JP2005340615A - Resistor and motor driving electric power conversion system using the same - Google Patents

Resistor and motor driving electric power conversion system using the same Download PDF

Info

Publication number
JP2005340615A
JP2005340615A JP2004159259A JP2004159259A JP2005340615A JP 2005340615 A JP2005340615 A JP 2005340615A JP 2004159259 A JP2004159259 A JP 2004159259A JP 2004159259 A JP2004159259 A JP 2004159259A JP 2005340615 A JP2005340615 A JP 2005340615A
Authority
JP
Japan
Prior art keywords
winding
resistor
winding region
resistance wire
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004159259A
Other languages
Japanese (ja)
Inventor
Takashi Kojima
崇 小嶋
Nobunaga Suzuki
宣長 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2004159259A priority Critical patent/JP2005340615A/en
Publication of JP2005340615A publication Critical patent/JP2005340615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology which prevents an ignition or smoke of a resistor for the regenerative power consumption of a motor driving electric power conversion system. <P>SOLUTION: The resistor for the regenerative power consumption is configured such that a winding region where a resistance value of a resistive line per unit winding width is larger than the other winding region is formed partly, to be wound on a core, and a heating value by energization is larger in the winding region than in the other winding region. When the resistive line is disconnected by an excessive current, the disconnection occurs in the winding region having a large resistance value. Further, in the winding region where the resistance value of the resistive line is large, when the resistive line is disconnected by the excessive current, a distance between the resistive line and a case is set to a distance in which an arc discharge between the resistive line and the case is prevented from generating, to suppress an ignition, a smoke or an enlargement of a burnout. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、モータ駆動用の電力変換装置に係り、特に、回生電力を消費させる抵抗器の構成に関する。   The present invention relates to a power converter for driving a motor, and more particularly to a configuration of a resistor that consumes regenerative power.

従来、モータ駆動用電力変換装置においては、モータ回転を減速する場合、モータを発電機として動作させ、発電電力を回生電力として該モータ駆動用電力変換装置側に戻し、該回生電力を該電力変換装置内の抵抗器で熱エネルギーとして消費させるようにしている。例えば、特開平5−336758号公報(特許文献1)には、回生電力を消費させる回生抵抗(抵抗器)の焼損を防ぐための技術として、該回生抵抗に並列に、サイリスタスイッチと故障判定回路とを設けるとした構成が記載されている。   Conventionally, in a motor drive power converter, when the motor rotation is decelerated, the motor is operated as a generator, and the generated power is returned to the motor drive power converter as the regenerative power, and the regenerative power is converted to the power converter. It is made to consume as heat energy with the resistor in the apparatus. For example, Japanese Patent Application Laid-Open No. 5-336758 (Patent Document 1) discloses a thyristor switch and a failure determination circuit in parallel with a regenerative resistor as a technique for preventing the regenerative resistor (resistor) that consumes regenerative power from burning. A configuration in which the above is provided is described.

特開平5−336758号公報JP-A-5-336758

従来のモータ駆動用電力変換装置では、回生電力を抵抗器で熱エネルギーとして消費させるとき、該回生電力による過大電流が該抵抗器に流れた場合には、該抵抗器の抵抗線が筐体内で断線するようにしている。このときアークが生じ、それによる発火や発煙、さらには筐体内での各部の焼損の拡大等が発生し、安全性の点で問題となることが多い。また、上記公報記載の技術は、あくまでも回生抵抗(抵抗器)の焼損を防ぐためのものであって、該回生抵抗が破壊される場合における発火や発煙や筐体内の焼損拡大等を抑えるための技術ではない。
本発明の課題点は、上記従来技術の状況に鑑み、モータ駆動用電力変換装置において、回生電力を消費させる抵抗器に過大電流が流れて破壊されるとき、発火や発煙や焼損の拡大等の発生を抑えられるようにすることである。
本発明の目的は、かかる課題点を解決し、安全性を確保可能なモータ駆動用電力変換装置技術を提供することにある。
In a conventional motor drive power conversion device, when regenerative power is consumed as thermal energy by a resistor, if an excessive current due to the regenerative power flows to the resistor, the resistance wire of the resistor is within the housing. I try to break. At this time, an arc is generated, and as a result, ignition and smoke are generated, and further, burning of each part in the casing is increased, which is often a problem in terms of safety. Further, the technology described in the above publication is only for preventing the regenerative resistor (resistor) from being burned out, and for suppressing the ignition, smoke generation, and the expansion of the burnout in the case when the regenerative resistor is destroyed. It's not technology.
In view of the state of the prior art, the problem of the present invention is that when an excessive current flows through a resistor that consumes regenerative power and is destroyed in a motor drive power conversion device, such as ignition, smoke generation, and expansion of burning. It is to be able to suppress the occurrence.
An object of the present invention is to solve the above-described problems and provide a power conversion device technology for driving a motor that can ensure safety.

