JP2005294281A - Aluminum alloy foil for electrolytic capacitor, aluminum alloy laminated foil for electrolytic capacitor, and manufacturing method therefor - Google Patents

Aluminum alloy foil for electrolytic capacitor, aluminum alloy laminated foil for electrolytic capacitor, and manufacturing method therefor Download PDF

Info

Publication number
JP2005294281A
JP2005294281A JP2003194780A JP2003194780A JP2005294281A JP 2005294281 A JP2005294281 A JP 2005294281A JP 2003194780 A JP2003194780 A JP 2003194780A JP 2003194780 A JP2003194780 A JP 2003194780A JP 2005294281 A JP2005294281 A JP 2005294281A
Authority
JP
Japan
Prior art keywords
foil
aluminum alloy
aluminum
alloy foil
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003194780A
Other languages
Japanese (ja)
Inventor
Masahiko Katano
雅彦 片野
Masayuki Saeki
雅之 佐伯
Yoshihiro Taguchi
喜弘 田口
Yoshinari Ashidaka
善也 足高
Shinichi Arai
慎一 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Original Assignee
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Nippon Light Metal Co Ltd filed Critical Toyo Aluminum KK
Priority to JP2003194780A priority Critical patent/JP2005294281A/en
Publication of JP2005294281A publication Critical patent/JP2005294281A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy foil for electrolytic capacitors which has a high CV value and a low casting temperature, and to provide its manufacturing method. <P>SOLUTION: The aluminum alloy foil for electrolytic capacitors is provided which is made by uniformly dispersing powder of at least one kind of valve action metal except for Al by 3 to 90% of the weight of the aluminum alloy foil for electrolytic capacitors into an aluminum matrix having a purity of 99.9% or above, or an aluminum alloy laminated foil made by cladding the aluminum alloy foil for electrolytic capacitors on the side face of an aluminum foil or aluminum alloy foil having a purity of 99.9% or above. A method of manufacturing the aluminum alloy foil for electrolytic capacitor is also provided wherein powder of at least one kind of valve action metal except for Al is uniformly dispersed by 3 to 90% of the weight of the aluminum alloy foil for electrolytic capacitors into aluminum powder or molten metal having a purity of 99.9% or above and the mixed powder or cast mass is roll-molded into a foil. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は,静電容量と化成皮膜耐電圧の積(以後CV積という)が高く,電子,電気機器の小型化,薄型化に適した電解コンデンサ用のアルミニウム合金箔とその製造方法に関する。
【0002】
【従来の技術】
電解コンデンサ用アルミニウム箔は通常,純度99.9%以上のアルミニウム溶湯を半連続鋳造によってスラブとし,更に面削,均質化処理,熱間圧延,必要に応じて中間焼鈍,冷間圧延を経て製品厚さに仕上げられる。その後,コンデンサメーカーによってエッチングと称する工程で表面積を拡大し,化成工程によって誘電体皮膜を表面に形成して電解コンデンサ用の箔とされる。
【0003】
近年,コンデンサの小型・高容量化の要求と共にエッチング技術が大幅に進歩し,化成電圧100V以下の低圧用途では,エッチングによる表面倍率が100倍を超え,化成皮膜研究の進歩も合わせてCV積が著しく増大してきた。しかしながら,現実のエッチング倍率には限界が有り,また,Al2O3の誘電率は9程度で,Alを除く他の弁作用金属,即ちTi,Ta,Zr,Hf,Nbと比較して大きな値ではない。例えば,TiO2の比誘電率は66,ZrO2が31,Nb2O5が47,HfO2が41,Ta2O5は25であり,アルミニウム製コンデンサのCV積を飛躍的に増加させるには,Al2O3よりも誘電率の高い他の誘電体を利用することが有効である。
【0004】
たとえば,特開平1-124212号公報には,弁作用金属であるTi,Ta,Zr,Hf,Nbの一種または複数種をアルミニウム溶湯に溶解合金化させ,鋳造に際し急冷凝固速度をコントロールして金属間化合物サイズを定め,化成電圧に即したエッチングを可能として,CV積の大きな電解コンデンサ用アルミニウム合金電極を提案している。
