JP2005340374A - Aluminum alloy thin plate for electrolytic capacitor, laminated thin plate, and manufacturing method thereof - Google Patents

Aluminum alloy thin plate for electrolytic capacitor, laminated thin plate, and manufacturing method thereof Download PDF

Info

Publication number
JP2005340374A
JP2005340374A JP2004154946A JP2004154946A JP2005340374A JP 2005340374 A JP2005340374 A JP 2005340374A JP 2004154946 A JP2004154946 A JP 2004154946A JP 2004154946 A JP2004154946 A JP 2004154946A JP 2005340374 A JP2005340374 A JP 2005340374A
Authority
JP
Japan
Prior art keywords
thin plate
aluminum alloy
aluminum
electrolytic capacitor
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004154946A
Other languages
Japanese (ja)
Other versions
JP4465521B2 (en
Inventor
Masahiko Katano
雅彦 片野
Masayuki Saeki
雅之 佐伯
Yoshihiro Taguchi
喜弘 田口
Yoshinari Ashidaka
善也 足高
Shinichi Arai
慎一 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Original Assignee
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Nippon Light Metal Co Ltd filed Critical Toyo Aluminum KK
Priority to JP2004154946A priority Critical patent/JP4465521B2/en
Publication of JP2005340374A publication Critical patent/JP2005340374A/en
Application granted granted Critical
Publication of JP4465521B2 publication Critical patent/JP4465521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy thin plate for an electrolytic capacitor which has a high VC value and low melting temperature, and to provide a manufacturing method thereof. <P>SOLUTION: The aluminum alloy laminated thin plate for the electrolytic capacitor is obtained by uniformly dispersing and incorporating at least one kind of powder of valve operating metal except Al in an aluminum base material with ≥99.9% purity by 3 to 90% for the weight of the aluminum alloy thin plate for the electrolytic capacitor, or cladding a flank of an aluminum thin plate with ≥99.9% purity or aluminum alloy thin plate with the aluminum alloy thin plate for the electrolytic capacitor; and the method for manufacturing the aluminum alloy thin plate for the electrolytic capacitor in which at least one kind of valve operating metal except Al is dispersed and incorporated in aluminum powder with ≥99.9% purity or molten metal by 3 to 90% for the weight of the aluminum alloy thin plate for the electrolytic capacitor. Plastic processing including rolling formation of ≥95% in sectional area reduction rate is performed to obtain a thin plate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高純度のアルミニウム母材にAlを除く弁作用金属粉末を均一に分散させた電解コンデンサ用アルミニウム合金薄板であって、該電解コンデンサ用アルミニウム合金薄板はエッチング処理を施して穿孔し、表面積を拡大してから誘電酸化物層を形成することによって、静電容量(C)と化成皮膜耐電圧(V)の積(以後CV積という)が高く、電子、電気機器の小型化、薄型化に適した電解コンデンサ用のアルミニウム合金薄板とその製造方法に関する。   The present invention is an aluminum alloy thin plate for an electrolytic capacitor in which a valve action metal powder excluding Al is uniformly dispersed in a high purity aluminum base material, the aluminum alloy thin plate for an electrolytic capacitor is subjected to etching treatment and perforated, By forming the dielectric oxide layer after expanding the surface area, the product of electrostatic capacity (C) and conversion film withstand voltage (V) is high (hereinafter referred to as CV product), making electronic and electrical devices smaller and thinner. The present invention relates to an aluminum alloy thin plate for an electrolytic capacitor suitable for manufacturing and a manufacturing method thereof.

電解コンデンサ用アルミニウム薄板は通常、純度99.9%以上のアルミニウム溶湯を半連続鋳造によってスラブとし、更に面削、均質化処理、熱間圧延、必要に応じて中間焼鈍、冷間圧延を経て製品厚さに仕上げられる。その後、コンデンサメーカーによってエッチングと称する工程で穿孔して表面積を拡大し、化成工程によって誘電体皮膜を表面に形成して電解コンデンサ用の薄板とされる。   The aluminum sheet for electrolytic capacitors is usually made into a slab by semi-continuous casting of molten aluminum with a purity of 99.9% or more, and further undergoes chamfering, homogenization treatment, hot rolling, intermediate annealing as needed, and product thickness after cold rolling. Finished. Thereafter, the capacitor manufacturer drills in a process called etching to increase the surface area, and a chemical film is formed on the surface to form a thin plate for an electrolytic capacitor.

近年、コンデンサの小型・高容量化の要求と共にエッチング技術が大幅に進歩し、化成電圧100V以下の低圧用途では、エッチングによる表面倍率が100倍を超え、化成皮膜研究の進歩も合わせてCV積が著しく増大してきた。しかしながら、現実のエッチング倍率には限界が有り、また、Al2 O3の誘電率は9程度で、Alを除く他の弁作用金属、即ちTi、、Ta、Zr、Hf、Nbと比較して大きな値ではない。例えば、TiO2の誘電率は66、ZrO2が31、Nb2O5が47、HfO2が41、Ta2O5は25であり、アルミニウム製コンデンサのCV積を飛躍的に増加させるには、Al2 O3よりも誘電率の高い他の誘電体を利用することが有効である。 In recent years, the etching technology has greatly advanced along with the demand for smaller and higher capacity capacitors. For low-voltage applications with a conversion voltage of 100 V or less, the surface magnification by etching exceeds 100 times, and the CV product has increased along with advances in conversion coating research. It has increased significantly. However, there is a limit to the actual etching magnification, and the dielectric constant of Al 2 O 3 is about 9, compared with other valve metals other than Al, that is, Ti, Ta, Zr, Hf, Nb. Not a big value. For example, the dielectric constant of TiO 2 is 66, ZrO 2 is 31, Nb 2 O 5 is 47, HfO 2 is 41, and Ta 2 O 5 is 25. To increase the CV product of aluminum capacitors dramatically It is effective to use another dielectric having a dielectric constant higher than that of Al 2 O 3 .

たとえば、特開平1-124212号公報には,弁作用金属であるTi、Ta、Zr、Hf、Nbの一種または複数種をアルミニウム溶湯に溶解して合金化し、鋳造に際し急冷凝固速度をコントロールして金属間化合物サイズを定め、化成電圧に即したエッチングを可能として、CV積の大きな電解コンデンサ用アルミニウム合金電極を提案している。
また、特開昭53-40605号公報には、アルミニウム粉末にAlを除く弁作用金属粉末を均一に混合調整した後、該混合粉末を加圧成形して混合粉末の多孔質体とし、しかる後に該多孔質体に誘電酸化物層を形成させて静電容量の高い電解コンデンサを得ようとする技術が提案されている。
特開平1-124212号公報 実施例 特開昭53-40605号公報 特許請求の範囲および第3頁右欄
For example, in Japanese Patent Laid-Open No. 1-124212, one or more of Ti, Ta, Zr, Hf, and Nb, which are valve action metals, are melted and alloyed in molten aluminum, and the rapid solidification rate is controlled during casting. We have proposed an aluminum alloy electrode for electrolytic capacitors with a large CV product that allows for intermetallic compound sizes and enables etching in line with the formation voltage.
Japanese Patent Laid-Open No. 53-40605 discloses a method of uniformly mixing aluminum powder with a valve action metal powder excluding Al, and then pressing the mixed powder to form a porous body of the mixed powder. There has been proposed a technique for forming an electrolytic capacitor having a high capacitance by forming a dielectric oxide layer on the porous body.
Japanese Unexamined Patent Publication No. 1-124212 Example Japanese Patent Laid-Open No. 53-40605 Claims and page 3, right column