上記課題点を解決するために、本発明では、モータ駆動用電力変換装置において、回生電力消費用の抵抗器として、抵抗線が単位巻線幅当りの抵抗値が他の巻線領域よりも大きくなる巻線領域を一部に形成する状態で芯材に巻かれ、通電時に該巻線領域の発熱量が他の巻線領域の発熱量よりも大きくなる構成とし、該抵抗線が過大電流により断線する場合、該断線が上記巻線領域の範囲内で発生するようにし、上記他の巻線領域では発生しないようにする。また、上記抵抗線の抵抗値が大きい巻線領域において該抵抗線と筐体との間の距離は、該抵抗線が過大電流の通電により断線し抵抗器が破壊されるとき、該抵抗線と該筐体との間のアークの発生を抑えられる距離とする。
具体的には、上記を基本的構成要件とした抵抗器とそれを用いたモータ駆動用電力変換装置を、本発明として提案する。
In order to solve the above problems, according to the present invention, in a power converter for driving a motor, as a resistor for regenerative power consumption, a resistance wire has a resistance value per unit winding width larger than that of other winding regions. It is wound around the core with a part of the winding region formed, and the heat generation amount of the winding region is larger than the heat generation amount of other winding regions when energized, and the resistance wire is caused by an excessive current. In the case of disconnection, the disconnection is generated within the range of the winding region and is not generated in the other winding region. Further, in the winding region where the resistance value of the resistance wire is large, the distance between the resistance wire and the housing is such that when the resistance wire is broken by energization of an excessive current and the resistor is destroyed, The distance between the casing and the arc can be suppressed.
Specifically, the present invention proposes a resistor having the above basic configuration requirements and a motor driving power converter using the resistor.

本発明によれば、モータ駆動用電力変換装置において、回生電力を消費させる抵抗器の破壊時における発火や発煙や焼損の拡大等の問題を改善することができ、安全性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, in the motor drive power converter device, problems, such as ignition at the time of destruction of the resistor which consumes regenerative electric power, smoke, and expansion of burning, can be improved, and safety can be improved. .

以下、本発明の最良の実施形態につき、図面を用いて説明する。
図1は、本発明の第1の実施形態としての、モータ駆動用電力変換装置用の抵抗器の構成例図で、(a)は筐体内部の平面図、(b)は側断面図である。
Hereinafter, the best embodiment of the present invention will be described with reference to the drawings.
1A and 1B are configuration example diagrams of a resistor for a power converter for driving a motor according to a first embodiment of the present invention. FIG. 1A is a plan view of the inside of the housing, and FIG. is there.

