JP2010233414A - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
JP2010233414A
JP2010233414A JP2009080959A JP2009080959A JP2010233414A JP 2010233414 A JP2010233414 A JP 2010233414A JP 2009080959 A JP2009080959 A JP 2009080959A JP 2009080959 A JP2009080959 A JP 2009080959A JP 2010233414 A JP2010233414 A JP 2010233414A
Authority
JP
Japan
Prior art keywords
resistor
current limiting
regenerative
switching element
semiconductor switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009080959A
Other languages
Japanese (ja)
Inventor
Ryuhei Watabe
隆平 渡部
Tetsuya Toda
哲也 塘田
Hisashi One
久志 大音
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009080959A priority Critical patent/JP2010233414A/en
Publication of JP2010233414A publication Critical patent/JP2010233414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor control device capable of protecting a regenerative resistor at low cost without requiring the setting of a special protective function on the outside by a final user. <P>SOLUTION: The motor control device includes: a charging-current limiting means 6 limiting the charging current of an electrolytic capacitor 3 for smoothing for a fixed period after power-on; and a regenerative resistor 4 consuming a regenerative power supplied through an inverter 2 from a motor 11 by heat. The motor control device further includes a semiconductor switching element 5 being connected in series with the regenerative resistor 4 and consuming the regenerative power in the regenerative resistor 4 by an ON operation, and a fault detection means 7 controlling the ON/OFF operation of the semiconductor switching element 5 and detecting a short circuit fault in case of an OFF operation. The charging-current limiting means 6 consists of a current limiting resistor 6a and a relay 6b connected in parallel. The fault detection means 7 continuously makes a current flow through the current limiting resistor 6a by opening the relay 6b when detecting the short circuit fault of the semiconductor switching element 5, overload-disconnects the current limiting resistor 6a and prevents the burning of the regenerative resistor 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、充電電流制限手段と回生電力処理回路を有するモータ制御装置、特に回生処理用半導体スイッチング素子の短絡故障に対する回生抵抗器の焼損保護に関する。   The present invention relates to a motor control device having a charging current limiting means and a regenerative power processing circuit, and more particularly to burnout protection of a regenerative resistor against a short circuit failure of a semiconductor switching element for regenerative processing.

従来、サーボアンプやインバータなどのモータ制御装置の中でも特に小型の装置などでは、モータの回生電力を消費する手段として抵抗器によって熱エネルギーに変換する方法が一般的である。   Conventionally, in a motor control device such as a servo amplifier or an inverter, especially a small device, a method of converting heat energy by a resistor is generally used as means for consuming regenerative power of the motor.

図3は従来のモータ制御装置の要部ブロック図である。モータ制御装置は、入力となる交流電源10をダイオードブリッジ1で整流して直流母線に供給すると、インバータ部2は正負直流母線間に接続された平滑用の電解コンデンサ3を電源として、直流電力を交流電力に変換し、モータ11に供給して駆動する。   FIG. 3 is a principal block diagram of a conventional motor control device. When the motor control device rectifies the AC power supply 10 as an input by the diode bridge 1 and supplies it to the DC bus, the inverter unit 2 uses the electrolytic capacitor 3 for smoothing connected between the positive and negative DC buses as a power source to generate DC power. It is converted into AC power and supplied to the motor 11 for driving.

一方、モータ制御装置の保護機能として、モータ11からインバータ部2を介して供給される回生電力に対して、正負直流母線間に回生抵抗器4と半導体スイッチング素子5を直列接続して、半導体スイッチング素子5をON、OFF制御することによって回生抵抗器4で熱消費させる。また、電解コンデンサ3の充電電流を電源投入後の一定期間にわたり制限する充電電流制限手段6は、並列接続された電流制限抵抗器6aとリレー6bで構成されており、このリレー6bは、電源投入直後に開放状態で電解コンデンサ3の充電電流は電流制限抵抗器6aを流れ、充電終了後にCPU8からの指令によりリレー6bを動作させて電流制限抵抗器6aを短絡する。以後電流はリレー6bを流れる。   On the other hand, as a protection function of the motor control device, the regenerative resistor 4 and the semiconductor switching element 5 are connected in series between the positive and negative DC buses with respect to the regenerative power supplied from the motor 11 via the inverter unit 2 to perform semiconductor switching. Heat is consumed by the regenerative resistor 4 by ON / OFF control of the element 5. The charging current limiting means 6 for limiting the charging current of the electrolytic capacitor 3 for a certain period after the power is turned on is composed of a current limiting resistor 6a and a relay 6b connected in parallel, and the relay 6b is turned on. Immediately after that, the charging current of the electrolytic capacitor 3 flows through the current limiting resistor 6a in an open state, and after charging is completed, the relay 6b is operated by a command from the CPU 8 to short-circuit the current limiting resistor 6a. Thereafter, the current flows through the relay 6b.