前記特開平1-124212号公報記載の技術は、凝固速度をコントロールして金属間化合物サイズを定めるのでサイズの分布範囲が大きく一定せず、しかもAlを除く弁作用金属は融点が1700〜3000℃と高いために溶解させるにはかなり高温に加熱溶製しなくてはならない問題点があり、しかも加工硬化によって薄板までの成形加工が困難である。
また、前記特開昭53-40605号公報記載の技術は、未充填空隙部分の多い多孔質体に誘電酸化物層を形成してコンデンサとするものであるから、CV積は本発明のコンデンサと比較して1/3以下と低いものである。この多孔質体にエッチング処理を施して穿孔し、表面積を拡大しようとすると表面の溶解が不安定で均一な穿孔ができず、逆にCV積を下げてしまう。
The technique described in the above-mentioned Japanese Patent Application Laid-Open No. 1-124212 determines the intermetallic compound size by controlling the solidification rate, so that the size distribution range is not largely constant, and the valve action metal excluding Al has a melting point of 1700 to 3000 ° C. For this reason, there is a problem that it must be heated and melted at a considerably high temperature for dissolution, and it is difficult to form a thin plate by work hardening.
In addition, since the technique described in the above-mentioned Japanese Patent Application Laid-Open No. 53-40605 is a capacitor by forming a dielectric oxide layer on a porous body having many unfilled voids, the CV product is the same as that of the capacitor of the present invention. In comparison, it is as low as 1/3 or less. If an attempt is made to perforate the porous body by etching, the surface dissolution is unstable and uniform perforation cannot be performed, and the CV product is lowered.

即ち本発明の目的は、エッチング処理を施して穿孔し表面積を拡大してから誘電酸化物層を形成することによって、高いCV積の得られる弁作用金属粉末を均一に分散含有させた電解コンデンサ用アルミニウム合金薄板および積層薄板、さらにその製造方法を提供しようとするものである。   That is, an object of the present invention is for an electrolytic capacitor in which a valve action metal powder having a high CV product is uniformly dispersed and contained by forming a dielectric oxide layer after perforating and expanding the surface area by etching. It is an object of the present invention to provide an aluminum alloy thin plate and a laminated thin plate, and a method for producing the same.

発明者らは上記問題点を検討した結果、Alを除く弁作用金属を含有するアルミニウム合金溶湯の凝固速度をコントロールして金属間化合物サイズを定める替わりに,アルミニウム母材を高純度アルミニウムとし、このような高純度アルミニウム母材中に含有させる前記弁作用金属として微細粉末を用いた場合は、弁作用金属のサイズ管理が容易で、サイズ範囲を極端に狭くすることも可能であり、しかも高温溶製が不要であることを見出した。
さらに母材として高純度アルミニウム粉末を用いると共に強度に塑性変形させて得られた薄板は、エッチング処理で穿孔し表面積の拡大ができることを見出して本発明を完成したものである。
As a result of studying the above problems, the inventors determined that the aluminum base material was made of high-purity aluminum instead of determining the size of the intermetallic compound by controlling the solidification rate of the molten aluminum alloy containing the valve action metal excluding Al. When a fine powder is used as the valve metal contained in such a high-purity aluminum base material, the size of the valve metal can be easily controlled, the size range can be extremely narrow, and high-temperature melting can be achieved. It was found that there is no need for manufacturing.
Further, the present invention has been completed by finding that a thin plate obtained by using high-purity aluminum powder as a base material and plastically deforming to a high strength can be perforated by an etching process to increase the surface area.

即ち第一の発明は、純度99.9%以上のアルミニウム母材にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させたことを特徴とする電解コンデンサ用アルミニウム合金薄板であって、さらに該電解コンデンサ用アルミニウム合金薄板は、エッチング処理を施して穿孔し、表面積を拡大してから誘電酸化物層を形成する工程に供されることを特徴とするものである。このような薄板は、強度に塑性変形してあるので、エッチング処理して穿孔し表面積の拡大ができ、爾後の化成処理で陽極酸化皮膜内に前記弁作用金属の誘電率の高い誘電体酸化物を生成させることができるので、CV積の高い電解コンデンサ用の薄板として使用できる。また、粉末のサイズ管理も容易である。   That is, the first invention is an aluminum alloy thin plate for electrolytic capacitors characterized by uniformly dispersing and containing at least one powder of a valve action metal excluding Al in an aluminum base material having a purity of 99.9% or more, Furthermore, the aluminum alloy thin plate for electrolytic capacitors is characterized in that it is subjected to a step of forming a dielectric oxide layer after performing perforation by etching and expanding the surface area. Since such a thin plate is strongly plastically deformed, it can be etched and perforated to increase the surface area, and after the chemical conversion treatment, a dielectric oxide having a high dielectric constant of the valve metal in the anodized film can be obtained. Therefore, it can be used as a thin plate for an electrolytic capacitor having a high CV product. In addition, the powder size can be easily managed.

ここでアルミニウム母材とは所謂マトリクスを指すもので、このような合金薄板を製造する際の出発原料としては、アルミニウム粉末或いはアルミニウム溶湯が使用される。
Alを除く弁作用金属としては、酸化物として比較したときに、Alより誘電率の高いTi、Zr、Nb、Hf、Ta等である。
本発明における電解コンデンサ用アルミニウム合金薄板の合金とは、粉末冶金で通常使用する用語に従うもので、Alを除く弁作用金属をAl溶湯に溶解して合金化し、鋳造法で鋳造して得られたものではなく、アルミニウム母材に弁作用金属粉末が分散している複合材的のようなものである。
Here, the aluminum base material refers to a so-called matrix, and aluminum powder or molten aluminum is used as a starting material when manufacturing such an alloy thin plate.
Examples of the valve action metal excluding Al include Ti, Zr, Nb, Hf, and Ta, which have a dielectric constant higher than that of Al when compared with an oxide.
In the present invention, the alloy of the aluminum alloy thin plate for electrolytic capacitors is in accordance with the terminology normally used in powder metallurgy, obtained by melting a valve action metal excluding Al into Al molten metal and casting it by a casting method. Instead, it is like a composite material in which valve metal powder is dispersed in an aluminum base material.

Alを除く前記弁作用金属粉末の含有量は電解コンデンサ用アルミニウム合金薄板重量に対して、好ましくは3%から90%とすることで、確実にCV値の高い電解コンデンサ用アルミニウム薄板とすることができる。さらに好ましい値は10%から40%である。   The content of the valve action metal powder excluding Al is preferably 3% to 90% with respect to the weight of the aluminum alloy sheet for an electrolytic capacitor, so that the aluminum sheet for an electrolytic capacitor having a high CV value can be obtained. it can. A more preferred value is 10% to 40%.