図1において、100は抵抗器、101は抵抗線、102は芯材、103は戻り線、104は引出し線、105aは、抵抗線101の一端を引出し線104に接続するための接続部、105bは、抵抗線101の他端を戻り線103の一端に接続するための接続部、105cは、戻り線103の他端を引出し線104に接続するための接続部、106a、106b、106は筐体、201は、抵抗線101の単位巻線幅(X方向の単位巻線幅)当りの抵抗値を他の巻線領域よりも大きくされた巻線領域、202は、他の巻線領域(巻線領域201以外の巻線領域)、wは、抵抗線101が巻き付けられる部分の芯材102の幅寸法(Y方向寸法)であって該芯材102の幅方向(Y方向)の両端部が凹状にされた部分の幅寸法、wは、抵抗線101が巻き付けられる部分の芯材102の幅寸法であって該芯材102の幅方向の両端部が凹状にされない部分の幅寸法、g1aは、芯材102の厚さ方向(Z方向)における巻線領域201の抵抗線101と筐体106aとの間の距離、g1bは、Z方向における巻線領域201の抵抗線101と筐体106bとの間の距離、g2aは、Z方向における巻線領域202の抵抗線101と筐体106aとの距離、g2bは、Z方向における巻線領域202の抵抗線101と筐体106bとの距離、g1cは、芯材102の幅方向(Y方向)における巻線領域201の抵抗線101と戻り線103との距離、g1dは、芯材102の幅方向(Y方向)における巻線領域201の抵抗線101と筐体106との距離である。巻線領域201においては抵抗線101の単位巻線幅当りの抵抗値が、巻線領域201、202中で最大となる、すなわち、巻線領域201における抵抗線101の単位巻線幅当りの抵抗値は、巻線領域202における抵抗線101の単位巻線幅当りの抵抗値よりも大きくなるようにしてある。巻線領域201においては抵抗線101の巻線密度を巻線領域202よりも高めることで、上記単位巻線幅当りの抵抗値を増大させている。距離g1a、g1b、g1cはそれぞれ、抵抗線101と、筐体106a、106b、106との間でアークが発生しない距離とされ、距離g1dは、抵抗線101と戻り線103との間でアークが発生しない距離とされている。本構成では、抵抗線101、芯材102、戻り線103、引出し線104及び接続部105a、105b、105cなどが巻線構体を構成する。 In FIG. 1, 100 is a resistor, 101 is a resistance wire, 102 is a core material, 103 is a return wire, 104 is a lead wire, 105a is a connection portion for connecting one end of the resistance wire 101 to the lead wire 104, 105b Is a connection part for connecting the other end of the resistance wire 101 to one end of the return line 103, 105c is a connection part for connecting the other end of the return line 103 to the lead line 104, and 106a, 106b, 106 are housings. The body 201 is a winding region in which the resistance value per unit winding width (unit winding width in the X direction) of the resistance wire 101 is made larger than that of other winding regions, and 202 is another winding region ( winding region other than the winding region 201), w 1 is at both ends in the width direction of the core member 102 a width (Y-direction dimension) of the core 102 of a portion where the resistance wire 101 is wound (Y-direction) width parts is concave portion, w 2 is Width of the portion both end portions in the width direction of the core member 102 a width of the core 102 of the part antifibrinolytic 101 is wound is not concave, g 1a, the thickness direction (Z-direction of the core member 102 ), The distance between the resistance wire 101 of the winding region 201 and the housing 106a, g 1b is the distance between the resistance wire 101 of the winding region 201 and the housing 106b in the Z direction, and g 2a is Z The distance between the resistance wire 101 in the winding region 202 and the housing 106a in the direction, g 2b is the distance between the resistance wire 101 in the winding region 202 and the housing 106b in the Z direction, and g 1c is the width of the core member 102. The distance g 1d between the resistance wire 101 and the return wire 103 in the winding region 201 in the direction (Y direction) is the resistance wire 101 and the housing 106 in the winding region 201 in the width direction (Y direction) of the core material 102. Is the distance. In the winding region 201, the resistance value per unit winding width of the resistance wire 101 becomes the maximum in the winding regions 201 and 202, that is, the resistance per unit winding width of the resistance wire 101 in the winding region 201. The value is set to be larger than the resistance value per unit winding width of the resistance wire 101 in the winding region 202. In the winding region 201, the resistance value per unit winding width is increased by increasing the winding density of the resistance wire 101 as compared with the winding region 202. The distances g 1a , g 1b , and g 1c are distances at which no arc is generated between the resistance wire 101 and the housings 106 a, 106 b, and 106. The distance g 1d is the distance between the resistance wire 101 and the return wire 103. The distance is such that no arc occurs between them. In this configuration, the resistance wire 101, the core material 102, the return wire 103, the lead wire 104, the connecting portions 105a, 105b, 105c, and the like constitute a winding structure.

上記構成において、回生電力の消費時に、抵抗線101全体に過大電流が流れると、巻線領域201の抵抗線101の抵抗値による発熱量が、他の巻線領域202の発熱量よりも大きくなり、該巻線領域201において抵抗線101が断線する。しかしながら、上記距離g1a、g1b、g1c、g1dはそれぞれ十分な値が確保されているため、該断線のとき、該抵抗線101と、筐体106a、106b、106や戻り線103との間のアークの発生は抑えられる。これらの間でのアークの発生が抑えられることで、筐体内における発火や発煙や焼損の拡大等が抑えられ、安全性が確保される。 In the above configuration, when an excessive current flows through the entire resistance wire 101 when the regenerative power is consumed, the amount of heat generated by the resistance value of the resistance wire 101 in the winding region 201 becomes larger than the amount of heat generated in the other winding regions 202. The resistance wire 101 is disconnected in the winding region 201. However, since the distances g 1a , g 1b , g 1c , and g 1d have sufficient values, the resistance wire 101 and the casings 106a, 106b, and 106 and the return wire 103 are The occurrence of arc during the period is suppressed. By suppressing the occurrence of arcs between them, it is possible to suppress ignition, smoke generation, and expansion of burnout in the housing, thereby ensuring safety.

なお、上記図1(b)の構成では、筐体106a、106bをそれぞれ、巻線領域201の部分で局部的にZ方向の距離g1a、g1bを確保する構成としたが、この他、巻線領域201、202を含む全巻線領域にわたって距離g1a、g1bが確保される構成としてもよい(以下、該構成のものを第1の実施形態の変形形態という)。
図2は、本発明の第2の実施形態としてのモータ駆動用電力変換装置の構成例図である。回生電力消費用の抵抗器には、本発明の抵抗器を用いる。以下、図2の説明中で用いる図1の構成要素には、図1で用いた符合を付す。
In the configuration of FIG. 1B, the casings 106a and 106b are configured to locally secure the distances g 1a and g 1b in the Z direction at the winding region 201, respectively. The distances g 1a and g 1b may be ensured over the entire winding area including the winding areas 201 and 202 (hereinafter, this configuration is referred to as a modified embodiment of the first embodiment).
FIG. 2 is a configuration example diagram of a motor drive power converter as a second embodiment of the present invention. The resistor of the present invention is used as the resistor for regenerative power consumption. In the following, the components used in FIG. 2 used in FIG.