このように構成されたモータ制御装置において、半導体スイッチング素子5が短絡故障した場合を考えると、ダイオードブリッジ1とリレー6bを通じて回生抵抗器4には電流が連続して流れる。なお、半導体スイッチング素子5がオープン故障した場合には、電解コンデンサ3の両端電圧が異常に上昇するため、CPU8によって過電圧を検出してトリップさせる。   In the motor control device configured as described above, when considering a case where the semiconductor switching element 5 is short-circuited, current continuously flows through the regenerative resistor 4 through the diode bridge 1 and the relay 6b. When the semiconductor switching element 5 has an open failure, the voltage across the electrolytic capacitor 3 rises abnormally, so the CPU 8 detects and trips the overvoltage.

一般に回生抵抗器4の使い方としては、回生電力発生時に断続的に電流を流すように設計され、それに合わせた容量の抵抗が選定されている。したがって回生抵抗器4に連続して電流を流した場合、抵抗器は過熱し最悪の場合は焼損に至る恐れがある。   In general, the regenerative resistor 4 is designed so that a current is intermittently supplied when regenerative power is generated, and a resistor having a capacity corresponding to the current is selected. Therefore, when a current is continuously supplied to the regenerative resistor 4, the resistor may overheat and in the worst case, burnout may occur.

このため、回生抵抗器の焼損防止機能について、さまざまな提案が従来よりなされている。例えば、特許文献1では半導体スイッチング素子の短絡故障の検出方法について提案されている。   For this reason, various proposals have been made for the function of preventing the burnout of the regenerative resistor. For example, Patent Document 1 proposes a method for detecting a short-circuit fault in a semiconductor switching element.

しかしながら、特許文献1の技術では、短絡故障検出後の保護方法までは記載されておらず、一般的に想定されるのは、モータ制御装置は短絡故障の検出信号を外部に出力し、最終使用者がモータ制御装置と電源の間に設置された電磁接触器等を動作させて電源を遮断するといった使い方である。   However, the technique of Patent Document 1 does not describe the protection method after the detection of the short-circuit fault, and it is generally assumed that the motor control device outputs a short-circuit fault detection signal to the outside for the final use. This is a method in which a person operates an electromagnetic contactor or the like installed between a motor control device and a power source to cut off the power source.

一方、半導体スイッチング素子の短絡故障を検出するとともに、サイリスタ、電流ヒューズなどを追加することで、具体的に回生抵抗器の焼損を防止する方法が提案されている(例えば、特許文献2参照)。   On the other hand, a method for specifically preventing burnout of the regenerative resistor by detecting a short circuit failure of the semiconductor switching element and adding a thyristor, a current fuse, or the like has been proposed (for example, see Patent Document 2).

あるいは、回生抵抗器自体にヒューズやサーモスタットなどの温度検出素子を内蔵して
過熱を検出するといった方法も従来から実施されている。
特開2002-191178号公報 特開平5-336758号公報
Alternatively, a method of detecting overheating by incorporating a temperature detection element such as a fuse or a thermostat in the regenerative resistor itself has been conventionally performed.
JP 2002-191178 A JP-A-5-336758

上述したように、半導体スイッチング素子の短絡故障に対する回生抵抗器の焼損防止について種々の方法が試みられているが、故障を検出して信号を外部に出力する方法では、電源を遮断して回生抵抗器の焼損を防止する手段は最終使用者に委ねられており、確実に保護できるかどうかは、最終使用者次第となっていた。   As described above, various methods have been tried for preventing the burnout of the regenerative resistor against a short circuit failure of the semiconductor switching element. However, in the method of detecting the failure and outputting the signal to the outside, the power supply is shut off to regenerate the resistance. The means for preventing the burnout of the vessel was left to the end user, and it was up to the end user to ensure that it could be protected.