【公知特許文献1】特開平1-124212号公報 実施例
【0005】
【発明が解決しようとする問題点】
前記特開平1-124212号公報記載の技術は,凝固速度をコントロールして金属間化合物サイズを定めるのでサイズの分布範囲が大きく一定せず,しかもAlを除く弁作用金属は融点が1700〜3000℃と高いために合金化するにはかなりの高温に加熱溶製する問題点がある。
【0006】
即ち本発明は,アルミニウム母材に均一に分散含有させるAlを除く弁作用金属のサイズのコントロールが容易な電解コンデンサ用アルミニウム合金箔および溶湯を高温加熱して溶製する必要のない電解コンデンサ用アルミニウム合金箔の製造方法を提供することを目的とする。
【0007】
【問題点を解決するための手段】
発明者らは上記問題点を検討の結果,Alを除く弁作用金属を含有するアルミニウム合金溶湯の凝固速度をコントロールして金属間化合物サイズを定める替わりに,アルミニウム母材中に含有させる該弁作用金属に微細粉末を用いた場合は,該弁作用金属のサイズ管理が容易で、しかもサイズ範囲を極端に狭くすることも可能であり,さらに高温溶製が不要であることを見出して本発明を完成したものである。
【0008】
即ち第一の発明は,純度99.9%以上のアルミニウム母材にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させたことを特徴とする電解コンデンサ用アルミニウム合金箔である。
Alを除く弁作用金属粉末をアルミニウム母材に均一に分散させることによって,該箔のエッチング後の化成処理で陽極酸化皮膜内に前記弁作用金属の酸化物を生成させることができ,誘電率の高い誘電体を得ることができ,CV値の高い電解コンデンサを得ることができる。粉末のサイズ管理も容易である。
【0009】
ここでアルミニウム母材とは所謂マトリクスを指すもので,このような合金箔を製造する際の出発原料としては,アルミニウム粉末或いはアルミニウム溶湯である。
Alを除く弁作用金属としては、酸化物として比較したときに、Alより誘電率の高いTi,Zr,Nb,Hf,Taである。
【0010】
Alを除く弁作用金属粉末の含有量を電解コンデンサ用アルミニウム合金箔重量に対して,好ましくは3%から90%とすることで,確実にCV値の高い電解コンデンサ箔とすることができる。さらに好ましい値は10%から40%である。
【0011】
第二の発明は,純度99.9%以上のアルミニウム箔またはアルミニウム合金箔の一側または両側に前記第一の発明の電解コンデンサ用アルミニウム合金箔を設けたことを特徴とする電解コンデンサ用アルミニウム合金積層箔である。
アルミニウム箔の側面に前記第一の発明の電解コンデンサ用アルミニウム合金箔を積層することにより、粉末の使用量が少なく経済的な電解コンデンサ用アルミニウム合金積層箔とすることができる。好ましい厚さは、該積層箔全体の厚さの10%から90%である。
【0012】
第三の発明は,純度99.9%以上のアルミニウム粉末にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させた混合粉末体を圧延成形し,箔に加工することを特徴とする電解コンデンサ用アルミニウム合金箔の製造方法である。アルミニウム粉末にAlを除く弁作用金属粉末を均一分散含有させた混合粉末体を圧延成形し,箔に加工することで,高温に加熱溶製する必要がなく、CV値の高い電解コンデンサを得ることができる。
Alを除く弁作用金属粉末の含有量を合金箔重量に対して,好ましくは3%から90%とすることで,確実にCV値の高い電解コンデンサ箔とすることができる。
【0013】
第四の発明は,純度99.9%以上のアルミニウム溶湯にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させて凝固させた鋳塊を圧延成形し,箔に加工することを特徴とする電解コンデンサ用アルミニウム合金箔の製造方法である。
アルミニウム溶湯にAlを除く弁作用金属粉末を均一分散させた鋳塊であるから箔圧延の取り扱いがし易く、しかも高温に加熱溶製する必要がなく、CV値の高い電解コンデンサを得ることができる。
【0014】
【作用】
電解コンデンサの静電容量Cは次式で与えられる。
【0015】
C=8.855×10-8×ε×S/d (μF)
【0016】
ここでεは誘電体の誘電率,Sは誘電体の表面積(cm2),dは誘電体の厚さ(cm)である。CV積を高めるためにはCを大きくすればよい。例えばある化成電圧(d:一定)の時に,従来はCを高めるためにSを大きくする研究・開発がなされてきた。即ち,塩酸,硫酸,燐酸等,およびそれらの混酸溶液を用いた電気的,化学的エッチングによって表面積の拡大率が向上してきたのである。
しかしながら,99.98%程度の純度のアルミ箔を用いた場合には,酸との反応でアルミ箔が溶解し,ピットの崩落によってCの向上には限りが有る。更に,より高い純度のアルミ箔を用いようとすれば,著しい生産コストの上昇を招き,現実的ではない。
【0017】
そこで本発明は,CV積の向上,即ち,Cの増大をεが9程度のAl2O3,に替わり,更に大きい他の弁作用金属,即ちTi,Zr,Nb,Hf,Taの粉末を用いることで達成しようとするものである。例えば,TiO2の比誘電率は66,ZrO2が31,Nb2O5が47,HfO2が41,Ta2O5は25であり,エッチングによって表面積を拡大した後の化成処理時に,表面から露出した該弁作用金属が酸化されることで全体的なεを高め,Cを向上させる。
アルミニウム母材のAl純度を99.9%以上とするのはエッチングピットが均一に穿孔されるためである。
【0018】
Alを除く弁作用金属はAl より誘電率の高いTi,Zr,Nb,Hf,Taであって,該金属の粉末は,機械的粉砕,溶湯のアトマイズ冷却,急冷凝固帯の破砕等の公知の方法が採用でき,分級することでサイズ範囲を狭めることができる。好ましい粉末サイズは,微細であればよく下限値の限定はないが,通常の技術では3μmから6μm程度である。しかしこの程度に微細化するにはコスト高になるので,30μmから60μm程度の粉末を使用することでCV値の高いアルミニウム箔とすることができる。
【0019】
また,本発明では純度99.9%以上のアルミニウム母材に存在する該弁作用金属が粉末であるから,該アルミニウム母材は不純物元素および該弁作用金属元素の固溶量,化合物に大きく左右されずに微細均一にエッチングされ,その後の化成処理で母材のAlと共に他の弁作用金属が酸化され,誘電率の高い皮膜を形成することができる。
なお,母材のアルミニウムと弁金属粉末界面は,Alと他の弁金属との金属間化合物の存在しない場合もあれば,箔の製造過程の加熱で一部金属間化合物を形成している場合もあるが,アルミニウム母材のエッチングピットの均一性には大きな影響なく,界面の状態は特に限定しない。
【0020】
前記Alを除く弁作用金属の含有量は,アルミニウム合金箔全体に対して好ましくは3%から90%である。
3%未満では静電容量の向上効果が少なく,また90%を超えるとアルミニウム母材量が少なくなって,エッチング時に粉末の脱落が生じやすく,静電容量の低下の虞があるし,コストの観点から現実的ではない。好ましくは,10%から40%である。
【0021】
箔厚さは限定するものではないが,20μmから500μmが目安となる。
【0022】
ここでAlを除く弁作用金属を粉末としたのは,前記弁作用金属がAlと比較し,融点が高いために合金化溶製に高温としなくてはならず,また該弁作用金属の含有量も高いことから,合金化溶製された場合は,アルミニウム母材中に固溶する合金元素量も高く,加工硬化が甚だしく箔製造が著しく困難になるためである。
【0023】
電解コンデンサ用アルミニウム合金箔は、エッチングに際して機械的強度および通電性を確保するために,エッチング後に全箔厚さの10%から90%の部分が芯金として残される。この部分は粉末含有合金である必要は無く,経済性の面から純度99.9%以上のアルミニウム箔またはアルミニウム合金箔の一側または両側に本発明の電解コンデンサ用アルミニウム合金箔を設ける。好ましい箔厚さは、箔全体の厚さの10%から90%である。
ここでいうアルミニウム合金とは0.1%を超えるAl以外の元素を含有するアルミニウムをいう。
【0024】
リーク電流低減の要求が特に厳しい場合に対応するためには純度99.9%以上のアルミニウム箔が好ましい。一方機械的強度が要求される場合には例えばA3003やA5754等のアルミニウム合金箔が好ましい。これらはクラッド鋳造やクラッド圧延で得られるが本願はそれら製造手法には限定されない。
【0025】
次に製造方法について説明する。
Alを除く弁作用金属粉末を純度99.9%以上のアルミニウム母材中に均一に混合させるには常法でよく,例えば,該アルミニウム母材が粉末の場合は,Al粉末と該弁作用金属粉末とを機械的に混ぜ合わせるか,またはノズルから粉末を噴霧して混ぜ合わせるか等の方法で達成できる。均一に混合された混合粉末は型に入れて好ましい形状に焼結するか,或いは容器にいれて混合粉末体とする。
【0026】
また,純度99.9%以上のアルミニウム母材が溶湯の場合は,Alの融点上200℃程度に加熱し、前記該弁作用金属粉末を添加攪拌する等の方法で達成できる。攪拌後は鋳型に鋳造して鋳塊とする。この鋳塊は次工程に合わせて,ビレットないしスラブとする。
【0027】
また,前記弁作用金属粉末を所定の容器内に充填し,純度99.9%以上のアルミニウム溶湯を無加圧浸透または加圧浸透させて純度99.9%以上のアルミニウム母材中に前記粉末を混入させて鋳塊とすることも有効であるが,本発明は前記の混合粉末体および鋳塊の製造方法に限定されるものではない。
【0028】
所定の好ましい形状とされた前記混合粉末体は,圧延によって箔に成形される。この場合混合粉末体サイズが大きく加工率が高く加工し難いときは,適宜焼鈍して箔に加工する。
【0029】
前記混合粉末体がビレット形状で焼結されているがサイズの大きい形状の場合,或いは焼結されていない場合は,該混合粉末体を300℃から600℃の範囲に予備加熱し、押出し加工して次工程の圧延のために,フラットバーの板状に加工する。この押出し加工で混合粉末体が焼結されていない場合は、前記弁作用金属粉末はアルミニウム母材と互いに金属結合し、爾後の圧延加工で確実に箔に加工することができ強度の高い箔とすることができ,また高温に加熱溶製する必要がなく、CV積の高い電解コンデンサを得ることができる。
【0030】
該混合粉末体が焼結されたものであって,サイズが小さく,加工率が低い場合は300℃未満の低温で押出し加工することができる。混合粉末体が直接圧延できる場合は,その大きさによって該混合粉末体を冷間乃至熱間で更に薄い板状に圧延する。爾後この薄板を必要により中間焼鈍を施して冷間圧延して箔とする。このようにして製造された箔は、必要に応じて最終焼鈍が施されて電解コンデンサ用アルミニウム合金箔とされる。
【0031】
純度99.9%以上のアルミニウム溶湯にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させた前記鋳塊は,前記混合粉末体と同様に圧延によって箔に成形される。
この場合鋳塊サイズが大きく加工率が高く加工し難いときは,適宜焼鈍して箔に加工する。
【0032】
該鋳塊がビレット形状でサイズの大きい形状の場合は,加工硬化が大きいので該鋳塊を300℃から600℃の範囲に予備加熱して押出し加工し、次工程の圧延のためにフラットバーの板状に加工する。該鋳塊のビレットサイズが小さく,加工率が低い場合は300℃未満の低温で押出し加工することができる。該鋳塊が直接圧延できる場合は,その大きさによって鋳塊を冷間乃至熱間で更に薄い板状に圧延する。爾後この薄板を必要により中間焼鈍を施して冷間圧延して箔とする。
【0033】
このようにして製造された箔は、必要に応じて最終焼鈍が施されて電解コンデンサ用アルミニウム合金箔とされる。この製造方法も高温に加熱溶製する必要がなく、CV積の高い電解コンデンサを得ることができる。
前記押出しまたは圧延に供される被加工材の加熱温度が600℃を超えると酸化膜の著しい成長によって箔のエッチング時に未エッチ部が発生して性能が低下する。
【0034】
特に本発明は母材が純度99.9%以上の高純度アルミニウムであるために加工硬化度が低く,前記弁作用金属粉末サイズにもよるが,粉末サイズの2倍程度の箔厚さまで容易に圧延できると共にエッチング工程で均一なピットを穿孔することができる。
なお箔のエッチングピットを均一にする目的で,各工程間で,必要に応じて酸やアルカリ,溶剤等で脱脂処理を行って,圧延面を清浄に保つこともできる。また,箔の機械的強度調整のため,冷間圧延途中や箔加工後焼鈍を施すこともできる。その時の温度は250℃から550℃の範囲が好ましい。箔の厚さは用途に応じて決定されるが,20μmから500μmの間で適宜選択される。
【0035】
【実施例】
純度99.98%で平均粒径50μmのAl粉末とTi,Zr,Nb,Hf,Taのそれぞれの粉末を重量比で25%均一に混合して混合粉末体とし、該混合粉末体を焼結して200φのビッレットを作製した。尚,弁金属粉末の粒径は分級によってそれぞれ30μmから50μmの範囲であった。また,Alを除く弁金属分級粉末の粒径が約30μmから70μmの範囲のもの(試料番号7)を用いた。
【0036】
これらを400℃に予備加熱後,厚さ10mmのフラットバーに押出加工し,該フラットバーを冷間圧延によって厚さ1mmの薄板に圧延した後,芯材に厚さ1mmのAl純度99.98%のアルミニウム薄板を用いて3層のクラッド圧延することにより3層のクラッド板を得た。更に該3層のクラッド板を冷間圧延して100μm厚さの積層箔とした。
表層の厚さは35μm、芯材は30μmであった。
【0037】
比較例としては,純度99.98%の従来製造法による市販アルミニウム箔(試料番号6)を用いた。このようにして製造された積層箔従来箔を下記に示す電解エッチング条件でエッチングし,50g/リットル、60℃のアジピン酸二アンモニウム溶液中で20Vに化成後特性を調べた結果を表1に示す。
【0038】
<電解エッチング条件>
液組成 :4N HCl,0.1N Al3+,0.2N H2SO4,液温25℃
電解波形 :正弦波交流,周波数50Hz
電流密度 :150mA/cm2
電解時間 :900s
【0039】
【表1】

Figure 2005294281
【0040】
表1の結果から、本発明例(試料番号1から5および7)はCV積が著しく高いことが判る。
一方、従来箔を用いた従来例(試料番号6)はCV積が低いことが判る。
さらに,弁金属粉末サイズ範囲の狭い本発明例(試料番号1から5)は,サイズ範囲の広い本発明例(試料番号7)と比較してCV積が高いことが判る。
【0041】
【発明の効果】
以上述べたように、本発明はCV積が高く、電子,電気機器の小型化,薄型化に適した電解コンデンサ用のアルミニウム合金箔であり、かつ溶製に際して高温に加熱する必要のない電解コンデンサ用のアルミニウム合金箔の製造方法である。[0001]
[Industrial application fields]
The present invention relates to an aluminum alloy foil for electrolytic capacitors suitable for reducing the size and thickness of electronic and electrical devices, and a method for producing the same, which has a high product of electrostatic capacity and chemical withstand voltage (hereinafter referred to as CV product).
[0002]
[Prior art]
Aluminum foil for electrolytic capacitors is usually made into a slab by semi-continuous casting of molten aluminum with a purity of 99.9% or more, and further undergoes chamfering, homogenization treatment, hot rolling, intermediate annealing as needed, and product thickness after cold rolling. Finished. Thereafter, the surface area is enlarged by a capacitor manufacturer in a process called etching, and a dielectric film is formed on the surface by a chemical conversion process to form a foil for an electrolytic capacitor.
[0003]
In recent years, the etching technology has greatly advanced along with the demands for miniaturization and high capacity of capacitors. For low-voltage applications with a conversion voltage of 100V or less, the surface magnification by etching exceeds 100 times, and the CV product has increased with the progress of research on conversion coatings. It has increased significantly. However, there is a limit to the actual etching magnification, and the dielectric constant of Al 2 O 3 is about 9, which is larger than other valve metals other than Al, that is, Ti, Ta, Zr, Hf, Nb. Not a value. For example, the relative permittivity of TiO 2 is 66, ZrO 2 is 31, Nb 2 O 5 is 47, HfO 2 is 41, and Ta 2 O 5 is 25, which will dramatically increase the CV product of aluminum capacitors. It is effective to use other dielectrics having a dielectric constant higher than that of Al 2 O 3 .
[0004]
For example, in Japanese Patent Laid-Open No. 1-124212, one or more of Ti, Ta, Zr, Hf, and Nb, which are valve action metals, are melted and alloyed in molten aluminum, and the rapid solidification rate is controlled during casting. We have proposed an aluminum alloy electrode for electrolytic capacitors with a large CV product, which allows the size of the intermetallic compound to be determined and enables etching according to the formation voltage.
[Patent Document 1] Japanese Patent Application Laid-Open No. 1-124212 Example
[Problems to be solved by the invention]
The technique described in JP-A 1-124212 determines the size of the intermetallic compound by controlling the solidification rate, so that the size distribution range is not largely constant, and the valve action metal excluding Al has a melting point of 1700 to 3000 ° C. Therefore, there is a problem that the alloying is heated and melted at a considerably high temperature.
