermic reactions is supplied.

C+CO2→2CO …………………………………………………………………(1)
C+H2O→CO+H2 ………………………………………………………………(2)
CnHm+nH2O→nCO+(n+m/2)H2 ……………………………………………(3)
C+O2→CO2 ……………………………………………………………………(4)
C+(1/2)O2→CO ……………………………………………………………(5)
C + CO 2 → 2CO ………………………………………………………………… (1)
C + H 2 O → CO + H 2 ……………………………………………………………… (2)
C n H m + nH 2 O → nCO + (n + m / 2) H 2 …………………………………………… (3)
C + O 2 → CO 2 …………………………………………………………………… (4)
C + (1/2) O 2 → CO …………………………………………………………… (5)

図10において改質ガスは、廃熱回収ボイラー49を経て一旦冷却の後、ガス洗浄器50でイオウ、塩素、煤塵、重金属等の環境汚染物質を除去し、精製燃料ガス51とする。この燃料ガス51は、工業炉やボイラーあるいは内燃機関(熱機関)53(ディーゼルエンジン、ガスエンジン、ガスタービン等)を含むプロセス加熱や発電等の様々な用途に利用できる。廃熱回収ボイラー49で生成される水蒸気は、高温水蒸気/空気加熱器48へ送られ、空気と混ぜて1,000℃に加熱して改質反応に使用するほか、廃棄物の予備乾燥等にも使用できる。   In FIG. 10, the reformed gas is once cooled through a waste heat recovery boiler 49, and then environmental pollutants such as sulfur, chlorine, dust, and heavy metals are removed by a gas scrubber 50 to obtain a refined fuel gas 51. The fuel gas 51 can be used for various purposes such as process heating and power generation including industrial furnaces, boilers, or internal combustion engines (heat engines) 53 (diesel engines, gas engines, gas turbines, etc.). The steam generated in the waste heat recovery boiler 49 is sent to a high-temperature steam / air heater 48, mixed with air and heated to 1,000 ° C for reforming reaction, and also used for pre-drying waste. it can.

(c)生物化学的転換
例えば、メタン発酵、エタノール発酵又は水素発酵によりバイオマスをガス燃料化する方法であり、熱化学的転換と同様な効果が得られる。生物化学的転換によるエネルギー回収の一例を示す特許文献1のメタン発酵システムは、生ごみを粒状体に切断の上スラリーとし、この生ごみ粒状体を更に微粉砕機により粉砕する。その微粉砕機からのスラリーの取入口と消化液の流出口と加熱器とを有し且つ内部に嫌気性微生物を保有する嫌気処理槽を設け、微粉砕生ごみをその処理槽により嫌気処理する。また、嫌気処理槽内の上部空間と加熱器とに連通するガスホルダーを設け、微生物による生ごみスラリー分解反応で生じるメタンガス又は他の可燃ガスを収集し、これら可燃ガスを発電手段により電力に変換する。このシステムは、嫌気処理槽の生ごみ分解効率を前記微粉砕で向上させると共に発電手段の出力を高効率燃料電池等の使用により増大させることにより、システム内の所要駆動力、即ち生ごみ粒状体の破砕機の駆動力、及び前記スラリー・消化液・生成ガス等の移送動力を前記発電手段の出力で賄うことができる。更に、余剰電力を外部へ供給する可能性も見込まれる。
(C) Biochemical conversion For example, it is a method of converting biomass into gas fuel by methane fermentation, ethanol fermentation or hydrogen fermentation, and the same effect as thermochemical conversion is obtained. In the methane fermentation system of Patent Document 1 showing an example of energy recovery by biochemical conversion, raw garbage is cut into granules and made into a slurry, which is further pulverized by a pulverizer. An anaerobic treatment tank having an inlet for slurry from the fine pulverizer, an outlet for digestive juice, and a heater and having anaerobic microorganisms inside is provided, and the pulverized raw garbage is anaerobically treated by the treatment tank. . In addition, a gas holder that communicates with the upper space in the anaerobic treatment tank and the heater is installed to collect methane gas or other combustible gas generated by the garbage slurry decomposition reaction by microorganisms, and convert the combustible gas into electric power by power generation means. To do. This system improves the garbage decomposition efficiency of the anaerobic treatment tank by the fine pulverization and increases the output of the power generation means by using a high-efficiency fuel cell, etc. The driving force of the crusher and the transfer power of the slurry, digestive fluid, product gas, etc. can be covered by the output of the power generation means. Furthermore, there is a possibility of supplying surplus power to the outside.

以上説明したバイオマスエネルギー回収技術の適用に当り、回収対象バイオマスの水分含有量に留意する必要がある。即ちバイオマスには、木質系に代表される水分が少なく乾燥物に近いもの(以下、低含水バイオマスと呼ぶ。)と、生ごみ・下水汚泥・家畜糞尿等の水分を多量に含むバイオマス(以下、高含水バイオマスと呼ぶ。)とがある。低含水と高含水との区分は明確ではないが、燃焼に対する適不適の観点から、一応の目安として、含水率(水分質量の全バイオマス質量(水分質量+乾燥質量)に対する比)が約30%未満のものを低含水、30〜40%以上のものを高含水として取り扱うことができる。   In applying the biomass energy recovery technology described above, it is necessary to pay attention to the moisture content of the recovery target biomass. In other words, the biomass is low in moisture, typically woody, and close to dry matter (hereinafter referred to as low-moisture biomass), and biomass that contains a large amount of moisture such as food waste, sewage sludge, and livestock manure (hereinafter referred to as “biomass”). Called high-moisture biomass). The classification of low water content and high water content is not clear, but from the viewpoint of suitability for combustion, as a guideline, the water content (ratio of water mass to total biomass mass (water mass + dry mass)) is about 30%. Less than can be handled as low water content, and 30 to 40% or more can be handled as high water content.

低含水バイオマスは、従来の直接燃焼による蒸気タービン発電のほか、基本的に熱化学的転換及び生物化学的転換の何れにも適宜に利用できる。これに対して高含水バイオマスに対する主な適用技術は、現在のところメタン発酵等の生物化学的転換のみである。超臨界水熱分解は高含水バイオマスのこの限界の打破を目的とするが、未だ基礎研究段階にある。要するに現状では、図11に示すように低含水バイオマス3では燃焼(ボイラー)41を介する蒸気タービン駆動の発電・熱利用55、高含水バイオマス1ではメタン発酵(装置)36を介するバイオガス駆動の発電・熱利用56が代表的技術であり、低含水バイオマス3と高含水バイオマス1とで全く別のエネルギー転換方式となっている。このため、単一の設備で含水率の大小に拘わらず広範囲に亘る各種バイオマスを処理することは困難であり、バイオマスエネルギー利用の普及上の障害になっている。   Low water-containing biomass can be used as appropriate for both thermochemical conversion and biochemical conversion in addition to conventional steam turbine power generation by direct combustion. On the other hand, the main application technology for high water content biomass is currently only biochemical conversion such as methane fermentation. Supercritical hydrothermal decomposition aims to overcome this limitation of high water content biomass, but is still in the basic research stage. In short, as shown in FIG. 11, in the low water content biomass 3, the steam turbine driven power generation / heat utilization 55 through the combustion (boiler) 41, and in the high water content biomass 1, the biogas driven power generation through the methane fermentation (device) 36. -Heat utilization 56 is a typical technology, and the low water content biomass 3 and the high water content biomass 1 are completely different energy conversion methods. For this reason, it is difficult to treat various types of biomass over a wide range regardless of the water content, using a single facility, which is an obstacle to the widespread use of biomass energy.

渡邊裕「森林・木質系バイオマスによる発電・熱供給事業の採算性と今後の市場展望」バイオマスエネルギーの特性とエネルギー変換・利用技術(第5講)、株式会社技術情報センター、2002年4月30日発行、p157Hiroshi Watanabe “Profitability of Power Generation / Heat Supply Business Using Forest / Wooden Biomass and Future Market Outlook” Characteristics of Biomass Energy and Energy Conversion and Utilization Technology (Lecture 5), Technical Information Center, Inc., April 30, 2002 Issued daily, p157 吉川邦夫「マイクロガスタービンによる高効率廃棄物発電の可能性」マイクロガスタービンの開発動向と将来展望(第3講)、株式会社技術情報センター、2001年1月31日発行、p64Kunio Yoshikawa “Possibility of high-efficiency waste power generation using micro gas turbines” Development trend and future prospects of micro gas turbines (Lecture 3), Technical Information Center, Inc., January 31, 2001, p64 日野俊之「水蒸気ヒートポンプによる省エネルギー蒸発脱水技術」、第17回エネルギーシステム・経済・環境コンファレンス講演論文集、2001年1月25〜26日、691-696頁Toshiyuki Hino “Energy Saving Evaporative Dehydration Technology Using Steam Heat Pump”, Proc. 17th Energy System / Economic / Environmental Conference, Jan. 25-26, 2001, pp. 691-696 特許第3159300号公報Japanese Patent No. 3159300 特許第3147142号公報Japanese Patent No. 3147142 特開平11−257622号公報JP-A-11-257622 特開2001−116457号公報JP 2001-116457 A

しかし、従来の高含水バイオマスのメタン発酵によるエネルギー転換には、処理速度が遅い問題点がある。メタン発酵に要する発酵槽内の平均滞留時間は中温法(30〜37℃)では20〜30日、高温法(50〜57℃)でも7日以上必要である(特許文献1、段落0014参照)。例えば毎日出される生ごみをこの速度で処理するためには、大きな反応容器(嫌気処理槽)が必要になり、設備費が嵩む。   However, the conventional energy conversion by methane fermentation of high water content biomass has a problem that the processing speed is slow. The average residence time in the fermenter required for methane fermentation is 20 to 30 days for the medium temperature method (30 to 37 ° C), and 7 days or more for the high temperature method (50 to 57 ° C) (see Patent Document 1, paragraph 0014). . For example, in order to process daily garbage at this speed, a large reaction container (anaerobic treatment tank) is required, which increases equipment costs.