また、回生抵抗器自体に温度検出素子を内蔵する方法も、回生抵抗器を最終使用者が選定する場合は、最終使用者の判断に委ねられることになり、モータ制御装置単体では保護機能は完結しなかった。また、サイリスタ、電流ヒューズなどを追加すると、コストおよび形状の面から不利である。   Also, the method of incorporating the temperature detection element in the regenerative resistor itself is left to the judgment of the end user when the regenerative resistor is selected by the end user, and the protection function is completed with the motor control unit alone. I did not. In addition, adding a thyristor, a current fuse, etc. is disadvantageous in terms of cost and shape.

本発明は上記従来の課題を解決するものであり、半導体スイッチング素子の短絡故障に対して、最終使用者が外部に特別な保護機能を設ける必要がなく、安価に回生抵抗器を保護できるモータ制御装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and it is not necessary for the end user to provide a special protection function for the short circuit failure of the semiconductor switching element, and the motor control that can protect the regenerative resistor at low cost. An object is to provide an apparatus.

上記の課題を解決するために請求項1に記載のモータ制御装置は、正負直流母線間に接続された平滑用電解コンデンサの充電電流を電源投入後の一定期間にわたり制限する電流制限抵抗器とリレーの並列回路からなる充電電流制限手段と、モータからインバータ部を介して供給される回生電力を熱で消費する回生抵抗器と、前記回生抵抗器に直列に接続され、ON動作によって前記回生抵抗器で回生電力を消費させる半導体スイッチング素子と、前記回生抵抗器の両端に接続され、前記半導体スイッチング素子の短絡故障を監視する故障監視手段と、前記半導体スイッチング素子のON/OFF動作を制御し、OFF動作と前記故障監視手段の出力によって短絡故障を検出するマイクロプロセッサ(以下、CPUと称す)を備え、前記CPUは、前記半導体スイッチング素子の短絡故障を検出すると、前記充電電流制限手段内のリレーを開放して電流制限抵抗器に連続して電流を流し、前記電流制限抵抗器を過負荷断線させることにより前記回生抵抗器の焼損を防止する。   In order to solve the above problems, a motor control device according to claim 1 is a current limiting resistor and a relay for limiting a charging current of a smoothing electrolytic capacitor connected between positive and negative DC buses for a certain period after power-on. Charging current limiting means comprising a parallel circuit, a regenerative resistor that consumes regenerative power supplied from a motor via an inverter unit by heat, and the regenerative resistor that is connected in series to the regenerative resistor and that is turned ON A semiconductor switching element that consumes regenerative power at the same time, a failure monitoring means that is connected to both ends of the regenerative resistor and that monitors a short-circuit fault of the semiconductor switching element, controls the ON / OFF operation of the semiconductor switching element, and is OFF A microprocessor (hereinafter referred to as a CPU) that detects a short-circuit failure by an operation and an output of the failure monitoring means; And detecting a short-circuit fault in the semiconductor switching element, the relay in the charging current limiting means is opened, a current is continuously passed through the current limiting resistor, and the current limiting resistor is overloaded, thereby causing the regeneration. Prevent resistor burnout.

また、請求項2に記載のモータ制御装置は、前記電流制限抵抗器に温度ヒューズを直列接続して内蔵し、前記電流制限抵抗器より先に前記温度ヒューズを溶断させる。   According to a second aspect of the present invention, a temperature control fuse is connected in series to the current limiting resistor and the temperature fuse is blown prior to the current limiting resistor.

請求項1に記載のモータ制御装置によれば、半導体スイッチング素子の短絡故障に対して、電流制限抵抗器を断線させて回生抵抗器を保護することにより新たな部品を追加することなく実現が可能であるため、低コスト化を図ることができる。また、最終使用者の判断に依存することなく、回生抵抗器を保護できる。さらに、従来の構成、部品点数を大きく変えることなく実現できる。   According to the motor control device of the first aspect, it is possible to realize a short circuit failure of the semiconductor switching element without disconnecting the current limiting resistor and protecting the regenerative resistor without adding new components. Therefore, cost reduction can be achieved. Further, the regenerative resistor can be protected without depending on the judgment of the end user. Furthermore, it can be realized without greatly changing the conventional configuration and the number of parts.

また、請求項2に記載のモータ制御装置によれば、電流制限抵抗器より先に温度ヒューズを溶断させるため、確実に回生抵抗器を保護できる。   According to the motor control device of the second aspect, since the thermal fuse is blown before the current limiting resistor, the regenerative resistor can be reliably protected.

正負直流母線間に接続された平滑用電解コンデンサの充電電流を電源投入後の一定期間にわたり制限する電流制限抵抗器とリレーの並列回路からなる充電電流制限手段と、モータからインバータ部を介して供給される回生電力を熱で消費する回生抵抗器と、前記回生
抵抗器に直列に接続され、ON動作によって前記回生抵抗器で回生電力を消費させる半導体スイッチング素子と、前記回生抵抗器の両端に接続して、前記半導体スイッチング素子の短絡故障を監視する故障監視手段と、前記半導体スイッチング素子のON/OFF動作を制御し、OFF動作と前記故障監視手段の出力によって短絡故障を検出するマイクロプロセッサ(以下、CPUと称す)を備え、前記CPUは、前記半導体スイッチング素子の短絡故障を検出すると、前記充電電流制限手段内のリレーを開放して電流制限抵抗器に連続して電流を流し、前記電流制限抵抗器を過負荷断線させることにより前記回生抵抗器の焼損を防止する。以下、具体的な実施の形態について説明する。
Charging current limiting means consisting of a parallel circuit of a current limiting resistor and a relay that limits the charging current of the electrolytic capacitor for smoothing connected between the positive and negative DC buses for a certain period after turning on the power, and supplied from the motor via the inverter unit A regenerative resistor that consumes the regenerative power that is generated by heat, a semiconductor switching element that is connected in series to the regenerative resistor and that consumes the regenerative power by the regenerative resistor by an ON operation, and is connected to both ends of the regenerative resistor A failure monitoring means for monitoring a short-circuit fault of the semiconductor switching element; and a microprocessor for controlling an ON / OFF operation of the semiconductor switching element and detecting a short-circuit fault by an OFF operation and an output of the failure monitoring means (hereinafter referred to as a “short-circuit fault”). The CPU), the CPU detects the short circuit failure of the semiconductor switching element and detects the short circuit failure. Electric current continuously to the current limiting resistor opens the relays in current limiting means, to prevent burnout of the regenerative resistor by overload break the current limiting resistor. Hereinafter, specific embodiments will be described.

(実施の形態1)
図1は本発明の実施の形態1におけるモータ制御装置の要部ブロック図である。図1において、モータ制御装置は、交流電源10を整流して直流母線に供給するダイオードブリッジ1と、直流電力を交流電力に変換するインバータ部2と、正負直流母線間に接続された平滑用の電解コンデンサ3と、モータからインバータ部2を介して供給される回生電力を消費する回生抵抗器4、この回生抵抗器4への通電を制御する半導体スイッチング素子5と、電解コンデンサ3の充電電流を電源投入後の一定期間にわたり制限する充電電流制限手段6から構成されている。
(Embodiment 1)
FIG. 1 is a block diagram of a main part of a motor control device according to Embodiment 1 of the present invention. In FIG. 1, a motor control device includes a diode bridge 1 that rectifies an AC power supply 10 and supplies a DC bus, an inverter unit 2 that converts DC power into AC power, and a smoothing connected between positive and negative DC buses. The electrolytic capacitor 3, the regenerative resistor 4 that consumes the regenerative power supplied from the motor via the inverter unit 2, the semiconductor switching element 5 that controls the energization of the regenerative resistor 4, and the charging current of the electrolytic capacitor 3 The charging current limiting means 6 is configured to limit for a certain period after the power is turned on.

充電電流制限手段6は、並列接続された電流制限抵抗器6aとリレー6bから成り、電源投入直後はリレー6bが開放状態で、電解コンデンサ3の充電電流は電流制限抵抗器6aを流れ、充電終了後にCPU8からの指令によりリレー6bを閉動作させて電流制限抵抗器6aを短絡することで、以後電流はリレー6bを流れる。   The charging current limiting means 6 comprises a current limiting resistor 6a and a relay 6b connected in parallel. Immediately after the power is turned on, the relay 6b is in an open state, the charging current of the electrolytic capacitor 3 flows through the current limiting resistor 6a, and charging ends. Later, the relay 6b is closed by a command from the CPU 8 to short-circuit the current limiting resistor 6a, so that the current flows through the relay 6b thereafter.

一方、モータ11の回生電力により正負直流母線間の電圧が上昇したことを検出したCPU8からの指令によって、半導体スイッチング素子5をONし回生抵抗器4に電流を流す。ここまでは従来と同様である。   On the other hand, in response to a command from the CPU 8 that detects that the voltage between the positive and negative DC buses has increased due to the regenerative power of the motor 11, the semiconductor switching element 5 is turned on and a current flows through the regenerative resistor 4. The process up to this point is the same as the conventional one.

本発明の特徴は、故障監視手段7とCPU8によって、半導体スイッチング素子5の短絡故障を検出し、充電電流制限手段6のリレー6bを開放状態にして、回生抵抗器4を焼損から保護する点にある。   The feature of the present invention is that the failure monitoring means 7 and the CPU 8 detect a short-circuit failure of the semiconductor switching element 5 and open the relay 6b of the charging current limiting means 6 to protect the regenerative resistor 4 from burning. is there.

本発明の故障監視手段7は、例えばフォトカプラとそのフォトカプラに流れる電流を制限する抵抗器を回生抵抗器4と並列に接続してなる構成を持ち、回生抵抗器4の両端の電位差を監視することで半導体スイッチング素子5の導通、不導通を検出してCPU8へ信号を出力する。CPU8は、半導体スイッチング素子5にON指令を出していないにも関わらず、故障監視手段7から半導体スイッチング素子5が導通であることを示す信号を受け取った場合、半導体スイッチング素子5の短絡故障であると認識し、リレー6bをOFF(接点を開放)させる。これにより、回生抵抗器4に流れる電流は、リレー6bと並列接続された電流制限抵抗器6aにも流れるようになる。   The fault monitoring means 7 of the present invention has a configuration in which, for example, a photocoupler and a resistor for limiting the current flowing through the photocoupler are connected in parallel with the regenerative resistor 4, and monitors the potential difference between both ends of the regenerative resistor 4. As a result, the conduction and non-conduction of the semiconductor switching element 5 are detected and a signal is output to the CPU 8. When the CPU 8 receives a signal indicating that the semiconductor switching element 5 is conductive from the failure monitoring means 7 even though it does not issue an ON command to the semiconductor switching element 5, it is a short circuit failure of the semiconductor switching element 5. And relay 6b is turned OFF (contact is opened). As a result, the current flowing through the regenerative resistor 4 also flows through the current limiting resistor 6a connected in parallel with the relay 6b.

ここで、回生抵抗器4と電流制限抵抗器6aの設計上の違いについて述べる。回生抵抗器4は、モータ11の回生電力を消費するものであり、モータの種類、負荷の慣性、モータの運転パターンなどにもよるが、ある程度の連続的な通電にも耐えうるように設計するのが一般的である。   Here, the difference in design between the regenerative resistor 4 and the current limiting resistor 6a will be described. The regenerative resistor 4 consumes the regenerative power of the motor 11 and is designed to withstand a certain amount of continuous energization depending on the type of motor, the inertia of the load, the operation pattern of the motor, and the like. It is common.

それには抵抗器内部の抵抗線の線重量を大きくしなければならず、このため半導体スイッチング素子5の短絡故障が発生して連続的に電流が流れるような状況でも抵抗線は容易に過負荷断線せず、抵抗器が異常に過熱して焼損に至る恐れが生じてしまう。   For this purpose, it is necessary to increase the weight of the resistance wire inside the resistor. For this reason, the resistance wire can be easily overloaded even in a situation where a short circuit failure occurs in the semiconductor switching element 5 and current flows continuously. Otherwise, the resistor may overheat abnormally and may be burned out.

一方の電流制限抵抗器6aは、電源投入時の電解コンデンサ3の充電期間のみ通電され
るため、長時間の通電に耐えうることは考慮に入れる必要がなく、連続通電に対して比較的容易に過負荷断線するように設計することが可能である。このため、回生抵抗器4は電流制限抵抗器6aに比べて高価となる。
Since one current limiting resistor 6a is energized only during the charging period of the electrolytic capacitor 3 when the power is turned on, it is not necessary to consider that it can withstand energization for a long time, and it is relatively easy for continuous energization. It can be designed to break overload. For this reason, the regenerative resistor 4 is more expensive than the current limiting resistor 6a.

このように設計された電流制限抵抗器6aを充電電流制限手段6に組み込んで、上記の通り半導体スイッチング素子5が短絡故障したとき、回生抵抗器4に流れる電流を電流制限抵抗器6aにも流すことよって、電流制限抵抗器6aを強制的に過負荷断線させる。   The current limiting resistor 6a designed in this way is incorporated in the charging current limiting means 6, and when the semiconductor switching element 5 is short-circuited as described above, the current flowing through the regenerative resistor 4 is also passed through the current limiting resistor 6a. As a result, the current limiting resistor 6a is forcibly overloaded.

これにより、電源が正常に動作していてもリレー6bは開放状態なので回生抵抗器4への直流電力が遮断され、焼損から保護することができる。また、半導体スイッチング素子5が短絡故障しているため回生電力は引き続き回生抵抗器4にて消費されるため、モータ制御装置とモータとの電気的な接続を遮断する。   Thereby, even if the power supply is operating normally, the relay 6b is in an open state, so that the DC power to the regenerative resistor 4 is cut off and can be protected from burning. In addition, since the semiconductor switching element 5 has a short circuit failure, the regenerative power is continuously consumed by the regenerative resistor 4, so that the electrical connection between the motor control device and the motor is cut off.

なお、上述の故障監視手段7は、回生抵抗器4の両端の電圧を観測するものであったが、直列接続された回生抵抗器4と半導体スイッチング素子5に流れる電流を検出する方法でも同様の機能は構成できる。
(実施の形態2)
図2は本発明の実施の形態2における電流制限抵抗器の説明図である。実施の形態1と異なるのは、電流制限抵抗器の構成だけである。
Although the above-described failure monitoring means 7 is for observing the voltage across the regenerative resistor 4, the same applies to the method of detecting the current flowing through the regenerative resistor 4 and the semiconductor switching element 5 connected in series. The function is configurable.
(Embodiment 2)
FIG. 2 is an explanatory diagram of a current limiting resistor according to Embodiment 2 of the present invention. The only difference from the first embodiment is the configuration of the current limiting resistor.

実施の形態2の電流制限抵抗器12は、温度ヒューズ13と抵抗器14を直列接続して内蔵している。   The current limiting resistor 12 according to the second embodiment includes a thermal fuse 13 and a resistor 14 connected in series.

実施の形態1と同様に、回生抵抗器4に接続された半導体スイッチング素子5が短絡故障した際に、リレー6bの接点が開放され、回生抵抗器4と電流制限抵抗器12を構成する抵抗器14と温度ヒューズ13にも電流が流れる。このとき、抵抗器14が過負荷で断線するより先に温度ヒューズ13を溶断させる。   Similarly to the first embodiment, when the semiconductor switching element 5 connected to the regenerative resistor 4 is short-circuited, the contact of the relay 6b is opened, and the resistor constituting the regenerative resistor 4 and the current limiting resistor 12 A current also flows through 14 and the thermal fuse 13. At this time, the thermal fuse 13 is blown before the resistor 14 is disconnected due to overload.

実施の形態1と同様に、電源が正常動作中でもリレー6bは開放状態であり、回生抵抗器4を保護できる。   Similarly to the first embodiment, the relay 6b is in an open state even when the power supply is operating normally, and the regenerative resistor 4 can be protected.

実施の形態1では、電流制限抵抗器6aが直流アークですぐに断線しない恐れがあるため、実施の形態2の電流制限抵抗器12の構成にすれば、充電電流制限手段を溶断によって確実にオープンにできる。したがって、回生抵抗器4を保護することができる。   In the first embodiment, the current limiting resistor 6a may not be immediately disconnected by a DC arc. Therefore, if the current limiting resistor 12 of the second embodiment is configured, the charging current limiting means is reliably opened by fusing. Can be. Therefore, the regenerative resistor 4 can be protected.

なお、実施の形態1、2は、交流電力を直流電力に変換するモータ制御装置の例で説明したが、モータ制御装置の入力が直流電源であってもよいのは言うまでもない。   Although Embodiments 1 and 2 have been described with reference to an example of a motor control device that converts AC power into DC power, it goes without saying that the input of the motor control device may be a DC power supply.

本発明のモータ制御装置は、サーボアンプやインバータなどの産業用機器に有用である。   The motor control device of the present invention is useful for industrial equipment such as servo amplifiers and inverters.

本発明の実施の形態1におけるモータ制御装置の要部ブロック図Block diagram of main parts of the motor control device according to Embodiment 1 of the present invention. 本発明の実施の形態2における電流制限抵抗器の説明図Explanatory drawing of the current limiting resistor in Embodiment 2 of this invention 従来例におけるモータ制御装置の要部ブロック図Main part block diagram of motor control device in conventional example

1 ダイオードブリッジ
2 インバータ部
3 電解コンデンサ
4 回生抵抗器
5 半導体スイッチング素子
6 充電電流制限手段
6a 電流制限抵抗器
6b リレー
7 故障監視手段
8 CPU
10 交流電源
11 モータ
12 電流制限抵抗器
13 温度ヒューズ
14 抵抗器
DESCRIPTION OF SYMBOLS 1 Diode bridge 2 Inverter part 3 Electrolytic capacitor 4 Regenerative resistor 5 Semiconductor switching element 6 Charging current limiting means 6a Current limiting resistor 6b Relay 7 Failure monitoring means 8 CPU
DESCRIPTION OF SYMBOLS 10 AC power source 11 Motor 12 Current limiting resistor 13 Thermal fuse 14 Resistor

Claims (2)

正負直流母線間に接続された平滑用電解コンデンサの充電電流を電源投入後の一定期間にわたり制限する電流制限抵抗器とリレーの並列回路からなる充電電流制限手段と、
モータからインバータ部を介して供給される回生電力を熱で消費する回生抵抗器と、
前記回生抵抗器に直列に接続され、ON動作によって前記回生抵抗器で回生電力を消費させる半導体スイッチング素子と、
前記回生抵抗器の両端に接続され、前記半導体スイッチング素子の短絡故障を監視する故障監視手段と、
前記半導体スイッチング素子のON/OFF動作を制御し、OFF動作と前記故障監視手段の出力によって短絡故障を検出するマイクロプロセッサ(以下、CPUと称す)を備え、
前記CPUは、前記半導体スイッチング素子の短絡故障を検出すると、前記充電電流制限手段内のリレーを開放して電流制限抵抗器に連続して電流を流し、前記電流制限抵抗器を過負荷断線させることにより前記回生抵抗器の焼損を防止することを特徴とするモータ制御装置。
A charging current limiting means comprising a parallel circuit of a current limiting resistor and a relay for limiting the charging current of the smoothing electrolytic capacitor connected between the positive and negative DC buses over a certain period after power-on,
A regenerative resistor that consumes regenerative power supplied from the motor via the inverter unit with heat;
A semiconductor switching element connected in series to the regenerative resistor and consuming regenerative power in the regenerative resistor by an ON operation;
Fault monitoring means connected to both ends of the regenerative resistor and monitoring a short-circuit fault of the semiconductor switching element;
A microprocessor (hereinafter referred to as a CPU) that controls the ON / OFF operation of the semiconductor switching element and detects a short-circuit failure by the OFF operation and the output of the failure monitoring means,
When the CPU detects a short-circuit fault of the semiconductor switching element, the CPU opens the relay in the charging current limiting means and continuously supplies a current to the current limiting resistor, thereby overloading the current limiting resistor. A motor control device characterized by preventing burnout of the regenerative resistor.
前記電流制限抵抗器に温度ヒューズを直列接続して内蔵し、前記電流制限抵抗器より先に前記温度ヒューズを溶断させる請求項1に記載のモータ制御装置。   2. The motor control device according to claim 1, wherein a thermal fuse is connected in series to the current limiting resistor, and the thermal fuse is blown prior to the current limiting resistor.
JP2009080959A 2009-03-30 2009-03-30 Motor control device Pending JP2010233414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080959A JP2010233414A (en) 2009-03-30 2009-03-30 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080959A JP2010233414A (en) 2009-03-30 2009-03-30 Motor control device

Publications (1)

Publication Number Publication Date
JP2010233414A true JP2010233414A (en) 2010-10-14

Family

ID=43048703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080959A Pending JP2010233414A (en) 2009-03-30 2009-03-30 Motor control device

Country Status (1)

Country Link
JP (1) JP2010233414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192407A (en) * 2012-03-14 2013-09-26 Fuji Electric Co Ltd Power conversion device
JP2014017990A (en) * 2012-07-10 2014-01-30 Mitsubishi Electric Corp Power conversion device
JP2014023241A (en) * 2012-07-17 2014-02-03 Fanuc Ltd Motor drive device having power storage device
EP2797219A3 (en) * 2013-04-22 2016-04-13 Rockwell Automation Technologies, Inc. Self protected dynamic braking
CN114498907A (en) * 2022-04-08 2022-05-13 中山大洋电机股份有限公司 Direct-current brushless motor used for dual-power-supply electrical equipment and control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310731U (en) * 1986-07-08 1988-01-23
JPS6474080A (en) * 1987-09-16 1989-03-20 Toshiba Corp Abnormality detector of regenerative power absorption circuit
JPH0294483U (en) * 1989-01-10 1990-07-26
JPH11306954A (en) * 1998-04-20 1999-11-05 Toyo Commun Equip Co Ltd Blown-out fuse alarm outputting circuit
JP2002191178A (en) * 2000-12-20 2002-07-05 Yaskawa Electric Corp Inverter and circuit for detecting fault of damping switching element thereof
JP2004112929A (en) * 2002-09-19 2004-04-08 Murata Mach Ltd Ac-dc converter
JP2008252967A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Motor control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310731U (en) * 1986-07-08 1988-01-23
JPS6474080A (en) * 1987-09-16 1989-03-20 Toshiba Corp Abnormality detector of regenerative power absorption circuit
JPH0294483U (en) * 1989-01-10 1990-07-26
JPH11306954A (en) * 1998-04-20 1999-11-05 Toyo Commun Equip Co Ltd Blown-out fuse alarm outputting circuit
JP2002191178A (en) * 2000-12-20 2002-07-05 Yaskawa Electric Corp Inverter and circuit for detecting fault of damping switching element thereof
JP2004112929A (en) * 2002-09-19 2004-04-08 Murata Mach Ltd Ac-dc converter
JP2008252967A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Motor control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192407A (en) * 2012-03-14 2013-09-26 Fuji Electric Co Ltd Power conversion device
JP2014017990A (en) * 2012-07-10 2014-01-30 Mitsubishi Electric Corp Power conversion device
JP2014023241A (en) * 2012-07-17 2014-02-03 Fanuc Ltd Motor drive device having power storage device
US9054620B2 (en) 2012-07-17 2015-06-09 Fanuc Corporation Motor driving device including electric storage device
EP2797219A3 (en) * 2013-04-22 2016-04-13 Rockwell Automation Technologies, Inc. Self protected dynamic braking
CN114498907A (en) * 2022-04-08 2022-05-13 中山大洋电机股份有限公司 Direct-current brushless motor used for dual-power-supply electrical equipment and control method

Similar Documents

Publication Publication Date Title
CN101277085B (en) Motor drive device
JP6436028B2 (en) Power supply device and switch control method thereof
JP5342641B2 (en) Thermal switch
JP2006262616A (en) Inverter device
JP2009232521A (en) Power supply system switching unit
JP2010233414A (en) Motor control device
CN113557646A (en) Method and device for protecting an electrical load
JP2007267473A (en) Inrush current prevention circuit
KR101809944B1 (en) Arcless DC Circuit Breaker using Semiconductor Switch
JP2008252967A (en) Motor control device
JP2013192392A (en) Inverter device
JP2008228415A (en) Motor drive unit
JP4797700B2 (en) Motor control device
JPH0268570A (en) Power unit for image recording device
JPH06245485A (en) Inverter device
JP2006352965A (en) Driving unit for motor and driving unit for elevator using its device
JP2004112929A (en) Ac-dc converter
JP2018518006A (en) Power distribution system for connection to AC voltage network
JP2008104276A (en) Inverter device
JP6301206B2 (en) Power storage device and control program
TWI426688B (en) Inverter device
JP5938583B2 (en) Motor control device
JP3511173B2 (en) Regenerative resistance protection mechanism
JP4367341B2 (en) Dynamic brake circuit protection device
JP2007028792A (en) Converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318