図2において、300はモータ駆動用電力変換装置、301u、301v、301wは交流電源、Nはその中性点、302は、中性点NをB種接地(第二種接地)する接地部、303は、交流電源301u、301v、301wからの交流電力を直流電力に変換するためのコンバータ、304は平滑用コンデンサ、100は、回生電力消費用の抵抗器であって例えば図1の構成の抵抗器、305は、抵抗器100の接続をオン・オフするためのスイッチ用トランジスタ、306は、直流電力を交流電力に変換するインバータ、307は、モータ駆動用電力変換装置300の本体ケース、308は、モータ駆動用電力変換装置300内で漏電が発生したときに漏電電流を逃がして感電を防ぐために本体ケース307をD種接地(第三種接地)する接地部、311は、モータ駆動用電力変換装置300により駆動されるモータ、312は、モータ311の負荷である。   In FIG. 2, 300 is a motor drive power conversion device, 301u, 301v, and 301w are AC power supplies, N is a neutral point thereof, 302 is a grounding unit that grounds the neutral point N by B type (second type grounding), 303 is a converter for converting AC power from AC power supplies 301u, 301v, and 301w into DC power, 304 is a smoothing capacitor, and 100 is a resistor for regenerative power consumption. 305 is a switching transistor for turning on / off the connection of the resistor 100, 306 is an inverter for converting DC power into AC power, 307 is a main body case of the motor driving power converter 300, and 308 is When the electric leakage occurs in the motor drive power converter 300, the main body case 307 is grounded in the D type (third type grounding) in order to release the leakage current and prevent an electric shock. Grounding unit, 311, a motor driven by a motor drive power converter 300, 312 is a load of the motor 311.

上記構成において、力行動作時は、交流電源301u、301v、301wからの交流電力がモータ駆動用電力変換装置300において電力変換され、該電力変換された電力がモータ311に供給される。すなわち、交流電源301u、301v、301wからの交流電力がモータ駆動用電力変換装置300に入力され、該モータ駆動用電力変換装置300内で、コンバータ303において直流電力に変換され、該直流電力が平滑用コンデンサ304により平滑化され、該平滑化された直流電力がインバータ306において所定の交流電力に変換され、該交流電力がモータ311側に出力される。モータ311は、該交流電力により回転駆動され、負荷312を駆動する。   In the above configuration, during the power running operation, AC power from the AC power supplies 301 u, 301 v, 301 w is converted in the motor driving power conversion device 300, and the converted power is supplied to the motor 311. That is, AC power from the AC power supplies 301u, 301v, 301w is input to the motor drive power conversion device 300, and is converted into DC power by the converter 303 in the motor drive power conversion device 300, and the DC power is smoothed. The DC power smoothed by the capacitor 304 is converted into predetermined AC power by the inverter 306, and the AC power is output to the motor 311 side. The motor 311 is rotationally driven by the AC power and drives the load 312.