また高含水バイオマスのメタン発酵には、メタンヘのエネルギー転換率がバイオマスの種類により相異し、生ごみ等では高いが、家畜糞尿や繊維質等では低く、油脂はこの種の転換に適しない等の問題点もある。高含水バイオマスとして扱われる各種バイオマス全体では、平均エネルギー転換率が現在利用可能な技術で約50%程度とされており、回収エネルギーのコストに係わるエネルギー転換率に関してはなお改善の余地があるといわざるを得ない。更に、ポンプ類や加温装置等付帯設備のエネルギー消費量が多い、発酵排液(消化液)と残さ(消化汚泥)との処理が必要である等の問題点もある。   In addition, for methane fermentation of high water content biomass, the energy conversion rate to methane varies depending on the type of biomass, and it is high for garbage etc., but low for livestock manure and fiber, etc., and fats and oils are not suitable for this type of conversion. There are also problems. The average energy conversion rate for all types of biomass treated as high water content biomass is about 50% with currently available technologies, and there is still room for improvement in terms of energy conversion rate related to the cost of recovered energy. I must. In addition, there are problems such as a large amount of energy consumption of incidental facilities such as pumps and heating devices, and treatment of fermentation effluent (digested liquid) and residue (digested sludge).

こうした問題の幾つかは研究開発による改善が期待できるが、生物化学的な処理には本来的に反応速度の限界がある。メタン発酵への適合性について、バイオマスが木質であるか又は生ごみその他の非木質であるか等の組成に応じて異なるので、予め適不適を判断し分別する必要もある。更に従来技術では図11に示すように、エネルギー回収対象バイオマスが有する含水量の多寡によって、高含水バイオマス1の場合にはメタン発酵36利用のエネルギー転換方式とし、低含水バイオマス3の場合にはメタン発酵36以外の全く別な方式とする二本立てになっており、設備も二系統が必要とされる問題点がある。   Some of these problems can be expected to be improved by research and development, but biochemical treatment inherently has reaction rate limitations. The suitability for methane fermentation varies depending on the composition of whether the biomass is woody or garbage or other non-woody material, so it is also necessary to determine appropriateness and classify in advance. Furthermore, in the prior art, as shown in FIG. 11, depending on the water content of the energy recovery target biomass, an energy conversion method using methane fermentation 36 is used in the case of the high water content biomass 1, and methane is used in the case of the low water content biomass 3. There is a problem that two systems are required because the two-system system is used as a completely different system other than fermentation 36.

従って本発明の目的は、処理速度が速い高含水バイオマスのエネルギー回収方法及び装置を提供することにある。   Accordingly, an object of the present invention is to provide a method and an apparatus for recovering energy of high water content biomass having a high processing speed.

本発明者は、高含水バイオマス1の脱水処理の省エネルギー化と高速化とに注目した。高含水バイオマス1を短時間で効率良く脱水して低含水バイオマス3とすることができれば、低含水バイオマス3の比較的速いエネルギー回収を、高含水バイオマス1のエネルギー回収と統合して利用し易くできるはずである。   The inventor paid attention to energy saving and speeding up of the dehydration treatment of the high water content biomass 1. If the high water content biomass 1 can be efficiently dehydrated in a short time to make the low water content biomass 3, the relatively fast energy recovery of the low water content biomass 3 can be integrated with the energy recovery of the high water content biomass 1 and can be easily used. It should be.

特許文献2は、高含水バイオマス1から効率良く高速脱水する水蒸気ヒートポンプ脱水(Steam Heat Pump Dehydration、SHPD)技術の動作原理を開示する。また非特許文献3は、水蒸気ヒートポンプ脱水(以下、SHPD乾燥ということがある。)装置を用い、焼酎粕の無水材料成分に対し約9倍の水分を含む501.95kgの試料に約6時間の脱水処理を施し、その水分を無水材料の約13%(0.13倍)まで低下させた実験結果を記載する。この脱水により蒸発させた水蒸気量は445.1kgであり、その水蒸気量の蒸発熱1.0235GJ(284.3kWh)と蒸発に要した水蒸気ヒートポンプの圧縮機電力39.3kWhとから成績係数COP(Coefficient of Performance)を7.23と算出している。このことは焼酎粕の脱水を、水分の蒸発潜熱に相当する熱量の供給ではなく、ヒートポンプを用いその蒸発潜熱の約1/7に相当する圧縮機仕事によって達成できることを意味する。即ち、SHPD乾燥によれば高含水バイオマス1を迅速にしかも効率良く脱水することができる。   Patent Document 2 discloses the operating principle of a steam heat pump dehydration (SHPD) technique that efficiently and rapidly dehydrates the high water content biomass 1. Non-Patent Document 3 uses a steam heat pump dehydration (hereinafter sometimes referred to as SHPD drying) device to dehydrate the sample of 501.95 kg containing about 9 times the moisture of the anhydrous material component of shochu for about 6 hours. Describes the experimental results of treatment and reducing its moisture to about 13% (0.13 times) the anhydrous material. The amount of water vapor evaporated by this dehydration is 445.1 kg. The coefficient of performance (COP) is calculated from the heat of vaporization 1.0235GJ (284.3kWh) of the water vapor amount and the compressor power 39.3kWh of the water vapor heat pump required for evaporation. Calculated as 7.23. This means that the dehydration of the shochu can be achieved not by supplying the amount of heat corresponding to the latent heat of vaporization of water but by the compressor work corresponding to about 1/7 of the latent heat of vaporization using a heat pump. That is, according to SHPD drying, the high water content biomass 1 can be dehydrated quickly and efficiently.

例えば特許文献1のメタン発酵は、生ごみの高含水バイオマスを燃料電池用の燃料ガスへ変換するのに7日以上の発酵槽滞留時間を要したことを記載する。高含水バイオマスから燃料ガスへの変換時間の長さと高含水バイオマスの脱水時間の長さとを直接に比較することには無理があるが、本発明者はSHPD乾燥装置の乾燥速度に注目した。迅速に乾燥できれば乾燥設備の大型化を防ぎ、ひいてはバイオマスからのエネルギー回収コストの抑制が期待できる。   For example, the methane fermentation of Patent Document 1 describes that a fermenter residence time of 7 days or longer was required to convert the high water content biomass of garbage into fuel gas for fuel cells. Although it is unreasonable to directly compare the length of conversion time from high water content biomass to fuel gas and the length of dehydration time of high water content biomass, the present inventor paid attention to the drying speed of the SHPD drying device. If it can be dried quickly, it is possible to prevent an increase in the size of the drying equipment, and thus to reduce the cost of recovering energy from biomass.

更に本発明者は、SHPD乾燥装置から吐出される凝縮水が実質的に蒸留水であり、ミネラル分を含まないため、工業的な有用性が高い点に注目した。従来のバイオマスエネルギー回収手法は、確かに生物体由来のバイオマス構成有機物からエネルギーを抽出するものの、バイオマスに含まれる水分はエネルギー抽出過程で種々の処理を受け、再利用について検討することなく環境に散逸されるか又は排水処理の対象とされている。例えば特許文献3は水分含有率の高い廃棄物を乾燥して水分含有率を低くしてから熱分解炉へ供給して処理する方法を開示するが、やはり廃棄物に含まれる水を乾燥時に環境に散逸させている。他方、発電その他のエネルギー発生過程は高純度の水を必要とする例が多い。例えば非特許文献1及び2に記載のバイオマス利用発電設備及び熱分解ガス化設備は、ボイラー用水や改質反応物質として蒸留水程度の純水を必要とする。   Furthermore, the present inventor paid attention to the fact that the condensed water discharged from the SHPD drying apparatus is substantially distilled water and does not contain a mineral component, so that it has high industrial usefulness. Although conventional biomass energy recovery methods certainly extract energy from organism-derived biomass-constituting organic matter, the moisture contained in the biomass is subject to various treatments during the energy extraction process and is dissipated into the environment without considering reuse. Or are subject to wastewater treatment. For example, Patent Document 3 discloses a method of drying a waste material having a high water content to lower the water content and then supplying the waste to a pyrolysis furnace. Is dissipated. On the other hand, there are many examples of power generation and other energy generation processes that require high-purity water. For example, the biomass power generation facility and the pyrolysis gasification facility described in Non-Patent Documents 1 and 2 require water for boilers or pure water such as distilled water as a reforming reaction material.

SHPD乾燥装置の凝縮水は、高含水バイオマスの水分を一旦気化の後、凝縮させたものであって高温であり且つミネラル分を含まない蒸留水である。通常の水は、カルシウムイオンやマグネシウムイオン等のミネラル分を含んでいる。そのため、通常の水をボイラー用水に使うと、水蒸気の発生によりミネラル分が濃縮してボイラー内面にスケール(缶石)を生成し、熱伝達を阻害し、場合によってはボイラーの損傷に至ることがある。これを防ぐために、逆浸透膜やイオン交換樹脂等を用いた純水製造装置が使われる。SHPD乾燥装置から得られる蒸留水を用いれば、こうした純水製造装置を不要にし、もしくはその運転コストを大幅に下げることができる。この蒸留水を発電設備又は熱分解ガス化設備での用水として使うことは、これらの設備において純水装置で製造したり、別途調達していた蒸留水程度の純水をSHPD乾燥装置の生成物で置き換えることを意味し、運転コストの削減など資源・経済上重要な意味を有する。   The condensed water of the SHPD drying apparatus is distilled water which is obtained by condensing the moisture of the high water-containing biomass once after evaporation, and is high in temperature and free of minerals. Ordinary water contains minerals such as calcium ions and magnesium ions. For this reason, when normal water is used for boiler water, minerals are concentrated due to the generation of water vapor, generating scales (scale stones) on the inner surface of the boiler, impeding heat transfer, and in some cases may result in damage to the boiler. is there. In order to prevent this, a pure water production apparatus using a reverse osmosis membrane or an ion exchange resin is used. If distilled water obtained from the SHPD drying apparatus is used, such a pure water production apparatus can be dispensed with or its operating cost can be greatly reduced. The use of this distilled water as water for power generation facilities or pyrolysis gasification facilities means that these facilities produce pure water equivalent to distilled water that is produced by pure water equipment or products of SHPD drying equipment. It means to replace with, and has important resources and economic significance such as reduction of operation cost.