[0006]
That is, the present invention relates to an aluminum alloy foil for an electrolytic capacitor that can easily control the size of a valve action metal excluding Al that is uniformly dispersed in an aluminum base material, and an aluminum for electrolytic capacitor that does not require melting at a high temperature. It aims at providing the manufacturing method of alloy foil.
[0007]
[Means for solving problems]
As a result of studying the above problems, the inventors have determined that the valve action to be contained in the aluminum base metal instead of determining the size of the intermetallic compound by controlling the solidification rate of the molten aluminum alloy containing the valve action metal excluding Al. When a fine powder is used for the metal, it is found that the size of the valve metal can be easily controlled, the size range can be extremely narrowed, and high temperature melting is not necessary. It has been completed.
[0008]
That is, the first invention is an aluminum alloy foil for electrolytic capacitors characterized by uniformly dispersing and containing at least one powder of a valve action metal excluding Al in an aluminum base material having a purity of 99.9% or more.
By uniformly dispersing the valve action metal powder excluding Al in the aluminum base material, the oxide of the valve action metal can be formed in the anodized film by chemical conversion after the etching of the foil. High dielectrics can be obtained, and electrolytic capacitors with high CV values can be obtained. It is easy to control the size of the powder.
[0009]
Here, the aluminum base material refers to a so-called matrix, and the starting material for producing such an alloy foil is aluminum powder or molten aluminum.
The valve action metals excluding Al are Ti, Zr, Nb, Hf, and Ta, which have a higher dielectric constant than Al when compared as oxides.
[0010]
By setting the content of the valve action metal powder excluding Al to preferably 3% to 90% with respect to the weight of the aluminum alloy foil for electrolytic capacitors, an electrolytic capacitor foil having a high CV value can be surely obtained. A more preferred value is 10% to 40%.
[0011]
A second invention is an aluminum alloy laminated foil for electrolytic capacitors, characterized in that the aluminum alloy foil for electrolytic capacitors of the first invention is provided on one side or both sides of an aluminum foil or aluminum alloy foil having a purity of 99.9% or more It is.
By laminating the aluminum alloy foil for electrolytic capacitors according to the first aspect of the invention on the side surface of the aluminum foil, the aluminum alloy laminated foil for electrolytic capacitors can be obtained with less use of powder. A preferred thickness is 10% to 90% of the total thickness of the laminated foil.
[0012]
A third invention is characterized in that a mixed powder body in which at least one kind of valve action metal excluding Al is uniformly dispersed and contained in aluminum powder having a purity of 99.9% or more is rolled and processed into a foil. It is a manufacturing method of the aluminum alloy foil for electrolytic capacitors. By rolling and forming a mixed powder body in which the valve action metal powder excluding Al is uniformly dispersed in aluminum powder and processing it into a foil, an electrolytic capacitor having a high CV value is obtained without the need to heat and melt at high temperatures. Can do.
By setting the content of the valve action metal powder excluding Al to preferably 3 to 90% with respect to the weight of the alloy foil, an electrolytic capacitor foil having a high CV value can be surely obtained.
[0013]
A fourth invention is characterized in that at least one kind of valve action metal excluding Al is uniformly dispersed and solidified in a molten aluminum having a purity of 99.9% or more, and solidified by rolling and processed into a foil. This is a method for producing an aluminum alloy foil for electrolytic capacitors.
Because it is an ingot in which valve action metal powder excluding Al is uniformly dispersed in molten aluminum, it is easy to handle foil rolling, and it is not necessary to heat and melt at high temperature, and an electrolytic capacitor having a high CV value can be obtained. .
[0014]
[Action]
The capacitance C of the electrolytic capacitor is given by the following equation.
[0015]
C = 8.855 × 10 -8 × ε × S / d (μF)
[0016]
Here, ε is the dielectric constant of the dielectric, S is the surface area (cm 2 ) of the dielectric, and d is the thickness (cm) of the dielectric. To increase the CV product, C can be increased. For example, at a certain formation voltage (d: constant), research and development have been made to increase S to increase C. That is, the surface area enlargement ratio has been improved by electrical and chemical etching using hydrochloric acid, sulfuric acid, phosphoric acid, and the like, and mixed acid solutions thereof.
However, when aluminum foil with a purity of about 99.98% is used, the aluminum foil dissolves by reaction with acid, and the improvement of C is limited by the collapse of pits. Furthermore, if a higher purity aluminum foil is used, the production cost will increase significantly, which is not practical.
[0017]
Therefore, the present invention improves the CV product, that is, increases the C by replacing Al 2 O 3 with ε of about 9, and using another valve metal, that is, Ti, Zr, Nb, Hf, Ta powder. This is what we are trying to achieve. For example, the relative dielectric constant of TiO 2 is 66, ZrO 2 is 31, Nb 2 O 5 is 47, HfO 2 is 41, and Ta 2 O 5 is 25. The valve action metal exposed from is oxidized to increase the overall ε and improve C.
The reason why the aluminum purity of the aluminum base material is 99.9% or more is that the etching pits are uniformly perforated.
[0018]
The valve action metals excluding Al are Ti, Zr, Nb, Hf, and Ta, which have a dielectric constant higher than that of Al, and the metal powder is known in the art such as mechanical crushing, atomization cooling of molten metal, and crushing of rapidly solidified zone. The method can be adopted, and the size range can be narrowed by classification. The preferred powder size is fine as long as it is fine, but there is no limit to the lower limit, but in the ordinary technology it is about 3 to 6 μm. However, since it is expensive to make it finer to this extent, an aluminum foil with a high CV value can be obtained by using a powder of about 30 to 60 μm.
[0019]
Further, in the present invention, since the valve action metal present in an aluminum base material having a purity of 99.9% or more is a powder, the aluminum base material is not greatly influenced by the impurity element, the solid solution amount of the valve action metal element, and the compound. In the subsequent chemical conversion treatment, other valve action metals are oxidized together with the base material Al, and a film having a high dielectric constant can be formed.
The base metal and valve metal powder interface may have no intermetallic compound of Al and other valve metal, or may have partially formed an intermetallic compound by heating during the foil manufacturing process. However, the uniformity of the etching pits in the aluminum base material is not greatly affected, and the interface state is not particularly limited.
[0020]
The content of the valve action metal excluding Al is preferably 3% to 90% with respect to the entire aluminum alloy foil.
If it is less than 3%, the effect of improving the capacitance is small, and if it exceeds 90%, the amount of the aluminum base material is small, and the powder is likely to fall off during etching, and there is a risk that the capacitance may be reduced. Not realistic from the point of view. Preferably, it is 10% to 40%.
[0021]
The foil thickness is not limited, but a guideline is 20μm to 500μm.
[0022]
Here, the valve action metal excluding Al is powdered because the valve action metal has a higher melting point than Al, so the alloying solution must be heated to a high temperature, and the valve action metal is contained in the powder. This is because the amount of the alloying element is high because the amount of alloying elements dissolved in the aluminum base material is high, and the work hardening is so severe that the foil production becomes extremely difficult.
[0023]
In the aluminum alloy foil for electrolytic capacitors, a portion of 10% to 90% of the total foil thickness is left as a core after the etching in order to ensure mechanical strength and electrical conductivity during etching. This portion does not need to be a powder-containing alloy, and the aluminum alloy foil for electrolytic capacitors of the present invention is provided on one side or both sides of an aluminum foil or aluminum alloy foil having a purity of 99.9% or more from the economical aspect. A preferred foil thickness is 10% to 90% of the total foil thickness.
The aluminum alloy here means aluminum containing more than 0.1% of elements other than Al.
[0024]
An aluminum foil having a purity of 99.9% or more is preferable in order to cope with a particularly severe demand for leakage current reduction. On the other hand, when mechanical strength is required, an aluminum alloy foil such as A3003 or A5754 is preferable. These can be obtained by clad casting or clad rolling, but the present application is not limited to these production methods.
[0025]
Next, a manufacturing method will be described.
In order to uniformly mix the valve action metal powder excluding Al into an aluminum base material having a purity of 99.9% or more, for example, when the aluminum base material is a powder, the Al powder and the valve action metal powder Can be achieved by a method such as mechanical mixing or spraying powder from a nozzle and mixing. The uniformly mixed powder is put into a mold and sintered into a preferable shape, or put into a container to form a mixed powder body.
[0026]
Further, when the aluminum base material having a purity of 99.9% or more is a molten metal, it can be achieved by heating the Al melting point to about 200 ° C., and adding and stirring the valve action metal powder. After stirring, it is cast into a mold to form an ingot. This ingot is billet or slab according to the next process.
[0027]
In addition, the valve metal powder is filled in a predetermined container, and the molten aluminum having a purity of 99.9% or more is impregnated with no pressure or pressurized, and the powder is mixed in an aluminum base material having a purity of 99.9% or more. Although it is effective to use an ingot, the present invention is not limited to the mixed powder body and the method for producing the ingot.
[0028]
The mixed powder body having a predetermined preferable shape is formed into a foil by rolling. In this case, if the mixed powder body size is large and the processing rate is high, it is difficult to process.
[0029]
When the mixed powder body is sintered in a billet shape but has a large size or is not sintered, the mixed powder body is preheated in the range of 300 ° C to 600 ° C and extruded. Then, it is processed into a flat bar plate for rolling in the next process. When the mixed powder body is not sintered by this extrusion process, the valve action metal powder is metal-bonded to the aluminum base material, and can be reliably processed into a foil by a subsequent rolling process. In addition, there is no need to heat and melt at a high temperature, and an electrolytic capacitor having a high CV product can be obtained.
[0030]
When the mixed powder is sintered and has a small size and a low processing rate, it can be extruded at a low temperature of less than 300 ° C. When the mixed powder body can be directly rolled, the mixed powder body is rolled into a thinner plate shape cold to hot depending on its size. After thinning, this thin plate is subjected to intermediate annealing if necessary and cold-rolled to obtain a foil. The foil thus manufactured is subjected to final annealing as necessary to obtain an aluminum alloy foil for electrolytic capacitors.
[0031]
The ingot in which at least one kind of powder of a valve action metal excluding Al is uniformly dispersed in molten aluminum having a purity of 99.9% or more is formed into a foil by rolling in the same manner as the mixed powder body.
In this case, when the ingot size is large and the processing rate is high, it is difficult to process, so that it is appropriately annealed and processed into a foil.
[0032]
When the ingot is billet-shaped and large in size, work hardening is large, so the ingot is preheated in the range of 300 ° C to 600 ° C and extruded, and a flat bar is used for rolling in the next process. Process into a plate. When the billet size of the ingot is small and the processing rate is low, it can be extruded at a low temperature of less than 300 ° C. If the ingot can be rolled directly, the ingot is rolled into a thinner plate depending on the size of the ingot. After thinning, this thin plate is subjected to intermediate annealing if necessary and cold-rolled to obtain a foil.
[0033]
The foil thus manufactured is subjected to final annealing as necessary to obtain an aluminum alloy foil for electrolytic capacitors. This manufacturing method also does not require heating and melting at a high temperature, and an electrolytic capacitor having a high CV product can be obtained.
If the heating temperature of the workpiece to be subjected to extrusion or rolling exceeds 600 ° C., the unetched portion is generated during the etching of the foil due to the remarkable growth of the oxide film, and the performance is deteriorated.
[0034]
In particular, in the present invention, since the base material is high-purity aluminum having a purity of 99.9% or more, the work hardening degree is low, and depending on the valve action metal powder size, it can be easily rolled to a foil thickness of about twice the powder size. At the same time, uniform pits can be drilled in the etching process.
In order to make the etching pits of the foil uniform, it is possible to keep the rolled surface clean by performing a degreasing treatment with an acid, an alkali, a solvent, or the like as necessary between the respective steps. In addition, annealing can be performed during cold rolling or after foil processing to adjust the mechanical strength of the foil. The temperature at that time is preferably in the range of 250 ° C to 550 ° C. The thickness of the foil is determined according to the application, but is appropriately selected between 20 μm and 500 μm.
[0035]
【Example】
Al powder with a purity of 99.98% and an average particle size of 50μm and each powder of Ti, Zr, Nb, Hf, and Ta are mixed uniformly by 25% by weight to obtain a mixed powder, and the mixed powder is sintered. A 200φ billet was produced. The particle size of the valve metal powder ranged from 30 μm to 50 μm depending on the classification. In addition, a valve metal classification powder excluding Al having a particle size in the range of about 30 μm to 70 μm (sample number 7) was used.
[0036]
These were preheated to 400 ° C, extruded into a 10mm-thick flat bar, the flat bar was rolled into a 1mm-thick sheet by cold rolling, and the core material had an Al purity of 99.98%. A three-layer clad plate was obtained by rolling a three-layer clad using an aluminum thin plate. Further, the three-layer clad plate was cold-rolled to obtain a laminated foil having a thickness of 100 μm.
The thickness of the surface layer was 35 μm, and the core material was 30 μm.
[0037]
As a comparative example, a commercially available aluminum foil (sample No. 6) having a purity of 99.98% was used. Table 1 shows the results obtained by etching the conventional laminated foil thus produced under the electrolytic etching conditions shown below and examining the properties after conversion to 20 V in a diammonium adipate solution at 50 g / liter and 60 ° C. .
[0038]
<Electrolytic etching conditions>
Liquid composition: 4N HCl, 0.1N Al 3+ , 0.2NH 2 SO 4 , liquid temperature 25 ° C
Electrolytic waveform: Sine wave AC, frequency 50Hz
Current density: 150mA / cm 2
Electrolysis time: 900s
[0039]
[Table 1]
Figure 2005294281
[0040]
From the results in Table 1, it can be seen that the inventive examples (sample numbers 1 to 5 and 7) have a remarkably high CV product.
On the other hand, it can be seen that the conventional example (sample No. 6) using the conventional foil has a low CV product.
Furthermore, it can be seen that the present invention example (sample numbers 1 to 5) with a narrow valve metal powder size range has a higher CV product than the present invention example (sample number 7) with a wide size range.
[0041]
【The invention's effect】
As described above, the present invention is an aluminum alloy foil for electrolytic capacitors that has a high CV product and is suitable for downsizing and thinning of electronic and electrical equipment, and does not require heating to a high temperature during melting. It is a manufacturing method of the aluminum alloy foil for use.

Claims (8)

純度99.9%以上のアルミニウム母材にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させたことを特徴とする電解コンデンサ用アルミニウム合金箔。  An aluminum alloy foil for an electrolytic capacitor, wherein at least one kind of valve action metal powder excluding Al is uniformly dispersed in an aluminum base material having a purity of 99.9% or more. 均一に分散させた前記Alを除く弁作用金属粉末の含有量は、前記合金箔重量に対して3%から90%であることを特徴とする請求項1に記載の電解コンデンサ用アルミニウム合金箔。  2. The aluminum alloy foil for an electrolytic capacitor according to claim 1, wherein a content of the valve action metal powder excluding the uniformly dispersed Al is 3% to 90% with respect to the weight of the alloy foil. 純度99.9%以上のアルミニウム箔またはアルミニウム合金箔の一側または両側に,請求項1または2に記載の電解コンデンサ用アルミニウム合金箔を積層したことを特徴とする電解コンデンサ用アルミニウム合金積層箔。  An aluminum alloy laminated foil for electrolytic capacitors, wherein the aluminum alloy foil for electrolytic capacitors according to claim 1 or 2 is laminated on one side or both sides of an aluminum foil or aluminum alloy foil having a purity of 99.9% or more. 前記一側または両側に設けた電解コンデンサ用アルミニウム合金箔の厚さは,積層した前記電解コンデンサ用アルミニウム合金箔全体の厚さの10%から90%であることを特徴とする請求項3に記載の電解コンデンサ用アルミニウム合金積層箔。  The thickness of the aluminum alloy foil for electrolytic capacitors provided on the one side or both sides is 10% to 90% of the total thickness of the laminated aluminum alloy foil for electrolytic capacitors. Aluminum alloy laminated foil for electrolytic capacitors. 純度99.9%以上のアルミニウム粉末にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させて混合粉末体とし、該混合粉末体を圧延成形し箔に加工することを特徴とする電解コンデンサ用アルミニウム合金箔の製造方法。  Electrolysis characterized in that at least one kind of valve action metal powder excluding Al is uniformly dispersed in aluminum powder with a purity of 99.9% or more to obtain a mixed powder body, and the mixed powder body is rolled and processed into a foil. A method for producing an aluminum alloy foil for a capacitor. 前記混合粉末体の前記Alを除く弁作用金属の粉末含有量は、前記電解コンデンサ用アルミニウム合金箔重量に対して3%から90%であることを特徴とする請求項5に記載の電解コンデンサ用アルミニウム合金箔の製造方法。  6. The electrolytic capacitor according to claim 5, wherein the powder content of the valve action metal excluding the Al in the mixed powder body is 3% to 90% with respect to the weight of the aluminum alloy foil for the electrolytic capacitor. Manufacturing method of aluminum alloy foil. 純度99.9%以上のアルミニウム溶湯にAlを除く弁作用金属の少なくとも1種の粉末を均一に分散含有させて鋳塊とし、該鋳塊を圧延成形し箔に加工することを特徴とする電解コンデンサ用アルミニウム合金箔の製造方法。  For electrolytic capacitors, characterized in that at least one type of valve action metal powder excluding Al is uniformly dispersed in molten aluminum with a purity of 99.9% or more to form an ingot, which is rolled and processed into a foil Manufacturing method of aluminum alloy foil. 前記鋳塊中の前記Alを除く弁作用金属の粉末含有量は、前記電解コンデンサ用アルミニウム合金箔重量に対して3%から90%であることを特徴とする請求項7に記載の電解コンデンサ用アルミニウム合金箔の製造方法。  8. The electrolytic capacitor according to claim 7, wherein the powder content of the valve action metal excluding the Al in the ingot is 3% to 90% with respect to the weight of the aluminum alloy foil for the electrolytic capacitor. Manufacturing method of aluminum alloy foil.
JP2003194780A 2003-07-10 2003-07-10 Aluminum alloy foil for electrolytic capacitor, aluminum alloy laminated foil for electrolytic capacitor, and manufacturing method therefor Pending JP2005294281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194780A JP2005294281A (en) 2003-07-10 2003-07-10 Aluminum alloy foil for electrolytic capacitor, aluminum alloy laminated foil for electrolytic capacitor, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194780A JP2005294281A (en) 2003-07-10 2003-07-10 Aluminum alloy foil for electrolytic capacitor, aluminum alloy laminated foil for electrolytic capacitor, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005294281A true JP2005294281A (en) 2005-10-20

Family

ID=35326923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194780A Pending JP2005294281A (en) 2003-07-10 2003-07-10 Aluminum alloy foil for electrolytic capacitor, aluminum alloy laminated foil for electrolytic capacitor, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005294281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012638A (en) * 2010-06-29 2012-01-19 Kobe Steel Ltd Surface-treated aluminum alloy sheet, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012638A (en) * 2010-06-29 2012-01-19 Kobe Steel Ltd Surface-treated aluminum alloy sheet, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP1924718B1 (en) Production of fine grain micro-alloyed niobium sheet via ingot metallurgy
JP6355920B2 (en) Electrode foil for aluminum electrolytic capacitor and method for producing the same
JP2007528931A (en) Metal fiber manufacturing method
TWI544509B (en) Electrode for electrolytic capacitor for electrolysis and method for manufacturing the same
EP1329529B1 (en) Aluminum material for electrode of electrolytic capacitor and method for producing aluminum foil for electrode of electrolytic capacitor, and electrolytic capacitor
US20220228240A1 (en) Aluminum-scandium alloy target with high scandium content, and preparation method thereof
CN105393320A (en) Electrode material for aluminum electrolytic capacitor, and production method thereof
CN104919552A (en) Method for producing electrode material for aluminum electrolytic capacitors, and electrode material for aluminum electrolytic capacitors
DE10156336A1 (en) Process for the production of alloy ingots
CN112281028A (en) Aluminum foil for electrolytic capacitor and production method thereof
JP4816640B2 (en) Aluminum electrolytic capacitor and method for manufacturing aluminum electrolytic capacitor
JP4465521B2 (en) Manufacturing method of aluminum alloy sheet for electrolytic capacitor
TW201337990A (en) Method for manufacturing electrode material for aluminum electrolytic capacitor
JP2005294281A (en) Aluminum alloy foil for electrolytic capacitor, aluminum alloy laminated foil for electrolytic capacitor, and manufacturing method therefor
JP7247673B2 (en) Electrolytic capacitor anode manufacturing method, electrolytic capacitor manufacturing method, and electrolytic capacitor
JP2019510876A (en) Method for producing tantalum and niobium alloys
JP2006219742A (en) Aluminum alloy foil for cathode of electrolytic capacitor and its production method
KR20060135831A (en) Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor
JPH01290217A (en) Electrode material for electrolytic capacitor and its manufacture
JP2004149835A (en) Soft aluminum foil for medium/low voltage electrolytic capacitor to be subjected to ac etching
JP2006302917A (en) Electrode sheet for capacitor, method for manufacturing the same, and electrolytic capacitor
JP2008045172A (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JPH04138846A (en) Production of quench solidified clad foil from different molten bodies
JPH0413411B2 (en)
JPH04138845A (en) Production of quench solidified clad foil from different kinds of molten bodies

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20051213

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051214

A521 Written amendment

Effective date: 20051214

Free format text: JAPANESE INTERMEDIATE CODE: A821