一方、回生動作時は、負荷312のエネルギーによりモータ311が回転駆動されて発電機として作動し、発電した電力(交流電力)をモータ駆動用電力変換装置300側に供給する。モータ311から供給された交流電力(以下、回生電力という)は、インバータ306で直流電力に変換される。本図2の構成のモータ駆動用電力変換装置300では、コンバータ303には交流電源301u、301v、301wに電力を変換する機能がない。このため、モータ311から供給された回生電力は平滑用コンデンサ304に蓄積される。回生電力の平滑用コンデンサ304への供給が許容蓄積量を超えた場合には該平滑用コンデンサ304は破壊される。本構成では、該平滑用コンデンサ304を破壊させずに回生動作を行うために、平滑用コンデンサ304の両端の直流電圧VDCが所定値を超えた場合に、スイッチ用トランジスタ305をオン状態にして抵抗器100に回生電力を供給し、該抵抗器100で回生電力を熱エネルギーとして消費させる。直流電圧VDCが所定値以下になった場合には、該スイッチ用トランジスタ305をオフ状態にして回生電力を平滑用コンデンサ304に蓄積させる。すなわち、抵抗器100は、回生電力を消費させて直流電圧VDCが所定値を超えないようにして平滑用コンデンサ304の破壊を防止する。抵抗器100において回生電力を消費させる際、該抵抗器100内では、巻線領域201における抵抗線101で発生する熱エネルギー(発熱量)が、他の巻線領域で発生する熱エネルギー(発熱量)よりも大きくなり、該回生電力による電流が過大の場合は、該巻線領域201において抵抗線101が溶断する。該溶断時も、抵抗線101には継続して直流電圧VDCが印加されるため、抵抗線101の溶断部間にはアークが発生し易い。しかしながら、本発明の図1の抵抗器100では、抵抗線101と筐体106a、106b、106との間の距離g1a、g1b、g1dや、抵抗線101と戻り線103との間の距離g1cはそれぞれ、十分な値が確保されているため、抵抗線101の溶断部間にアークが発生したとしても、該抵抗線101と、筐体106a、106b、106や該戻り線103との間ではアークの発生は抑えられる。該箇所でのアーク発生が抑えられることで、筐体内における発火や発煙や焼損の拡大等が抑えられ、安全性が確保されるとともに、抵抗器100の該筐体106a、106b、106とモータ駆動用電力変換装置300の本体ケース307との間に地絡電流が流れることも阻止され、この点からの安全性も確保される。 On the other hand, during the regenerative operation, the motor 311 is rotationally driven by the energy of the load 312 to operate as a generator, and the generated power (AC power) is supplied to the motor drive power conversion device 300 side. AC power (hereinafter referred to as regenerative power) supplied from the motor 311 is converted into DC power by the inverter 306. In the motor drive power conversion device 300 having the configuration shown in FIG. 2, the converter 303 does not have a function of converting power into the AC power supplies 301u, 301v, and 301w. For this reason, the regenerative electric power supplied from the motor 311 is accumulated in the smoothing capacitor 304. When the supply of regenerative power to the smoothing capacitor 304 exceeds the allowable accumulation amount, the smoothing capacitor 304 is destroyed. In this configuration, in order to perform the regenerative operation without destroying the smoothing capacitor 304, the switching transistor 305 is turned on when the DC voltage VDC across the smoothing capacitor 304 exceeds a predetermined value. Regenerative power is supplied to the resistor 100, and the regenerative power is consumed as thermal energy by the resistor 100. When the DC voltage VDC becomes equal to or lower than a predetermined value, the switching transistor 305 is turned off and regenerative power is accumulated in the smoothing capacitor 304. That is, the resistor 100 prevents the smoothing capacitor 304 from being destroyed by consuming the regenerative power so that the DC voltage VDC does not exceed a predetermined value. When the regenerative power is consumed in the resistor 100, the heat energy (heat generation amount) generated in the resistance wire 101 in the winding region 201 in the resistor 100 is the heat energy (heat generation amount) generated in another winding region. ) And the current due to the regenerative power is excessive, the resistance wire 101 is melted in the winding region 201. Since the direct current voltage VDC is continuously applied to the resistance wire 101 even during the fusing, an arc is easily generated between the fusing portions of the resistance wire 101. However, in the resistor 100 of FIG. 1 of the present invention, the distances g 1a , g 1b , g 1d between the resistance wire 101 and the housings 106 a, 106 b, 106, and between the resistance wire 101 and the return wire 103. Since each of the distances g 1c has a sufficient value, even if an arc is generated between the melted portions of the resistance wire 101, the resistance wire 101 and the casings 106a, 106b, 106 and the return wire 103 are During this period, arcing is suppressed. Suppressing the occurrence of arcs at the location prevents ignition, smoke generation, and expansion of burnout in the housing, thereby ensuring safety and driving the housing 106a, 106b, 106 of the resistor 100 and the motor. A ground fault current is also prevented from flowing between the main body case 307 of the power conversion apparatus 300 and safety from this point is also ensured.

図3は、本発明の第3の実施形態としての、モータ駆動用電力変換装置用の抵抗器の構成例図である。本第3の実施形態の抵抗器は、上記第1の実施形態の抵抗器に対し、巻線領域201における抵抗線として、その素線断面積が巻線領域202の抵抗線の素線断面積よりも小さいものを用い、かつ、該巻線領域201における巻線密度が巻線領域202よりも高くなるようにし、巻線領域201における抵抗線の単位巻線幅当りの抵抗値を増大させるようにした場合である。   FIG. 3 is a diagram illustrating a configuration example of a resistor for a power converter for driving a motor as a third embodiment of the present invention. The resistor according to the third embodiment is different from the resistor according to the first embodiment in that the wire cross-sectional area of the resistance wire in the winding region 202 is a resistance wire in the winding region 201. Smaller than that, and the winding density in the winding region 201 is made higher than that in the winding region 202 so that the resistance value per unit winding width of the resistance wire in the winding region 201 is increased. This is the case.

図3において、101'は、巻線領域201における抵抗線、g1a'は、芯材102の厚さ方向(Z方向)における巻線領域201の抵抗線101'と筐体106aとの間の距離、g1b'は、Z方向における巻線領域201の抵抗線101'と筐体106bとの間の距離である。他の部分の構成は上記図1の場合と同様である。本構成では、抵抗線101、101'、芯材102、戻り線(図示なし)、引出し線(図示なし)及び接続部(図示なし)などが巻線構体を構成する。 In FIG. 3, 101 ′ is a resistance wire in the winding region 201, and g 1a ′ is between the resistance wire 101 ′ in the winding region 201 in the thickness direction (Z direction) of the core material 102 and the housing 106a. The distance, g 1b ′, is the distance between the resistance wire 101 ′ of the winding region 201 and the housing 106b in the Z direction. The configuration of the other parts is the same as that in FIG. In this configuration, the resistance wires 101 and 101 ′, the core member 102, the return line (not shown), the lead wire (not shown), the connection portion (not shown), and the like constitute the winding structure.