第二の発明は、純度99.9%以上のアルミニウム芯材またはアルミニウム合金芯材の一側または両側に前記第一の発明の電解コンデンサ用アルミニウム合金薄板を設けたことを特徴とする電解コンデンサ用アルミニウム合金積層薄板である。このような積層薄板は、Alを除く弁作用金属粉末の使用量が少なく経済的な電解コンデンサ用アルミニウム合金積層薄板とすることができる。好ましい厚さは、該積層薄板全体の厚さの10%から90%である。   A second invention is an aluminum alloy for electrolytic capacitors, characterized in that the aluminum alloy thin plate for electrolytic capacitors of the first invention is provided on one side or both sides of an aluminum core material or aluminum alloy core material having a purity of 99.9% or more. It is a laminated sheet. Such a laminated thin plate can be an economical aluminum alloy laminated thin plate for electrolytic capacitors that uses less valve action metal powder except Al. A preferred thickness is 10% to 90% of the total thickness of the laminated sheet.

第三の発明は、純度99.9%以上のアルミニウム粉末にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させた混合粉末体を断面積減少率で95%以上の塑性加工を施してアルミニウム合金薄板とすることを特徴とする前記第一の発明の電解コンデンサ用アルミニウム薄板の製造方法である。
アルミニウム粉末にAlを除く弁作用金属粉末を均一分散含有させた混合粉末体を圧延成形する際に、該アルミニウム粉末の純度を99.9%以上とすることで、混合粉末体を強度に塑性加工して得られた薄板は、エッチング処理して穿孔し表面積が拡大でき、高温に加熱溶製する必要がなく、エッチング処理で穿孔した後に化成処理し、誘電酸化物層を形成させることによって、CV積の高い電解コンデンサを得ることができる。
ここで、断面積減少率(θ)は以下のように計算する。
混合粉末体の断面積:S
薄板の断面積:s
断面積減少率θ=[(S−s)/S]×100%
According to a third aspect of the invention, a mixed powder body in which at least one kind of valve action metal excluding Al is uniformly dispersed and contained in an aluminum powder having a purity of 99.9% or more is subjected to plastic working with a cross-sectional area reduction ratio of 95% or more. The method for producing an aluminum thin plate for an electrolytic capacitor according to the first aspect of the invention is characterized in that an aluminum alloy thin plate is used.
When the mixed powder body in which the valve action metal powder excluding Al is uniformly dispersed and contained in the aluminum powder is rolled, the purity of the aluminum powder is set to 99.9% or more so that the mixed powder body is plastically processed to a high strength. The obtained thin plate can be perforated by etching treatment to increase the surface area, and does not need to be heated and melted at a high temperature. After perforating by etching treatment, a chemical conversion treatment is performed to form a dielectric oxide layer. A high electrolytic capacitor can be obtained.
Here, the cross-sectional area reduction rate (θ) is calculated as follows.
Cross-sectional area of mixed powder: S
Thin plate cross-sectional area: s
Cross-sectional area reduction rate θ = [(S−s) / S] × 100%

第四の発明は、純度99.9%以上のアルミニウム溶湯にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させて凝固させた鋳塊を圧延成形し薄板に加工することを特徴とする電解コンデンサ用アルミニウム合金薄板の製造方法である。
アルミニウム溶湯にAlを除く弁作用金属粉末を均一分散させた鋳塊であるから薄板に圧延するまでの素材の取り扱いが容易で、しかも高温に加熱溶製する必要がなく、前記したと同様の工程を施すことによって、CV積の高い電解コンデンサを得ることができる。
A fourth invention is characterized in that an ingot obtained by uniformly dispersing and solidifying at least one powder of a valve action metal excluding Al in a molten aluminum having a purity of 99.9% or more is rolled and formed into a thin plate. The manufacturing method of the aluminum alloy sheet for electrolytic capacitors.
It is an ingot in which the valve action metal powder excluding Al is uniformly dispersed in the molten aluminum, so it is easy to handle the material until it is rolled into a thin plate, and it is not necessary to heat and melt at a high temperature. By applying the above, an electrolytic capacitor having a high CV product can be obtained.

以上述べたように、本発明はCV積が高く、電子、電気機器の小型化、薄型化に適した電解コンデンサ用のアルミニウム合金薄板であり、かつ溶製に際して高温に加熱する必要のない電解コンデンサ用のアルミニウム薄板の製造方法である。   As described above, the present invention is an aluminum alloy thin plate for an electrolytic capacitor having a high CV product, suitable for downsizing and thinning of electronic and electrical equipment, and does not need to be heated to a high temperature during melting. It is a manufacturing method of the aluminum thin plate for use.

電解コンデンサの静電容量Cは次式で与えられる。   The capacitance C of the electrolytic capacitor is given by the following equation.

C=8.855×10-8×ε×S/d (μF)   C = 8.855 × 10-8 × ε × S / d (μF)

ここでεは誘電体の誘電率、Sは誘電体の表面積(cm2)、dは誘電体の厚さ(cm)である。CV積を高めるためにはCを大きくすればよい。例えばある化成電圧(d:一定)の時に、従来はCを高めるためにSを大きくする研究・開発がなされてきた。即ち、塩酸、硫酸、燐酸等、およびそれらの混酸溶液を用いた電気的、化学的エッチングによって表面積の拡大率が向上してきたのである。
しかしながら、99.98%程度の純度のアルミ薄板を用いた場合には、酸との反応でアルミ薄板の表面が溶解し、ピットの崩落によってCの向上には限りが有る。更に、より高い純度のアルミニウム薄板を用いようとすれば、著しい生産コストの上昇を招き、現実的ではない。
Here, ε is the dielectric constant of the dielectric, S is the surface area (cm 2 ) of the dielectric, and d is the thickness (cm) of the dielectric. To increase the CV product, C can be increased. For example, at a certain formation voltage (d: constant), research and development have been made to increase S to increase C. That is, the surface area enlargement ratio has been improved by electrical and chemical etching using hydrochloric acid, sulfuric acid, phosphoric acid, and the like, and mixed acid solutions thereof.
However, when an aluminum sheet with a purity of about 99.98% is used, the surface of the aluminum sheet is dissolved by reaction with acid, and the improvement of C is limited by the collapse of pits. Furthermore, if an aluminum sheet having a higher purity is used, the production cost is significantly increased, which is not realistic.

そこで本発明は、CV積の向上、即ち、Cの増大をεが9程度のAl2O3,に替わり、更に大きい他の弁作用金属、即ちTi、Zr、Nb、Hf、Ta等の粉末を用いることで達成しようとするものである。例えば、TiO2の誘電率は66、ZrO2が31、Nb2O5が47、HfO2が41、Ta2O5は25であり、エッチングによって穿孔し、表面積を拡大した後の化成処理時に、表面から露出した該弁作用金属が酸化されることで全体的なεを高め、Cを向上させる。
アルミニウム母材のAl純度を99.9%以上とするのは、薄板への成形加工が容易で、しかも該アルミニウム母材を粉末とし、混合体を前記の如く強塑性変形した薄板はエッチングピットが均一に穿孔でき、表面積を拡大できるためである。
Therefore, the present invention improves the CV product, that is, increases C by replacing Al 2 O 3 with ε of about 9, and further larger valve action metals, that is, powders of Ti, Zr, Nb, Hf, Ta, etc. This is what we want to achieve by using For example, the dielectric constant of TiO 2 is 66, ZrO 2 is 31, Nb 2 O 5 is 47, HfO 2 is 41, Ta 2 O 5 is 25. During chemical conversion treatment after drilling by etching and expanding the surface area The valve action metal exposed from the surface is oxidized to increase the overall ε and improve C.
The aluminum purity of the aluminum base material is set to 99.9% or more because it is easy to form into a thin plate, and the aluminum base material is powdered and the mixture is strongly plastically deformed as described above so that the etching pits are uniform. This is because it can be perforated and the surface area can be enlarged.