なお、高含水バイオマスの種類によっては、SHPD乾燥装置からの蒸留水に揮発性有機物が含まれることもあるが、実用的には差し支えない場合が多く、また必要であれば水中酸化処理や吸着等により簡易に除去できるものである。量的にも、(蒸留水程度の)純水の使用量に比較して高含水バイオマスからの蒸留水量は十分に多いため、問題はない。しかも、バイオマスに含まれる水分を環境中に散逸させずに再利用することは、環境負荷低減の観点からも望ましい。本発明は、こうした知見に基づく研究開発の結果、完成に至ったものである。   Depending on the type of high-moisture biomass, volatile organic substances may be contained in distilled water from the SHPD dryer, but there are many cases where this is practical, and if necessary, underwater oxidation treatment, adsorption, etc. Can be easily removed. In terms of quantity, there is no problem because the amount of distilled water from the high water content biomass is sufficiently larger than the amount of pure water used (about the amount of distilled water). Moreover, it is desirable from the viewpoint of reducing the environmental load to reuse the moisture contained in the biomass without dissipating it into the environment. The present invention has been completed as a result of research and development based on these findings.

図1及び図2の実施例を参照するに、本発明の高含水バイオマス1のエネルギー回収方法は、高含水バイオマス1を気密断熱容器11に入れ水蒸気圧縮機12により容器11の内部からバイオマス1の水分を連続的に気化・吸引し、気化水分を圧縮機12により断熱的に圧縮して昇圧昇温し、昇圧水蒸気を容器11内部と熱的に結合した水蒸気凝縮器13へ通して容器11内部のバイオマス1と熱交換させ、容器11内部の水分を蒸発させると共に昇圧水蒸気を凝縮して蒸留水4として排出させることにより、高含水バイオマス1を低含水のバイオマス燃料33と蒸留水4とに分離し、バイオマス燃料33を動力発生装置5によりエネルギー(動力)6に変換し、蒸留水4を動力発生装置5の用水としてなるものである。圧縮機12による断熱的に圧縮をポリトロープ圧縮によって行なってもよい。好ましくは、容器11の内部から水分を気化・吸入する水蒸気圧縮機12の吸入端部位における水蒸気条件を絶対圧力で50kPa以上にして大気圧以下とし、圧縮機12の吐出側の水蒸気条件を大気圧以上とする。   1 and 2, the energy recovery method for the high water content biomass 1 of the present invention is that the high water content biomass 1 is placed in an airtight heat insulating container 11 and the biomass 1 is removed from the inside of the container 11 by the steam compressor 12. Moisture is continuously vaporized and sucked, the vaporized moisture is compressed adiabatically by the compressor 12 to increase the temperature of the pressure, and the pressurized water vapor passes through the water vapor condenser 13 that is thermally coupled to the inside of the container 11 to pass inside the container 11 Heat-exchanging with the biomass 1 and evaporating water inside the vessel 11 and condensing the pressurized water vapor to discharge as distilled water 4, thereby separating the high water content biomass 1 into low water content biomass fuel 33 and distilled water 4. Then, the biomass fuel 33 is converted into energy (power) 6 by the power generation device 5, and the distilled water 4 is used as water for the power generation device 5. The adiabatic compression by the compressor 12 may be performed by polytropic compression. Preferably, the water vapor condition at the suction end portion of the water vapor compressor 12 that vaporizes and sucks water from the inside of the container 11 is set to 50 kPa or more in absolute pressure to atmospheric pressure or less, and the water vapor condition on the discharge side of the compressor 12 is atmospheric pressure. That's it.

また図1及び図2の実施例を参照するに、本発明による高含水バイオマスのエネルギー回収装置は、高含水バイオマス1の投入口19とバイオマス燃料33の取出口20とを有する気密断熱容器11、容器11の内部に臨む吸入口を有し且つ吸入口からの水蒸気を圧縮する水蒸気圧縮機12、及び圧縮機12の吐出口に連なり且つ容器11の内部との熱交換部を有し吐出口からの水蒸気を凝縮する水蒸気凝縮器13を有し、高含水バイオマス1を脱水後の低含水のバイオマス燃料33と蒸留水4とに分離する脱水装置2;並びにバイオマス燃料33をエネルギー(動力)6に変換すると共に蒸留水4を変換の用水とする動力発生装置5を備えてなるものである。   1 and 2, the energy recovery device for high water content biomass according to the present invention includes an airtight insulated container 11 having an inlet 19 for high water content biomass 1 and an outlet 20 for biomass fuel 33. A steam compressor 12 having a suction port facing the inside of the container 11 and compressing steam from the suction port, and a discharge port of the compressor 12 and having a heat exchanging part with the inside of the container 11 and from the discharge port A water vapor condenser 13 for condensing the water vapor, and a dehydrator 2 for separating the high water content biomass 1 into a low water content biomass fuel 33 and distilled water 4 after dehydration; and the biomass fuel 33 as energy (power) 6 A power generating device 5 is used which converts the distilled water 4 into water for conversion while converting.

本発明の高含水バイオマスのエネルギー回収方法及び装置は、高含水バイオマスの水分をSHPD乾燥装置により脱水して低含水のバイオマス燃料と蒸留水とに分離し、そのバイオマス燃料と蒸留水とによりエネルギーを回収するので、次の顕著な効果を奏する。   The method and apparatus for recovering energy of high water content biomass of the present invention comprises dehydrating the water of high water content biomass with a SHPD dryer and separating it into low water content biomass fuel and distilled water, and energy is obtained from the biomass fuel and distilled water. Since it collects, the following remarkable effects are produced.

(イ)メタン発酵の日又は週オーダーの処理時間に比し、SHPD乾燥装置の処理時間は時間オーダーであるため、エネルギー回収処理の迅速化・低コスト化、設備の小型化・低コスト化が可能である。
(ロ)SHPD乾燥装置によりバイオマス燃料化するので、メタン発酵よりも高効率で高含水バイオマスからエネルギーを回収することができる。
(ハ)高含水バイオマスに混入した紙やプラスチック類等の異物の分別除去を必要とせず、排液(消化液)や残渣(消化汚泥)も発生しないので、メタン発酵法よりもランニングコストが小さく経済的である。
(ニ)従って、従来はメタン発酵以外に手段がないとされていた高含水バイオマスのエネルギー化に新たな選択肢を提供するものといえる。
(B) Compared to the daily or weekly processing time of methane fermentation, the processing time of the SHPD drying device is on the order of time, so the energy recovery processing can be speeded up and cost reduced, and the equipment can be downsized and cost reduced. Is possible.
(B) Since biomass fuel is produced by the SHPD drying device, energy can be recovered from highly hydrous biomass with higher efficiency than methane fermentation.
(C) Since there is no need to separate and remove foreign matters such as paper and plastics mixed in high-moisture biomass, neither drainage (digestion fluid) nor residue (digestion sludge) is generated, so running costs are lower than methane fermentation. Economical.
(D) Therefore, it can be said that it provides a new option for energizing high-moisture biomass that has conventionally been considered to have no means other than methane fermentation.

(ホ)高含水バイオマスをバイオマス燃料と蒸留水とに分離し、その両者を動力発生に有効に利用できるので、環境負荷が小さい技術である。
(へ)蒸留水を動力発生に利用することができるので、高含水バイオマスからエネルギー及び水に関して自足的なエネルギー回収システムの構築が期待できる。
(ト)高含水バイオマスの低含水化により、同一のエネルギー回収システムで木質等の低含水バイオマスと混合して処理することが可能となり、高・低両含水バイオマスのエネルギー回収設備の一本化と経済性改善が達成できる。
(チ)都市部での生ごみ・厨芥・食品産業廃棄物・下水汚泥・古紙等、郊外での農業廃棄物・水生植物・建設廃材等、山間部での林業廃材・畜産廃棄物等、漁村部での漁業廃棄物等、様々な高含水バイオマスのエネルギー回収の普及と利用促進とに寄与することができる。
(E) It is a technology with a low environmental load because it can separate high-moisture biomass into biomass fuel and distilled water, and both can be used effectively for power generation.
(F) Since distilled water can be used for power generation, a self-sufficient energy recovery system for energy and water can be expected from highly hydrous biomass.
(G) By reducing the water content of high water content biomass, it becomes possible to mix and process with low water content biomass such as wood using the same energy recovery system. Economical improvement can be achieved.
(H) Garbage, waste, food industry waste, sewage sludge, waste paper, etc. in urban areas, agricultural waste, aquatic plants, construction waste, etc. in suburbs, forestry waste, livestock waste, etc. in mountainous areas, fishing villages Can contribute to the spread and promotion of energy recovery of various high water content biomass such as fishery waste in the department.

図1は本発明装置の構成ブロック図の概略を示し、図2は本発明に用いる水蒸気ヒートポンプ脱水装置(SHPD乾燥装置)2の基本構成を示す。SHPD乾燥装置2の原理や運転法は、本発明者が開示した特許文献2等に詳述されている。原理上の要点は、被乾燥物を100℃近くまで予熱した後、被乾燥物から発生した水蒸気を昇圧して飽和温度を上げ、被乾燥物との熱交換により凝縮させ、この凝縮潜熱で被乾燥物を加熱することにある。   FIG. 1 shows an outline of a block diagram of the apparatus of the present invention, and FIG. 2 shows a basic structure of a steam heat pump dehydrator (SHPD dryer) 2 used in the present invention. The principle and operation method of the SHPD drying device 2 are described in detail in Patent Document 2 disclosed by the present inventors. The main point in principle is that after the object to be dried is preheated to near 100 ° C, the water vapor generated from the object to be dried is pressurized to increase the saturation temperature and condensed by heat exchange with the object to be dried. It is to heat the dried product.