上記構成において、回生電力の消費時に、抵抗線101、101'に過大電流が流れると、巻線領域201の抵抗線101'による発熱量が、他の巻線領域202の抵抗線101の発熱量よりも大きくなり、該巻線領域201の範囲内において抵抗線101'が断線(溶断)する。しかしながら、上記距離g1a'、g1b'及び芯材102の幅方向(Y方向)における巻線領域201の抵抗線101'と戻り線(図示なし)との距離(図示なし)、芯材102の幅方向(Y方向)における巻線領域201の抵抗線101'と筐体との距離(図示なし)はそれぞれ、十分な値が確保されているため、該断線のとき、抵抗線101'と、筐体106a、106bや戻り線との間でのアーク発生は抑えられる。該箇所でのアーク発生が抑えられることで、筐体内における発火や発煙や焼損の拡大等が抑えられ、安全性が確保される。また、上記図2に示すようなモータ駆動用電力変換装置に該抵抗器100を回生電力消費用として用いた場合には、上記筐体106a、106bとモータ駆動用電力変換装置の本体ケース(図示なし)との間に地絡電流が流れることも阻止され、この点からの安全性も確保される。特に、本第3の実施形態の構成では、巻線領域201における抵抗線101'の抵抗値を増大させ易く、他の巻線領域202の抵抗線101の抵抗値との差を大きくし易い。このため、抵抗線101、101'に過大電流が流れた場合、確実に巻線領域201の抵抗線101'を断線(溶断)させることができる。 In the above configuration, when an excessive current flows through the resistance wires 101 and 101 ′ when the regenerative power is consumed, the amount of heat generated by the resistance wire 101 ′ in the winding region 201 is changed to the amount of heat generated by the resistance wire 101 in the other winding region 202. The resistance wire 101 ′ is disconnected (melted) within the winding region 201. However, the distances g 1a ′, g 1b ′, and the distance (not shown) between the resistance wire 101 ′ of the winding region 201 and the return line (not shown) in the width direction (Y direction) of the core material 102, the core material 102. The distance (not shown) between the resistance line 101 ′ of the winding region 201 and the housing in the width direction (Y direction) of the case has a sufficient value, so that the resistance line 101 ′ Arc generation between the casings 106a and 106b and the return line can be suppressed. By suppressing the occurrence of arcs at the location, ignition, smoke generation, and expansion of burnout in the housing are suppressed, and safety is ensured. When the resistor 100 is used for regenerative power consumption in the motor drive power converter as shown in FIG. 2, the casings 106a and 106b and the body case of the motor drive power converter (shown in the figure). The ground fault current is also prevented from flowing in between, and safety from this point is also ensured. In particular, in the configuration of the third embodiment, the resistance value of the resistance wire 101 ′ in the winding region 201 can be easily increased, and the difference from the resistance value of the resistance wire 101 in the other winding region 202 can be easily increased. Therefore, when an excessive current flows through the resistance wires 101 and 101 ′, the resistance wire 101 ′ in the winding region 201 can be surely disconnected (melted).

なお、上記図3の構成では、筐体106a、106bをそれぞれ、巻線領域201の部分で局部的にZ方向の距離g1a'、g1b'を確保する構成としたが、この他、巻線領域201、202を含む全巻線領域にわたって距離g1a'、g1b'を確保する構成としてもよい(以下、該構成のものを第3の実施形態の変形形態という)。 In the configuration of FIG. 3, the casings 106a and 106b are configured to locally secure the distances g 1a ′ and g 1b ′ in the Z direction at the winding region 201, respectively. The distances g 1a ′ and g 1b ′ may be ensured over the entire winding area including the line areas 201 and 202 (hereinafter, this configuration is referred to as a modification of the third embodiment).

上記第3の実施形態としての抵抗器または上記第3の実施形態の変形形態としての抵抗器を、回生電力消費用の抵抗器として用いるモータ駆動用電力変換装置としては、例えば図2の構成において、回生電力消費用の抵抗器100に上記第3の実施形態としての抵抗器または上記その変形形態としての抵抗器を用いる構成のものが考えられる。該モータ駆動用電力変換装置の作用、効果は、上記図2で説明した場合と同様である。   As a motor drive power converter using the resistor as the third embodiment or the resistor as a modification of the third embodiment as a resistor for regenerative power consumption, for example, in the configuration of FIG. A configuration in which the resistor as the third embodiment or the resistor as a variation thereof is used as the regenerative power consumption resistor 100 can be considered. The operation and effect of the motor drive power conversion device are the same as those described with reference to FIG.

図4は、本発明の第4の実施形態としての、モータ駆動用電力変換装置用の抵抗器の構成例図である。本第4の実施形態の抵抗器は、上記第1の実施形態の抵抗器や上記第3の実施形態の抵抗器と異なり、抵抗線の単位巻線幅当りの抵抗値が他よりも大きくなる巻線領域201を、巻線領域202を含む全巻線領域の端部側に設けた場合の例である。他部の構成は、上記第1、第3の実施形態の場合、またはそれぞれの上記変形形態の場合と同様である。
該第4の実施形態の抵抗器においても、上記第1、第3の実施形態の変形形態の場合と同様の変形形態が考えられる(以下、該変形形態を第4の実施形態の変形形態という)。
FIG. 4 is a configuration example diagram of a resistor for a motor-driven power converter as a fourth embodiment of the present invention. Unlike the resistor of the first embodiment and the resistor of the third embodiment, the resistor of the fourth embodiment has a resistance value per unit winding width of the resistance wire larger than the others. In this example, the winding region 201 is provided on the end side of the entire winding region including the winding region 202. The configuration of the other parts is the same as in the case of the first and third embodiments, or in the case of the respective modified embodiments.
Also in the resistor of the fourth embodiment, a modification similar to the modification of the first and third embodiments can be considered (hereinafter, the modification is referred to as a modification of the fourth embodiment). ).

上記第4の実施形態または該第4の実施形態の変形形態の抵抗器においても、上記第1、第3の実施形態またはそれらの変形形態の抵抗器と同様の作用・効果が得られる。該第4の実施形態またはその変形形態の抵抗器を、回生電力消費用の抵抗器として用いるモータ駆動用電力変換装置の場合も同様である。   Also in the resistor according to the fourth embodiment or the modified embodiment of the fourth embodiment, the same operations and effects as those of the resistor according to the first, third, or modified embodiments can be obtained. The same applies to the motor drive power conversion device that uses the resistor of the fourth embodiment or its modification as a resistor for regenerative power consumption.

上記実施形態またはその変形形態のうち、巻線領域201の抵抗線として素線断面積の小さいものを用いる構成では、該巻線領域201における抵抗線の巻線密度をも他より高くする構成としたが、該巻線密度は他の巻線領域202と同等かまたはそれ以下とした構成としてもよい。また、上記実施形態またはその変形形態では、本発明の抵抗器を、モータ駆動用電力変換装置の回生電力消費用の抵抗器の場合につき説明したが、本発明の抵抗器はこれ以外の用途に用いてもよい。   Among the above-described embodiments or variations thereof, in the configuration using a wire having a small cross-sectional area as the resistance wire of the winding region 201, the winding density of the resistance wire in the winding region 201 is also higher than the others. However, the winding density may be equal to or less than that of the other winding region 202. Moreover, although the resistor of this invention was demonstrated in the said embodiment or its modification about the case of the resistor for the regeneration electric power consumption of the motor drive power converter device, the resistor of this invention is used for other uses. It may be used.

本発明の第1の実施形態としての抵抗器の構成例図である。1 is a configuration example diagram of a resistor as a first embodiment of the present invention. 本発明の第2の実施形態としてのモータ駆動用電力変換装置の構成例図である。It is a structural example figure of the power converter device for motor drive as the 2nd Embodiment of this invention. 本発明の第3の実施形態としての抵抗器の構成例図である。It is a structural example figure of the resistor as the 3rd Embodiment of this invention. 本発明の第4の実施形態としての抵抗器の構成例図である。It is a structural example figure of the resistor as the 4th Embodiment of this invention.

符号の説明Explanation of symbols

100…抵抗器、
101、101'…抵抗線、
102…芯材、
103…戻り線、
104…引出し線、
105a、105b、105c…接続部、
106a、106b、106…筐体、
201、202…巻線領域、
、w…芯材の幅寸法、
300…モータ駆動用電力変換装置、
301u、301v、301w…交流電源、
302、308…接地部、
303…コンバータ、
304…平滑用コンデンサ、
305…スイッチ用トランジスタ、
306…インバータ、
307…本体ケース、
311…モータ、
312…負荷。
100 ... resistor,
101, 101 '... resistance wire,
102 ... Core material,
103 ... return line,
104 ... leader line,
105a, 105b, 105c ... connection part,
106a, 106b, 106 ... casing
201, 202 ... winding region,
w 1 , w 2 ... the width dimension of the core material,
300... Motor drive power converter,
301u, 301v, 301w ... AC power supply,
302, 308 ... grounding part,
303 ... converter,
304 ... smoothing capacitor,
305 ... Switch transistor
306 ... an inverter,
307 ... body case,
311 ... motor,
312 ... Load.

Claims (5)

芯材に抵抗線を巻き付けた巻線構体を筐体内に備えて成る抵抗器であって、
上記巻線構体は、上記抵抗線が上記芯材に対し、単位巻線幅当りの抵抗値が他の巻線領域よりも大きくなる巻線領域を一部に形成して巻き付けられ、通電時に該巻線領域での発熱量が他の巻線領域よりも大きくなる構成であることを特徴とする抵抗器。
A resistor comprising a winding structure in which a resistance wire is wound around a core material in a housing,
The winding structure is wound by partially forming a winding region in which the resistance wire has a resistance value per unit winding width larger than that of other winding regions. A resistor having a configuration in which a heat generation amount in a winding region is larger than that in other winding regions.
上記巻線構体は、上記単位巻線幅当りの抵抗値が他よりも大きい巻線領域が、巻線密度が高い巻線領域、素線断面積が小さい巻線領域、または素線断面積が小さくかつ巻線密度が高い巻線領域により形成される請求項1に記載の抵抗器。   In the winding structure, a winding region having a resistance value per unit winding width larger than the others is a winding region having a high winding density, a winding region having a small wire cross-sectional area, or a wire cross-sectional area. The resistor according to claim 1, wherein the resistor is formed by a winding region having a small and high winding density. 上記筐体、上記巻線構体のいずれか一方または両方は、上記抵抗線の上記単位巻線幅当りの抵抗値が大きい巻線領域において該抵抗線と該筐体との間の距離が、他の巻線領域における該距離よりも大きくされた構成である請求項1に記載の抵抗器。   Either one or both of the casing and the winding structure has a distance between the resistance wire and the casing in the winding region where the resistance value of the resistance wire per unit winding width is large. The resistor according to claim 1, wherein the resistor is configured to be larger than the distance in the winding region. 上記巻線構体は、上記芯材がその一部に、幅方向の両端側が凹状にされて幅寸法を狭くされた部分を有し、該部分に、上記抵抗線の上記単位巻線幅当りの抵抗値が他の巻線領域よりも大きくなる巻線領域が配され、該巻線領域の抵抗線と上記筐体との間の距離が、他の部分の巻線領域の抵抗線と該筐体との間の距離よりも大きくされている請求項1に記載の抵抗器。   The winding structure has a part in which the core material is partly concaved at both ends in the width direction so that the width dimension is narrowed, and the resistance wire per unit winding width is provided in the part. A winding region having a resistance value larger than that of the other winding region is arranged, and the distance between the resistance wire in the winding region and the casing is set so that the resistance wire in the other winding region and the housing The resistor according to claim 1, wherein the resistor is larger than a distance between the body. 交流電源からの電力を変換してモータに供給し該モータを駆動するモータ駆動用電力変換装置であって、
請求項1から4のいずれかに記載の抵抗器を、上記モータ側からの回生電力を消費させる抵抗器として用いたことを特徴とするモータ駆動用電力変換装置。
A power conversion device for driving a motor that converts power from an AC power source and supplies the motor to drive the motor,
5. A motor driving power conversion device, wherein the resistor according to claim 1 is used as a resistor for consuming regenerative power from the motor side.
JP2004159259A 2004-05-28 2004-05-28 Resistor and motor driving electric power conversion system using the same Pending JP2005340615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159259A JP2005340615A (en) 2004-05-28 2004-05-28 Resistor and motor driving electric power conversion system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159259A JP2005340615A (en) 2004-05-28 2004-05-28 Resistor and motor driving electric power conversion system using the same

Publications (1)

Publication Number Publication Date
JP2005340615A true JP2005340615A (en) 2005-12-08

Family

ID=35493816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159259A Pending JP2005340615A (en) 2004-05-28 2004-05-28 Resistor and motor driving electric power conversion system using the same

Country Status (1)

Country Link
JP (1) JP2005340615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509815A (en) * 2017-03-08 2020-04-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ECG cable for connecting ECG monitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509815A (en) * 2017-03-08 2020-04-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ECG cable for connecting ECG monitor
JP7160823B2 (en) 2017-03-08 2022-10-25 コーニンクレッカ フィリップス エヌ ヴェ ECG cable for ECG monitor connection

Similar Documents

Publication Publication Date Title
TWI343679B (en) Power strip device
JP2004248488A (en) Motor power supply apparatus
JP2007282313A (en) Rotating machine drive unit
JP2006262616A (en) Inverter device
JP2005340615A (en) Resistor and motor driving electric power conversion system using the same
JP7421341B2 (en) Power supply and image forming device
JP2010233414A (en) Motor control device
JP2009189221A (en) Junction box
JP4942754B2 (en) Air conditioner
KR0184799B1 (en) A power control apparatus of an electric vehicle
JP2006141193A (en) Switching power supply apparatus
JP2553255Y2 (en) Inverter device
JPH06284571A (en) Rush current prevention circuit
JP3572138B2 (en) Transformer and switching power supply using it
JP4149693B2 (en) Safety device for power circuit and fuse box
JP3775251B2 (en) Multi-output power supply circuit and multi-output power supply method
WO2017221561A1 (en) Direct current circuit, moving body and power supply system
JP2000134794A (en) Power supply equipment
JP2010205688A (en) Heater device
JPH09322396A (en) Power supply circuit
JP4511793B2 (en) Diode device for generator
JPH0715352Y2 (en) Inverter device
JP3057992B2 (en) Charge / discharge circuit
JP2008301629A (en) Distribution circuit
JP2005183390A (en) Electric lamp lighting circuit device and lighting system