Alを除く弁作用金属は前述のようにAl より誘電率の高いTi、Zr、Nb、Hf、Ta等であって、該金属の粉末は、機械的粉砕、溶湯のアトマイズ冷却、急冷凝固帯の破砕等の公知の方法が採用でき、分級することでサイズ範囲を狭めることができる。好ましい粉末サイズは、微細であればよく下限値の限定はないが、通常の技術では3μmから6μm程度である。しかしこの程度に微細化するのはコスト高になるので、30μmから60μm程度の粉末を使用することでCV積の高いアルミニウム薄板とすることができる。   Valve action metals excluding Al are Ti, Zr, Nb, Hf, Ta, etc., which have a dielectric constant higher than that of Al as described above, and the metal powders are mechanically pulverized, molten metal atomized, and rapidly solidified. Known methods such as crushing can be employed, and the size range can be narrowed by classification. The preferable powder size is fine as long as it is fine, and there is no limitation on the lower limit value, but it is about 3 μm to 6 μm in the ordinary technique. However, since miniaturization to this extent is costly, an aluminum thin plate with a high CV product can be obtained by using a powder of about 30 μm to 60 μm.

また、本発明では純度99.9%以上のアルミニウム母材に存在する前記弁作用金属が粉末であるから,該アルミニウム母材は母材中の不純物元素および該弁作用金属元素の固溶量、化合物に大きく左右されずに微細均一にエッチングされ、その後の化成処理で母材のAlと共に他の弁作用金属が酸化され、誘電率の高い皮膜を形成することができる。
なお、母材のアルミニウムと前記弁作用金属粉末界面は、Alと他の弁作用金属との金属間化合物の存在しない場合もあれば、薄板の製造過程の加熱乃至発熱で弁作用金属粉末周囲の一部で合金化あるいは金属間化合物を形成している場合もあるが、薄板への成形加工性およびアルミニウム母材のエッチングピットの均一性には大きな影響はなく、弁作用金属粉末周囲の界面の状態は特に限定しない。
前記Alを除く弁作用金属の含有量は、本発明に係るアルミニウム合金薄板全体に対して好ましくは3%から90%である。
3%未満では静電容量の向上効果が少なく、また90%を超えるとアルミニウム母材量が少なくなって、エッチング時に弁作用金属粉末の脱落が生じやすく、静電容量の低下の虞があるし、コストの観点から現実的ではない。好ましくは、10%から40%である。
Further, in the present invention, since the valve action metal present in an aluminum base material having a purity of 99.9% or more is a powder, the aluminum base material contains an impurity element in the base material, a solid solution amount of the valve action metal element, and a compound. The film is etched finely and uniformly without being greatly influenced, and the other valve action metal is oxidized together with the base material Al in the subsequent chemical conversion treatment, and a film having a high dielectric constant can be formed.
It should be noted that the base metal aluminum and the valve metal powder interface may not have an intermetallic compound of Al and other valve metal, or may be around the valve metal powder by heating or heat generation during the manufacturing process of the thin plate. In some cases, alloying or intermetallic compounds may be formed, but there is no significant effect on the formability of the thin plate and the uniformity of the etching pits in the aluminum base metal. The state is not particularly limited.
The content of the valve metal other than Al is preferably 3% to 90% with respect to the entire aluminum alloy sheet according to the present invention.
If it is less than 3%, the effect of improving the capacitance is small, and if it exceeds 90%, the amount of the aluminum base material is small, and the valve metal powder is liable to fall off during etching, which may reduce the capacitance. Not realistic from a cost perspective. Preferably, it is 10% to 40%.

ここで薄板とは、箔を含む厚さの板で比較的薄い板を意味するものである。0.02〜0.9mm程度の板厚のものであるが、この範囲に限定するものではなく、上限の好ましい値は0.5mmが目安となる。   Here, the thin plate means a plate having a thickness including foil and a relatively thin plate. The thickness is about 0.02 to 0.9 mm. However, the thickness is not limited to this range, and a preferable upper limit is 0.5 mm.

ここでAlを除く弁作用金属を粉末としたのは、前記弁作用金属がAlと比較し、融点が高いために合金化するには溶製時に高温溶解しなくてはならず、また該弁作用金属の含有量も高いことから、該弁作用金属とAlを共に溶解して合金化溶製した場合は、アルミニウム母材中に固溶する前記弁作用金属元素濃度が高くなって、加圧成形に際して加工硬化が甚だしく、特に圧延による薄板製造が著しく困難になるためである。   Here, the valve action metal excluding Al is powdered because the valve action metal has a melting point higher than that of Al and must be melted at a high temperature at the time of melting for alloying. Since the content of the working metal is also high, when the valve working metal and Al are both melted and alloyed, the concentration of the valve working metal element dissolved in the aluminum base material is increased and the pressure is increased. This is because the work-hardening is significant at the time of molding, and it is particularly difficult to produce a thin plate by rolling.

電解コンデンサ用アルミニウム合金箔は、エッチングに際して機械的強度および通電性を確保するために,エッチング後に全薄板厚さの10%から90%の部分が芯金として残される。この部分は前記弁作用金属粉末を含有している合金である必要はないから、経済性の面からこの芯金に相当する部分を純度99.9%以上のアルミニウム芯材またはアルミニウム合金芯材とし、該芯材の一側または両側に本発明の電解コンデンサ用アルミニウム合金薄板を設けて積層薄板とする。一側または両側に設ける本発明の電解コンデンサ用アルミニウム薄板の好ましい厚さは、積層薄板全体の厚さの10%から90%である。
ここで芯材のアルミニウムは純度99.9%以上のアルミニウムをいう。また芯材のアルミニウム合金は0.1%を超えるAl以外の元素を含有するアルミニウムをいう。
In the aluminum alloy foil for electrolytic capacitors, a portion of 10% to 90% of the total thin plate thickness is left as a metal core after etching in order to ensure mechanical strength and electrical conductivity during etching. Since this part does not need to be an alloy containing the valve action metal powder, the part corresponding to the core metal is made an aluminum core material or aluminum alloy core material with a purity of 99.9% or more from the economical aspect, The aluminum alloy thin plate for electrolytic capacitors of the present invention is provided on one side or both sides of the core material to form a laminated thin plate. The preferable thickness of the aluminum sheet for electrolytic capacitors of the present invention provided on one side or both sides is 10% to 90% of the total thickness of the laminated sheet.
Here, the core aluminum refers to aluminum having a purity of 99.9% or more. The aluminum alloy of the core material is aluminum containing more than 0.1% of elements other than Al.

前記積層薄板において、リーク電流低減の要求が特に厳しい場合に対応するためには純度99.9%以上のアルミニウムの芯材を用いることが好ましい。一方機械的強度が要求される場合には例えばA3003やA5754等のアルミニウム合金の芯材を用いることが好ましい。これらはクラッド鋳造やクラッド圧延で得られるが、本願はそれら製造手法には限定されない。   In the laminated thin plate, it is preferable to use an aluminum core material with a purity of 99.9% or more in order to cope with a case where the demand for leakage current reduction is particularly severe. On the other hand, when mechanical strength is required, for example, an aluminum alloy core material such as A3003 or A5754 is preferably used. These can be obtained by clad casting or clad rolling, but the present application is not limited to these manufacturing methods.