図示例のSHPD乾燥装置2は、高含水バイオマス1の投入口19とバイオマス燃料の取出口20とが穿たれた気密断熱容器11と、水蒸気圧縮機12と、水蒸気凝縮器13と、スチームトラップ14とを有する。水蒸気圧縮機12は容器11の内部に臨む吸入口を有し、圧縮機12の吐出口は容器11の内部と熱交換する水蒸気凝縮器13に連結されている。気密断熱容器11に高含水バイオマス1を投入して例えば95℃程度まで予熱すると、水蒸気圧縮機12の吸入端部位に接続された容器11内では84kPa程度の減圧状態で高含水バイオマス1の水分が沸騰する。このままでは蒸発潜熱が奪われるためバイオマス1の温度は急速に低下するが、圧縮機12の吐出水蒸気を凝縮器13へ送り、例えば110℃、143kPaでバイオマス1との熱交換により液化させることにより、凝縮潜熱を高含水バイオマス1の加熱に再利用することができる。但し、水蒸気圧縮機12の吸入側及び吐出側の圧力はこの例に限らず、吐出側の水蒸気条件(容器11内の圧力)を絶対圧力で50kPa以上にして大気圧以下とし、吐出側の水蒸気条件(凝縮器13の圧力)を大気圧以上とすればよい。容器11内の圧力は安全性の見地からも大気圧より低く、凝縮器13の圧力は排水ポンプ等を省略する目的からも大気圧より高いことが望ましい。   The SHPD drying apparatus 2 in the illustrated example includes an airtight insulated container 11 in which an inlet 19 for high water content biomass 1 and an outlet 20 for biomass fuel are bored, a steam compressor 12, a steam condenser 13, and a steam trap 14 And have. The steam compressor 12 has a suction port facing the inside of the container 11, and the discharge port of the compressor 12 is connected to a steam condenser 13 that exchanges heat with the inside of the container 11. When the high water content biomass 1 is put into the hermetic insulation container 11 and preheated to about 95 ° C., for example, the water content of the high water content biomass 1 is reduced to about 84 kPa in the container 11 connected to the suction end portion of the steam compressor 12. Boiling. Since the latent heat of vaporization is lost as it is, the temperature of the biomass 1 rapidly decreases, but by sending the steam discharged from the compressor 12 to the condenser 13 and liquefying it by heat exchange with the biomass 1 at 110 ° C. and 143 kPa, for example, The latent heat of condensation can be reused for heating the high water content biomass 1. However, the pressure on the suction side and the discharge side of the water vapor compressor 12 is not limited to this example, and the water vapor condition on the discharge side (pressure in the container 11) is set to 50 kPa or more in absolute pressure to be equal to or less than atmospheric pressure. The condition (the pressure of the condenser 13) may be set to atmospheric pressure or higher. The pressure in the container 11 is preferably lower than atmospheric pressure from the viewpoint of safety, and the pressure in the condenser 13 is preferably higher than atmospheric pressure for the purpose of omitting the drainage pump and the like.

図示例のSHPD乾燥装置2では凝縮圧力が大気圧より高いため、スチームトラップ14から蒸留水(凝縮水)4を自発的に流出し、不凝縮性ガス(空気等)はここから分岐する配管を経由して排出弁(図示せず)から自発的に排気する。すなわちSHPD乾燥装置2は、高含水バイオマス1を脱水後の低含水のバイオマス燃料33と蒸留水4とに分離する。容器11の内部と連通する抽気装置15により不凝縮性ガスを抽気すると共に、容器11の内部圧力の異常時に水蒸気を外部へ排気する安全弁を設けることもできる。図示例では、撹拌手段の一例として、気密断熱容器11の頂部に設けた減速機付き電動機16により回転軸17と撹拌翼18とを回転させ、容器11内のバイオマス1を撹拌し水蒸気23の発生と移動とを推進する。   In the illustrated SHPD drying device 2, the condensation pressure is higher than the atmospheric pressure, so distilled water (condensed water) 4 spontaneously flows out from the steam trap 14, and noncondensable gas (air etc.) is routed through a pipe that branches from here. Via a discharge valve (not shown) is exhausted spontaneously. That is, the SHPD drying device 2 separates the high water content biomass 1 into the low water content biomass fuel 33 and the distilled water 4 after dehydration. A non-condensable gas can be extracted by an extraction device 15 communicating with the inside of the container 11, and a safety valve for exhausting water vapor to the outside when the internal pressure of the container 11 is abnormal can be provided. In the illustrated example, as an example of the agitation means, the rotating shaft 17 and the agitating blade 18 are rotated by the motor 16 with a reduction gear provided at the top of the hermetic heat insulating container 11, and the biomass 1 in the container 11 is agitated to generate water vapor 23. Promote and move.

但し、SHPD乾燥装置2の構成は図2の例に限定されない。例えば特許文献4に記載のように、水蒸気凝縮器13を撹拌翼18に組込むことにより伝熱面積(バイオマス1との熱交換するための面積)を大きくすることができる。乾燥装置2の成績係数COPを上げるためには、伝熱面積を大きくして凝縮と沸騰の温度差(圧力差)を小さくすることが重要である。また、図2のSHPD乾燥装置2は回分(バッチ)式であるが、上記と同じ原理であれば連続式(図示せず)でもよい。SHPD乾燥装置2の脱水処理によって高含水バイオマス1を低含水のバイオマス燃料33と蒸留水4とに分離すれば、バイオマス1から回収するエネルギーの転換や発電の方式に対する選択肢の広がりを大幅に拡大し、広範囲に亘る各種方式の利用が可能になる。   However, the configuration of the SHPD drying device 2 is not limited to the example of FIG. For example, as described in Patent Document 4, the heat transfer area (area for heat exchange with the biomass 1) can be increased by incorporating the water vapor condenser 13 into the stirring blade 18. In order to increase the coefficient of performance COP of the drying apparatus 2, it is important to increase the heat transfer area and reduce the temperature difference (pressure difference) between condensation and boiling. Moreover, although the SHPD drying apparatus 2 of FIG. 2 is a batch (batch) type, if it is the same principle as the above, a continuous type (not shown) may be sufficient. Separation of high water content biomass 1 into low water content biomass fuel 33 and distilled water 4 by dehydration treatment of SHPD dryer 2 greatly expands the range of options for conversion of energy recovered from biomass 1 and power generation methods. The use of various methods over a wide range is possible.

動力発生装置5の一例は、例えば図9に示すように、バイオマス燃料33(製材屑40aやバークヤード40b)を燃料とするバイオガス燃料焚きのボイラー41で水蒸気を生成し、その水蒸気の作動媒体により原動機としての蒸気タービン42及び発電機37を駆動して電力6a(即ち図1の動力6)を出力するものである。この場合に蒸留水4は、動力発生装置5における用水として給水塔45に投入し、例えばボイラー41又は動力発生装置5のNOx低減装置等多方面に有効利用できる。また動力発生装置5は、ボイラー41からの抽出蒸気、背圧蒸気、冷却水(図示せず)により熱7(図1参照)を出力する。必要に応じ動力発生装置5が出力する動力6及び熱7の一部分を、所内動力線8及び熱戻し線9(図1参照)を介して水蒸気ヒートポンプ脱水装置2の所定動力及び予熱と追炊きとして使うことができる。   As shown in FIG. 9, for example, the power generation device 5 generates steam with a biogas fuel-fired boiler 41 using biomass fuel 33 (sawdust 40a and barkyard 40b) as fuel, and the working medium of the steam Thus, the steam turbine 42 and the generator 37 as a prime mover are driven to output electric power 6a (that is, power 6 in FIG. 1). In this case, the distilled water 4 is introduced into the water supply tower 45 as irrigation water in the power generation device 5 and can be effectively used in various fields such as the boiler 41 or the NOx reduction device of the power generation device 5. Moreover, the motive power generator 5 outputs the heat 7 (refer FIG. 1) with the extraction steam from the boiler 41, back pressure steam, and cooling water (not shown). If necessary, a part of the motive power 6 and heat 7 output from the motive power generator 5 is used as predetermined power, preheating, and additional cooking of the steam heat pump dehydrator 2 via the in-house power line 8 and the heat return line 9 (see FIG. 1). Can be used.

好ましくは動力発生装置5として、燃料33から動力6への変換に当って適用性に優れた熱分解ガス化・改質装置30と内燃機関(熱機関)53との組み合わせを用いる(図10参照)。すなわち、バイオマス燃料33を図10の熱分解ガス化炉38に投入し、これを熱分解・改質して燃料ガス51を発生し、その燃料ガス51によりガス駆動原動機としての内燃機関(熱機関)53、例えばガスエンジン、マイクロガスタービン等を介して発電機37又は他の動力機械を駆動してエネルギー(動力)6を出力する。また、SHPD乾燥装置2からの凝縮水4は実質的に蒸留水なので、これをガス改質(水性ガス化)器39用の廃熱回収ボイラー49に対する補給水に用いれば、軟水化装置の消耗材料(イオン交換樹脂等)を節約できる。   Preferably, the power generation device 5 uses a combination of a pyrolysis gasification / reformation device 30 and an internal combustion engine (heat engine) 53 that are excellent in applicability when converting the fuel 33 to the power 6 (see FIG. 10). ). That is, the biomass fuel 33 is put into the pyrolysis gasification furnace 38 of FIG. 10 and is pyrolyzed and reformed to generate a fuel gas 51. The fuel gas 51 generates an internal combustion engine (heat engine) as a gas-driven prime mover. ) 53, for example, a generator 37 or other power machine is driven via a gas engine, a micro gas turbine or the like to output energy (power) 6. Further, since the condensed water 4 from the SHPD drying device 2 is substantially distilled water, if this is used as makeup water for the waste heat recovery boiler 49 for the gas reforming (water gasification) device 39, the water softening device is consumed. Material (ion exchange resin etc.) can be saved.

熱分解ガス化・改質装置30は、バイオマス燃料33を還元雰囲気下で熱分解してガス化させる技術である。更に、発生ガスを高温水蒸気と高温空気とを用いて改質すればCO(一酸化炭素)とH2(水素)を多量に含む混合ガスを得ることができる。このようにして燃料ガス51が得られれば、ガスエンジン、マイクロガスタービン等の内燃機関やスターリングエンジン等の外燃機関である熱機関53をガス駆動原動機として使った発電装置(発電機37)を動かすことや、さらなる改質により水素を得て燃料電池(図示せず)を動かすことも可能になる。そして将来的には、SOFC(固体酸化物型燃料電池)とガスタービンとの組み合わせにより、発電効率を60〜70%に高める技術開発も意図されている。また、改質過程で得られるCO(一酸化炭素)とH2(水素)を多量に含む混合ガスから、メタノールやジメチルエーテル(DME)等の燃料を製造することも可能になる。 The pyrolysis gasification / reformer 30 is a technology for pyrolyzing the biomass fuel 33 in a reducing atmosphere to gasify it. Furthermore, if the generated gas is reformed using high-temperature steam and high-temperature air, a mixed gas containing a large amount of CO (carbon monoxide) and H 2 (hydrogen) can be obtained. Once the fuel gas 51 is obtained in this way, a power generator (generator 37) using a heat engine 53, which is an internal combustion engine such as a gas engine or a micro gas turbine, or an external combustion engine such as a Stirling engine, as a gas driven prime mover. It is possible to move the fuel cell (not shown) by moving it or obtaining hydrogen by further reforming. In the future, it is also intended to develop technology that increases power generation efficiency to 60-70% by combining SOFC (solid oxide fuel cell) and gas turbine. In addition, fuel such as methanol and dimethyl ether (DME) can be produced from a mixed gas containing a large amount of CO (carbon monoxide) and H 2 (hydrogen) obtained in the reforming process.

SHPD乾燥装置2による脱水工程と熱分解ガス化・改質装置30利用の動力発生工程との組み合わせにも種々の補完関係を含め得る。例えば、熱分解ガス化利用の内燃機関式発電装置からなる動力発生装置5の排熱(熱7)を利用してSHPD乾燥装置2の気密断熱容器11の予熱と追い炊きとを行い、動力発生装置5の出力電力(動力6)でSHPD乾燥装置2の水蒸気圧縮機12と撹拌用電動機16とを駆動することができる。   Various supplementary relationships may be included in the combination of the dehydration process by the SHPD dryer 2 and the power generation process using the pyrolysis gasification / reformer 30. For example, the exhaust heat (heat 7) of the power generation device 5 comprising an internal combustion engine power generation device utilizing pyrolysis gasification is used to preheat and reheat the hermetic insulation container 11 of the SHPD drying device 2 to generate power. The steam compressor 12 and the stirring motor 16 of the SHPD drying device 2 can be driven by the output power (power 6) of the device 5.

図1におけるSHPD乾燥装置2と動力発生装置5とは、必ずしも同一場所に設置しなくともよい。距離的に離れた場合には動力発生装置5の排熱をSHPD乾燥装置2で利用することは困難であるが、SHPD乾燥装置2のバイオマス燃料33及び蒸留水4を動力発生装置5で利用することや動力発生装置5の動力6(電力)をSHPD乾燥装置2で利用することは可能である。ただし、必ずしも利用する必要はない。分離した場合でも、SHPD乾燥装置2によるバイオマス燃料33は脱水され減量化・減容化されているので、貯蔵や搬送におけるハンドリング性を大幅に改善できる本発明の利点が認められる。なお、バイオマスの性状やサイズに応じて、図1の高含水バイオマス1、SHPD乾燥装置2、動力発生装置5の工程の前後に、破砕工程や圧密(圧縮)工程を適宜追加してもよい。   The SHPD drying device 2 and the power generation device 5 in FIG. 1 are not necessarily installed in the same place. Although it is difficult to use the exhaust heat of the power generation device 5 in the SHPD drying device 2 when the distance is long, the biomass fuel 33 and the distilled water 4 of the SHPD drying device 2 are used in the power generation device 5. In addition, it is possible to use the power 6 (electric power) of the power generation device 5 in the SHPD drying device 2. However, it is not always necessary to use it. Even when separated, the biomass fuel 33 by the SHPD drying device 2 is dehydrated and reduced in volume and volume, so that the advantage of the present invention that can greatly improve handling in storage and transportation is recognized. In addition, according to the property and size of biomass, you may add a crushing process and a compaction (compression) process suitably before and after the process of the high water content biomass 1, the SHPD drying apparatus 2, and the power generator 5 of FIG.

[エネルギーバランスの数値例]
本発明の特徴を明らかにするため、本発明のように高含水バイオマス1の水分をSHPD乾燥装置2により僅かのエネルギー消費で脱水すれば、バイオマスエネルギーの経済的回収が可能になること、及び他の従来の脱水方法を使ったのでは経済的回収が困難であることを、図4〜8に示すエネルギーバランスの数値例により説明する。図4において、高含水バイオマス1の水分31(=含有水の質量/(バイオマス乾物32の質量+含有水の質量))を80%、すなわち初期の水分質量を乾物質量の4倍(含水率400%)とする。バイオマス乾物32の高位発熱量(high heat value、HHV)を18.8MJ/kg(4,500kca1/kg)と想定すれば、1,000kgの高含水バイオマス1は200kgの乾物32を含むため、その高位発熱量HHVは3,760MJとなる。
[Numerical example of energy balance]
In order to clarify the characteristics of the present invention, if the moisture of the high water content biomass 1 is dehydrated with a small amount of energy consumption by the SHPD drying device 2 as in the present invention, the economic recovery of biomass energy becomes possible, and others The fact that it is difficult to recover economically by using the conventional dehydration method will be described with reference to numerical examples of energy balances shown in FIGS. In FIG. 4, the moisture 31 (= mass of contained water / (mass of biomass dry matter 32 + mass of contained water)) of high moisture content biomass 1 is 80%, that is, the initial moisture mass is four times the amount of dry matter (water content 400). %). Assuming that the high heat value (HHV) of biomass dry matter 32 is 18.8 MJ / kg (4,500 kca1 / kg), 1,000 kg of highly hydrous biomass 1 contains 200 kg of dry matter 32. HHV will be 3,760MJ.

(A)高含水バイオマスを燃焼する場合
図4は、高含水バイオマス1を直接燃焼する場合のエネルギーバランスを示す。計算上では、この例の乾物200kgの高位発熱量HHV=3,760MJは水分800kgの蒸発熱量2,058MJを上回り、差引き1,702MJの発熱量となる。しかし、乾物32の4倍の水分31を有するバイオマス1の点火及び燃焼維持は困難であり、通常は助燃料を必要とする。固定床炉、移動床(ストーカ)炉、流動床炉、ロータリーキルン等の燃焼炉を用いてもこの困難性は解決し難い。しかも燃焼温度は上がらず不完全燃焼となり易く、煙や悪臭が多量に発生するため実用には適しない。
(A) In the case of burning high water content biomass FIG. 4 shows the energy balance when high water content biomass 1 is directly combusted. In the calculation, the high heating value HHV = 3,760 MJ of 200 kg of dry matter in this example exceeds the heat of evaporation of 2,058 MJ of 800 kg of water, and the heating value of 1,702 MJ is subtracted. However, it is difficult to ignite and maintain the combustion of the biomass 1 having the moisture 31 that is four times that of the dry matter 32, and usually requires auxiliary fuel. Even if a combustion furnace such as a fixed bed furnace, a moving bed (stalker) furnace, a fluidized bed furnace, or a rotary kiln is used, this difficulty is difficult to solve. In addition, the combustion temperature does not increase and incomplete combustion is likely to occur, and a large amount of smoke and odor is generated, which is not suitable for practical use.

(B)従来の乾燥装置を用いた場合
図5は、高含水バイオマス1の脱水に従来の乾燥技術(熱風乾燥、伝導乾燥、真空乾燥、マイクロウェーブ乾燥等)を用いてバイオマス燃料33を得る場合のエネルギーバランスを示す。例えば、初期水分80%の高含水バイオマス1,000kgを従来の乾燥技術によって水分20%まで蒸発脱水する。乾燥用蒸気ボイラー34により、25℃から100℃まで2,743MJで加熱する過程の効率を80%、更に伝導式乾燥機35により2,058MJで乾燥する過程の効率を75%(一般的な値は50%以下)とすれば、その乾燥に3,429MJが必要になる。他方、この状態でバイオマス燃料33に水分50kgが残っており、その燃焼時に蒸発潜熱として129MJが消費されるため、バイオマス燃料33から回収可能なエネルギー量(発熱量)は3,631MJとなる。バイオマス燃料33を得るための従来技術の乾燥に要するこの熱量3,429MJは、バイオマス燃料33の発熱量3,631MJを僅かに下回るが、伝導式乾燥機35では撹拌動力や冷却塔のファンやポンプ動力が必要なことを考えると最終的にはマイナスである。従って、この場合も経済性は全く成り立たない。
(B) When a conventional drying apparatus is used FIG. 5 shows a case where biomass fuel 33 is obtained by using conventional drying techniques (hot air drying, conductive drying, vacuum drying, microwave drying, etc.) for dehydration of the high water content biomass 1 Shows the energy balance. For example, 1,000 kg of high water content biomass with an initial moisture of 80% is evaporated and dehydrated to 20% by conventional drying technology. The efficiency of the process of heating from 25 ° C to 100 ° C at 2,743MJ is 80% by the drying steam boiler 34, and the efficiency of the process of drying at 2,058MJ by the conductive dryer 35 is 75% (general value is 50 %), 3,429 MJ is required for drying. On the other hand, 50 kg of moisture remains in the biomass fuel 33 in this state, and 129 MJ is consumed as latent heat of vaporization during the combustion. Therefore, the amount of energy recoverable from the biomass fuel 33 (heat generation amount) is 3,631 MJ. This amount of heat 3,429 MJ required for the drying of the prior art to obtain biomass fuel 33 is slightly less than 3,631 MJ of the calorific value of biomass fuel 33, but in the conduction dryer 35, the agitation power, cooling tower fan and pump power Considering what is needed, it is negative in the end. Therefore, even in this case, economic efficiency is not realized at all.

(C)メタン発酵の場合
図6は、高含水バイオマス1からメタン発酵でエネルギーを回収する場合のエネルギーバランスを示す。高含水バイオマス1からメタンガスへの平均的な転換率を50%と仮定すると、メタンガスに転換されるエネルギーは1,880MJになる。更に、メタンガスを用いた発電機37の発電効率を35%と仮定すると、電力658MJ(183kWh)、排熱量1,222MJが得られる。メタン発酵装置36ではポンプ類や加熱器にエネルギーを要するが、客観的なデータが得られないため、ここでは割り引かないことにする。
(C) In the case of methane fermentation FIG. 6 shows the energy balance when energy is recovered from the highly hydrous biomass 1 by methane fermentation. Assuming an average conversion rate from high water content biomass 1 to methane gas is 50%, the energy converted to methane gas is 1,880MJ. Further, assuming that the power generation efficiency of the generator 37 using methane gas is 35%, electric power 658 MJ (183 kWh) and exhaust heat amount 1,222 MJ are obtained. In the methane fermentation apparatus 36, energy is required for pumps and heaters. However, since objective data cannot be obtained, it is not discounted here.

(D)SHPD乾燥装置の場合
図7は、高含水バイオマス1からSHPD乾燥装置2を用いてエネルギーを回収する場合のエネルギーバランスを示す。水分80%の高含水バイオマス1をSHPD乾燥装置2により水分20%まで脱水すると、水分残量50kg(20%=50/(200+50))のバイオマス燃料33が得られる。従って、バイオマス燃料33をボイラー41で燃焼するときに、水分50kgの蒸発潜熱129MJが消費されるので、発熱量は3,631MJに減少する。メタン発酵の場合と同様に発電機37の発電効率を35%と仮定すると、このバイオマス燃料33からの発電量(電力)は353kWhとなり、排熱量は2,360MJとなる。次に、得られたエネルギーからSHPD乾燥装置2の運転に必要な電力と予熱を差し引く。SHPD乾燥装置2の運転に要する電力量の計算根拠として、本発明者による試作装置の実測値からCOP(成績係数;水分の蒸発潜熱量を消費電力で除した値)として10を用いる。水分750kgの100℃における蒸発潜熱量は1,692MJ(469kWh)であるため、消費電力量はCOPの値10で除して47kWhとなる。また高含水バイオマス1,000kgを室温25℃から100℃まで予熱する熱量として約236MJを要する。差し引くと、利用可能電力が306(=353−47)kWh、利用可能な熱量は2,360MJとなり、メタン発酵の場合の183kWhよりも明らかに多量のエネルギーを回収できる。
(D) Case of SHPD Drying Device FIG. 7 shows an energy balance when energy is recovered from the high water content biomass 1 using the SHPD drying device 2. When the moisture-containing biomass 1 having a moisture content of 80% is dehydrated to a moisture content of 20% by the SHPD drying device 2, a biomass fuel 33 having a residual moisture content of 50 kg (20% = 50 / (200 + 50)) is obtained. Therefore, when the biomass fuel 33 is burned by the boiler 41, the evaporation latent heat 129MJ with a moisture of 50kg is consumed, so the calorific value is reduced to 3,631MJ. Assuming that the power generation efficiency of the power generator 37 is 35% as in the case of methane fermentation, the power generation amount (electric power) from the biomass fuel 33 is 353 kWh, and the waste heat amount is 2,360 MJ. Next, the electric power and preheating necessary for the operation of the SHPD drying device 2 are subtracted from the obtained energy. As a basis for calculating the amount of electric power required for the operation of the SHPD drying device 2, 10 is used as a COP (coefficient of performance; a value obtained by dividing the amount of latent heat of evaporation of water by the power consumption) from the actual measurement value of the prototype device by the present inventor. Since the amount of latent heat of vaporization at 100 ° C with a water content of 750 kg is 1,692 MJ (469 kWh), the power consumption is 47 kWh divided by the COP value of 10. In addition, about 236MJ is required for preheating 1,000kg of high water content biomass from room temperature 25 ℃ to 100 ℃. When subtracted, the available power is 306 (= 353-47) kWh, the available heat is 2,360 MJ, and a much larger amount of energy can be recovered than 183 kWh in the case of methane fermentation.

(E)SHPD乾燥装置と熱分解ガス化・改質装置とを組み合わせた場合
図8は、動力発生装置5を熱分解ガス化・改質装置30とし、SHPD乾燥装置2と熱分解ガス化・改質装置30とを組み合わせた場合の高含水バイオマス1からのエネルギーバランスを示す。SHPD乾燥装置2と熱分解ガス化・改質装置30との組み合わせの冷ガス効率を75%とし、熱機関53・発電機37の組み合わせの発電効率を35%としても、メタン発酵の場合の183kWhよりも多くのエネルギー227(=274−47)kWhを回収できる。ここに、冷ガス効率とは、生成ガス中に含まれる可燃ガスのHHVをガス化に使われた原料のHHVで除した値である。
(E) When a SHPD drying device and a pyrolysis gasification / reformation device are combined FIG. 8 shows that the power generation device 5 is a pyrolysis gasification / reformation device 30, and the SHPD drying device 2 and pyrolysis gasification / The energy balance from the high water content biomass 1 at the time of combining with the reformer 30 is shown. Even if the cold gas efficiency of the combination of the SHPD dryer 2 and the pyrolysis gasification / reformer 30 is 75% and the power generation efficiency of the combination of the heat engine 53 and the generator 37 is 35%, 183kWh in the case of methane fermentation More energy 227 (= 274-47) kWh can be recovered. Here, the cold gas efficiency is a value obtained by dividing the HHV of the combustible gas contained in the generated gas by the HHV of the raw material used for gasification.

上述した各エネルギーバランスの数値例から次のような結論を導き出すことができる。すなわち(A)高含水バイオマスをそのまま燃焼するだけで他の回収処理を施さずにエネルギーを有効に回収するのは困難であり(図4参照)、(B)高含水バイオマスを伝導伝熱式で脱水する回収処理は、伝導伝熱式に加える(脱水に必要な)熱量と回収できる熱量との差が小さくエネルギー損失を招くおそれさえあり有効回収が不可能であり(図5参照)、(C)メタン発酵による回収処理ではエネルギーの有効回収ができるものの数日以上の時間を要する(図6参照)。これに対し(D)SHPD乾燥による回収処理を施せばメタン発酵よりもエネルギー回収効率が高く、しかも蒸留水も回収できる(図7参照)。(E)SHPD乾燥の回収処理と熱分解ガス化・改質処理とを組み合わせた場合でも、エネルギーの高効率回収が可能である(図8参照)。   The following conclusions can be drawn from the numerical examples of each energy balance described above. That is, (A) it is difficult to effectively recover energy without combusting the high water content biomass as it is without any other recovery process (see Fig. 4), and (B) the high water content biomass by the conduction heat transfer type. In the recovery process for dehydration, the difference between the amount of heat (necessary for dehydration) applied to the conduction heat transfer type and the amount of heat that can be recovered is small, and there is a possibility of causing energy loss (see FIG. 5). ) Although the recovery process by methane fermentation can effectively recover energy, it takes more than several days (see FIG. 6). On the other hand, if (D) the recovery process by SHPD drying is performed, energy recovery efficiency is higher than methane fermentation, and distilled water can also be recovered (see FIG. 7). (E) Even when SHPD drying recovery processing and pyrolysis gasification / reforming processing are combined, high-efficiency recovery of energy is possible (see FIG. 8).

更に、高含水バイオマスに対する従来の主力エネルギー回収技術であるメタン発酵に対し、本発明で使うSHPD乾燥装置2の脱水時間は数時間から10数時間であり、反応時間が一桁から二桁短いため、処理時間や装置・設備コストも大幅に低減できる。また、SHPD乾燥装置2で脱水後のバイオマス燃料33に熱化学的転換を施せば、バイオマスが保有するエネルギーの大部分を取り出すことが可能である。更に、図6には表わしていないが、メタン発酵では発酵装置36からの排液(消化液)に対する処理が必要であるのに対し、本発明では排液処理が不要であり、蒸留水4を動力発生装置5で有効に利用するので、エネルギー回収効率の更なる向上が期待できる。本発明においても例えば熱化学的転換後に灰が残るが、メタン発酵の排液(消化液)や残さ(消化汚泥)に比し少量であるためその処理は容易である。しかも、本発明では高含水バイオマス1の構成物の厳密な分別は不要であり、プラスチック等の異物が混入しても問題を生じない。従って、本発明のSHPD乾燥装置2利用による高含水バイオマスのエネルギー回収方法は、メタン発酵に比しエネルギー回収効率を格段に向上できることが分かる。   Furthermore, in contrast to methane fermentation, which is a conventional main energy recovery technology for high water content biomass, the dehydration time of the SHPD dryer 2 used in the present invention is several hours to 10 hours and the reaction time is one to two orders of magnitude shorter. The processing time and equipment / equipment costs can be greatly reduced. Moreover, if the biomass fuel 33 after dehydration is subjected to thermochemical conversion by the SHPD drying device 2, most of the energy held by the biomass can be extracted. Furthermore, although not shown in FIG. 6, in the methane fermentation, a treatment for the drainage (digestion fluid) from the fermentation apparatus 36 is required, whereas in the present invention, the drainage treatment is unnecessary, and distilled water 4 is used. Since it is effectively used by the power generation device 5, further improvement in energy recovery efficiency can be expected. In the present invention, for example, ash remains after thermochemical conversion, but the treatment is easy because the amount is small compared to the effluent (digested liquid) and residue (digested sludge) of methane fermentation. Moreover, in the present invention, it is not necessary to strictly separate the components of the high water content biomass 1, and no problem arises even if foreign matter such as plastic is mixed. Therefore, it can be seen that the energy recovery method of the high water content biomass using the SHPD drying device 2 of the present invention can significantly improve the energy recovery efficiency compared to methane fermentation.

本発明によれば、SHPD乾燥装置2により高含水バイオマス1から迅速に且つ高効率でエネルギーを回収することができる。メタン発酵によってもエネルギー回収は可能であるが、SHPD乾燥装置2よりもエネルギー効率が低く、しかも時間がかかる。SHPD乾燥装置2以外の脱水装置、即ち燃焼、熱風乾燥、伝導乾燥、真空乾燥、マイクロウェーブ乾燥等を使用した場合は、高含水バイオマス1からの有効なエネルギー回収は難しい。高含水バイオマス1から回収したバイオマス燃料33は蒸気発生ボイラー41、熱機関53、発熱手段、熱分解ガス化・改質装置30等の動力発生装置5により動力6に変換でき、高含水バイオマス1から回収した蒸留水4を動力発生装置5の用水として有効に利用できるので、本発明によりエネルギー及び水の自足的なエネルギー回収システムの実現も期待できる。   According to the present invention, energy can be quickly and efficiently recovered from the highly hydrous biomass 1 by the SHPD drying device 2. Energy recovery is also possible by methane fermentation, but energy efficiency is lower than that of the SHPD drying device 2, and it takes time. When a dehydration apparatus other than the SHPD drying apparatus 2, that is, combustion, hot air drying, conduction drying, vacuum drying, microwave drying, or the like is used, effective energy recovery from the high water content biomass 1 is difficult. Biomass fuel 33 recovered from the high water content biomass 1 can be converted into power 6 by a power generation device 5 such as a steam generation boiler 41, heat engine 53, heat generating means, pyrolysis gasification / reformer 30, etc. Since the recovered distilled water 4 can be effectively used as the irrigation water of the power generation device 5, the present invention can be expected to realize an energy and water self-sufficient energy recovery system.

こうして、本発明の目的である「処理速度が速い高含水バイオマスのエネルギー回収方法及び装置」の提供が達成される。   Thus, provision of “a method and an apparatus for recovering energy of high water content biomass having a high processing speed”, which is an object of the present invention, is achieved.

図3は、図1の実施例における高含水バイオマス1利用の動力発生装置5に2つの入力部を設け、一方の入力部を高含水バイオマス1用のSHPD乾燥装置2の出力であるバイオマス燃料33及び蒸留水4に接続し、他方の入力部を別途供給される低含水バイオマス3に接続した構成例を示す。従来は、高含水バイオマス1からのエネルギー回収手段が実質上メタン発酵に限られていたので、発電設備は必然的にガス燃料のものとなり、木質等の低含水バイオマス3をその発電設備に接続することは困難であった。図3の実施例によれば、単独の動力発生装置5を、従来個別に扱われてきた二つのエネルギー源、即ち高含水バイオマス1と低含水バイオマス3とに共通に利用し、貯留施設及び機材の合理化を図ることができる。   FIG. 3 shows a biomass fuel 33 which is provided with two input units in the power generation device 5 using the high water content biomass 1 in the embodiment of FIG. 1, and one input unit is the output of the SHPD drying device 2 for the high water content biomass 1. And the example of a structure which connected to the distilled water 4 and connected the other input part to the low hydrous biomass 3 supplied separately is shown. Conventionally, since the energy recovery means from the high water content biomass 1 is substantially limited to methane fermentation, the power generation facility is inevitably made of gas fuel, and the low water content biomass 3 such as wood is connected to the power generation facility. It was difficult. According to the embodiment of FIG. 3, a single power generation device 5 is commonly used for two energy sources that have been conventionally treated separately, namely, a high water content biomass 1 and a low water content biomass 3, and storage facilities and equipment. Can be streamlined.

本発明によれば、高含水バイオマス1の水分31をSHPD乾燥装置2によって脱水して低含水バイオマス3化し、メタン発酵以外に選択肢がないとされていた高含水バイオマス1のエネルギー回収に新たな選択肢を提供することができる。例えば、高含水バイオマス1をSHPD乾燥装置2によって他の低含水バイオマス3と同程度の含水率まで乾燥させれば、図3のシステム構成により、低含水バイオマス3と高含水バイオマス1との両者から単独の動力発生装置5でエネルギーを回収することができる。これによりエネルギー転換と発電設備とを一本化し、バイオマスエネルギー回収の経済性を改善できる。   According to the present invention, the moisture 31 of the high water content biomass 1 is dehydrated by the SHPD drying device 2 to make the low water content biomass 3 and a new option for energy recovery of the high water content biomass 1 that has been considered to have no option other than methane fermentation. Can be provided. For example, if the high water content biomass 1 is dried to the same water content as the other low water content biomass 3 by the SHPD drying device 2, the low water content biomass 3 and the high water content biomass 1 can be obtained from the system configuration of FIG. Energy can be recovered by a single power generation device 5. This consolidates energy conversion and power generation facilities, and can improve the economics of biomass energy recovery.

本発明の一実施例の構成を示すブロック図である。It is a block diagram which shows the structure of one Example of this invention. 本発明で使う水蒸気ヒートポンプ脱水装置の説明図である。It is explanatory drawing of the water vapor | steam heat pump dehydration apparatus used by this invention. 高含水バイオマスと低含水バイオマスとの統合エネルギー回収装置の構成を示すブロック図である。It is a block diagram which shows the structure of the integrated energy collection | recovery apparatus of high water content biomass and low water content biomass. 高含水バイオマスを燃焼してエネルギー回収する場合のエネルギーバランス数値例の図式的説明図である。It is a schematic explanatory drawing of the energy balance numerical example in the case of recovering energy by burning high water content biomass. 従来の乾燥装置を用いて高含水バイオマスからバイオマス燃料を得る場合のエネルギーバランス数値例である。It is an energy balance numerical example in the case of obtaining biomass fuel from high water content biomass using the conventional drying apparatus. メタン発酵により高含水バイオマスからエネルギー回収する場合のエネルギーバランス数値例である。It is an energy balance numerical example in the case of recovering energy from a high water content biomass by methane fermentation. SHPD乾燥装置を用いて高含水バイオマスからエネルギー回収する場合のエネルギーバランス数値例である。It is an energy balance numerical example in the case of recovering energy from high water content biomass using SHPD dryer. SHPD乾燥装置と熱分解ガス化・改質装置との組み合わせを使って高含水バイオマスからエネルギー回収する場合のエネルギーバランス数値例である。It is an energy balance numerical example in the case of recovering energy from highly hydrous biomass using a combination of SHPD dryer and pyrolysis gasification / reformer. 従来の低含水バイオマスからのエネルギー回収型発電装置の図式的ブロック図である。It is a schematic block diagram of the energy recovery type | mold power generation device from the conventional low water content biomass. 従来の熱分解ガス化・改質装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional thermal decomposition gasification / reforming apparatus. 従来の低含水バイオマス及び高含水バイオマスからそれぞれエネルギーを回収する別系統の発電・熱利用装置のブロック図である。It is a block diagram of the separate electric power generation and heat utilization apparatus which collect | recovers energy from the conventional low water content biomass and high water content biomass, respectively.

符号の説明Explanation of symbols

1…高含水バイオマス
2…水蒸気ヒートポンプ脱水装置(SHPD乾燥装置)
3…低含水バイオマス 4…蒸留水(凝縮水)
5…動力発生装置 6…動力(エネルギー)
6a…電力
7…熱 8…所内動力線
9…熱戻し線 11…気密断熱容器
12…水蒸気圧縮機 13…水蒸気凝縮器
14…スチームトラップ 15…抽気装置
16…電動機 17…回転軸
18…撹拌翼 19…投入口
20…取出口 21…予熱・追焚き用水蒸気
22…開閉弁 23…水蒸気
29…火力発電設備
30…熱分解ガス化・改質装置
31…水分 32…乾物
33…バイオマス燃料 34…乾燥用蒸気ボイラー
35…伝熱式乾燥機 36…メタン発酵装置
37…発電機 38…熱分解ガス化炉
39…改質器 40a…製材屑
40b…バークヤード(樹皮)
40c…廃棄物
41…ボイラー(燃焼) 42…蒸気タービン
43…工場内乾燥設備 44…空冷復水器
45…給水塔 46…給水加熱器
48…高温水蒸気/空気加熱器
49…廃熱回収ボイラー 50…ガス洗浄器
51…燃料ガス 52…純水装置
53…熱機関(内燃機関)
55…蒸気タービン駆動の発電・熱利用
56…バイオガス駆動の発電・熱利用
1 ... High water content biomass 2 ... Steam heat pump dehydrator (SHPD dryer)
3 ... Low water content biomass 4 ... Distilled water (condensed water)
5 ... Power generator 6 ... Power (energy)
6a ... Electric power 7 ... Heat 8 ... In-house power line 9 ... Heat return line 11 ... Airtight insulated container
12 ... Steam compressor 13 ... Steam condenser
14… Steam trap 15… Bleeding device
16 ... Motor 17 ... Rotary shaft
18 ... Agitating blade 19 ... Inlet
20… Take-out port 21… Water vapor for preheating and reheating
22 ... Open / close valve 23 ... Water vapor
29… Thermal power generation facilities
30 ... Pyrolysis gasification and reforming equipment
31 ... moisture 32 ... dry matter
33… Biomass fuel 34… Dry steam boiler
35 ... Heat transfer dryer 36 ... Methane fermentation equipment
37 ... Generator 38 ... Pyrolysis gasifier
39 ... reformer 40a ... sawdust
40b… Barkyard (bark)
40c… Waste
41 ... Boiler (combustion) 42 ... Steam turbine
43… Drying equipment in factory 44… Air-cooled condenser
45 ... Water tower 46 ... Water heater
48 ... High-temperature steam / air heater
49 ... Waste heat recovery boiler 50 ... Gas scrubber
51 ... Fuel gas 52 ... Pure water system
53 ... Heat engine (internal combustion engine)
55… Generation and heat utilization of steam turbine drive
56… Biogas-driven power generation and heat utilization

Claims (10)

高含水バイオマスを気密断熱容器に入れ水蒸気圧縮機により当該容器の内部から前記バイオマスの水分を連続的に気化・吸引し、気化水分を前記圧縮機により断熱的に圧縮して昇圧昇温し、昇圧水蒸気を前記容器内部と熱的に結合した水蒸気凝縮器へ通して前記容器内部のバイオマスと熱交換させ、前記容器内部の水分を蒸発させると共に昇圧水蒸気を凝縮して蒸留水として排出することにより、高含水バイオマスを低含水のバイオマス燃料と蒸留水とに分離し、バイオマス燃料を動力発生装置によりエネルギーに変換し、蒸留水を該動力発生装置の用水としてなる高含水バイオマスのエネルギー回収方法。 A high moisture content biomass is put into an airtight insulated container, and the moisture of the biomass is continuously vaporized and sucked from the inside of the container by a steam compressor, the vaporized moisture is adiabatically compressed by the compressor, and the pressure is increased. By passing water vapor through a steam condenser thermally coupled to the inside of the container, heat exchange with the biomass inside the container, evaporating the water inside the container and condensing the pressurized water vapor and discharging it as distilled water, An energy recovery method for high water content biomass in which high water content biomass is separated into low water content biomass fuel and distilled water, the biomass fuel is converted into energy by a power generation device, and the distilled water is used as water for the power generation device. 請求項1の方法において、前記断熱的な圧縮をポリトロープ圧縮としてなる高含水バイオマスのエネルギー回収方法。 2. The method of claim 1, wherein the adiabatic compression is polytropic compression. 請求項1又は2の方法において、前記高含水バイオマスを未乾燥の動植物材、生ごみ、家畜糞尿、及び有機性汚泥からなる群の何れかとしてなる高含水バイオマスのエネルギー回収方法。 The method of claim 1 or 2, wherein the high water content biomass is any one of the group consisting of undried animal and plant material, food waste, livestock manure, and organic sludge. 請求項1から3の何れかの方法において、前記動力発生装置により前記バイオマス燃料を熱源とし前記蒸留水を水蒸気に変換し、当該水蒸気により原動機を駆動してなる高含水バイオマスのエネルギー回収方法。 4. The method of claim 1, wherein the power generation device converts the distilled water into steam with the biomass fuel as a heat source, and drives a prime mover with the steam. 請求項1から3の何れかの方法において、前記動力発生装置により前記バイオマス燃料を前記蒸留水使用の熱分解ガス改質反応により燃料ガスへ変換し、当該燃料ガスによりガス駆動原動機又は燃料電池を駆動してなる高含水バイオマスのエネルギー回収方法。 4. The method according to claim 1, wherein the biomass fuel is converted into a fuel gas by a pyrolysis gas reforming reaction using the distilled water by the power generation device, and a gas-driven prime mover or a fuel cell is converted by the fuel gas. An energy recovery method for high water content biomass that is driven. 請求項1から5の何れかの方法において、前記気密断熱容器に前記高含水バイオマスの撹拌手段を設けてなる高含水バイオマスのエネルギー回収方法。 6. The energy recovery method for high water content biomass according to any one of claims 1 to 5, wherein the airtight heat insulating container is provided with a stirring means for the high water content biomass. 請求項1から6の何れかの方法において、前記容器内の水蒸気圧縮機の吸入端部位における水蒸気条件を絶対圧力で50kPa以上にして大気圧以下とし、前記水蒸気圧縮機の吐出側の水蒸気条件を大気圧以上としてなる高含水バイオマスのエネルギー回収方法。 7. The method according to claim 1, wherein the water vapor condition at the suction end of the water vapor compressor in the container is 50 kPa or more in absolute pressure to atmospheric pressure or less, and the water vapor condition on the discharge side of the water vapor compressor is Energy recovery method for high water content biomass above atmospheric pressure. 高含水バイオマスの投入口とバイオマス燃料の取出口とを有する気密断熱容器、当該容器の内部に臨む吸入口を有し且つ該吸入口からの水蒸気を圧縮する水蒸気圧縮機、及び当該圧縮機の吐出口に連なり且つ前記容器の内部との熱交換部を有し前記吐出口からの水蒸気を凝縮する水蒸気凝縮器を有し、前記高含水バイオマスを脱水後の低含水のバイオマス燃料と蒸留水とに分離する脱水装置;並びに前記バイオマス燃料をエネルギーに変換すると共に前記蒸留水を当該変換の用水とする動力発生装置を備えてなる高含水バイオマスのエネルギー回収装置。 An airtight insulated container having a high water content biomass inlet and a biomass fuel outlet, a water vapor compressor having a suction port facing the inside of the container and compressing water vapor from the suction port, and a discharge of the compressor A steam condenser that is connected to the outlet and has a heat exchange part with the inside of the container and condenses the water vapor from the discharge port, and converts the high water content biomass into low water content biomass fuel and distilled water after dehydration. A dehydrating device for separation; and an energy recovery device for high water content biomass comprising a power generation device that converts the biomass fuel into energy and uses the distilled water as water for the conversion. 請求項8のエネルギー回収装置において、前記動力発生装置にバイオマス燃料焚きのボイラーと当該ボイラーからの水蒸気を作動媒体とする原動機とを設け、前記蒸留水を前記ボイラーの用水としてなる高含水バイオマスのエネルギー回収装置。 9. The energy recovery apparatus according to claim 8, wherein the power generation apparatus is provided with a biomass fuel-fired boiler and a prime mover using the steam from the boiler as a working medium, and the energy of the highly hydrous biomass in which the distilled water is used as the boiler water. Recovery device. 請求項8のエネルギー回収装置において、前記動力発生装置に前記バイオマス燃料を前記蒸留水使用の熱分解ガス改質反応により燃料ガスへ変換する熱分解ガス化・改質装置とその燃料ガスにより駆動する原動機又は燃料電池とを設けてなる高含水バイオマスのエネルギー回収装置。 9. The energy recovery apparatus according to claim 8, wherein the power generator is driven by a pyrolysis gasification / reformation apparatus for converting the biomass fuel into fuel gas by a pyrolysis gas reforming reaction using distilled water, and the fuel gas. A high water content biomass energy recovery device comprising a prime mover or a fuel cell.
JP2004107110A 2004-03-31 2004-03-31 Energy recovery method and apparatus for high water content biomass Expired - Fee Related JP4385375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107110A JP4385375B2 (en) 2004-03-31 2004-03-31 Energy recovery method and apparatus for high water content biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107110A JP4385375B2 (en) 2004-03-31 2004-03-31 Energy recovery method and apparatus for high water content biomass

Publications (2)

Publication Number Publication Date
JP2005288320A true JP2005288320A (en) 2005-10-20
JP4385375B2 JP4385375B2 (en) 2009-12-16

Family

ID=35321875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107110A Expired - Fee Related JP4385375B2 (en) 2004-03-31 2004-03-31 Energy recovery method and apparatus for high water content biomass

Country Status (1)

Country Link
JP (1) JP4385375B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055647A1 (en) * 2008-11-13 2010-05-20 本田技研工業株式会社 Apparatus for pretreatment for saccharification of lignocellulose biomass
WO2010070817A1 (en) * 2008-12-16 2010-06-24 本田技研工業株式会社 Lignocellulosic biomass saccharification pre-treatment device
JP2013017947A (en) * 2011-07-11 2013-01-31 Shimizu Corp Treatment method for plant used in phytoremediation
JP2013059274A (en) * 2011-09-12 2013-04-04 Honda Motor Co Ltd Ammonia treatment method in pretreatment of saccharification of biomass
JP2013194539A (en) * 2012-03-16 2013-09-30 Satoru Imura Gas turbine power generator
WO2017104316A1 (en) * 2015-12-15 2017-06-22 日産自動車株式会社 Fuel cell system and control method for fuel cell system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055647A1 (en) * 2008-11-13 2010-05-20 本田技研工業株式会社 Apparatus for pretreatment for saccharification of lignocellulose biomass
JP2010115162A (en) * 2008-11-13 2010-05-27 Honda Motor Co Ltd Apparatus for saccharification pretreatment of lignocellulosic biomass
US8419900B2 (en) 2008-11-13 2013-04-16 Honda Motor Co., Ltd. Apparatus for pretreatment for saccharification of lignocellulose biomass
WO2010070817A1 (en) * 2008-12-16 2010-06-24 本田技研工業株式会社 Lignocellulosic biomass saccharification pre-treatment device
JP2010142680A (en) * 2008-12-16 2010-07-01 Honda Motor Co Ltd Pretreatment device for saccharification of lignocellulose-based biomass
US8444925B2 (en) 2008-12-16 2013-05-21 Honda Motor Co., Ltd. Lignocellulosic biomass saccharification pre-treatment device
JP2013017947A (en) * 2011-07-11 2013-01-31 Shimizu Corp Treatment method for plant used in phytoremediation
JP2013059274A (en) * 2011-09-12 2013-04-04 Honda Motor Co Ltd Ammonia treatment method in pretreatment of saccharification of biomass
JP2013194539A (en) * 2012-03-16 2013-09-30 Satoru Imura Gas turbine power generator
WO2017104316A1 (en) * 2015-12-15 2017-06-22 日産自動車株式会社 Fuel cell system and control method for fuel cell system
JPWO2017104316A1 (en) * 2015-12-15 2018-11-08 日産自動車株式会社 Fuel cell system and control method of fuel cell system
US10566641B2 (en) 2015-12-15 2020-02-18 Nissan Motor Co., Ltd. Fuel cell system and control method for controlling moisture content of fuel

Also Published As

Publication number Publication date
JP4385375B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
DK1799796T3 (en) Slurry drainage and sludge conversion into a renewable fuel
US6133328A (en) Production of syngas from a biomass
US8669404B2 (en) Method for conversion of biomass to biofuel
US20110239620A1 (en) Method for processing organic waste and a device for carrying out said method
US20110315096A1 (en) Gasifier Hybrid combined cycle power plant
JP2012520166A (en) Biomass utilization method and utilization system, and block-type thermoelectric power plant
Kamari et al. Assessment of a biomass-based polygeneration plant for combined power, heat, bioethanol and biogas
KR102174013B1 (en) Power generation system of organic rankine cycle using unused low and middle temperature waste heat
Budzianowski Opportunities for bioenergy in Poland: biogas and solid biomass fuelled power plants
US10753600B2 (en) Turbine system and method
Tabriz et al. Biomass driven polygeneration systems: A review of recent progress and future prospects
ZA200703757B (en) Slurry dewatering and conversion of biosolids to a renewable fuel
KR101507956B1 (en) Steam supply and power generation energy system using organic waste and method thereof
JP4385375B2 (en) Energy recovery method and apparatus for high water content biomass
CN103910478A (en) Two-stage drying and pyrolysis method for sludge disposal and heat energy utilization and device system
US10876057B1 (en) Waste to energy conversion without CO2 emissions
CN101974346A (en) Preparation method of ecological oil
CN108384580B (en) Biomass gasification and organic wastewater purification combined circulation system and use method thereof
CN101962580A (en) Ecological oil
Lazaroiu et al. The Technological Matrix for the Efficient Use of Biofuels
OA20694A (en) Waste to energy conversion without C02 emissions.
CZ293101B6 (en) Process for producing electrical energy and heat during pyrolysis liquefaction of solid organic substances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151009

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees