WO2017221561A1 - Direct current circuit, moving body and power supply system - Google Patents

Direct current circuit, moving body and power supply system Download PDF

Info

Publication number
WO2017221561A1
WO2017221561A1 PCT/JP2017/017392 JP2017017392W WO2017221561A1 WO 2017221561 A1 WO2017221561 A1 WO 2017221561A1 JP 2017017392 W JP2017017392 W JP 2017017392W WO 2017221561 A1 WO2017221561 A1 WO 2017221561A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
circuit
fuse
switch
current path
Prior art date
Application number
PCT/JP2017/017392
Other languages
French (fr)
Japanese (ja)
Inventor
直 森田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2018523572A priority Critical patent/JP6977721B2/en
Publication of WO2017221561A1 publication Critical patent/WO2017221561A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • the present disclosure relates to a DC circuit, a moving body, and a power supply system.
  • the generation of arc discharge is suppressed with a small-scale configuration when the DC power is cut off without reducing the power efficiency when supplying DC power, and the semiconductor switch is used when the semiconductor switch is used to suppress arc discharge.
  • a new and improved DC circuit, moving body and power supply system capable of ensuring safety even when a short circuit occurs due to deterioration of a switch are proposed.
  • the first current path and the second current path provided in parallel in the path through which direct current flows and the first switch provided on the first current path are used to generate the second current.
  • a first current path and a second current path provided in parallel in a path through which direct current flows, a first current fuse provided on the first current path, and the first current path On the current path, at least two thermal fuses provided in parallel with the first current fuse, and two diodes provided alternately in parallel downstream of the first current fuse and the at least two thermal fuses;
  • a resistor provided between the two thermal fuses and a circuit for passing a pulsed current for a predetermined period when a direct current is interrupted in the second current path; and a second current fuse provided in parallel with the resistor
  • the second current fuse has a rating that does not blow at the temperature of the resistor due to the flow of a rated energization current during the rated energization time of the circuit.
  • DC circuit is provided.
  • the first current path and the second current path provided in parallel in a path through which direct current flows and the second switch using the first switch provided on the first current path.
  • a moving object including the DC circuit is provided.
  • a power supply system is provided.
  • FIG. 5 is an explanatory diagram illustrating an operation of a DC circuit according to an embodiment of the present disclosure.
  • FIG. 3 is an explanatory diagram illustrating an example of a functional configuration of a moving body 40 including a DC circuit 100.
  • FIG. 3 is an explanatory diagram illustrating an example of a functional configuration of a moving body 40 including a DC circuit 100.
  • Patent Documents 1 and 2 In the case of direct current power supply, there are other Patent Documents 1 and 2 as other techniques for suppressing the occurrence of arc discharge when power is cut off.
  • Patent Document 1 discloses a technique for suppressing the occurrence of arc discharge by providing a switching element on a path through which a current flows during DC power supply and turning off the switching element when the plug is removed from the plug receptacle. Yes.
  • Patent Document 2 also suppresses the occurrence of arc discharge by providing an arc absorption circuit including a switching element on a path through which a current flows during DC power supply, and turning off the switching element when the plug is removed from the plug receptacle.
  • the technology is disclosed.
  • the present disclosure has intensively studied a technology that can suppress the occurrence of arc discharge with a small-scale configuration when cutting off DC power without reducing the power efficiency when supplying DC power. went.
  • the present disclosure provides two contacts on the positive electrode, and suppresses the voltage generated between the electrodes when the DC power is cut off when switching the contact with the power receiving electrode.
  • the inventors have devised a technique that can suppress the occurrence of arc discharge with a small-scale configuration when the DC power is cut without reducing the power efficiency when supplying DC power.
  • the present disclosure has intensively studied a technology capable of ensuring safety even when a short circuit occurs due to deterioration of the semiconductor switch when the semiconductor switch is used for suppressing arc discharge.
  • the present disclosure has devised a technique that can ensure safety even when a short circuit occurs due to deterioration of the semiconductor switch when the semiconductor switch is used to suppress arc discharge. It was.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of a DC circuit according to an embodiment of the present disclosure.
  • FIG. 1 shows a configuration example of a DC circuit for the purpose of suppressing arc discharge when the DC power supplied from the DC power supply is cut off.
  • FIG. 1 shows a configuration example of a DC circuit for the purpose of suppressing arc discharge when the DC power supplied from the DC power supply is cut off.
  • the DC circuit 100 shown in FIG. 1 is provided on a path through which DC power is supplied from a DC power supply (not shown) to the load 10.
  • the DC power supply outputs DC power having a predetermined voltage Vs.
  • the DC circuit 100 shown in FIG. 1 is provided between the positive electrode side of the DC power source and the load 10.
  • the DC circuit 100 has a configuration that suppresses the occurrence of arc discharge when a DC current from a DC power supply is interrupted.
  • the DC circuit 100 includes a MOSFET T1, a capacitor C1, a resistor R1, a diode D1, a switch SW1, and a switch circuit 110.
  • the switch circuit 110 includes a switch FS1 and a fuse F1.
  • the DC circuit 100 allows a current to flow through the main system and the sub system that are parallel in the path through which the DC flows.
  • a system in which the switch SW1 is provided is a main system, and a system in which the MOSFET T1 is provided is a sub system.
  • the MOSFET T1, the capacitor C1, the resistor R1, and the diode D1 function as a voltage integrating circuit.
  • the MOSFET T1 uses an n-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) in the present embodiment.
  • the capacitor C1 is provided between the drain terminal and the gate terminal of the MOSFET T1.
  • the resistor R1 is provided between the gate terminal and the source terminal of the MOSFET T1.
  • the capacitor C1 and the resistor R1 are connected in series.
  • the circuit composed of the MOSFET T1, the capacitor C1, the resistor R1, and the diode D1 is a circuit provided for suppressing a current flowing from the DC power source to the load 10 when the switch SW1 is switched from the on state to the off state.
  • the MOSFET T1 When the switch SW1 is in the off state, the MOSFET T1 is also in the off state, so that no current flows from the DC power source to the load 10. Thereafter, when the switch SW1 is operated and the state of the switch SW1 shifts to the ON state, a current flows from the DC power source to the load 10, but in this state, the MOSFET T1 is continuously in the OFF state, and the current is not supplied to the MOSFET T1. Does not flow.
  • the MOSFET T1 is turned on, and a current flows in a direction to decrease the voltage across the switch SW1 from the DC power source toward the load 10, whereby the voltage across the switch SW1 is reduced. By reducing the voltage across the switch SW1, the switch SW1 does not cause arc discharge even when the switch SW1 is turned off.
  • the voltage between the drain terminal and the source terminal of MOSFET T1 falls within the voltage along the transfer function of the FET gate voltage.
  • the switch SW1 is turned off and the capacitor C1 is charged by the voltage generated at both ends of the switch SW1
  • the gate voltage of the MOSFET T1 is lowered, and the MOSFET T1 is turned off so that a current flows through the MOSFET T1. Disappear.
  • the diode D1 connected in parallel with the resistor R1 of the DC circuit 100 is used for discharging the charge accumulated in the capacitor C1 in a short time without going through the resistor R1 when the switch SW1 shifts from the off state to the on state. Provided.
  • the diode D1 is provided in parallel with the resistor R1, so that the voltage integration function of the DC circuit 100 can be restored in a short time even if the connection of the switch SW1 causes chattering or the like.
  • the resistor R1 supplies a voltage to the gate terminal of the MOSFET T1, and the voltage supply time is determined by the product relationship between the capacitance of the capacitor C1 and the resistance value of the resistor R1.
  • the DC circuit 100 has a switch FS1 and a fuse F1 as shown in FIG.
  • the switch FS1 is in a state where the terminal a1 which is a common terminal and the terminal a2 which is a fixed contact are electrically connected by a movable contact when the switch FS1 is normal (which means that the fuse F1 is not blown). Yes.
  • the movable contact of the switch FS1 has an elastic force, and when the fuse F1 is blown as will be described later, the terminals a1 and a2 are not electrically connected.
  • the fuse F1 is blown when an excessive current flows in the sub system in which the MOSFET T1 is provided.
  • the switch FS1 loses the holding force by the fuse F1 and electrically opens the terminal a1 and the terminal a2.
  • FIG. 2 is an explanatory diagram showing the DC circuit 100 in a state where the fuse F1 is blown.
  • the switch FS1 loses the holding force by the fuse F1 as shown in FIG. 2, and the terminals a1 and a2 are electrically opened.
  • the rated energization time of the fuse F ⁇ b> 1 (time until fusing) after the switch SW ⁇ b> 1 is switched from the on state to the off state and the MOSFET T ⁇ b> 1 is turned on. If the MOSFET T1 is turned off in a shorter time, the fuse F1 is not blown.
  • the MOSFET T1 is turned off in a time shorter than the fusing time of the fuse F1 after the switch SW1 is switched from the on state to the off state due to an abnormal state, that is, the MOSFET T1 breaks down and the MOSFET T1 is turned on. If not, current continues to flow through the fuse F1, and the fuse F1 is blown.
  • FIG. 3 is an explanatory diagram showing the time change of the current flowing through the fuse F1 in a graph.
  • FIG. 3 shows the time change of the current I1 flowing through the fuse F1 when the DC circuit 100 is normal and the time change of the current I2 flowing through the fuse F1 when the DC circuit 100 is abnormal. .
  • the current I1 decreases in a time shorter than the rated energization time (time until the fuse F1 is blown). Therefore, when the DC circuit 100 is normal, the fuse F1 is not blown. However, when the DC circuit 100 is in an abnormal state, the MOSFET T1 is not turned off and the current continues to flow. When a current exceeding the rated current is exceeded and the current exceeding the rated current flows, the fuse F1 is finally blown and finally the current flows. I2 decreases.
  • the DC circuit 100 uses the fact that the fuse F1 is not blown if a current exceeding the rated current flows even if the current is shorter than the rated energization time, so that even if the switch SW1 is switched from the on state to the off state, The occurrence of arc discharge can be suppressed. Further, in the case where the DC circuit 100 is not in a normal state due to a failure of the MOSFET T1, the switch FS1 is opened due to the blow of the fuse F1, and re-energization in the main system and the sub system from the DC power supply is performed. Can be deterred.
  • FIG. 4 is an explanatory diagram showing the state of the switch FS1 and the fuse F1 in a normal state.
  • FIG. 5 is an explanatory diagram showing the state of the switch FS1 and the fuse F1 when the fuse F1 is blown.
  • the switch FS1 in a state in which the fuse F1 is not blown, the switch FS1 is electrically connected between the terminal a1 and the terminal a2 by the fuse F1. However, when the fuse F1 is blown, the switch FS1 loses the holding force by the fuse F1, and the terminals a1 and a2 are electrically opened.
  • the movable contact of the switch FS1 may have a structure bent near the middle as shown in FIG. By having such a bent structure, the switch FS1 can easily open the terminals a1 and a2 when the fuse F1 is blown.
  • FIG. 6 is an explanatory diagram showing the state of the switch FS1 and the fuse F1 in a normal state.
  • FIG. 7 is an explanatory diagram showing the state of the switch FS1 and the fuse F1 when the fuse F1 is blown.
  • the fuse F1 may be connected further to the movable contact of the switch FS1.
  • the fuse F1 is configured to be connected further before the movable contact of the switch FS1, so that the holding force applied to the fuse F1 can be weakened and a soft material can be used as the material of the fuse F1. .
  • Another fuse may be provided between the terminal a1 on the fixed contact side of the switch FS1 and one end of the fuse F1 so as to be in parallel with the fuse F1.
  • FIG. 8 is an explanatory diagram showing the state of the switch FS1, the switch FS1, and the fuses F1, F2 in a normal state.
  • FIG. 9 is an explanatory diagram showing the state of the switch FS1 and the fuses F1, F2 when the fuses F1, F2 are blown.
  • the resistance of the fuse varies depending on the metal used.
  • the holding force of the movable contact of the switch FS1 is strengthened, and the enlargement of the fuse F1 is avoided.
  • the fuse F2 may have the same rated energization time as the fuse F1, but may have a different rated energization time.
  • a capacitor may be provided between the terminal a1 on the fixed contact side of the switch FS1 and one end of the fuse F1 so as to be in parallel with the fuse F1.
  • FIG. 10 is an explanatory diagram showing the state of the switch FS1, the fuse F1, and the capacitor C11 in a normal state.
  • the capacitor C11 is provided in order to accumulate a charge by diverting a part of the pulsed current that flows when the switch SW1 is turned off. The electric charge accumulated in the capacitor C11 is gradually released through the fuse F1.
  • FIG. 11 is an explanatory diagram showing the time change of the current flowing through the fuse F1 and the capacitor C11 in a graph.
  • FIG. 11 shows the time change of the currents I11 and I13 flowing through the fuse F1 and the capacitor C11 when the DC circuit 100 is normal, and the time change of the current I12 flowing through the fuse F1 when the DC circuit 100 is abnormal. It is shown.
  • FIG. 12 is an explanatory diagram illustrating another configuration example of the DC circuit according to the embodiment of the present disclosure.
  • FIG. 12 shows a DC circuit 100 for combining a solid state relay (SSR, semiconductor relay) with a mechanical relay and switching between supply and interruption of DC power by turning on and off the mechanical relay. This is an example of the configuration.
  • SSR solid state relay
  • the DC circuit 100 shown in FIG. 12 includes an SSR 130, a mechanical relay RY1, diodes D21, D22, and D23, capacitors C21 and C22, and a resistor R21.
  • the DC circuit 100 allows a current to flow through the main system and the sub system that are parallel in the path through which the DC flows.
  • a system in which the SSR 130 is provided is a main system
  • a system in which the mechanical relay RY1 is provided is a sub system.
  • the mechanical relay RY1 operates so as to switch contacts using an electromagnetic force generated by a current flowing from the terminal V + to the terminal V ⁇ .
  • the mechanical relay RY1 is connected to the contact 1b when no current flows from the terminal V + to the terminal V-, and is connected to the contact 1a using electromagnetic force when the current flows from the terminal V + to the terminal V-.
  • a DC power supply for supplying DC power to the terminal V + may be provided.
  • the SSR 130 is provided on the power supply path from the terminal A to the terminal B.
  • the SSR 130 is configured to be turned on when a high voltage is applied to the control terminal, and to be turned off when a low voltage is applied to the control terminal.
  • the mechanical relay RY1 gradually generates an electromagnetic force.
  • the electromagnetic force generated by the mechanical relay RY1 reaches a certain level, the mechanical relay RY1 releases the connection with the contact 1b.
  • the mechanical relay RY1 When the electromagnetic force further increases, the mechanical relay RY1 is connected to the contact 1a, but chattering occurs when connecting to the contact 1a.
  • a voltage is applied to the terminal V +, the voltage is applied to the control terminal of the SSR 130, and the SSR 130 is turned on.
  • a current flows from the terminal V + to the terminal V ⁇ , charge is accumulated in the capacitor C21 through the diode D21.
  • the mechanical relay RY1 gradually reduces the electromagnetic force.
  • the mechanical relay RY1 releases the connection with the contact 1a.
  • the mechanical relay RY1 is connected to the contact 1b, but chattering occurs at the time of connection with the contact 1b.
  • the capacitor C21 can store enough power to turn on the SSR 130 until the mechanical relay RY1 is connected to the contact 1b. At this time, the diode D22 is released from the reverse bias and becomes conductive, and the capacitor C22 operates through the coil of the mechanical relay RY1.
  • capacitor C22 absorbs chattering when the mechanical relay RY1 is connected to the contact 1b.
  • Capacitor C22 also forms a discharge circuit for capacitor C21 through diode D23 and absorbs the surge of mechanical relay RY1.
  • the DC circuit 100 shown in FIG. 12 no current flows from the terminal V + to the terminal V ⁇ , and even when the mechanical relay RY1 is disconnected from the contact 1a, the generation of arc is suppressed and the surge can be absorbed. I can do it.
  • the DC circuit 100 shown in FIG. 12 has four terminals and can be connected in the same way as a general relay, so that it can be used in place of an existing relay.
  • the DC circuit 100 shown in FIG. 12 includes a switch FS1 and a fuse F1.
  • the semiconductor switch of the SSR 130 fails and does not normally shift to the OFF state, the fuse F1 is eventually blown by the current flowing from the terminal A.
  • the switch FS1 on the path on the contact 1a side of the mechanical relay RY1 is turned off.
  • the DC circuit 100 shown in FIG. 12 can suppress re-energization by the mechanical relay RY1 even if the semiconductor switch of the SSR 130 fails and does not normally shift to the OFF state.
  • FIG. 13 is an explanatory diagram showing the change over time of the current flowing through the fuse F1 of the DC circuit 100 shown in FIG.
  • FIG. 13 shows the time change of the current I21 flowing through the fuse F1 when the DC circuit 100 is normal and the time change of the current I22 flowing through the fuse F1 when the DC circuit 100 is abnormal. .
  • the current I21 decreases in a time shorter than the rated energization time (time until fusing) of the fuse F1. Therefore, when the DC circuit 100 is normal, the fuse F1 is not blown. However, when the DC circuit 100 is in an abnormal state, the current continues to flow without the SSR 130 being turned off, and when the current exceeding the rated current exceeds the rated current, the fuse F1 is finally blown and the current I2 is finally reached. Decreases.
  • the DC circuit 100 uses the fact that the fuse F1 is not blown if a current exceeding the rated current flows even if the current is shorter than the rated energization time, so that even if the switch SW1 is switched from the on state to the off state, The occurrence of arc discharge can be suppressed. Further, in the DC circuit 100, when the SSR 130 is not in a normal state due to a failure or the like, the switch FS1 is opened due to the blow of the fuse F1, and re-energization in the main system and the sub system from the DC power supply is suppressed. can do.
  • FIG. 14 is an explanatory diagram showing a connection example of the switch FS1 and the fuses F1 and F2.
  • a fuse F2 may be provided in parallel with the switch FS1 between the terminal a1 on the common terminal side of the switch FS1 and the terminal a2 on the fixed contact side.
  • the fuse F1 is blown by temporarily passing an excessive current through the fuse F1.
  • the configuration shown in FIG. 14 is characterized in that the generation of an arc when the fuse F1 is blown and the switch FS1 is opened is suppressed by supplying power to the fuse F2.
  • FIG. 15 is an explanatory view showing a state where both the fuses F1 and F2 shown in FIG. 14 are blown.
  • an excessive current temporarily flows through the fuse F1
  • the fuse F1 is blown, and when the switch FS1 is opened, a current further flows through the fuse F2, and the fuse F2 is also blown.
  • FIG. 14 shows an example in which a fuse F2 is provided in parallel with the switch FS1.
  • the fuse F1 may be connected from the tip of the movable contact of the switch FS1 as shown in FIG.
  • FIG. 10 in addition to a configuration in which a capacitor is provided in parallel with the fuse F1 between the terminal a1 on the fixed contact side of the switch FS1 and one end of the fuse F1, in parallel with the switch FS1.
  • the fuse F2 may be provided.
  • FIG. 16 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure.
  • FIG. 16 shows an example of the DC circuit 100 configured to suppress the occurrence of arcs even when the MOSFET T1 constituting the voltage integrating circuit is in a short state or in an open state. It is.
  • FIG. 16 shows a DC circuit 100 in which a resistor-equipped thermoprotector THP1 using a thermal fuse F1 is connected to one contact, for example, a fixed contact, of a switch SW1 that cuts off DC current.
  • the MOSFET T1 When the switch SW1 is in the OFF state, the MOSFET T1 is also in the OFF state, so that no current flows from the DC power supply side (IN) to the load side (OUT). Thereafter, when the switch SW1 is operated and the switch SW1 is turned on, a current flows from the DC power supply side (IN) to the load side (OUT). In this state, the MOSFET T1 is continuously turned off. Therefore, no current flows through the MOSFET T1.
  • the MOSFET T1 is turned on, and the current flows in the direction of decreasing the voltage at both ends of the switch SW1 from the DC power supply side (IN) to the load side (OUT), thereby reducing the voltage at both ends of the switch SW1.
  • the voltage between the drain terminal and the source terminal of MOSFET T1 falls within the voltage along the transfer function of the FET gate voltage.
  • the switch SW1 is turned off and the capacitor C1 is charged by the voltage generated at both ends of the switch SW1
  • the gate voltage of the MOSFET T1 is lowered, and the MOSFET T1 is turned off so that a current flows through the MOSFET T1. Disappear.
  • the diode DZ1 connected in parallel to the resistor R2 of the DC circuit 100 is for discharging the charge accumulated in the capacitor C1 in a short time without going through the resistor R2 when the switch SW1 is shifted from the off state to the on state. Provided.
  • the MOSFET T1 fails in a short state, the current continues to flow through the resistor R3 of the thermoprotector THP1 with a resistor, and the resistor R3 generates heat.
  • the temperature of the resistor R3 becomes equal to or higher than a predetermined fusing temperature, the thermal fuse F1 is blown.
  • the voltage applied to the switch SW1 is suppressed.
  • the switch SW1 is turned off while the MOSFET T1 is in an open state and has failed, no current flows through the MOSFET T1.
  • the thermal fuse F1 is provided, the thermal fuse F1 is melted by arc heat generated when the switch SW1 is turned off. Therefore, the DC circuit 100 shown in FIG. 16 can safely cut off the DC current even if the switch SW1 is turned off while the MOSFET T1 is in an open state and has failed.
  • FIG. 17 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure.
  • FIG. 17 shows a configuration example of the DC circuit 100 in which the fuse F2 is provided in parallel with the resistor R3 in the DC circuit 100 shown in FIG.
  • the fuse F2 is first blown.
  • the voltage applied to the switch SW1 is suppressed by blowing the fuse F2.
  • FIG. 18 is an explanatory diagram showing another configuration example of the switch circuit 110.
  • FIG. 18 shows a switch including a current fuse Fc1 provided between terminals a and b, a thermoprotector Ftp1 provided between terminals a and b and c, and diodes D31 and D32. Circuit.
  • the thermoprotector Ftp1 is provided between the temperature fuses Ft1 and Ft2 connected in series, between the temperature fuses Ft1 and Ft2, and the terminal c, and includes a resistor R1.
  • the resistor R1 is provided to heat the thermal fuses Ft1 and Ft2.
  • the terminal c is connected to a circuit through which a current flows for a short period of time when it is normal, such as the voltage integration circuit described above.
  • the current fuse Fc1 and the current fuse Fc2 connected in parallel with the resistor R1 are direct current fuses, and an arc at the time of fusing occurs only inside the fuse housing, and is digested by an arc extinguishing agent after the arc is generated. Use what has a structure.
  • the internal resistance of a general temperature fuse is about 1.5 m ⁇ to 15 m ⁇ , and the internal resistance of the current fuse is 120 m ⁇ in the case of 1 A rating and 16 m ⁇ in the case of 5 A rating. Therefore, depending on the combination of fuses, half may flow through the current fuse.
  • two diodes D31 and D32 are provided.
  • the two diodes D31 and D32 differ in the direction in which current flows as shown in FIG. Note that the two diodes D31 and D32 may be replaced with bidirectional diodes.
  • the current fuse Fc1 is only generated when a voltage higher than the forward voltage (for example, approximately 0.65 V) of the two diodes D31 and D32 is generated by the resistors of the thermal fuses Ft1 and Ft2. Current begins to flow. Therefore, when the internal resistance of the thermal fuses Ft1 and Ft2 is 15 m ⁇ , for example, a current of 40 A or more needs to flow, and in normal use, the current fuse Fc1 does not flow, and the thermal fuses Ft1 and Ft2 are blown.
  • the current fuse Fc1 can be prevented from deteriorating by being shunted to the current fuse Fc1 only when the internal resistance values of the thermal fuses Ft1 and Ft2 change.
  • FIG. 19 is an explanatory diagram showing an example of a current flowing between terminals a and b and a current flowing in terminal c of the circuit shown in FIG.
  • the current fuse Fc2 has a capacity that does not blow, and the heat generation of the resistor R1 due to the shunt causes the temperature fuses Ft1 and Ft2 to have a heat capacity that does not blow.
  • the current fuse Fc2 is blown at time t2.
  • the temperature fuses Ft1 and Ft2 are blown at a time t3 due to heat generated by the current diverted to the resistor R1.
  • the thermal fuses Ft1 and Ft2 are blown, the current between the terminals ab is cut off, and the current is shunted to the current fuse Fc1.
  • the current fuse Fc1 is blown at time t4 by the current between the terminals a and b.
  • the current fuse Fc1 has a resistance value larger than the sum of the resistance values of the thermal fuses Ft1 and Ft2 due to its characteristics.
  • the circuit shown in FIG. 18 normally utilizes the fact that the current flowing through the current fuse Fc1 is very small and therefore does not blow. For example, as the current fuse Fc1, a fuse that is blown at 1A is selected.
  • FIG. 20 is an explanatory diagram illustrating a functional configuration example of the moving body 40 including the DC circuit 100.
  • the moving body 40 may be, for example, a moving body that uses gasoline as a power source, such as a gasoline car, and uses a chargeable / dischargeable battery as a main power source, such as an electric vehicle, a hybrid vehicle, and an electric motorcycle. It may be a body.
  • FIG. 20 illustrates an example in which the moving body 40 includes a battery 210 and a driving unit 220 that is driven by electric power supplied from the battery.
  • the drive unit 220 may include, for example, equipment provided in the vehicle such as a wiper, a power window, a light, a car navigation system, and an air conditioner, and a device that drives the moving body 40 such as a motor.
  • 20 is provided with a DC circuit 100 in the middle of a path through which DC power is supplied from the battery 210 to the drive unit 220.
  • 20 is provided with a DC circuit 100 on a path through which DC power is supplied from the battery 210 to the drive unit 220. For example, when the battery 210 is temporarily attached or detached, arc discharge occurs. Can be suppressed.
  • FIG. 20 illustrates an example of the moving body 40 provided with only one DC circuit 100, but the present disclosure is not limited to such an example. That is, a plurality of DC circuits 100 may be provided in the middle of a path through which DC power is supplied. Further, the DC circuit 100 may be provided not only in the middle of a path in which DC power is supplied from the battery 210 to the drive unit 220 but also in another place, for example, in the middle of a path when charging the battery 210 with DC power. . The moving body 40 can safely charge the battery 210 with DC power by providing the DC circuit 100 in the middle of the path when charging the battery 210 with DC power.
  • the switch FS1 is opened due to the fuse F1 being blown, and the main system and the sub-system from the DC power supply are opened. Re-energization in the system can be suppressed.
  • the fuse is a DC circuit having a rating that does not blow at the temperature of the resistor due to the flow of a rated energization current during the rated energization time of the circuit.
  • the circuit is A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side; Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path; A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
  • the circuit is A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side; Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path; A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
  • the DC circuit according to (6) comprising: (8)
  • the circuit is A semiconductor relay which is provided on the first current path and which switches between supply and interruption of a direct current from a direct current power supply; A mechanical relay provided on the second current path and connected in parallel with the semiconductor relay to switch supply and interruption of a direct current from the direct current power source; With The DC circuit according to (6), which is a circuit that suppresses chattering of the mechanical relay when DC is cut off by the mechanical relay.
  • a moving body comprising the DC circuit according to any one of (1) to (15).
  • a power supply system comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Keying Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

[Problem] To provide a direct current circuit capable of, when a semiconductor is used for suppressing an arc discharge, securing safety even if a short circuit occurs when the semiconductor has deteriorated. [Solution] Provided is the direct current circuit comprising: a first current path and a second current path provided in parallel on a path where a direct current flows; a circuit using a first switch provided on the first current path to allow a pulsed current of a predetermined duration to flow when the direct current in the second current path is shut-off; and a second switch provided at a stage preceding the first switch, and of which the connection is maintained by a pulling force from a fuse. When the fuse melts, the second switch adopts an open state. The fuse has such a rating as not to melt at a rated energization current during rated energization of the circuit.

Description

直流回路、移動体及び電力供給システムDC circuit, moving body and power supply system
 本開示は、直流回路、移動体及び電力供給システムに関する。 The present disclosure relates to a DC circuit, a moving body, and a power supply system.
 直流給電でも交流給電でも、電力の切断時にはアーク放電が発生する。交流の場合、所定の時間毎(例えば10ミリ秒毎)に電圧がゼロとなる瞬間があるので、アーク放電は少なくとも上記所定の時間内(例えば10ミリ秒以内)に自然に止まる。しかし直流給電では、ゼロ電圧となる瞬間がないため、アーク放電は自然には止まらない。 ア ー ク Arc discharge occurs when power is cut off in both DC and AC power supplies. In the case of AC, since there is a moment when the voltage becomes zero every predetermined time (for example, every 10 milliseconds), arc discharge naturally stops at least within the predetermined time (for example, within 10 milliseconds). However, with DC power supply, arc discharge does not stop naturally because there is no moment of zero voltage.
 そのため、直流給電の場合に電力の切断時にアーク放電の発生を抑えることを目的とした技術が開示されている(特許文献1,2等参照)。 For this reason, techniques for suppressing the occurrence of arc discharge when power is cut off in the case of direct current power supply have been disclosed (see Patent Documents 1 and 2, etc.).
特開2003-203721号公報JP 2003-203721 A 特表2014-522088号公報Special Table 2014-520208 Publication
 直流給電の場合に電力の切断時にアーク放電の発生を抑えることはもちろんであるが、アーク放電の発生を抑えるための構成が大規模なものになるのは好ましくなく、またアーク放電の発生を抑えるための構成を加えることで直流給電の最中に電力供給効率を低下させるのも好ましくない。従って、直流電力供給時の電力効率を低下させずに、直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが望ましい。 In the case of DC power supply, it is of course possible to suppress the occurrence of arc discharge when power is cut off, but it is not preferable that the construction for suppressing the occurrence of arc discharge becomes large, and the occurrence of arc discharge is suppressed. It is also not preferable to reduce the power supply efficiency during the DC power supply by adding the configuration for this. Therefore, it is desirable to suppress the occurrence of arc discharge with a small-scale configuration when cutting off DC power without reducing power efficiency when supplying DC power.
 そこで本開示では、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制するとともに、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保することが可能な、新規かつ改良された直流回路、移動体及び電力供給システムを提案する。 Therefore, in the present disclosure, the generation of arc discharge is suppressed with a small-scale configuration when the DC power is cut off without reducing the power efficiency when supplying DC power, and the semiconductor switch is used when the semiconductor switch is used to suppress arc discharge. A new and improved DC circuit, moving body and power supply system capable of ensuring safety even when a short circuit occurs due to deterioration of a switch are proposed.
 本開示によれば、直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、前記第1の電流経路上に設けられる第1のスイッチを用いて前記第2の電流経路における直流の遮断時に所定期間パルス状の電流を流す回路と、前記第1のスイッチの前段に設けられるヒューズと、前記ヒューズと前記回路との間に設けられる抵抗体と、を備え、前記ヒューズは、前記回路の定格通電時間における定格通電電流が流れることによる前記抵抗体の温度では溶断しない定格を有する、直流回路が提供される。 According to the present disclosure, the first current path and the second current path provided in parallel in the path through which direct current flows and the first switch provided on the first current path are used to generate the second current. A circuit for supplying a pulsed current for a predetermined period when a direct current in the path is interrupted, a fuse provided in front of the first switch, and a resistor provided between the fuse and the circuit. Is provided with a DC circuit having a rating that does not melt at the temperature of the resistor due to the flow of a rated current during the rated current application time of the circuit.
 また本開示によれば、直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、前記第1の電流経路上に設けられる第1の電流ヒューズと、前記第1の電流経路上に、前記第1の電流ヒューズと並列に設けられる少なくとも2つの熱ヒューズと、前記第1の電流ヒューズ及び前記少なくとも2つの熱ヒューズの後段に互い違いに並列に設けられる2つのダイオードと、前記2つの熱ヒューズと、前記第2の電流経路における直流の遮断時に所定期間パルス状の電流を流す回路との間に設けられる抵抗体と、前記抵抗体と並列に設けられる第2の電流ヒューズと、を備え、前記第2の電流ヒューズは、前記回路の定格通電時間における定格通電電流が流れることによる前記抵抗体の温度では溶断しない定格を有する、直流回路が提供される。 According to the present disclosure, a first current path and a second current path provided in parallel in a path through which direct current flows, a first current fuse provided on the first current path, and the first current path On the current path, at least two thermal fuses provided in parallel with the first current fuse, and two diodes provided alternately in parallel downstream of the first current fuse and the at least two thermal fuses; A resistor provided between the two thermal fuses and a circuit for passing a pulsed current for a predetermined period when a direct current is interrupted in the second current path; and a second current fuse provided in parallel with the resistor And the second current fuse has a rating that does not blow at the temperature of the resistor due to the flow of a rated energization current during the rated energization time of the circuit. DC circuit is provided.
 また本開示によれば、直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、前記第1の電流経路上に設けられる第1のスイッチを用いて前記第2の電流経路における直流の遮断時に所定期間パルス状の電流を流す回路と、前記第1のスイッチの前段に設けられ、ヒューズの張力により接続が保持される第2のスイッチと、を備え、前記ヒューズが溶断すると前記第2のスイッチが開放状態となり、前記ヒューズは、前記回路の定格通電時間における定格通電電流では溶断しない定格を有する、直流回路が提供される。 According to the present disclosure, the first current path and the second current path provided in parallel in a path through which direct current flows and the second switch using the first switch provided on the first current path. A circuit for supplying a pulsed current for a predetermined period when a direct current in the current path is interrupted, and a second switch provided in front of the first switch and maintained in connection by a tension of the fuse, wherein the fuse When blown, the second switch is opened, and a DC circuit is provided in which the fuse has a rating that does not blow at the rated energization current during the rated energization time of the circuit.
 また本開示によれば、上記直流回路を備える、移動体が提供される。 Moreover, according to the present disclosure, a moving object including the DC circuit is provided.
 また本開示によれば、直流電力を供給するバッテリと、前記バッテリから供給される直流電力による駆動する駆動部と、前記バッテリと前記駆動部との間に設けられる、少なくとも1つの、上記直流回路と、を備える、電力供給システムが提供される。 According to the present disclosure, at least one of the DC circuits provided between the battery that supplies DC power, a drive unit that is driven by the DC power supplied from the battery, and the battery and the drive unit. A power supply system is provided.
 以上説明したように本開示によれば、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制するとともに、アーク放電の抑制に半導体を用いた際に当該半導体の劣化時による短絡が発生しても安全を確保することが可能な、新規かつ改良された直流回路、移動体及び電力供給システムを提供することが出来る。 As described above, according to the present disclosure, generation of arc discharge is suppressed with a small-scale configuration when DC power is cut without reducing power efficiency when supplying DC power, and a semiconductor is used to suppress arc discharge. Thus, it is possible to provide a new and improved DC circuit, moving body, and power supply system that can ensure safety even if a short circuit occurs due to deterioration of the semiconductor.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の一実施形態に係る直流回路の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the DC circuit which concerns on one Embodiment of this indication. ヒューズF1が溶断した状態の直流回路100を示す説明図である。It is explanatory drawing which shows the DC circuit 100 of the state by which the fuse F1 was blown out. ヒューズF1に流れる電流の時間変化をグラフで示す説明図である。It is explanatory drawing which shows the time change of the electric current which flows into the fuse F1 with a graph. 正常時におけるスイッチFS1及びヒューズF1の状態を示す説明図である。It is explanatory drawing which shows the state of switch FS1 and fuse F1 at the time of normal. ヒューズF1が溶断した場合のスイッチFS1及びヒューズF1の状態を示す説明図である。It is explanatory drawing which shows the state of switch FS1 and fuse F1 when fuse F1 blows. 正常時におけるスイッチFS1及びヒューズF1の状態を示す説明図である。It is explanatory drawing which shows the state of switch FS1 and fuse F1 at the time of normal. ヒューズF1が溶断した場合のスイッチFS1及びヒューズF1の状態を示す説明図である。It is explanatory drawing which shows the state of switch FS1 and fuse F1 when fuse F1 blows. 正常時におけるスイッチFS1及びスイッチFS1及びヒューズF1、F2の状態を示す説明図である。It is explanatory drawing which shows the state of switch FS1, switch FS1, and fuse F1, F2 at the time of normal. ヒューズF1、F2が溶断した場合のスイッチFS1及びヒューズF1、F2の状態を示す説明図である。It is explanatory drawing which shows the state of switch FS1 and fuse F1, F2 when fuse F1, F2 fuses. 正常時におけるスイッチFS1、ヒューズF1及びキャパシタC11の状態を示す説明図である。It is explanatory drawing which shows the state of switch FS1, fuse F1, and capacitor C11 at the time of normal. ヒューズF1及びキャパシタC11に流れる電流の時間変化をグラフで示す説明図である。It is explanatory drawing which shows the time change of the electric current which flows into the fuse F1 and the capacitor C11 with a graph. 本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。It is explanatory drawing which shows another structural example of the DC circuit which concerns on one Embodiment of this indication. 図12に示した直流回路100のヒューズF1に流れる電流の時間変化をグラフで示す説明図である。It is explanatory drawing which shows the time change of the electric current which flows into the fuse F1 of the DC circuit 100 shown in FIG. 12 with a graph. スイッチFS1、ヒューズF1、F2の接続例を示す説明図である。It is explanatory drawing which shows the example of a connection of switch FS1 and fuse F1, F2. スイッチFS1、ヒューズF1、F2の接続例を示す説明図である。It is explanatory drawing which shows the example of a connection of switch FS1 and fuse F1, F2. 本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。It is explanatory drawing which shows another structural example of the DC circuit which concerns on one Embodiment of this indication. 本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。It is explanatory drawing which shows another structural example of the DC circuit which concerns on one Embodiment of this indication. 本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。It is explanatory drawing which shows another structural example of the DC circuit which concerns on one Embodiment of this indication. 本開示の一実施形態に係る直流回路の動作を説明する説明図である。5 is an explanatory diagram illustrating an operation of a DC circuit according to an embodiment of the present disclosure. FIG. 直流回路100を備えた移動体40の機能構成例を示す説明図である。3 is an explanatory diagram illustrating an example of a functional configuration of a moving body 40 including a DC circuit 100. FIG.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 <1.本開示の一実施形態>
 [1.1.背景]
 本開示の一実施形態について詳細に説明する前に、まず本開示の一実施形態の背景について説明する。
<1. One Embodiment of the Present Disclosure>
[1.1. background]
Before describing an embodiment of the present disclosure in detail, first, the background of the embodiment of the present disclosure will be described.
 直流給電でも交流給電でも、電力の切断時には、電圧と電流がある所定の値以上になると、電極間の電位差によるスパークやアーク放電が発生する。交流の場合、所定の時間毎(例えば10ミリ秒毎)に電圧がゼロとなる瞬間があるので、アーク放電は少なくとも上記所定の時間内(例えば10ミリ秒以内)に自然に止まる。 In both DC power supply and AC power supply, when the power is cut off, if the voltage and current exceed a certain value, a spark or arc discharge occurs due to the potential difference between the electrodes. In the case of AC, since there is a moment when the voltage becomes zero every predetermined time (for example, every 10 milliseconds), arc discharge naturally stops at least within the predetermined time (for example, within 10 milliseconds).
 しかし直流給電では、交流給電と違って電圧がゼロとなる瞬間がないため、アーク放電は自然には止まらない。アーク放電は、金属の溶断、溶着といった接点の劣化を発生させ、電力給電の信頼性が低下するおそれがある。 However, in the case of DC power supply, unlike AC power supply, there is no moment when the voltage becomes zero, so arc discharge does not stop naturally. Arc discharge may cause contact deterioration such as fusing and welding of metal, which may reduce the reliability of power supply.
 そのため、直流給電の場合に電力の切断時にアーク放電の発生を抑えることを目的とした技術が開示されている。例えば、コンデンサと抵抗とを用いたスナバ回路を揺動接触子の間に接続して回避する技術が従来から提案されている。 For this reason, a technique aimed at suppressing the occurrence of arc discharge when the power is cut off in the case of direct current power supply is disclosed. For example, a technique for avoiding by connecting a snubber circuit using a capacitor and a resistor between swinging contacts has been proposed.
 しかし、直流給電の場合にスナバ回路を用いてアーク放電を防ぐためには、容量の大きなコンデンサと小さな抵抗を用いなければ十分な効果が得られず、十分な効果を得ようとするとスナバ回路が大型化してしまう。また、スナバ回路を用いてアーク放電を防ぐ場合、直流電力の切断後に直流電源に再度接続しようとすると、容量の大きなコンデンサにチャージされた電荷によるショート電流が大きくなり、接点が溶着してしまう。 However, in order to prevent arc discharge using a snubber circuit in the case of direct current power supply, a sufficient effect cannot be obtained unless a capacitor with a large capacity and a small resistance are used. It will become. Further, when arc discharge is prevented by using a snubber circuit, if an attempt is made to reconnect to a DC power supply after the DC power is cut off, a short current due to a charge charged in a capacitor having a large capacity increases and the contact is welded.
 また差込プラグをプラグ受けに抜き差しすることによって直流給電を行う場合において、アーク放電の発生を防ぐために差込プラグに機械的スイッチを設け、差込プラグをプラグ受けから抜去する際にその機械的スイッチを操作することでアーク放電の発生を防ぐ技術もある。しかし、この技術では差込プラグの抜去時に機械的スイッチの操作という煩雑な操作を利用者に強いる必要が生じる。 In addition, when DC power is supplied by inserting / removing the plug into / from the plug receptacle, a mechanical switch is provided on the plug to prevent arc discharge, and the mechanical plug is removed when the plug is removed from the plug receptacle. There is also a technique for preventing arc discharge by operating a switch. However, in this technique, it is necessary to force the user to perform a complicated operation of operating a mechanical switch when the plug is removed.
 機械的にアーク放電を除去する方法もある。しかし機械的にアーク放電を除去するためには、接点の引き剥がし速度を上げたり、磁気回路によってアークを引き剥がしたりするなどの構造が必要となり、アーク放電を除去するための回路が大型化してしまう。 There is also a method of mechanically removing arc discharge. However, in order to remove arc discharge mechanically, it is necessary to increase the contact peeling speed or to peel off the arc with a magnetic circuit, which increases the size of the circuit for removing arc discharge. End up.
 直流給電の場合に電力の切断時にアーク放電の発生を抑えることを目的とした技術として、他に上記特許文献1,2等がある。 In the case of direct current power supply, there are other Patent Documents 1 and 2 as other techniques for suppressing the occurrence of arc discharge when power is cut off.
 上記特許文献1は、直流給電時に電流が流れる経路上にスイッチング素子を設け、プラグ受けからの差込プラグの抜去時にスイッチング素子をオフにすることで、アーク放電の発生を抑える技術を開示している。 Patent Document 1 discloses a technique for suppressing the occurrence of arc discharge by providing a switching element on a path through which a current flows during DC power supply and turning off the switching element when the plug is removed from the plug receptacle. Yes.
 しかし、特許文献1に開示されている技術では、直流給電時に電流がスイッチング素子を流れるために、直流給電時にスイッチング素子において電力が消費されるとともに、直流給電時にスイッチング素子が発熱する。 However, in the technique disclosed in Patent Document 1, since current flows through the switching element during DC power supply, power is consumed in the switching element during DC power supply, and the switching element generates heat during DC power supply.
 上記特許文献2も、直流給電時に電流が流れる経路上にスイッチング素子を備えるアーク吸収回路を設け、プラグ受けからの差込プラグの抜去時にスイッチング素子をオフにすることで、アーク放電の発生を抑える技術を開示している。 The above Patent Document 2 also suppresses the occurrence of arc discharge by providing an arc absorption circuit including a switching element on a path through which a current flows during DC power supply, and turning off the switching element when the plug is removed from the plug receptacle. The technology is disclosed.
 しかし、特許文献2で開示されている技術では、アーク吸収回路として2つのスイッチング素子や、スイッチング素子をオフにするためのタイマを設けており、アーク電力を一時的に蓄えて、その蓄えた電力を放出するための回路が必要になり、回路が大型化する。 However, in the technique disclosed in Patent Document 2, two switching elements as an arc absorption circuit and a timer for turning off the switching elements are provided, arc power is temporarily stored, and the stored power A circuit for discharging the battery becomes necessary, and the circuit becomes larger.
 そこで本件開示者は、上述した背景に鑑み、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、正極側の電極に2つの接点を設け、受電側の電極との接点の切り替え時に直流電力の切断時に電極間で生じる電圧を抑制することで、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが可能な技術を考案するに至った。 Therefore, in view of the above-described background, the present disclosure has intensively studied a technology that can suppress the occurrence of arc discharge with a small-scale configuration when cutting off DC power without reducing the power efficiency when supplying DC power. went. As a result, as described below, the present disclosure provides two contacts on the positive electrode, and suppresses the voltage generated between the electrodes when the DC power is cut off when switching the contact with the power receiving electrode. Thus, the inventors have devised a technique that can suppress the occurrence of arc discharge with a small-scale configuration when the DC power is cut without reducing the power efficiency when supplying DC power.
 さらに、本件開示者は、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保することが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保できる技術を考案するに至った。 Furthermore, the present disclosure has intensively studied a technology capable of ensuring safety even when a short circuit occurs due to deterioration of the semiconductor switch when the semiconductor switch is used for suppressing arc discharge. As a result, as described below, the present disclosure has devised a technique that can ensure safety even when a short circuit occurs due to deterioration of the semiconductor switch when the semiconductor switch is used to suppress arc discharge. It was.
 以上、本開示の一実施形態の背景について説明した。続いて、本開示の実施の形態について詳細に説明する。 The background of the embodiment of the present disclosure has been described above. Subsequently, an embodiment of the present disclosure will be described in detail.
 [1.2.構成例]
 図1は、本開示の一実施形態に係る直流回路の構成例を示す説明図である。図1に示したのは、直流電源から供給される直流電力を遮断する際にアーク放電を抑制することを目的とした直流回路の構成例である。以下、図1を用いて本開示の一実施形態に係る直流回路の構成例について説明する。
[1.2. Configuration example]
FIG. 1 is an explanatory diagram illustrating a configuration example of a DC circuit according to an embodiment of the present disclosure. FIG. 1 shows a configuration example of a DC circuit for the purpose of suppressing arc discharge when the DC power supplied from the DC power supply is cut off. Hereinafter, a configuration example of a DC circuit according to an embodiment of the present disclosure will be described with reference to FIG.
 図1に示した直流回路100は、直流電源(図示せず)から負荷10へ直流電力が供給される経路上に設けられている。直流電源は所定の電圧Vsの直流電力を出力する。そして図1に示した直流回路100は、直流電源の正極側と負荷10との間に備えられている。直流回路100は、直流電源からの直流電流を遮断する際にアーク放電の発生を抑制する構成を有している。 The DC circuit 100 shown in FIG. 1 is provided on a path through which DC power is supplied from a DC power supply (not shown) to the load 10. The DC power supply outputs DC power having a predetermined voltage Vs. The DC circuit 100 shown in FIG. 1 is provided between the positive electrode side of the DC power source and the load 10. The DC circuit 100 has a configuration that suppresses the occurrence of arc discharge when a DC current from a DC power supply is interrupted.
 直流回路100は、MOSFET T1と、コンデンサC1と、抵抗R1と、ダイオードD1と、スイッチSW1と、スイッチ回路110と、を含んで構成される。またスイッチ回路110は、スイッチFS1と、ヒューズF1と、を含んで構成される。直流回路100は、直流が流れる経路において並列である主系統と副系統とで電流を流す。スイッチSW1が設けられている系統を主系統とし、MOSFET T1が設けられている系統を副系統とする。また、MOSFET T1と、コンデンサC1と、抵抗R1と、ダイオードD1と、は電圧積分回路として機能する。 The DC circuit 100 includes a MOSFET T1, a capacitor C1, a resistor R1, a diode D1, a switch SW1, and a switch circuit 110. The switch circuit 110 includes a switch FS1 and a fuse F1. The DC circuit 100 allows a current to flow through the main system and the sub system that are parallel in the path through which the DC flows. A system in which the switch SW1 is provided is a main system, and a system in which the MOSFET T1 is provided is a sub system. The MOSFET T1, the capacitor C1, the resistor R1, and the diode D1 function as a voltage integrating circuit.
 MOSFET T1は、本実施形態ではn型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor) を用いている。コンデンサC1は、MOSFET T1のドレイン端子とゲート端子との間に設けられる。また抵抗R1は、MOSFET T1のゲート端子とソース端子との間に設けられる。そしてコンデンサC1と抵抗R1とは直列に接続されている。MOSFET T1、コンデンサC1、抵抗R1、及びダイオードD1からなる回路は、スイッチSW1がオン状態からオフ状態へ切り替わる際に、直流電源から負荷10へ流れる電流を抑制するために設けられる回路である。 The MOSFET T1 uses an n-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) in the present embodiment. The capacitor C1 is provided between the drain terminal and the gate terminal of the MOSFET T1. The resistor R1 is provided between the gate terminal and the source terminal of the MOSFET T1. The capacitor C1 and the resistor R1 are connected in series. The circuit composed of the MOSFET T1, the capacitor C1, the resistor R1, and the diode D1 is a circuit provided for suppressing a current flowing from the DC power source to the load 10 when the switch SW1 is switched from the on state to the off state.
 直流回路100の動作について説明する。スイッチSW1の状態がオフ状態になっている場合にMOSFET T1もオフ状態であり、従って直流電源から負荷10に電流は流れない。その後、スイッチSW1が操作されて、スイッチSW1の状態がオン状態に移行すると、直流電源から負荷10に電流が流れるが、この状態ではMOSFET T1は引き続きオフ状態になっており、MOSFET T1には電流が流れない。 The operation of the DC circuit 100 will be described. When the switch SW1 is in the off state, the MOSFET T1 is also in the off state, so that no current flows from the DC power source to the load 10. Thereafter, when the switch SW1 is operated and the state of the switch SW1 shifts to the ON state, a current flows from the DC power source to the load 10, but in this state, the MOSFET T1 is continuously in the OFF state, and the current is not supplied to the MOSFET T1. Does not flow.
 さらにその後、スイッチSW1が操作されて、スイッチSW1の状態がオフ状態になると、直流電源から負荷10に電流が流れなくなる。この際にスイッチSW1がオフ状態になったことによって(スイッチSW1の両端が切り離されたことによって)生じるスイッチSW1の両端の電圧は、コンデンサC1を介してMOSFET T1のゲート電圧を誘起させて、MOSFET T1をオン状態にする。MOSFET T1がオン状態になると、直流電源から負荷10へ向けて、スイッチSW1の両端の電圧を低下させる方向に電流が流れる。 After that, when the switch SW1 is operated and the switch SW1 is turned off, no current flows from the DC power source to the load 10. At this time, the voltage at both ends of the switch SW1 generated when the switch SW1 is turned off (by disconnecting both ends of the switch SW1) induces the gate voltage of the MOSFET T1 through the capacitor C1, and the MOSFET Turn T1 on. When the MOSFET T1 is turned on, a current flows in the direction of decreasing the voltage across the switch SW1 from the DC power source toward the load 10.
 MOSFET T1がオン状態になり、直流電源から負荷10へ向けて、スイッチSW1の両端の電圧を低下させる方向に電流が流れることにより、スイッチSW1の両端の電圧が低減される。スイッチSW1の両端の電圧が低減されることによって、スイッチSW1がオフ状態になっても、スイッチSW1はアーク放電の発生に至ることはない。 The MOSFET T1 is turned on, and a current flows in a direction to decrease the voltage across the switch SW1 from the DC power source toward the load 10, whereby the voltage across the switch SW1 is reduced. By reducing the voltage across the switch SW1, the switch SW1 does not cause arc discharge even when the switch SW1 is turned off.
 MOSFET T1のドレイン端子とソース端子との間の電圧は、FETのゲート電圧による伝達関数に沿った電圧に収まる。スイッチSW1がオフ状態になり、スイッチSW1の両端に発生した電圧によってコンデンサC1の充電が進むと、MOSFET T1のゲート電圧が低下し、MOSFET T1はオフ状態に移行することでMOSFET T1に電流が流れなくなる。 The voltage between the drain terminal and the source terminal of MOSFET T1 falls within the voltage along the transfer function of the FET gate voltage. When the switch SW1 is turned off and the capacitor C1 is charged by the voltage generated at both ends of the switch SW1, the gate voltage of the MOSFET T1 is lowered, and the MOSFET T1 is turned off so that a current flows through the MOSFET T1. Disappear.
 直流回路100の抵抗R1に並列に接続されたダイオードD1は、スイッチSW1がオフ状態からオン状態に移行した場合に、抵抗R1を介さずコンデンサC1に蓄積された電荷を短時間に放電するために設けられる。 The diode D1 connected in parallel with the resistor R1 of the DC circuit 100 is used for discharging the charge accumulated in the capacitor C1 in a short time without going through the resistor R1 when the switch SW1 shifts from the off state to the on state. Provided.
 直流回路100において、ダイオードD1が抵抗R1と並列に設けられることで、例えばスイッチSW1の接続がチャタリングなどの現象を起こしても、直流回路100の電圧積分機能が短時間で復帰できるようにしている。抵抗R1は、MOSFET T1のゲート端子に電圧を供給するが、電圧の供給時間はコンデンサC1の容量と抵抗R1の抵抗値との積の関係で決まる。 In the DC circuit 100, the diode D1 is provided in parallel with the resistor R1, so that the voltage integration function of the DC circuit 100 can be restored in a short time even if the connection of the switch SW1 causes chattering or the like. . The resistor R1 supplies a voltage to the gate terminal of the MOSFET T1, and the voltage supply time is determined by the product relationship between the capacitance of the capacitor C1 and the resistance value of the resistor R1.
 そして、直流回路100には、図1に示したように、スイッチFS1及びヒューズF1を有する。スイッチFS1は、正常時(ヒューズF1が溶断していない状態をいう)には共通端子である端子a1と、固定接点である端子a2とが、可動接点により電気的に接続される状態となっている。スイッチFS1の可動接点は、弾性力を有しており、後述するようにヒューズF1が溶断すると、端子a1と端子a2とが電気的に接続されなくなる。 The DC circuit 100 has a switch FS1 and a fuse F1 as shown in FIG. The switch FS1 is in a state where the terminal a1 which is a common terminal and the terminal a2 which is a fixed contact are electrically connected by a movable contact when the switch FS1 is normal (which means that the fuse F1 is not blown). Yes. The movable contact of the switch FS1 has an elastic force, and when the fuse F1 is blown as will be described later, the terminals a1 and a2 are not electrically connected.
 ヒューズF1は、MOSFET T1が設けられている副系統で過大な電流が流れると溶断する。ヒューズF1が溶断すると、スイッチFS1は、ヒューズF1による保持力を失い、端子a1と端子a2とを電気的に開放状態にする。 The fuse F1 is blown when an excessive current flows in the sub system in which the MOSFET T1 is provided. When the fuse F1 is blown, the switch FS1 loses the holding force by the fuse F1 and electrically opens the terminal a1 and the terminal a2.
 図2は、ヒューズF1が溶断した状態の直流回路100を示す説明図である。ヒューズF1に過大な電流が流れ、ヒューズF1が溶断すると、図2に示したようにスイッチFS1はヒューズF1による保持力を失い、端子a1と端子a2とを電気的に開放状態にする。 FIG. 2 is an explanatory diagram showing the DC circuit 100 in a state where the fuse F1 is blown. When an excessive current flows through the fuse F1 and the fuse F1 is blown, the switch FS1 loses the holding force by the fuse F1 as shown in FIG. 2, and the terminals a1 and a2 are electrically opened.
 図1に示した直流回路100において、正常な状態、すなわち、スイッチSW1がオン状態からオフ状態に切り替わり、MOSFET T1がオン状態となってから、ヒューズF1の定格通電時間(溶断するまでの時間)より短い時間でMOSFET T1がオフ状態になれば、ヒューズF1は溶断することはない。 In the DC circuit 100 shown in FIG. 1, the rated energization time of the fuse F <b> 1 (time until fusing) after the switch SW <b> 1 is switched from the on state to the off state and the MOSFET T <b> 1 is turned on. If the MOSFET T1 is turned off in a shorter time, the fuse F1 is not blown.
 しかし、異常な状態、すなわちMOSFET T1が故障するなどして、スイッチSW1がオン状態からオフ状態に切り替わり、MOSFET T1がオン状態となってから、ヒューズF1の溶断時間より短い時間でMOSFET T1がオフ状態にならなければ、ヒューズF1に電流が流れ続け、ヒューズF1が溶断する。 However, the MOSFET T1 is turned off in a time shorter than the fusing time of the fuse F1 after the switch SW1 is switched from the on state to the off state due to an abnormal state, that is, the MOSFET T1 breaks down and the MOSFET T1 is turned on. If not, current continues to flow through the fuse F1, and the fuse F1 is blown.
 図3は、ヒューズF1に流れる電流の時間変化をグラフで示す説明図である。図3には、直流回路100が正常な状態における、ヒューズF1に流れる電流I1の時間変化と、直流回路100が異常な状態における、ヒューズF1に流れる電流I2の時間変化と、が示されている。 FIG. 3 is an explanatory diagram showing the time change of the current flowing through the fuse F1 in a graph. FIG. 3 shows the time change of the current I1 flowing through the fuse F1 when the DC circuit 100 is normal and the time change of the current I2 flowing through the fuse F1 when the DC circuit 100 is abnormal. .
 直流回路100が正常な状態では、定格電流を上回る電流が流れても、ヒューズF1の定格通電時間(溶断するまでの時間)より短い時間で電流I1が低下する。従って直流回路100が正常な状態ではヒューズF1は溶断しない。しかし、直流回路100が異常な状態では、MOSFET T1がオフ状態にならず電流が流れ続け、定格通電時間を超えて定格電流を上回る電流が流れると、最終的にヒューズF1が溶断してようやく電流I2が低下する。 In a normal state of the DC circuit 100, even if a current exceeding the rated current flows, the current I1 decreases in a time shorter than the rated energization time (time until the fuse F1 is blown). Therefore, when the DC circuit 100 is normal, the fuse F1 is not blown. However, when the DC circuit 100 is in an abnormal state, the MOSFET T1 is not turned off and the current continues to flow. When a current exceeding the rated current is exceeded and the current exceeding the rated current flows, the fuse F1 is finally blown and finally the current flows. I2 decreases.
 すなわち直流回路100は、定格電流を上回る電流が流れても定格通電時間より短い時間であればヒューズF1は溶断しないことを利用して、スイッチSW1がオン状態からオフ状態に切り替わってもスイッチSW1のアーク放電の発生を抑えることができる。また、直流回路100は、MOSFET T1が故障するなどして正常な状態では無くなった場合に、ヒューズF1の溶断によってスイッチFS1が開放状態となり、直流電源からの主系統及び副系統での再通電を抑止することができる。 In other words, the DC circuit 100 uses the fact that the fuse F1 is not blown if a current exceeding the rated current flows even if the current is shorter than the rated energization time, so that even if the switch SW1 is switched from the on state to the off state, The occurrence of arc discharge can be suppressed. Further, in the case where the DC circuit 100 is not in a normal state due to a failure of the MOSFET T1, the switch FS1 is opened due to the blow of the fuse F1, and re-energization in the main system and the sub system from the DC power supply is performed. Can be deterred.
 図4は、正常時におけるスイッチFS1及びヒューズF1の状態を示す説明図である。また図5は、ヒューズF1が溶断した場合のスイッチFS1及びヒューズF1の状態を示す説明図である。 FIG. 4 is an explanatory diagram showing the state of the switch FS1 and the fuse F1 in a normal state. FIG. 5 is an explanatory diagram showing the state of the switch FS1 and the fuse F1 when the fuse F1 is blown.
 図4に示したように、ヒューズF1が溶断していない状態では、ヒューズF1によってスイッチFS1は、端子a1と端子a2との間が電気的に接続されている。しかし、ヒューズF1が溶断すると、スイッチFS1はヒューズF1による保持力を失い、端子a1と端子a2とを電気的に開放状態にする。 As shown in FIG. 4, in a state in which the fuse F1 is not blown, the switch FS1 is electrically connected between the terminal a1 and the terminal a2 by the fuse F1. However, when the fuse F1 is blown, the switch FS1 loses the holding force by the fuse F1, and the terminals a1 and a2 are electrically opened.
 なお、スイッチFS1の可動接点は、図4等に示したように、中間付近で曲げられた構造を有していても良い。このように曲げられた構造を有することで、スイッチFS1はヒューズF1が溶断した際に端子a1と端子a2とを電気的に開放状態にしやすく出来る。 Note that the movable contact of the switch FS1 may have a structure bent near the middle as shown in FIG. By having such a bent structure, the switch FS1 can easily open the terminals a1 and a2 when the fuse F1 is blown.
 図6は、正常時におけるスイッチFS1及びヒューズF1の状態を示す説明図である。また図7は、ヒューズF1が溶断した場合のスイッチFS1及びヒューズF1の状態を示す説明図である。 FIG. 6 is an explanatory diagram showing the state of the switch FS1 and the fuse F1 in a normal state. FIG. 7 is an explanatory diagram showing the state of the switch FS1 and the fuse F1 when the fuse F1 is blown.
 図6及び図7に示したように、ヒューズF1は、スイッチFS1の可動接点のさらに先に接続されていても良い。このように、スイッチFS1の可動接点のさらに先にヒューズF1が接続されるよう構成されることで、ヒューズF1に掛かる保持力を弱め、ヒューズF1の材料として柔らかいものを利用可能とすることができる。 As shown in FIGS. 6 and 7, the fuse F1 may be connected further to the movable contact of the switch FS1. As described above, the fuse F1 is configured to be connected further before the movable contact of the switch FS1, so that the holding force applied to the fuse F1 can be weakened and a soft material can be used as the material of the fuse F1. .
 スイッチFS1の固定接点側の端子a1とヒューズF1の一端との間に、ヒューズF1と並列になるように別のヒューズが設けられても良い。 Another fuse may be provided between the terminal a1 on the fixed contact side of the switch FS1 and one end of the fuse F1 so as to be in parallel with the fuse F1.
 図8は、正常時におけるスイッチFS1及びスイッチFS1及びヒューズF1、F2の状態を示す説明図である。また図9は、ヒューズF1、F2が溶断した場合のスイッチFS1及びヒューズF1、F2の状態を示す説明図である。 FIG. 8 is an explanatory diagram showing the state of the switch FS1, the switch FS1, and the fuses F1, F2 in a normal state. FIG. 9 is an explanatory diagram showing the state of the switch FS1 and the fuses F1, F2 when the fuses F1, F2 are blown.
 ヒューズは、使用される金属によって抵抗が変化する。図8のようにヒューズF1、F2を設けることで、スイッチFS1の可動接点の保持力を強化しつつ、ヒューズF1の大型化を回避している。このように2つのヒューズを設けることで、電圧積分回路の許容遮断電流を変更しても、ヒューズF2の変更のみで済むので、構成の変更が最小限で済むという効果がある。なお、ヒューズF2は、ヒューズF1と同じ定格通電時間を有しても良いが、異なる定格通電時間を有していてもよい。 ∙ The resistance of the fuse varies depending on the metal used. By providing the fuses F1 and F2 as shown in FIG. 8, the holding force of the movable contact of the switch FS1 is strengthened, and the enlargement of the fuse F1 is avoided. By providing two fuses in this way, even if the allowable cut-off current of the voltage integrating circuit is changed, only the change of the fuse F2 is required, so that the change of the configuration can be minimized. The fuse F2 may have the same rated energization time as the fuse F1, but may have a different rated energization time.
 スイッチFS1の固定接点側の端子a1とヒューズF1の一端との間に、ヒューズF1と並列になるようにキャパシタが設けられても良い。 A capacitor may be provided between the terminal a1 on the fixed contact side of the switch FS1 and one end of the fuse F1 so as to be in parallel with the fuse F1.
 図10は、正常時におけるスイッチFS1、ヒューズF1及びキャパシタC11の状態を示す説明図である。 FIG. 10 is an explanatory diagram showing the state of the switch FS1, the fuse F1, and the capacitor C11 in a normal state.
 キャパシタC11は、スイッチSW1がオフ状態になった際に流れるパルス状の電流の一部を分流させて電荷を蓄積させるために設けられる。キャパシタC11に蓄積された電荷は、ヒューズF1を介して徐々に放出される。 The capacitor C11 is provided in order to accumulate a charge by diverting a part of the pulsed current that flows when the switch SW1 is turned off. The electric charge accumulated in the capacitor C11 is gradually released through the fuse F1.
 図11は、ヒューズF1及びキャパシタC11に流れる電流の時間変化をグラフで示す説明図である。図11には、直流回路100が正常な状態における、ヒューズF1及びキャパシタC11に流れる電流I11、I13の時間変化と、直流回路100が異常な状態における、ヒューズF1に流れる電流I12の時間変化と、が示されている。 FIG. 11 is an explanatory diagram showing the time change of the current flowing through the fuse F1 and the capacitor C11 in a graph. FIG. 11 shows the time change of the currents I11 and I13 flowing through the fuse F1 and the capacitor C11 when the DC circuit 100 is normal, and the time change of the current I12 flowing through the fuse F1 when the DC circuit 100 is abnormal. It is shown.
 直流回路100が正常な状態では、ヒューズF1には符号I11で示した量の電流が流れ、キャパシタC11には符号I13で示した量の電流が流れる。図3に示した電流の推移と比較すると、キャパシタC11を設けることでヒューズF1に流れる電流の量が少なくなっていることが分かる。すなわち、キャパシタC11を設けることでヒューズF1の劣化を抑制することができる。 When the DC circuit 100 is in a normal state, an amount of current indicated by reference numeral I11 flows through the fuse F1, and an amount of current indicated by reference numeral I13 flows through the capacitor C11. Compared with the transition of the current shown in FIG. 3, it can be seen that the amount of current flowing through the fuse F1 is reduced by providing the capacitor C11. That is, the deterioration of the fuse F1 can be suppressed by providing the capacitor C11.
 図12は、本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。図12に示したのは、ソリッドステートリレー(SSR、半導体リレー)に機械式リレーを組み合わせて、機械式リレーのオン、オフによって直流電力の供給と遮断とを切り替えることを目的とした直流回路100の構成例である。 FIG. 12 is an explanatory diagram illustrating another configuration example of the DC circuit according to the embodiment of the present disclosure. FIG. 12 shows a DC circuit 100 for combining a solid state relay (SSR, semiconductor relay) with a mechanical relay and switching between supply and interruption of DC power by turning on and off the mechanical relay. This is an example of the configuration.
 図12に示した直流回路100は、SSR130と、機械式リレーRY1と、ダイオードD21、D22、D23と、コンデンサC21、C22と、抵抗R21と、を備える。直流回路100は、直流が流れる経路において並列である主系統と副系統とで電流を流す。SSR130が設けられている系統を主系統とし、機械式リレーRY1が設けられている系統を副系統とする。 The DC circuit 100 shown in FIG. 12 includes an SSR 130, a mechanical relay RY1, diodes D21, D22, and D23, capacitors C21 and C22, and a resistor R21. The DC circuit 100 allows a current to flow through the main system and the sub system that are parallel in the path through which the DC flows. A system in which the SSR 130 is provided is a main system, and a system in which the mechanical relay RY1 is provided is a sub system.
 機械式リレーRY1は、端子V+から端子V-へ流れる電流によって発生する電磁力を用いて接点を切り替えるよう動作する。機械式リレーRY1は、端子V+から端子V-へ電流が流れていない場合は接点1bと接続し、端子V+から端子V-へ電流が流れている場合は電磁力を用いて接点1aと接続する。なお図12には図示していないが、端子V+へ直流電力を供給する直流電源が設けられていても良い。 The mechanical relay RY1 operates so as to switch contacts using an electromagnetic force generated by a current flowing from the terminal V + to the terminal V−. The mechanical relay RY1 is connected to the contact 1b when no current flows from the terminal V + to the terminal V-, and is connected to the contact 1a using electromagnetic force when the current flows from the terminal V + to the terminal V-. . Although not shown in FIG. 12, a DC power supply for supplying DC power to the terminal V + may be provided.
 SSR130は、端子Aから端子Bへの電力供給経路上に設けられている。本実施形態では、SSR130は、制御端子にハイ状態の電圧が印加されるとオン状態になり、制御端子にロー状態の電圧が印加されるとオフ状態となるように構成されている。 The SSR 130 is provided on the power supply path from the terminal A to the terminal B. In the present embodiment, the SSR 130 is configured to be turned on when a high voltage is applied to the control terminal, and to be turned off when a low voltage is applied to the control terminal.
 端子V+から端子V-へ電流が流れていない場合は、機械式リレーRY1に電流が流れていないので、機械式リレーRY1は接点1bと接続している。従って機械式リレーRY1の接点1bはクローズ状態であり、接点1aはオープン状態である。 When no current flows from the terminal V + to the terminal V−, no current flows through the mechanical relay RY1, and therefore the mechanical relay RY1 is connected to the contact 1b. Therefore, the contact 1b of the mechanical relay RY1 is in the closed state, and the contact 1a is in the open state.
 その後、端子V+に電圧が印加されて端子V+から端子V-へ電流が流れると、機械式リレーRY1は徐々に電磁力を発生させる。機械式リレーRY1が発生させた電磁力がある程度まで達すると、機械式リレーRY1は接点1bとの接続を解除する。 Thereafter, when a voltage is applied to the terminal V + and a current flows from the terminal V + to the terminal V−, the mechanical relay RY1 gradually generates an electromagnetic force. When the electromagnetic force generated by the mechanical relay RY1 reaches a certain level, the mechanical relay RY1 releases the connection with the contact 1b.
 さらに電磁力が上昇すると、機械式リレーRY1は接点1aと接続するが、その接点1aとの接続の際にはチャタリングが生じる。また端子V+に電圧が印加されると、その電圧がSSR130の制御端子に印加される、SSR130はオン状態になる。そして端子V+から端子V-へ電流が流れると、ダイオードD21を通じてコンデンサC21に電荷が蓄積される。 When the electromagnetic force further increases, the mechanical relay RY1 is connected to the contact 1a, but chattering occurs when connecting to the contact 1a. When a voltage is applied to the terminal V +, the voltage is applied to the control terminal of the SSR 130, and the SSR 130 is turned on. When a current flows from the terminal V + to the terminal V−, charge is accumulated in the capacitor C21 through the diode D21.
 さらにその後、端子V+に電圧が印加されなくなり、端子V+から端子V-へ電流が流れなくなると、機械式リレーRY1は徐々に電磁力を減少させる。機械式リレーRY1が発生させた電磁力が減少を始めると、機械式リレーRY1は接点1aとの接続を解除する。さらに電磁力が減少すると、機械式リレーRY1は接点1bと接続するが、その接点1bとの接続の際にはチャタリングが生じる。 After that, when no voltage is applied to the terminal V + and no current flows from the terminal V + to the terminal V−, the mechanical relay RY1 gradually reduces the electromagnetic force. When the electromagnetic force generated by the mechanical relay RY1 starts to decrease, the mechanical relay RY1 releases the connection with the contact 1a. When the electromagnetic force further decreases, the mechanical relay RY1 is connected to the contact 1b, but chattering occurs at the time of connection with the contact 1b.
 この際、コンデンサC21は、機械式リレーRY1は接点1bと接続するまでの間、SSR130をオン状態とさせるだけの電力を蓄積できることが望ましい。またこの際、ダイオードD22が逆バイアスから解放されて導通し、コンデンサC22が機械式リレーRY1のコイルを通して動作する。 At this time, it is desirable that the capacitor C21 can store enough power to turn on the SSR 130 until the mechanical relay RY1 is connected to the contact 1b. At this time, the diode D22 is released from the reverse bias and becomes conductive, and the capacitor C22 operates through the coil of the mechanical relay RY1.
 すなわち、コンデンサC22は、機械式リレーRY1が接点1bと接続する際のチャタリングを吸収する。またコンデンサC22は、ダイオードD23を通してコンデンサC21の放電回路も形成するとともに機械式リレーRY1のサージを吸収させている。 That is, the capacitor C22 absorbs chattering when the mechanical relay RY1 is connected to the contact 1b. Capacitor C22 also forms a discharge circuit for capacitor C21 through diode D23 and absorbs the surge of mechanical relay RY1.
 従って図12に示した直流回路100は、端子V+から端子V-へ電流が流れなくなり、機械式リレーRY1が接点1aとの接続を解除してもアークの発生を抑え、サージを吸収することが出来る。また図12に示した直流回路100は、端子の数を4つにして、一般的なリレーと同じような接続を可能にしたことで、既存のリレーから置き換えて使用することができる。 Therefore, in the DC circuit 100 shown in FIG. 12, no current flows from the terminal V + to the terminal V−, and even when the mechanical relay RY1 is disconnected from the contact 1a, the generation of arc is suppressed and the surge can be absorbed. I can do it. In addition, the DC circuit 100 shown in FIG. 12 has four terminals and can be connected in the same way as a general relay, so that it can be used in place of an existing relay.
 図12に示した直流回路100は、スイッチFS1及びヒューズF1を備えている。SSR130の半導体スイッチが故障して正常にオフ状態に移行しなくなると、端子Aから流れる電流によっていずれヒューズF1が溶断する。ヒューズF1が溶断すると、機械式リレーRY1の接点1a側の経路上の、スイッチFS1がオフ状態となる。 The DC circuit 100 shown in FIG. 12 includes a switch FS1 and a fuse F1. When the semiconductor switch of the SSR 130 fails and does not normally shift to the OFF state, the fuse F1 is eventually blown by the current flowing from the terminal A. When the fuse F1 is blown, the switch FS1 on the path on the contact 1a side of the mechanical relay RY1 is turned off.
 機械式リレーRY1の接点1a側の経路上の、スイッチFS1がオフ状態となると、機械式リレーRY1が接点1a側に接続したとしても電流は端子Aから端子Bへ流れることはなくなる。従って、図12に示した直流回路100は、SSR130の半導体スイッチが故障するなどして正常にオフ状態に移行しなくなったとしても、機械式リレーRY1による再通電を抑止することができる。 When the switch FS1 on the path on the contact 1a side of the mechanical relay RY1 is turned off, current does not flow from the terminal A to the terminal B even if the mechanical relay RY1 is connected to the contact 1a side. Therefore, the DC circuit 100 shown in FIG. 12 can suppress re-energization by the mechanical relay RY1 even if the semiconductor switch of the SSR 130 fails and does not normally shift to the OFF state.
 図13は、図12に示した直流回路100のヒューズF1に流れる電流の時間変化をグラフで示す説明図である。図13には、直流回路100が正常な状態における、ヒューズF1に流れる電流I21の時間変化と、直流回路100が異常な状態における、ヒューズF1に流れる電流I22の時間変化と、が示されている。 FIG. 13 is an explanatory diagram showing the change over time of the current flowing through the fuse F1 of the DC circuit 100 shown in FIG. FIG. 13 shows the time change of the current I21 flowing through the fuse F1 when the DC circuit 100 is normal and the time change of the current I22 flowing through the fuse F1 when the DC circuit 100 is abnormal. .
 直流回路100が正常な状態では、定格電流を上回る電流が流れても、ヒューズF1の定格通電時間(溶断するまでの時間)より短い時間で電流I21が低下する。従って直流回路100が正常な状態ではヒューズF1は溶断しない。しかし、直流回路100が異常な状態では、SSR130がオフ状態にならず電流が流れ続け、定格通電時間を超えて定格電流を上回る電流が流れると、最終的にヒューズF1が溶断してようやく電流I2が低下する。 In the normal state of the DC circuit 100, even if a current exceeding the rated current flows, the current I21 decreases in a time shorter than the rated energization time (time until fusing) of the fuse F1. Therefore, when the DC circuit 100 is normal, the fuse F1 is not blown. However, when the DC circuit 100 is in an abnormal state, the current continues to flow without the SSR 130 being turned off, and when the current exceeding the rated current exceeds the rated current, the fuse F1 is finally blown and the current I2 is finally reached. Decreases.
 すなわち直流回路100は、定格電流を上回る電流が流れても定格通電時間より短い時間であればヒューズF1は溶断しないことを利用して、スイッチSW1がオン状態からオフ状態に切り替わってもスイッチSW1のアーク放電の発生を抑えることができる。また、直流回路100は、SSR130が故障するなどして正常な状態では無くなった場合に、ヒューズF1の溶断によってスイッチFS1が開放状態となり、直流電源からの主系統及び副系統での再通電を抑止することができる。 In other words, the DC circuit 100 uses the fact that the fuse F1 is not blown if a current exceeding the rated current flows even if the current is shorter than the rated energization time, so that even if the switch SW1 is switched from the on state to the off state, The occurrence of arc discharge can be suppressed. Further, in the DC circuit 100, when the SSR 130 is not in a normal state due to a failure or the like, the switch FS1 is opened due to the blow of the fuse F1, and re-energization in the main system and the sub system from the DC power supply is suppressed. can do.
 図14は、スイッチFS1、ヒューズF1、F2の接続例を示す説明図である。図14に示したように、スイッチFS1の共通端子側の端子a1と、固定接点側の端子a2との間に、スイッチFS1と並列にヒューズF2が設けられても良い。MOSFET T1が故障するなどして正常な状態では無くなった場合に、ヒューズF1に一時的に過大な電流が流れることでヒューズF1が溶断する。図14に示した構成は、ヒューズF1が溶断してスイッチFS1が開放状態となる際のアークの発生を、ヒューズF2に電力を流すことで抑えていることを特徴としている。 FIG. 14 is an explanatory diagram showing a connection example of the switch FS1 and the fuses F1 and F2. As shown in FIG. 14, a fuse F2 may be provided in parallel with the switch FS1 between the terminal a1 on the common terminal side of the switch FS1 and the terminal a2 on the fixed contact side. When the MOSFET T1 is not in a normal state due to a failure or the like, the fuse F1 is blown by temporarily passing an excessive current through the fuse F1. The configuration shown in FIG. 14 is characterized in that the generation of an arc when the fuse F1 is blown and the switch FS1 is opened is suppressed by supplying power to the fuse F2.
 図15は、図14に示したヒューズF1、F2がいずれも溶断した状態を示す説明図である。ヒューズF1に一時的に過大な電流が流れることでヒューズF1が溶断して、スイッチFS1が開放状態となる際にさらにヒューズF2に電流が流れ、ヒューズF2も溶断する。このようにヒューズF1、F2動作することで、ヒューズF1が溶断してスイッチFS1が開放状態となる際のアークの発生を抑えることができる。 FIG. 15 is an explanatory view showing a state where both the fuses F1 and F2 shown in FIG. 14 are blown. When an excessive current temporarily flows through the fuse F1, the fuse F1 is blown, and when the switch FS1 is opened, a current further flows through the fuse F2, and the fuse F2 is also blown. By operating the fuses F1 and F2 in this way, it is possible to suppress the occurrence of an arc when the fuse F1 is blown and the switch FS1 is opened.
 図14には、スイッチFS1と並列にヒューズF2が設けられている例を示した。この例において、ヒューズF1は、図6に示したように、スイッチFS1の可動接点の先から接続されていても良い。また図10に示したように、スイッチFS1の固定接点側の端子a1とヒューズF1の一端との間に、ヒューズF1と並列になるようにキャパシタが設けられている構成に加え、スイッチFS1と並列にヒューズF2が設けられる構成であっても良い。 FIG. 14 shows an example in which a fuse F2 is provided in parallel with the switch FS1. In this example, the fuse F1 may be connected from the tip of the movable contact of the switch FS1 as shown in FIG. Further, as shown in FIG. 10, in addition to a configuration in which a capacitor is provided in parallel with the fuse F1 between the terminal a1 on the fixed contact side of the switch FS1 and one end of the fuse F1, in parallel with the switch FS1. The fuse F2 may be provided.
 図16は、本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。図16に示したのは、電圧積分回路を構成するMOSFET T1がショート状態で故障した場合であってもオープン状態で故障した場合であってもアークの発生を抑える構成とした直流回路100の例である。 FIG. 16 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure. FIG. 16 shows an example of the DC circuit 100 configured to suppress the occurrence of arcs even when the MOSFET T1 constituting the voltage integrating circuit is in a short state or in an open state. It is.
 図16には、直流電流を遮断するスイッチSW1の一方の接点、例えば固定接点側に、温度ヒューズF1を使った抵抗体付きサーモプロテクタTHP1を接続した直流回路100が示されている。 FIG. 16 shows a DC circuit 100 in which a resistor-equipped thermoprotector THP1 using a thermal fuse F1 is connected to one contact, for example, a fixed contact, of a switch SW1 that cuts off DC current.
 図16に示した直流回路100の動作を説明する。スイッチSW1の状態がオフ状態になっている場合ではMOSFET T1もオフ状態であり、従って直流電源側(IN)から負荷側(OUT)に電流は流れない。その後、スイッチSW1が操作されて、スイッチSW1の状態がオン状態に移行すると、直流電源側(IN)から負荷側(OUT)に電流が流れるが、この状態ではMOSFET T1は引き続きオフ状態になっており、MOSFET T1には電流が流れない。 The operation of the DC circuit 100 shown in FIG. 16 will be described. When the switch SW1 is in the OFF state, the MOSFET T1 is also in the OFF state, so that no current flows from the DC power supply side (IN) to the load side (OUT). Thereafter, when the switch SW1 is operated and the switch SW1 is turned on, a current flows from the DC power supply side (IN) to the load side (OUT). In this state, the MOSFET T1 is continuously turned off. Therefore, no current flows through the MOSFET T1.
 さらにその後、スイッチSW1が操作されて、スイッチSW1の状態がオフ状態になると、直流電源側(IN)から負荷側(OUT)に電流が流れなくなる。この際にスイッチSW1がオフ状態になったことによって(スイッチSW1の両端が切り離されたことによって)生じるスイッチSW1の両端の電圧は、コンデンサC1を介してMOSFET T1のゲート電圧を誘起させて、MOSFET T1をオン状態にする。MOSFET T1がオン状態になると、直流電源から負荷10へ向けて、スイッチSW1の両端の電圧を低下させる方向に電流が流れる。 After that, when the switch SW1 is operated and the switch SW1 is turned off, no current flows from the DC power supply side (IN) to the load side (OUT). At this time, the voltage at both ends of the switch SW1 generated when the switch SW1 is turned off (by disconnecting both ends of the switch SW1) induces the gate voltage of the MOSFET T1 through the capacitor C1, and the MOSFET Turn T1 on. When the MOSFET T1 is turned on, a current flows in the direction of decreasing the voltage across the switch SW1 from the DC power source toward the load 10.
 MOSFET T1がオン状態になり、直流電源側(IN)から負荷側(OUT)へ向けて、スイッチSW1の両端の電圧を低下させる方向に電流が流れることにより、スイッチSW1の両端の電圧が低減される。スイッチSW1の両端の電圧が低減されることによって、スイッチSW1がオフ状態になっても、スイッチSW1はアーク放電の発生に至ることはない。 The MOSFET T1 is turned on, and the current flows in the direction of decreasing the voltage at both ends of the switch SW1 from the DC power supply side (IN) to the load side (OUT), thereby reducing the voltage at both ends of the switch SW1. The By reducing the voltage across the switch SW1, the switch SW1 does not cause arc discharge even when the switch SW1 is turned off.
 MOSFET T1のドレイン端子とソース端子との間の電圧は、FETのゲート電圧による伝達関数に沿った電圧に収まる。スイッチSW1がオフ状態になり、スイッチSW1の両端に発生した電圧によってコンデンサC1の充電が進むと、MOSFET T1のゲート電圧が低下し、MOSFET T1はオフ状態に移行することでMOSFET T1に電流が流れなくなる。 The voltage between the drain terminal and the source terminal of MOSFET T1 falls within the voltage along the transfer function of the FET gate voltage. When the switch SW1 is turned off and the capacitor C1 is charged by the voltage generated at both ends of the switch SW1, the gate voltage of the MOSFET T1 is lowered, and the MOSFET T1 is turned off so that a current flows through the MOSFET T1. Disappear.
 直流回路100の抵抗R2に並列に接続されたダイオードDZ1は、スイッチSW1がオフ状態からオン状態に移行した場合に、抵抗R2を介さずコンデンサC1に蓄積された電荷を短時間に放電するために設けられる。 The diode DZ1 connected in parallel to the resistor R2 of the DC circuit 100 is for discharging the charge accumulated in the capacitor C1 in a short time without going through the resistor R2 when the switch SW1 is shifted from the off state to the on state. Provided.
 ここで、MOSFET T1がショート状態で故障した場合、抵抗体付きサーモプロテクタTHP1の抵抗R3に電流が流れ続け、抵抗R3が発熱する。そして抵抗R3の温度が所定の溶断温度以上になると、温度ヒューズF1が溶断する。温度ヒューズF1が溶断すると、スイッチSW1に電圧が掛かることが抑止される。 Here, when the MOSFET T1 fails in a short state, the current continues to flow through the resistor R3 of the thermoprotector THP1 with a resistor, and the resistor R3 generates heat. When the temperature of the resistor R3 becomes equal to or higher than a predetermined fusing temperature, the thermal fuse F1 is blown. When the thermal fuse F1 is blown, the voltage applied to the switch SW1 is suppressed.
 また、MOSFET T1がオープン状態で故障した状態で、スイッチSW1をオフにすると、MOSFET T1に電流が流れない。しかし、温度ヒューズF1を設けていることで、スイッチSW1をオフにした際に発生するアーク熱で温度ヒューズF1が溶断する。従って図16に示した直流回路100は、MOSFET T1がオープン状態で故障した状態で、スイッチSW1をオフにしても、安全に直流電流を遮断することが出来る。 Also, if the switch SW1 is turned off while the MOSFET T1 is in an open state and has failed, no current flows through the MOSFET T1. However, since the thermal fuse F1 is provided, the thermal fuse F1 is melted by arc heat generated when the switch SW1 is turned off. Therefore, the DC circuit 100 shown in FIG. 16 can safely cut off the DC current even if the switch SW1 is turned off while the MOSFET T1 is in an open state and has failed.
 図17は、本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。図17に示したのは、図16に示した直流回路100における抵抗R3と並列にヒューズF2が備えられた直流回路100の構成例である。このように、抵抗R3と並列にヒューズF2が備えられることで、MOSFET T1がショート状態で故障した場合にまずヒューズF2を溶断させる。図17に示した直流回路100は、ヒューズF2を溶断させることでスイッチSW1に電圧が掛かることが抑止される。 FIG. 17 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure. FIG. 17 shows a configuration example of the DC circuit 100 in which the fuse F2 is provided in parallel with the resistor R3 in the DC circuit 100 shown in FIG. Thus, by providing the fuse F2 in parallel with the resistor R3, when the MOSFET T1 fails in a short state, the fuse F2 is first blown. In the DC circuit 100 shown in FIG. 17, the voltage applied to the switch SW1 is suppressed by blowing the fuse F2.
 図18は、スイッチ回路110の別の構成例を示す説明図である。図18に示したのは、端子a、bの間に設けられる電流ヒューズFc1と、端子aと端子b、cとの間に設けられるサーモプロテクタFtp1と、ダイオードD31、D32と、を備えたスイッチ回路である。サーモプロテクタFtp1は、直列に接続される温度ヒューズFt1、Ft2と、温度ヒューズFt1、Ft2の間と、端子cとの間に設けられ、抵抗R1と、を備える。抵抗R1は、温度ヒューズFt1、Ft2を加熱させるために設けられている。なお、端子cには、例えば上述の電圧積分回路のような、正常時には短期間だけ電流が流れる回路が接続される。 FIG. 18 is an explanatory diagram showing another configuration example of the switch circuit 110. FIG. 18 shows a switch including a current fuse Fc1 provided between terminals a and b, a thermoprotector Ftp1 provided between terminals a and b and c, and diodes D31 and D32. Circuit. The thermoprotector Ftp1 is provided between the temperature fuses Ft1 and Ft2 connected in series, between the temperature fuses Ft1 and Ft2, and the terminal c, and includes a resistor R1. The resistor R1 is provided to heat the thermal fuses Ft1 and Ft2. The terminal c is connected to a circuit through which a current flows for a short period of time when it is normal, such as the voltage integration circuit described above.
 電流ヒューズFc1と、抵抗R1に並列に接続される電流ヒューズFc2とは、直流ヒューズであり、溶断時のアークはヒューズ筐体の内部でのみ発生し、アークの発生後は消弧剤により消化される構造となっているものを利用する。 The current fuse Fc1 and the current fuse Fc2 connected in parallel with the resistor R1 are direct current fuses, and an arc at the time of fusing occurs only inside the fuse housing, and is digested by an arc extinguishing agent after the arc is generated. Use what has a structure.
 温度ヒューズFt1、Ft2と電流ヒューズFc1を並列に接続するだけでは、それぞれの抵抗値に従って常時電流が分流する。常時電流が分流することで、電流ヒューズFc1の劣化が早まる可能性がある。一般的な温度ヒューズの内部抵抗は1.5mΩ~15mΩ程度であり、また1A定格の場合では電流ヒューズの内部抵抗は120mΩ、5A定格の場合では16mΩとなる。従って、ヒューズの組み合わせによっては半分が電流ヒューズに流れる場合もありうる。 Only by connecting the temperature fuses Ft1, Ft2 and the current fuse Fc1 in parallel, the current is always shunted according to the respective resistance values. There is a possibility that deterioration of the current fuse Fc1 is accelerated by always diverting the current. The internal resistance of a general temperature fuse is about 1.5 mΩ to 15 mΩ, and the internal resistance of the current fuse is 120 mΩ in the case of 1 A rating and 16 mΩ in the case of 5 A rating. Therefore, depending on the combination of fuses, half may flow through the current fuse.
 そこで、図18に示したスイッチ回路の構成例では、2つのダイオードD31、D32を設けている。2つのダイオードD31、D32は、図18に示したように電流を流す方向が異なっている。なお、2つのダイオードD31、D32は、双方向性を有するダイオードに置き換えられても良い。 Therefore, in the configuration example of the switch circuit shown in FIG. 18, two diodes D31 and D32 are provided. The two diodes D31 and D32 differ in the direction in which current flows as shown in FIG. Note that the two diodes D31 and D32 may be replaced with bidirectional diodes.
 2つのダイオードD31、D32を設けることで、2つのダイオードD31、D32の順方向電圧(例えば、おおよそ0.65V)以上の電圧が温度ヒューズFt1、Ft2の抵抗によって発生した場合にのみ、電流ヒューズFc1に電流が流れ始める。そのため、温度ヒューズFt1、Ft2の内部抵抗が例えば15mΩの場合は、40A以上の電流が流れる必要があり、通常使用では電流ヒューズFc1側に流れることはなく、温度ヒューズFt1、Ft2が溶断する。 By providing the two diodes D31 and D32, the current fuse Fc1 is only generated when a voltage higher than the forward voltage (for example, approximately 0.65 V) of the two diodes D31 and D32 is generated by the resistors of the thermal fuses Ft1 and Ft2. Current begins to flow. Therefore, when the internal resistance of the thermal fuses Ft1 and Ft2 is 15 mΩ, for example, a current of 40 A or more needs to flow, and in normal use, the current fuse Fc1 does not flow, and the thermal fuses Ft1 and Ft2 are blown.
 2つのダイオードD31、D32を設けることにより温度ヒューズFt1、Ft2の内部抵抗値が変化ししたときにのみ電流ヒューズFc1に分流されるようにして電流ヒューズFc1の劣化を防ぐことができる。 By providing the two diodes D31 and D32, the current fuse Fc1 can be prevented from deteriorating by being shunted to the current fuse Fc1 only when the internal resistance values of the thermal fuses Ft1 and Ft2 change.
 図19は、図18に示した回路の端子a-b間に流れる電流と、端子cに流れる電流の例を示す説明図である。図18の端子cには、端子a-b間に流れる電流量と同レベルの電流値を持つパルス状の電流が流れる。その電流が間欠的に流れる状態では電流ヒューズFc2は溶断しない容量を持ち、またその分流によるによる抵抗R1の発熱では温度ヒューズFt1、Ft2は溶断しない熱容量としている。 FIG. 19 is an explanatory diagram showing an example of a current flowing between terminals a and b and a current flowing in terminal c of the circuit shown in FIG. A pulsed current having a current value of the same level as the amount of current flowing between terminals a and b flows through terminal c in FIG. In the state where the current flows intermittently, the current fuse Fc2 has a capacity that does not blow, and the heat generation of the resistor R1 due to the shunt causes the temperature fuses Ft1 and Ft2 to have a heat capacity that does not blow.
 しかし、何らかの異常が発生するなどして、時刻t1より端子cに定常的に電流が流れると、時刻t2の時点で電流ヒューズFc2が溶断する。電流ヒューズFc2が溶断すると、抵抗R1に分流した電流による発熱で、やがて時刻t3において温度ヒューズFt1、Ft2が溶断する。温度ヒューズFt1、Ft2が溶断すると、端子a-b間の電流が遮断され、その電流が電流ヒューズFc1に分流する。そして、やがて端子a-b間の電流により時刻t4において電流ヒューズFc1が溶断する。 However, if a current flows constantly to the terminal c from time t1 due to some abnormality, the current fuse Fc2 is blown at time t2. When the current fuse Fc2 is blown, the temperature fuses Ft1 and Ft2 are blown at a time t3 due to heat generated by the current diverted to the resistor R1. When the thermal fuses Ft1 and Ft2 are blown, the current between the terminals ab is cut off, and the current is shunted to the current fuse Fc1. Eventually, the current fuse Fc1 is blown at time t4 by the current between the terminals a and b.
 なお、図19に示したそれぞれの時刻t1、t2、t3、t4の関係は一例であり、それぞれのヒューズが溶断する時刻は係る例に限定されるものではない。 Note that the relationship between the times t1, t2, t3, and t4 shown in FIG. 19 is an example, and the time at which each fuse blows is not limited to such an example.
 電流ヒューズFc1は、その特性上、温度ヒューズFt1,Ft2の抵抗値の総和よりもよりも大きい抵抗値を持つ。図18に示した回路は、通常は電流ヒューズFc1に流れる電流は微小なため、溶断しないことを利用している。例えば、電流ヒューズFc1は、1Aで溶断するヒューズを選択している。 The current fuse Fc1 has a resistance value larger than the sum of the resistance values of the thermal fuses Ft1 and Ft2 due to its characteristics. The circuit shown in FIG. 18 normally utilizes the fact that the current flowing through the current fuse Fc1 is very small and therefore does not blow. For example, as the current fuse Fc1, a fuse that is blown at 1A is selected.
 端子a-b間に通常流れる電流が2Aであるとすると、温度ヒューズFt1,Ft2の溶断時にアークが発生するが、そのアークエネルギーは電流ヒューズFc1に吸収される。そしてそのアークエネルギーは電流ヒューズFc1の溶断に形を変えるため、図18に示した回路は、端子cに定常的に電流が流れるような場合であってもアークの発生を抑えることができる。 Assuming that the current normally flowing between the terminals ab is 2 A, an arc is generated when the thermal fuses Ft1 and Ft2 are blown, but the arc energy is absorbed by the current fuse Fc1. Then, since the arc energy changes in shape to the fusing of the current fuse Fc1, the circuit shown in FIG. 18 can suppress the generation of an arc even when a current constantly flows through the terminal c.
 図20は、直流回路100を備えた移動体40の機能構成例を示す説明図である。移動体40は、例えば、ガソリン車のようにガソリンを動力源とする移動体であってもよく、電気自動車、ハイブリッド車、電気オートバイ等の、充放電可能なバッテリを主な動力源とする移動体であってもよい。図20には、移動体40に、バッテリ210と、バッテリから供給される電力により駆動する駆動部220と、が備えられた場合の例が示されている。駆動部220には、例えばワイパー、パワーウィンドウ、ライト、カーナビゲーションシステム、エアーコンディショナのような車両に備えられる装備品や、モーター等の移動体40を駆動させる装置などが含まれうる。 FIG. 20 is an explanatory diagram illustrating a functional configuration example of the moving body 40 including the DC circuit 100. The moving body 40 may be, for example, a moving body that uses gasoline as a power source, such as a gasoline car, and uses a chargeable / dischargeable battery as a main power source, such as an electric vehicle, a hybrid vehicle, and an electric motorcycle. It may be a body. FIG. 20 illustrates an example in which the moving body 40 includes a battery 210 and a driving unit 220 that is driven by electric power supplied from the battery. The drive unit 220 may include, for example, equipment provided in the vehicle such as a wiper, a power window, a light, a car navigation system, and an air conditioner, and a device that drives the moving body 40 such as a motor.
 そして図20に示した移動体40には、バッテリ210から駆動部220へ直流電力が供給される経路の途中に、直流回路100が設けられている。図20に示した移動体40は、バッテリ210から駆動部220へ直流電力が供給される経路上に、直流回路100が設けられることで、例えばバッテリ210を一時着脱させる際等にアーク放電の発生を抑えることが出来る。 20 is provided with a DC circuit 100 in the middle of a path through which DC power is supplied from the battery 210 to the drive unit 220. 20 is provided with a DC circuit 100 on a path through which DC power is supplied from the battery 210 to the drive unit 220. For example, when the battery 210 is temporarily attached or detached, arc discharge occurs. Can be suppressed.
 なお図20には、直流回路100が1つだけ備えられている移動体40の例を示したが、本開示は係る例に限定されるものではない。すなわち、直流回路100は直流電力が供給される経路の途中に複数設けられても良い。また直流回路100は、バッテリ210から駆動部220へ直流電力が供給される経路の途中だけでなく、他の場所、例えばバッテリ210を直流電力で充電する際の経路の途中に設けられても良い。移動体40は、バッテリ210を直流電力で充電する際の経路の途中に直流回路100を設けることで、安全にバッテリ210を直流電力で充電することができる。 FIG. 20 illustrates an example of the moving body 40 provided with only one DC circuit 100, but the present disclosure is not limited to such an example. That is, a plurality of DC circuits 100 may be provided in the middle of a path through which DC power is supplied. Further, the DC circuit 100 may be provided not only in the middle of a path in which DC power is supplied from the battery 210 to the drive unit 220 but also in another place, for example, in the middle of a path when charging the battery 210 with DC power. . The moving body 40 can safely charge the battery 210 with DC power by providing the DC circuit 100 in the middle of the path when charging the battery 210 with DC power.
 <2.まとめ>
 以上説明したように本開示の実施の形態によれば、直流電力の切断時に電極間で生じる電圧を抑制することで、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが可能な直流回路100が提供される。
<2. Summary>
As described above, according to the embodiment of the present disclosure, by suppressing the voltage generated between the electrodes when the DC power is cut, the arc discharge is performed when the DC power is cut without reducing the power efficiency when the DC power is supplied. There is provided a DC circuit 100 capable of suppressing the occurrence of the occurrence of the problem with a small-scale configuration.
 本開示の実施の形態に係る直流回路100は、MOSFET T1が故障するなどして正常な状態では無くなった場合に、ヒューズF1の溶断によってスイッチFS1が開放状態となり、直流電源からの主系統及び副系統での再通電を抑止することができる。 In the DC circuit 100 according to the embodiment of the present disclosure, when the MOSFET T1 is not in a normal state due to failure or the like, the switch FS1 is opened due to the fuse F1 being blown, and the main system and the sub-system from the DC power supply are opened. Re-energization in the system can be suppressed.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
 前記第1の電流経路上に設けられる第1のスイッチを用いて前記第2の電流経路における直流の遮断時に所定期間パルス状の電流を流す回路と、
 前記第1のスイッチの前段に設けられるヒューズと、
 前記ヒューズと前記回路との間に設けられる抵抗体と、
 を備え、
 前記ヒューズは、前記回路の定格通電時間における定格通電電流が流れることによる前記抵抗体の温度では溶断しない定格を有する、直流回路。
(2)
 前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、請求項1に記載の直流回路。
(3)
 前記回路は、
 前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
 前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
 前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
を備える、請求項2に記載の直流回路。
(4)
 直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
 前記第1の電流経路上に設けられる第1の電流ヒューズと、
 前記第1の電流経路上に、前記第1の電流ヒューズと並列に設けられる少なくとも2つの熱ヒューズと、
 前記第1の電流ヒューズ及び前記少なくとも2つの熱ヒューズの後段に互い違いに並列に設けられる2つのダイオードと、
 前記2つの熱ヒューズと、前記第2の電流経路における直流の遮断時に所定期間パルス状の電流を流す回路との間に設けられる抵抗体と、
 前記抵抗体と並列に設けられる第2の電流ヒューズと、
 を備え、
 前記第2の電流ヒューズは、前記回路の定格通電時間における定格通電電流が流れることによる前記抵抗体の温度では溶断しない定格を有する、直流回路。
(5)
 直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
 前記第1の電流経路上に設けられる第1のスイッチを用いて前記第2の電流経路における直流の遮断時に所定期間パルス状の電流を流す回路と、
 前記第1のスイッチの前段に設けられ、ヒューズの張力により接続が保持される第2のスイッチと、
 を備え、
 前記ヒューズが溶断すると前記第2のスイッチが開放状態となり、
 前記ヒューズは、前記回路の定格通電時間における定格通電電流では溶断しない定格を有する、直流回路。
(6)
 前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、前記(5)に記載の直流回路。
(7)
 前記回路は、
 前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
 前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
 前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
を備える、前記(6)に記載の直流回路。
(8)
 前記回路は、
 前記第1の電流経路上に設けられ、直流電源からの直流電流の供給及び遮断を切り替える半導体リレーと、
 前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記直流電源からの直流電流の供給及び遮断を切り替える機械式リレーと、
 を備え、
 前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、前記(6)に記載の直流回路。
(9)
 前記ヒューズは、溶断していない状態では、前記第2のスイッチの可動接点と前記回路とを接続する、前記(5)~(9)のいずれかに記載の直流回路。
(10)
 前記ヒューズは、前記第2のスイッチの共通端子と可動接点との間から前記回路に接続される、前記(9)に記載の直流回路。
(11)
 前記ヒューズは、前記第2のスイッチの共通端子と可動接点との間の先から前記回路に接続される、前記(9)に記載の直流回路。
(12)
 前記第2のスイッチの共通端子と前記回路との間に、さらに第2のヒューズを備える、前記(9)~(11)のいずれかに記載の直流回路。
(13)
 前記第2のヒューズは、前記ヒューズと異なる定格特性を有する、前記(12)に記載の直流回路。
(14)
 前記第2のスイッチの共通端子と前記回路との間にキャパシタを備える、前記(9)に記載の直流回路。
(15)
 前記第2のスイッチと並列に第2のヒューズを備える、前記(5)に記載の直流回路。
(16)
 前記(1)~(15)のいずれかに記載の直流回路を備える、移動体。
(17)
 直流電力を供給するバッテリと、
 前記バッテリから供給される直流電力による駆動する駆動部と、
 前記バッテリと前記駆動部との間に設けられる、少なくとも1つの、前記(1)~(15)のいずれかに記載の直流回路と、
を備える、電力供給システム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A first current path and a second current path provided in parallel in a path through which direct current flows;
A circuit for causing a pulsed current to flow for a predetermined period when a direct current is interrupted in the second current path using a first switch provided on the first current path;
A fuse provided in front of the first switch;
A resistor provided between the fuse and the circuit;
With
The fuse is a DC circuit having a rating that does not blow at the temperature of the resistor due to the flow of a rated energization current during the rated energization time of the circuit.
(2)
The DC circuit according to claim 1, wherein the circuit is a circuit that suppresses an amount of direct current flowing through the first current path.
(3)
The circuit is
A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side;
Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path;
A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
The DC circuit according to claim 2, comprising:
(4)
A first current path and a second current path provided in parallel in a path through which direct current flows;
A first current fuse provided on the first current path;
On the first current path, at least two thermal fuses provided in parallel with the first current fuse;
Two diodes provided alternately in parallel downstream of the first current fuse and the at least two thermal fuses;
A resistor provided between the two thermal fuses and a circuit for passing a pulsed current for a predetermined period when a direct current is interrupted in the second current path;
A second current fuse provided in parallel with the resistor;
With
The second current fuse has a rating that does not blow at the temperature of the resistor due to the flow of a rated energization current during the rated energization time of the circuit.
(5)
A first current path and a second current path provided in parallel in a path through which direct current flows;
A circuit for causing a pulsed current to flow for a predetermined period when a direct current is interrupted in the second current path using a first switch provided on the first current path;
A second switch provided before the first switch, wherein the connection is maintained by the tension of the fuse;
With
When the fuse is blown, the second switch is opened,
The fuse is a DC circuit having a rating that is not blown by a rated energization current during a rated energization time of the circuit.
(6)
The circuit according to (5), wherein the circuit is a circuit that suppresses an amount of direct current flowing through the first current path.
(7)
The circuit is
A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side;
Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path;
A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
The DC circuit according to (6), comprising:
(8)
The circuit is
A semiconductor relay which is provided on the first current path and which switches between supply and interruption of a direct current from a direct current power supply;
A mechanical relay provided on the second current path and connected in parallel with the semiconductor relay to switch supply and interruption of a direct current from the direct current power source;
With
The DC circuit according to (6), which is a circuit that suppresses chattering of the mechanical relay when DC is cut off by the mechanical relay.
(9)
The DC circuit according to any one of (5) to (9), wherein the fuse connects the movable contact of the second switch and the circuit when the fuse is not blown.
(10)
The DC circuit according to (9), wherein the fuse is connected to the circuit from between a common terminal of the second switch and a movable contact.
(11)
The DC circuit according to (9), wherein the fuse is connected to the circuit from a point between a common terminal of the second switch and a movable contact.
(12)
The DC circuit according to any one of (9) to (11), further including a second fuse between the common terminal of the second switch and the circuit.
(13)
The DC circuit according to (12), wherein the second fuse has a rating characteristic different from that of the fuse.
(14)
The DC circuit according to (9), further including a capacitor between the common terminal of the second switch and the circuit.
(15)
The DC circuit according to (5), further including a second fuse in parallel with the second switch.
(16)
A moving body comprising the DC circuit according to any one of (1) to (15).
(17)
A battery for supplying DC power;
A drive unit driven by DC power supplied from the battery;
At least one DC circuit according to any one of (1) to (15) provided between the battery and the drive unit;
A power supply system comprising:
 100  直流回路 100 DC circuit

Claims (17)

  1.  直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
     前記第1の電流経路上に設けられる第1のスイッチを用いて前記第2の電流経路における直流の遮断時に所定期間パルス状の電流を流す回路と、
     前記第1のスイッチの前段に設けられるヒューズと、
     前記ヒューズと前記回路との間に設けられる抵抗体と、
     を備え、
     前記ヒューズは、前記回路の定格通電時間における定格通電電流が流れることによる前記抵抗体の温度では溶断しない定格を有する、直流回路。
    A first current path and a second current path provided in parallel in a path through which direct current flows;
    A circuit for causing a pulsed current to flow for a predetermined period when a direct current is interrupted in the second current path using a first switch provided on the first current path;
    A fuse provided in front of the first switch;
    A resistor provided between the fuse and the circuit;
    With
    The fuse is a DC circuit having a rating that does not blow at the temperature of the resistor due to the flow of a rated energization current during the rated energization time of the circuit.
  2.  前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、請求項1に記載の直流回路。 2. The DC circuit according to claim 1, wherein the circuit is a circuit that suppresses the amount of DC flowing through the first current path.
  3.  前記回路は、
     前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
     前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
     前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
    を備える、請求項2に記載の直流回路。
    The circuit is
    A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side;
    Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path;
    A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
    The DC circuit according to claim 2, comprising:
  4.  直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
     前記第1の電流経路上に設けられる第1の電流ヒューズと、
     前記第1の電流経路上に、前記第1の電流ヒューズと並列に設けられる少なくとも2つの熱ヒューズと、
     前記第1の電流ヒューズ及び前記少なくとも2つの熱ヒューズの後段に互い違いに並列に設けられる2つのダイオードと、
     前記2つの熱ヒューズと、前記第2の電流経路における直流の遮断時に所定期間パルス状の電流を流す回路との間に設けられる抵抗体と、
     前記抵抗体と並列に設けられる第2の電流ヒューズと、
     を備え、
     前記第2の電流ヒューズは、前記回路の定格通電時間における定格通電電流が流れることによる前記抵抗体の温度では溶断しない定格を有する、直流回路。
    A first current path and a second current path provided in parallel in a path through which direct current flows;
    A first current fuse provided on the first current path;
    On the first current path, at least two thermal fuses provided in parallel with the first current fuse;
    Two diodes provided alternately in parallel downstream of the first current fuse and the at least two thermal fuses;
    A resistor provided between the two thermal fuses and a circuit for passing a pulsed current for a predetermined period when a direct current is interrupted in the second current path;
    A second current fuse provided in parallel with the resistor;
    With
    The second current fuse has a rating that does not blow at the temperature of the resistor due to the flow of a rated energization current during the rated energization time of the circuit.
  5.  直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
     前記第1の電流経路上に設けられる第1のスイッチを用いて前記第2の電流経路における直流の遮断時に所定期間パルス状の電流を流す回路と、
     前記第1のスイッチの前段に設けられ、ヒューズの張力により接続が保持される第2のスイッチと、
     を備え、
     前記ヒューズが溶断すると前記第2のスイッチが開放状態となり、
     前記ヒューズは、前記回路の定格通電時間における定格通電電流では溶断しない定格を有する、直流回路。
    A first current path and a second current path provided in parallel in a path through which direct current flows;
    A circuit for causing a pulsed current to flow for a predetermined period when a direct current is interrupted in the second current path using a first switch provided on the first current path;
    A second switch provided before the first switch, wherein the connection is maintained by the tension of the fuse;
    With
    When the fuse is blown, the second switch is opened,
    The fuse is a DC circuit having a rating that is not blown by a rated energization current during a rated energization time of the circuit.
  6.  前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、請求項5に記載の直流回路。 The DC circuit according to claim 5, wherein the circuit is a circuit that suppresses the amount of direct current flowing through the first current path.
  7.  前記回路は、
     前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
     前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
     前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
    を備える、請求項6に記載の直流回路。
    The circuit is
    A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side;
    Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path;
    A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
    The DC circuit according to claim 6, comprising:
  8.  前記回路は、
     前記第1の電流経路上に設けられ、直流電源からの直流電流の供給及び遮断を切り替える半導体リレーと、
     前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記直流電源からの直流電流の供給及び遮断を切り替える機械式リレーと、
     を備え、
     前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、請求項6に記載の直流回路。
    The circuit is
    A semiconductor relay which is provided on the first current path and which switches between supply and interruption of a direct current from a direct current power supply;
    A mechanical relay provided on the second current path and connected in parallel with the semiconductor relay to switch supply and interruption of a direct current from the direct current power source;
    With
    The direct current circuit according to claim 6, wherein the direct current circuit is a circuit that suppresses chattering of the mechanical relay when the mechanical relay interrupts direct current.
  9.  前記ヒューズは、溶断していない状態では、前記第2のスイッチの可動接点と前記回路とを接続する、請求項5に記載の直流回路。 6. The DC circuit according to claim 5, wherein the fuse connects the movable contact of the second switch and the circuit when the fuse is not blown.
  10.  前記ヒューズは、前記第2のスイッチの共通端子と可動接点との間から前記回路に接続される、請求項9に記載の直流回路。 10. The DC circuit according to claim 9, wherein the fuse is connected to the circuit from between a common terminal and a movable contact of the second switch.
  11.  前記ヒューズは、前記第2のスイッチの共通端子と可動接点との間の先から前記回路に接続される、請求項9に記載の直流回路。 10. The DC circuit according to claim 9, wherein the fuse is connected to the circuit from a point between a common terminal of the second switch and a movable contact.
  12.  前記第2のスイッチの共通端子と前記回路との間に、さらに第2のヒューズを備える、請求項9に記載の直流回路。 10. The DC circuit according to claim 9, further comprising a second fuse between the common terminal of the second switch and the circuit.
  13.  前記第2のヒューズは、前記ヒューズと異なる定格特性を有する、請求項12に記載の直流回路。 The DC circuit according to claim 12, wherein the second fuse has a rating characteristic different from that of the fuse.
  14.  前記第2のスイッチの共通端子と前記回路との間にキャパシタを備える、請求項9に記載の直流回路。 The DC circuit according to claim 9, further comprising a capacitor between the common terminal of the second switch and the circuit.
  15.  前記第2のスイッチと並列に第2のヒューズを備える、請求項5に記載の直流回路。 The DC circuit according to claim 5, further comprising a second fuse in parallel with the second switch.
  16.  請求項1に記載の直流回路を備える、移動体。 A moving body comprising the DC circuit according to claim 1.
  17.  直流電力を供給するバッテリと、
     前記バッテリから供給される直流電力による駆動する駆動部と、
     前記バッテリと前記駆動部との間に設けられる、少なくとも1つの、請求項1または4に記載の直流回路と、
    を備える、電力供給システム。
    A battery for supplying DC power;
    A drive unit driven by DC power supplied from the battery;
    At least one DC circuit according to claim 1 or 4 provided between the battery and the drive unit;
    A power supply system comprising:
PCT/JP2017/017392 2016-06-20 2017-05-08 Direct current circuit, moving body and power supply system WO2017221561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523572A JP6977721B2 (en) 2016-06-20 2017-05-08 DC circuit

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-121739 2016-06-20
JP2016121739 2016-06-20
JP2016-163474 2016-08-24
JP2016163474 2016-08-24
JP2016-165146 2016-08-25
JP2016165146 2016-08-25

Publications (1)

Publication Number Publication Date
WO2017221561A1 true WO2017221561A1 (en) 2017-12-28

Family

ID=60784614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017392 WO2017221561A1 (en) 2016-06-20 2017-05-08 Direct current circuit, moving body and power supply system

Country Status (2)

Country Link
JP (1) JP6977721B2 (en)
WO (1) WO2017221561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021054338A1 (en) * 2019-09-17 2021-03-25

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927633U (en) * 1972-06-15 1974-03-09
JPS6028434U (en) * 1983-07-29 1985-02-26 株式会社東海理化電機製作所 Vehicle power supply circuit
JPH08106839A (en) * 1994-10-05 1996-04-23 Alps Electric Co Ltd Intra-contact arc eliminating device of mechanical switch
US5536980A (en) * 1992-11-19 1996-07-16 Texas Instruments Incorporated High voltage, high current switching apparatus
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019105A (en) * 2003-06-24 2005-01-20 Sumitomo Electric Ind Ltd D.c. relay

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927633U (en) * 1972-06-15 1974-03-09
JPS6028434U (en) * 1983-07-29 1985-02-26 株式会社東海理化電機製作所 Vehicle power supply circuit
US5536980A (en) * 1992-11-19 1996-07-16 Texas Instruments Incorporated High voltage, high current switching apparatus
JPH08106839A (en) * 1994-10-05 1996-04-23 Alps Electric Co Ltd Intra-contact arc eliminating device of mechanical switch
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021054338A1 (en) * 2019-09-17 2021-03-25
JP7117744B2 (en) 2019-09-17 2022-08-15 国立大学法人埼玉大学 Current interrupting device and current interrupting method

Also Published As

Publication number Publication date
JP6977721B2 (en) 2021-12-08
JPWO2017221561A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2016194584A1 (en) Dc circuit, dc power supply device, moving body, and power supply system
US8063506B2 (en) Car power source apparatus
JP6641862B2 (en) Current limiting circuit, DC power supply connector and DC power supply
JP6973391B2 (en) Switching equipment, mobiles and power supply systems
JP2017506492A (en) A battery for powering the high voltage network and the error current flowing through the battery and the high voltage terminal of the battery is limited and / or applied by the battery to the high voltage network via the high voltage terminal of the battery Battery system with at least one switching unit for limiting error voltage
KR102035033B1 (en) Power Relay Assembly for Electric Vehicle and the Operation Method Thereof
JP2017114373A (en) Junction box
JP6708136B2 (en) DC switch arc erasing device
WO2017018147A1 (en) Switching device, electrical moving body, and power supply system
WO2017221561A1 (en) Direct current circuit, moving body and power supply system
JP6011707B1 (en) Switching device
JP2018113223A (en) Arc extinguishing device for dc switch
JP7010245B2 (en) Arc suppression device
JPH08205411A (en) Reverse connection protective circuit for battery
JP7226307B2 (en) Arc suppressor, moving body and power supply system
JP2006260925A (en) Direct current high speed vacuum circuit breaker
WO2022064850A1 (en) Dc circuit switchgear
JP2002359921A (en) Overvoltage-protecting circuit and motor controller mounted thereon
WO2023162200A1 (en) In-vehicle breaking current supply device
JP2002110006A (en) Direct current breaker
JP6164788B1 (en) Vehicle power supply system and control method for vehicle power supply system
WO2018131250A1 (en) Arc-quenching device for direct current switch
JP2023548835A (en) Arc-extinguishing precharge circuit
JP2018148631A (en) Battery controller
JP2005032525A (en) Switching device of electric circuit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523572

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815031

Country of ref document: EP

Kind code of ref document: A1