次に電解コンデンサ用アルミニウム合金薄板の好ましい製造方法について説明する。
Alを除く弁作用金属粉末を純度99.9%以上のアルミニウム母材中に均一に混合させるには常法でよく、例えば、該アルミニウム母材が粉末の場合は、Al粉末と該弁作用金属粉末とを機械的に混ぜ合わせるか、またはノズルから粉末を噴霧して混ぜ合わせるか等の方法で達成できる。均一に混合された混合粉末は型に入れて好ましい形状に焼結するか、或いは容器にいれて混合粉末体とする。
Next, the preferable manufacturing method of the aluminum alloy thin plate for electrolytic capacitors is demonstrated.
In order to mix the valve action metal powder excluding Al uniformly into an aluminum base material having a purity of 99.9% or more, for example, when the aluminum base material is a powder, Al powder and the valve action metal powder Can be achieved by a method such as mechanical mixing or spraying powder from a nozzle and mixing. The uniformly mixed powder is put into a mold and sintered into a preferable shape, or put into a container to form a mixed powder body.

前記のようにして得られた混合粉末体の場合は、金型プレス成形、押出成形等で所定の好ましい形状とされ、必要により圧延して薄板に成形される。この場合混合粉末体の断面積減少率が高く加工し難いときは、適宜焼鈍して薄板に加工する。   In the case of the mixed powder obtained as described above, a predetermined preferable shape is obtained by die press molding, extrusion molding or the like, and if necessary, it is rolled and formed into a thin plate. In this case, when the cross-sectional area reduction rate of the mixed powder body is high and difficult to process, it is appropriately annealed and processed into a thin plate.

前記混合粉末体がビレット形状で焼結されているがサイズの大きい形状の場合は加工硬化を抑制するため、また焼結されていない場合は粉末相互の金属結合を確実なものとするために、該混合粉末体を300℃から600℃の範囲に予備加熱して押出し加工し、次工程の圧延のためにフラットバーの板状に加工する。この押出加工で混合粉末体が焼結されていない場合は、前記弁作用金属粉末はアルミニウム母材と互いに金属結合し、爾後の圧延加工で確実に薄板に加工することで強度の高い薄板とすることができ、また高温に加熱溶製する必要がなく、CV積の高い電解コンデンサを得ることができる。   In order to suppress work hardening when the mixed powder body is sintered in a billet shape but has a large size, and to ensure a metal bond between the powders when not sintered, The mixed powder body is preheated in the range of 300 ° C. to 600 ° C., extruded, and processed into a flat bar plate for rolling in the next step. When the mixed powder body is not sintered by this extrusion process, the valve action metal powder is metal-bonded to the aluminum base material, and is processed into a thin plate by rolling after the rolling to make a high strength thin plate. In addition, an electrolytic capacitor having a high CV product can be obtained without the need for heating and melting at a high temperature.

該混合粉末体が焼結されたものであって、サイズが小さく、加工率が低い場合は300℃未満の低温で押出し加工することができる。混合粉末が直接圧延できる場合は、その大きさによって混合粉末体を冷間乃至熱間で更に薄い板状に圧延する。爾後この薄板を必要により中間焼鈍を施して冷間圧延して薄板とする。この混合粉末体の好ましい加工率は、混合粉末体の断面積減少率で表記すれば、好ましくは80%以上の塑性加工を施すことによって、得られた薄板の組織は粉末の未充填部分が実質的に無くなり、エッチング処理してもピットの崩落が無く、表面積の拡大が可能となる。さらに好ましくは、95%以上、よりさらに好ましくは99%以上である。   When the mixed powder is sintered and has a small size and a low processing rate, it can be extruded at a low temperature of less than 300 ° C. When the mixed powder can be directly rolled, the mixed powder body is rolled into a thinner plate shape depending on its size, from cold to hot. After this, the thin plate is subjected to intermediate annealing if necessary and cold-rolled to obtain a thin plate. The preferable processing rate of the mixed powder body is expressed by the reduction rate of the cross-sectional area of the mixed powder body, and preferably by performing plastic working of 80% or more, the resulting thin plate has a substantially unfilled portion of the powder. Therefore, even if the etching process is performed, there is no collapse of pits, and the surface area can be increased. More preferably, it is 95% or more, and still more preferably 99% or more.

また、純度99.9%以上のアルミニウム母材が溶湯の場合は、Alの融点上200℃程度に加熱し、前記該弁作用金属粉末を添加攪拌する等の方法で達成できる。攪拌後は鋳型に鋳造して鋳塊とする。この鋳塊は次工程に合わせて、ビレットないしスラブとする。   Further, when the aluminum base material having a purity of 99.9% or more is a molten metal, it can be achieved by heating the Al melting point to about 200 ° C. and adding and stirring the valve action metal powder. After stirring, it is cast into a mold to form an ingot. This ingot is made into a billet or slab according to the next process.

また、前記弁作用金属粉末を所定の容器内に充填し、純度99.9%以上のアルミニウム溶湯を無加圧浸透または加圧浸透させて純度99.9%以上のアルミニウム母材中に前記粉末を混入させて鋳塊とすることも有効であるが、本発明は前記の混合粉末体および鋳塊の製造方法に限定されるものではない。   In addition, the valve metal powder is filled in a predetermined container, and the molten aluminum having a purity of 99.9% or more is impregnated with no pressure or by pressure so that the powder is mixed in an aluminum base material having a purity of 99.9% or more. Although it is effective to use an ingot, the present invention is not limited to the mixed powder body and the method for producing the ingot.

純度99.9%以上のアルミニウム溶湯にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させた前記鋳塊は、前記混合粉末体と同様にビレットであれば押出後圧延、スラブであれば圧延によって所定厚さの薄板に成形される。この場合鋳塊サイズが大きく加工率が高く加工し難いときは、適宜加熱あるいは焼鈍して所定厚さの薄板に加工する。   The ingot in which at least one powder of valve action metal excluding Al is uniformly dispersed and contained in molten aluminum having a purity of 99.9% or more can be a post-extrusion rolled or slab if it is a billet as in the case of the mixed powder body. For example, a thin plate having a predetermined thickness is formed by rolling. In this case, when the ingot size is large and the processing rate is high and it is difficult to process, it is appropriately heated or annealed and processed into a thin plate having a predetermined thickness.

該鋳塊がビレット形状でサイズの大きい形状の場合は、加工硬化が大きいので該鋳塊を300℃から600℃の範囲に予備加熱して押出し加工し、次工程の圧延のためにフラットバーの板状に加工する。該鋳塊のビレットサイズが小さく、加工率が低い場合は300℃未満の低温で押出し加工し、爾後圧延することができる。該鋳塊が直接圧延できる場合は、その大きさによって鋳塊を冷間乃至熱間で更に薄い板状に圧延する。爾後この薄板を必要により中間焼鈍を施して冷間圧延して所定厚さの薄板とする。   When the ingot is a billet shape and a large size, the work hardening is large, so the ingot is preheated in the range of 300 ° C to 600 ° C and extruded. Process into a plate. When the billet size of the ingot is small and the processing rate is low, the ingot can be extruded at a low temperature of less than 300 ° C. and then rolled. When the ingot can be rolled directly, the ingot is rolled into a thinner plate shape depending on the size of the ingot. After that, this thin plate is subjected to intermediate annealing as necessary and cold-rolled to obtain a thin plate having a predetermined thickness.

このようにして製造された薄板は、必要に応じて最終焼鈍が施されて電解コンデンサ用アルミニウム合金薄板とされる。この製造方法も高温に加熱溶製する必要がなく、CV積の高い電解コンデンサを得ることができる。
前記押出しまたは圧延に供される被加工材の加熱温度が600℃を超えると酸化膜の著しい成長によって薄板のエッチング時に未エッチ部が発生して性能が低下するので避けることが好ましい。
The thin plate produced in this manner is subjected to final annealing as necessary to obtain an aluminum alloy thin plate for electrolytic capacitors. This manufacturing method also does not require heating and melting at a high temperature, and an electrolytic capacitor having a high CV product can be obtained.
When the heating temperature of the workpiece to be subjected to the extrusion or rolling exceeds 600 ° C., it is preferable to avoid an unetched portion at the time of etching the thin plate due to the remarkable growth of the oxide film, which deteriorates the performance.

特に本発明は母材が純度99.9%以上の高純度アルミニウムであるために加工硬化度が低く、前記弁作用金属粉末サイズにもよるが、Alを除く前記弁作用金属粉末サイズ程度の薄板厚さまで容易に圧延できると共にエッチング工程で均一なピットを穿孔することができる。
なお薄板のエッチングピットを均一にする目的で、各工程間で、必要に応じて酸やアルカリ、溶剤等で脱脂処理を行って、圧延面を清浄に保つこともできる。また、薄板の機械的強度調整のため、冷間圧延途中や薄板加工後に焼鈍を施すこともできる。その時の温度は250℃から550℃の範囲が好ましい。薄板の厚さは用途に応じて決定されるが、0.9mm以下、好ましくは0.02mmから0.5mmの間で適宜選択される。
In particular, in the present invention, since the base material is high-purity aluminum having a purity of 99.9% or more, the work hardening degree is low, and depending on the size of the valve metal powder, the thickness of the metal plate is about the same as the valve metal powder size excluding Al. It can be rolled easily and uniform pits can be drilled in the etching process.
For the purpose of making the etching pits of the thin plate uniform, the rolled surface can be kept clean by performing a degreasing treatment with an acid, an alkali, a solvent or the like as necessary between the respective steps. Also, annealing can be performed during cold rolling or after thin plate processing for adjusting the mechanical strength of the thin plate. The temperature at that time is preferably in the range of 250 ° C to 550 ° C. The thickness of the thin plate is determined according to the application, but is appropriately selected from 0.9 mm or less, preferably between 0.02 mm and 0.5 mm.

純度99.98%で平均粒径50μmのAl粉末とTi、Zr、Nb、Hf、Taのそれぞれの粉末を重量比で25%均一に混合して混合粉末体とし、該混合粉末体を焼結して200mmφのビッレットを作製した。なお、弁金属粉末の粒径は分級によってそれぞれ30μmから50μmの範囲のもの(試料番号1〜5)と、約30μmから70μmの範囲のもの(試料番号7)を用いた。   Al powder with a purity of 99.98% and an average particle size of 50μm and each powder of Ti, Zr, Nb, Hf, and Ta are mixed uniformly by 25% by weight to form a mixed powder body, and the mixed powder body is sintered. A 200 mmφ billet was produced. In addition, the particle diameter of the valve metal powder was 30 μm to 50 μm (sample number 1 to 5) and about 30 μm to 70 μm (sample number 7) depending on the classification.

これらを400℃に予備加熱後、厚さ10mm×幅200mmのフラットバーに押出加工し、該フラットバーを冷間圧延によって厚さ1mmの薄板に圧延した後、芯材に厚さ1mmのAl純度99.98%のアルミニウム薄板を用いて3層のクラッド圧延することにより3層のクラッド板を得た。更に該3層のクラッド板を冷間圧延して厚さ100μm×幅200mmの積層薄板とした。
表層の厚さは35μm、芯材は30μmであった。断面積減少率は99.98%である。
このようにして製造された積層薄板を下記に示す電解エッチング条件でエッチングし、50g/リットル、60℃のアジピン酸ニアンモニウム溶液中で20Vに化成後特性を調べた結果を表1に示す。
These were preheated to 400 ° C, extruded into a flat bar with a thickness of 10 mm × width 200 mm, the flat bar was rolled into a thin plate with a thickness of 1 mm by cold rolling, and then the Al purity of the core with a thickness of 1 mm was obtained. Three-layer clad rolling was performed using 99.98% aluminum thin plate to obtain a three-layer clad plate. Further, the three-layer clad plate was cold-rolled to obtain a laminated thin plate having a thickness of 100 μm and a width of 200 mm.
The thickness of the surface layer was 35 μm, and the core material was 30 μm. The cross-sectional area reduction rate is 99.98%.
Table 1 shows the results obtained by etching the laminated thin plate thus produced under the electrolytic etching conditions shown below and examining the properties after chemical conversion to 20 V in a 50 g / liter, 60 ° C. diammonium adipate solution.

<電解エッチング条件>
液組成 :4N HCl、0.1N Al3+、0.2N H2SO4、液温25℃
電解波形 : 正弦波交流、周波数50Hz
電流密度 : 150mA/cm2
電解時間 : 900s
<Electrolytic etching conditions>
Liquid composition: 4N HCl, 0.1N Al 3+ , 0.2NH 2 SO 4 , liquid temperature 25 ° C.
Electrolytic waveform: Sine wave AC, frequency 50Hz
Current density: 150mA / cm 2
Electrolysis time: 900s

実施例1と同様のAl粉末とTi粉末を用い同じ割合で混合粉末体とし、該混合粉末体を焼結して50mmφのビッレットを作製した。これを400℃に予備加熱後、厚さ10mm×幅50mmのフラットバーに押出加工し、該フラットバーを冷間圧延によって厚さ1mm×幅50mmの薄板に圧延(試料番号11)した。断面積減少率は97.5%である。
この薄板を実施例1と同じ条件でエッチングおよび化成処理し、特性を調べた結果を表1に示す。
The same Al powder and Ti powder as in Example 1 were used to form a mixed powder body at the same ratio, and the mixed powder body was sintered to prepare a 50 mmφ billet. This was preheated to 400 ° C., and then extruded into a flat bar having a thickness of 10 mm × width 50 mm, and the flat bar was rolled into a thin plate having a thickness of 1 mm × width 50 mm by cold rolling (sample number 11). The cross-sectional area reduction rate is 97.5%.
Table 1 shows the results of etching and chemical conversion treatment of this thin plate under the same conditions as in Example 1 and examining the characteristics.

「比較例1」
純度99.98%の従来製造法による市販アルミニウム箔(試料番号6)を用い、実施例1と同様の電解エッチング条件および化成条件で処理し特性を調べた結果を表1に示す。
"Comparative Example 1"
Table 1 shows the results of examining the characteristics by using a commercially available aluminum foil (sample No. 6) having a purity of 99.98% under the same electrolytic etching conditions and chemical conversion conditions as in Example 1.

「比較例2」
実施例1と同様のAl粉末とTi粉末を用い、同じ割合で混合粉末体とし、次いで焼結後断面積減少率30%で加圧成形して誘電酸化物層が形成できる程度の多孔質体(試料番号8)とした。このようにして製造された多孔質体を実施例1と同様の条件で電解エッチングした。その結果を表1に示す。
"Comparative Example 2"
A porous body that can form a dielectric oxide layer by using Al powder and Ti powder similar to those in Example 1 to form a mixed powder body at the same ratio, and then press-molding with a 30% reduction in cross-sectional area after sintering. (Sample No. 8). The porous body thus produced was electrolytically etched under the same conditions as in Example 1. The results are shown in Table 1.

「比較例3」
比較例2と同じ条件で製造した多孔質体に、脱落が生じない程度の条件でエッチングし(試料番号9)、実施例1と同じ条件で化成処理し、特性を調べた結果を表1に示す。
“Comparative Example 3”
The porous body manufactured under the same conditions as in Comparative Example 2 was etched under conditions that did not cause dropping (Sample No. 9), subjected to chemical conversion treatment under the same conditions as in Example 1, and the results of examining the characteristics are shown in Table 1. Show.

「比較例4」
純度99%で平均粒径50μmのAl粉末を用い、実施例1と同様の条件で厚さ1mmの薄板に圧延した後、更に圧延して厚さ0.25mmの薄板(試料番号10)とした。断面積減少率は99.8%である。
このように製造された薄板を実施例1と同様の条件でエッチング処理した。結果を表1に示す。
“Comparative Example 4”
An Al powder having a purity of 99% and an average particle diameter of 50 μm was rolled into a 1 mm thick sheet under the same conditions as in Example 1, and then further rolled into a 0.25 mm thick sheet (Sample No. 10). The cross-sectional area reduction rate is 99.8%.
The thin plate thus produced was etched under the same conditions as in Example 1. The results are shown in Table 1.

Figure 2005340374
Figure 2005340374

表1の結果から、本発明例(試料番号1から5および7、11)はCV積が著しく高いことが判る。
なお、弁作用金属粉末サイズ範囲の狭い本発明例(試料番号1)は、サイズ範囲の広い本発明例(試料番号7)と比較してCV積が高いことが判る。
一方、従来箔を用いた従来例(試料番号6)はCV積が低いことが判る。
断面積減少率が小さい多孔質体である比較例2(試料番号8)は、エッチング処理でピットの崩落を含む溶解減量が激しく、静電容量を測定できないことが判る。
純度99%のAl粉末を用いた比較例4(試料番号9)は、Al粉末の純度が低く孔食の起点となるものが多く、エッチング処理で脱落を含む溶解減量が激しく、静電容量を測定できないことが判る。
From the results in Table 1, it can be seen that the inventive examples (Sample Nos. 1 to 5, and 7, 11) have a remarkably high CV product.
It can be seen that the present invention example (sample No. 1) having a narrow valve action metal powder size range has a higher CV product than the present invention example (sample No. 7) having a wide size range.
On the other hand, it can be seen that the conventional example (sample No. 6) using the conventional foil has a low CV product.
It can be seen that Comparative Example 2 (Sample No. 8), which is a porous body having a small cross-sectional area reduction rate, has a strong dissolution loss including pit collapse by the etching process, and the capacitance cannot be measured.
In Comparative Example 4 (Sample No. 9) using 99% pure Al powder, the purity of the Al powder is low, and many of them become the starting point of pitting corrosion. It turns out that it cannot be measured.

以上述べたように、本発明はCV積が高く、電子、電気機器の小型化、薄型化に適した電解コンデンサ用のアルミニウム合金箔であり、かつ溶製に際して高温に加熱する必要のない電解コンデンサ用のアルミニウム合金箔の製造方法であるから、産業上の利用可能性が高い発明であると理解される。
As described above, the present invention is an electrolytic capacitor that has a high CV product, is an aluminum alloy foil for electrolytic capacitors suitable for downsizing and thinning of electronic and electrical equipment, and does not need to be heated to a high temperature during melting. Therefore, it is understood that the present invention has a high industrial applicability.

Claims (6)

純度99.9%以上のアルミニウム母材にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させたアルミニウム合金薄板であって、該アルミニウム合金薄板はエッチング処理を施して穿孔し、表面積を拡大してから誘電酸化物層を形成する工程に供することを特徴とする電解コンデンサ用アルミニウム合金薄板。 An aluminum alloy thin plate in which at least one powder of valve action metal excluding Al is uniformly dispersed in an aluminum base material having a purity of 99.9% or more, and the aluminum alloy thin plate is subjected to etching treatment to perforate to reduce the surface area. An aluminum alloy thin plate for an electrolytic capacitor, which is subjected to a step of forming a dielectric oxide layer after being enlarged. 前記弁作用金属粉末の含有量は、前記アルミニウム合金薄板重量に対して3%から90%であることを特徴とする請求項1に記載の電解コンデンサ用アルミニウム合金薄板。 The aluminum alloy sheet for an electrolytic capacitor according to claim 1, wherein the content of the valve action metal powder is 3% to 90% with respect to the weight of the aluminum alloy sheet. 前記アルミニウム母材は、アルミニウム粉末であることを特徴とする請求項1または2に記載の電解コンデンサ用アルミニウム合金薄板。 The aluminum alloy thin plate for an electrolytic capacitor according to claim 1 or 2, wherein the aluminum base material is aluminum powder. 純度99.9%以上のアルミニウム芯材またはアルミニウム合金芯材の一側または両側に、請求項1乃至3の何れか1に記載の電解コンデンサ用アルミニウム合金薄板を積層したアルミニウム合金薄板であって、該アルミニウム合金薄板はエッチング処理を施して穿孔し、表面積を拡大してから誘電酸化物層を形成する工程に供することを特徴とする電解コンデンサ用アルミニウム合金積層薄板。 An aluminum alloy thin plate in which the aluminum alloy thin plate for an electrolytic capacitor according to any one of claims 1 to 3 is laminated on one side or both sides of an aluminum core or aluminum alloy core having a purity of 99.9% or more, An aluminum alloy laminated thin plate for an electrolytic capacitor, characterized in that the alloy thin plate is subjected to a step of etching and perforating to increase the surface area and then forming a dielectric oxide layer. 前記アルミニウム粉末に前記弁作用金属の少なくとも1種の粉末を均一に分散含有さけて混合粉末体とし、該混合粉末体を断面積減少率で95%以上の塑性加工を施してアルミニウム合金薄板とすることを特徴とする請求項1乃至4の何れか1に記載の電解コンデンサ用アルミニウム合金薄板の製造方法。 At least one kind of the above-mentioned valve action metal powder is uniformly dispersed in the aluminum powder to form a mixed powder body, and the mixed powder body is subjected to plastic working with a cross-sectional area reduction rate of 95% or more to obtain an aluminum alloy thin plate. The method for producing an aluminum alloy thin plate for an electrolytic capacitor according to any one of claims 1 to 4. 純度99.9%以上のアルミニウム溶湯に前記弁作用金属の少なくとも1種の粉末を均一に分散含有させて鋳塊とし、該鋳塊を圧延成形してアルミニウム合金薄板とすることを特徴とする請求項1または請求項2に記載の電解コンデンサ用アルミニウム合金薄板の製造方法。
2. An aluminum ingot having a purity of 99.9% or more is obtained by uniformly dispersing at least one powder of the valve action metal into an ingot, and rolling the ingot to form an aluminum alloy sheet. Or the manufacturing method of the aluminum alloy thin plate for electrolytic capacitors of Claim 2.
JP2004154946A 2004-05-25 2004-05-25 Manufacturing method of aluminum alloy sheet for electrolytic capacitor Expired - Fee Related JP4465521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154946A JP4465521B2 (en) 2004-05-25 2004-05-25 Manufacturing method of aluminum alloy sheet for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154946A JP4465521B2 (en) 2004-05-25 2004-05-25 Manufacturing method of aluminum alloy sheet for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005340374A true JP2005340374A (en) 2005-12-08
JP4465521B2 JP4465521B2 (en) 2010-05-19

Family

ID=35493613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154946A Expired - Fee Related JP4465521B2 (en) 2004-05-25 2004-05-25 Manufacturing method of aluminum alloy sheet for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4465521B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098279A (en) * 2006-10-10 2008-04-24 Toyo Aluminium Kk Electrode material for aluminum electrolytic capacitor, and its manufacturing method
JP2016076674A (en) * 2014-10-09 2016-05-12 パナソニックIpマネジメント株式会社 Electrode foil, manufacturing method for the same and electrolytic capacitor
CN112538599A (en) * 2020-12-02 2021-03-23 中南大学 Preparation method of 650 MPa-grade ultrahigh-strength aluminum alloy thin strip

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340605A (en) * 1976-08-12 1978-04-13 Int Standard Electric Corp Porous electrode for capacitor and process for production thereof
JPS57138124A (en) * 1981-02-19 1982-08-26 Nippon Electric Co Method of producing anode unit for electrolytic condenser
JPH01290217A (en) * 1988-05-18 1989-11-22 Nippon Steel Corp Electrode material for electrolytic capacitor and its manufacture
JPH04120235A (en) * 1990-09-10 1992-04-21 Showa Alum Corp Aluminum foil for electrode of electrolytic capacitor and its manufacture
JPH04124239A (en) * 1990-09-14 1992-04-24 Showa Alum Corp Aluminum foil for electrode of electrolytic capacitor
JPH05247562A (en) * 1992-03-02 1993-09-24 Sumitomo Light Metal Ind Ltd Manufacture of ti-al intermetallic compound
JPH06325985A (en) * 1993-05-11 1994-11-25 Nippon Steel Corp Foil for positive electrode of electrolytic capacitor
JP2000012402A (en) * 1998-06-19 2000-01-14 Nichicon Corp Electrode foil for aluminium electrolytic capacitor
JP2001271127A (en) * 2000-03-27 2001-10-02 Sumitomo Special Metals Co Ltd Ti-Al INTERMETALLIC COMPOUND SHEET AND ITS PRODUCING METHOD
JP2002332531A (en) * 1999-06-11 2002-11-22 Toyota Central Res & Dev Lab Inc Titanium alloy and manufacturing method
WO2003041099A1 (en) * 2001-11-08 2003-05-15 Matsushita Electric Industrial Co., Ltd. Capacitor and production method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340605A (en) * 1976-08-12 1978-04-13 Int Standard Electric Corp Porous electrode for capacitor and process for production thereof
JPS57138124A (en) * 1981-02-19 1982-08-26 Nippon Electric Co Method of producing anode unit for electrolytic condenser
JPH01290217A (en) * 1988-05-18 1989-11-22 Nippon Steel Corp Electrode material for electrolytic capacitor and its manufacture
JPH04120235A (en) * 1990-09-10 1992-04-21 Showa Alum Corp Aluminum foil for electrode of electrolytic capacitor and its manufacture
JPH04124239A (en) * 1990-09-14 1992-04-24 Showa Alum Corp Aluminum foil for electrode of electrolytic capacitor
JPH05247562A (en) * 1992-03-02 1993-09-24 Sumitomo Light Metal Ind Ltd Manufacture of ti-al intermetallic compound
JPH06325985A (en) * 1993-05-11 1994-11-25 Nippon Steel Corp Foil for positive electrode of electrolytic capacitor
JP2000012402A (en) * 1998-06-19 2000-01-14 Nichicon Corp Electrode foil for aluminium electrolytic capacitor
JP2002332531A (en) * 1999-06-11 2002-11-22 Toyota Central Res & Dev Lab Inc Titanium alloy and manufacturing method
JP2001271127A (en) * 2000-03-27 2001-10-02 Sumitomo Special Metals Co Ltd Ti-Al INTERMETALLIC COMPOUND SHEET AND ITS PRODUCING METHOD
WO2003041099A1 (en) * 2001-11-08 2003-05-15 Matsushita Electric Industrial Co., Ltd. Capacitor and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098279A (en) * 2006-10-10 2008-04-24 Toyo Aluminium Kk Electrode material for aluminum electrolytic capacitor, and its manufacturing method
JP2016076674A (en) * 2014-10-09 2016-05-12 パナソニックIpマネジメント株式会社 Electrode foil, manufacturing method for the same and electrolytic capacitor
CN112538599A (en) * 2020-12-02 2021-03-23 中南大学 Preparation method of 650 MPa-grade ultrahigh-strength aluminum alloy thin strip
CN112538599B (en) * 2020-12-02 2022-02-01 中南大学 Preparation method of 650 MPa-grade ultrahigh-strength aluminum alloy thin strip

Also Published As

Publication number Publication date
JP4465521B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP4948167B2 (en) Metal fiber manufacturing method
TWI544509B (en) Electrode for electrolytic capacitor for electrolysis and method for manufacturing the same
AU2005291557A1 (en) Tantalum powder for the production of solid electrolyte capacitors
CN109036852B (en) Three-dimensional porous aluminum electrode foil and preparation method thereof
WO2007058242A1 (en) Electrode sheet for capacitor and process for producing the same
JP4816640B2 (en) Aluminum electrolytic capacitor and method for manufacturing aluminum electrolytic capacitor
CN104094370B (en) The method for manufacturing the electrode material of aluminium electrolutic capacitor
JP4465521B2 (en) Manufacturing method of aluminum alloy sheet for electrolytic capacitor
JP2020150158A (en) Manufacturing method of anode of electrolytic capacitor, manufacturing method of electrolytic capacitor, and electrolytic capacitor
JP2005294281A (en) Aluminum alloy foil for electrolytic capacitor, aluminum alloy laminated foil for electrolytic capacitor, and manufacturing method therefor
KR20060135831A (en) Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor
JP2004149835A (en) Soft aluminum foil for medium/low voltage electrolytic capacitor to be subjected to ac etching
JP2006219742A (en) Aluminum alloy foil for cathode of electrolytic capacitor and its production method
JP2008045172A (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JPH05299309A (en) Manufacture of electrode for chip type solid electrolytic capacitor
JP2004076059A (en) Aluminum alloy foil for cathode of electrolytic capacitor, and manufacturing method therefor
Yuan et al. Synthesis of fine Pb–50 vol.-% Sn alloys by a new process of reciprocating extrusion
JP2006302917A (en) Electrode sheet for capacitor, method for manufacturing the same, and electrolytic capacitor
JP2007113098A (en) Aluminum alloy foil for cathode in electrolytic capacitor and producing method therefor
JP2000012402A (en) Electrode foil for aluminium electrolytic capacitor
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
WO2022071386A1 (en) Electrode material for aluminum electrolytic capacitor and method for manufacturing same
JP2013237882A (en) Method for manufacturing porous aluminum
JP2007253185A (en) Method of manufacturing aluminum foil for electrolytic capacitor electrode
RU2285739C2 (en) METHOD OF PRODUCTION OF THIN-WALLED TUBULAR BILLET FROM Nb OR Ta INGOT FOR FORMING DIFFUSION BARRIER IN SUPERCONDUCTORS (VERSIONS)

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees