JP2005340362A - Solar cell and solar cell module - Google Patents

Solar cell and solar cell module Download PDF

Info

Publication number
JP2005340362A
JP2005340362A JP2004154845A JP2004154845A JP2005340362A JP 2005340362 A JP2005340362 A JP 2005340362A JP 2004154845 A JP2004154845 A JP 2004154845A JP 2004154845 A JP2004154845 A JP 2004154845A JP 2005340362 A JP2005340362 A JP 2005340362A
Authority
JP
Japan
Prior art keywords
wiring
solar cell
electrode
substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004154845A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
聡 田中
Toshihiro Machida
智弘 町田
Kunio Kamimura
邦夫 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004154845A priority Critical patent/JP2005340362A/en
Publication of JP2005340362A publication Critical patent/JP2005340362A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell capable of being inexpensively manufactured with a greater FF (Fill Factor) value, and to provide a solar cell module using the solar cell. <P>SOLUTION: In the solar cell and the solar cell module using the solar cell, the solar cell includes a solar cell wafer 17 where pluralities of p electrodes 6 and n electrodes 5 are formed respectively in a dot shape on one surface of a semiconductor substrate 1; and a wiring board where a p wiring 14 and an n wiring 15 are formed, electrically insulated from each other on one surface of an insulating substrate 16. One surface of a wiring board 18 is installed on one surface of the solar cell wafer 17, and the p electrodes 6 are electrically connected with each other through the p wiring 14 and the n electrodes 5 are electrically connected with each other through the n wiring 15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は太陽電池セルおよび太陽電池モジュールに関し、特にFF(Fill Factor)値が大きく、安価に製造することができる太陽電池セルとこれを用いた太陽電池モジュールに関する。   The present invention relates to a solar battery cell and a solar battery module, and more particularly to a solar battery cell having a large FF (Fill Factor) value and capable of being manufactured at low cost, and a solar battery module using the solar battery cell.

近年、エネルギ資源の枯渇の問題や大気中のCO2の増加のような地球環境問題などからクリーンなエネルギの開発が望まれており、特に太陽電池セルを複数接続して構成される太陽電池モジュール用いた太陽光発電が新しいエネルギ源として開発、実用化され、発展の道を歩んでいる。 In recent years, development of clean energy has been desired due to the problem of depletion of energy resources and global environmental problems such as an increase in CO 2 in the atmosphere. In particular, a solar cell module configured by connecting a plurality of solar cells. The solar power generation used has been developed and put into practical use as a new energy source, and is on the path of development.

太陽電池モジュールを構成する太陽電池セルは、従来から、たとえば単結晶または多結晶のシリコン基板の面のうち太陽光が入射する側の面(受光面)にシリコン基板の導電型と反対の導電型となる不純物を拡散することによってpn接合を形成し、シリコン基板の受光面とその反対側にある裏面にそれぞれ電極を形成して製造される。また、シリコン基板の裏面にはシリコン基板と同じ導電型の不純物を高濃度で拡散することによって、裏面電界効果による高出力化を図ることも一般的となっている。   Conventionally, a solar cell constituting a solar cell module has a conductivity type opposite to the conductivity type of the silicon substrate on the surface (light receiving surface) on the side where sunlight enters among the surfaces of a single crystal or polycrystalline silicon substrate, for example. A pn junction is formed by diffusing impurities to be formed, and electrodes are formed on the light receiving surface of the silicon substrate and the back surface on the opposite side. It is also common to increase the output by the back surface field effect by diffusing impurities of the same conductivity type as the silicon substrate at a high concentration on the back surface of the silicon substrate.

また、シリコン基板の受光面には電極を形成せず、シリコン基板の裏面のみに異なる導電型の電極を形成するいわゆる裏面接合型太陽電池セルが開発されている。裏面接合型太陽電池セルにおいては、電極が形成されているシリコン基板の裏面側からしか電力を取り出すことができないため、その電極は裏面接合型太陽電池セルおよびこれが複数接続されてなる太陽電池モジュールの出力の観点から非常に重要である。   In addition, so-called back junction solar cells have been developed in which electrodes are not formed on the light receiving surface of a silicon substrate, but electrodes of different conductivity types are formed only on the back surface of the silicon substrate. In the back junction solar cell, since power can be taken out only from the back side of the silicon substrate on which the electrode is formed, the electrode is a back junction solar cell and a solar cell module in which a plurality of these are connected. Very important from an output perspective.

図11に従来の裏面接合型太陽電池セルの一例の模式的な断面図を示す。この従来の裏面接合型太陽電池セルは、たとえばn型のシリコン基板101の受光面に反射防止膜(図示せず)が形成されており、シリコン基板101の裏面にn+層105とp+層106とが裏面に沿って交互に所定の間隔をあけて形成されている。そして、p+層106上にはp電極111が形成され、n+層105上にはn電極112が形成されている。この裏面接合型太陽電池セルの受光面に太陽光が入射すると、シリコン基板101の受光面近傍で生じたキャリアが裏面に形成されたpn接合まで到達し、p電極111およびn電極112に電流として収集され、外部に取り出されて太陽電池セルの出力となる。   FIG. 11 shows a schematic cross-sectional view of an example of a conventional back junction solar cell. In this conventional back junction solar cell, for example, an antireflection film (not shown) is formed on the light receiving surface of an n-type silicon substrate 101, and an n + layer 105 and a p + layer are formed on the back surface of the silicon substrate 101. 106 are alternately formed along the back surface at predetermined intervals. A p electrode 111 is formed on the p + layer 106, and an n electrode 112 is formed on the n + layer 105. When sunlight is incident on the light receiving surface of the back junction solar cell, carriers generated in the vicinity of the light receiving surface of the silicon substrate 101 reach the pn junction formed on the back surface, and current is supplied to the p electrode 111 and the n electrode 112 as current. Collected and taken out to be output of the solar battery cell.

また、図12に従来の裏面接合型太陽電池セルの裏面の一例の模式的な平面図を示す。図12に示すように、この従来の裏面接合型太陽電池セルにおいては、太陽電池セルの出力を向上させる観点から、シリコン基板101の裏面の内部にp電極111およびn電極112がそれぞれ裏面全体を覆うように櫛形状に形成される。   Moreover, the typical top view of an example of the back surface of the conventional back junction type photovoltaic cell is shown in FIG. As shown in FIG. 12, in this conventional back junction solar cell, from the viewpoint of improving the output of the solar cell, a p-electrode 111 and an n-electrode 112 are respectively disposed inside the back surface of the silicon substrate 101. It is formed in a comb shape so as to cover.

図13に従来の裏面接合型太陽電池セルの製造工程の一例のフローチャートを示す。まず、ステップ1a(S1a)において、n型単結晶シリコン基板を用意する。そして、ステップ2a(S2a)において、APCVD法(常圧CVD法)を用いて、このシリコン基板の両面にSiOx膜を堆積させる。そして、ステップ3a(S3a)において、このシリコン基板の裏面にホトエッチング法によって櫛形状パターンの窓明けを行なった後にBBr3気相拡散を行なうことによりp+層を形成する。続いて、ステップ4a(S4a)において、シリコン基板の受光面に耐酸性テープを貼り付けた後に裏面についてHF(フッ化水素)によるクリーニングを行なう。そして、受光面の耐酸性テープを剥離した後に再度裏面にSiOx膜を堆積させる。次いで、ステップ5a(S5a)において、シリコン基板の裏面に櫛形状のp+層の櫛歯の間にp+層と向き合うようにしてホトエッチング法により櫛形状パターンの窓明けを行なった後にPOCl3気相拡散によってn+層を、p+層の櫛歯とn+層の櫛歯とが向き合うようにして形成する。そして、ステップ6a(S6a)において、シリコン基板の全面をHFによりクリーニングした後、シリコン基板の受光面にプラズマCVD法によりSiN膜を堆積させる。 FIG. 13 shows a flowchart of an example of a manufacturing process of a conventional back junction solar cell. First, in step 1a (S1a), an n-type single crystal silicon substrate is prepared. In step 2a (S2a), SiOx films are deposited on both surfaces of the silicon substrate by using an APCVD method (atmospheric pressure CVD method). In step 3a (S3a), a p + layer is formed by performing BBr 3 vapor phase diffusion after opening a comb-shaped pattern on the back surface of the silicon substrate by a photo-etching method. Subsequently, in step 4a (S4a), after the acid-resistant tape is attached to the light receiving surface of the silicon substrate, the back surface is cleaned with HF (hydrogen fluoride). Then, after removing the acid-resistant tape on the light receiving surface, a SiOx film is deposited again on the back surface. Next, in step 5a (S5a), a comb-shaped pattern is opened by a photo-etching method so as to face the p + layer between the comb-shaped p + layers on the back surface of the silicon substrate, and then POCl 3 The n + layer is formed by vapor phase diffusion so that the p + layer comb teeth and the n + layer comb teeth face each other. In step 6a (S6a), after cleaning the entire surface of the silicon substrate with HF, a SiN film is deposited on the light receiving surface of the silicon substrate by plasma CVD.

次に、ステップ7a(S7a)において、図14に示すように、シリコン基板101の裏面に形成されたp+層の範囲内にp電極111を、n+層の範囲内にn電極112をそれぞれ点状にスクリーン印刷し、その後焼成することにより形成する。ここで、スクリーン印刷材料としては銀ペーストが用いられ、スクリーン印刷された銀ペーストを乾燥した後に酸化性雰囲気下で焼成することによってp電極111およびn電極112が形成される。   Next, in step 7a (S7a), as shown in FIG. 14, the p-electrode 111 is placed within the range of the p + layer formed on the back surface of the silicon substrate 101, and the n-electrode 112 is placed within the range of the n + layer. It is formed by screen printing in the form of dots and then firing. Here, a silver paste is used as the screen printing material, and the p-electrode 111 and the n-electrode 112 are formed by drying the screen-printed silver paste and baking it in an oxidizing atmosphere.

その後、ステップ8a(S8a)において、点状のp電極111およびn電極112をそれぞれ電気的に接続する直線状の連結電極パターンを銀ペーストを用いたスクリーン印刷により形成し、その後焼成することによって、図15に示すように銀からなる連結電極113a、113bを形成する。そして、ステップ9a(S9a)において、p電極111、n電極112、連結電極113a、113bは、フラックスへ浸漬させられた後に乾燥され、はんだ浴に浸漬させられてはんだコーティングされる。その後、これらの電極が洗浄された後乾燥されて太陽電池セルが完成する。   Thereafter, in step 8a (S8a), by forming a linear connection electrode pattern that electrically connects the dotted p-electrode 111 and the n-electrode 112 by screen printing using a silver paste, and then firing, As shown in FIG. 15, connecting electrodes 113a and 113b made of silver are formed. In step 9a (S9a), the p-electrode 111, the n-electrode 112, and the coupling electrodes 113a and 113b are dried after being dipped in the flux, dipped in a solder bath, and solder-coated. Thereafter, these electrodes are washed and then dried to complete a solar battery cell.

また、このようにして得られた太陽電池セルを複数用い、図16に示すように、複数ある太陽電池セルのうち一の太陽電池セルの連結電極113aと他の太陽電池セルの連結電極113bとをこれらの電極にはんだ付けされた接続電極107によって電気的に接続して太陽電池モジュールが製造される。そして、この太陽電池モジュールをEVA(エチレンビニルアセテート)樹脂で挟んでガラス基板に貼り付けることもできる。
米国特許第4133697号明細書 米国特許第5185042号明細書
Further, using a plurality of solar cells thus obtained, as shown in FIG. 16, the connection electrode 113a of one solar cell and the connection electrode 113b of another solar cell among the plurality of solar cells Are electrically connected by connection electrodes 107 soldered to these electrodes to produce a solar cell module. And this solar cell module can also be stuck on a glass substrate between EVA (ethylene vinyl acetate) resin.
U.S. Pat. No. 4,133,697 US Pat. No. 5,185,042

しかしながら、上記のようにして得られた従来の太陽電池セルおよび太陽電池モジュールにおいては、銀ペーストを焼成して形成された点状のp電極およびn電極と、同じく銀ペーストを焼成して形成された連結電極との接触抵抗が大きいためFF値を向上させることができないという問題があった。また、太陽電池セルを1枚製造するにあたって使用される銀ペースト量も多くなるため安価に製造することができないという問題もあった。   However, in the conventional solar battery cell and solar battery module obtained as described above, the point-like p-electrode and n-electrode formed by firing the silver paste and the silver paste are fired. There was a problem that the FF value could not be improved because the contact resistance with the connecting electrode was large. Moreover, since the amount of the silver paste used when manufacturing one photovoltaic cell also increases, there also existed a problem that it cannot manufacture cheaply.

そこで、本発明の目的は、FF(Fill Factor)値が大きく、安価に製造することができる太陽電池セルおよびこれを用いた太陽電池モジュールを提供することにある。   Therefore, an object of the present invention is to provide a solar cell having a large FF (Fill Factor) value and capable of being manufactured at low cost, and a solar cell module using the solar cell.

本発明は、半導体基板の一面にp電極とn電極とがそれぞれ点状に複数形成されている太陽電池ウエハと、絶縁性基板の一面にp配線とn配線とが互いに電気的に絶縁されて形成されている配線基板と、を含み、太陽電池ウエハの一面上に配線基板の一面が設置されて、p電極がp配線によって電気的に接続され、n電極がn配線によって電気的に接続されている太陽電池セルである。   In the present invention, a solar cell wafer in which a plurality of p-electrodes and n-electrodes are formed in a dot shape on one surface of a semiconductor substrate, and p-wire and n-wire are electrically insulated from each other on one surface of an insulating substrate. A wiring substrate formed on one surface of the solar cell wafer, the p electrode being electrically connected by the p wiring, and the n electrode being electrically connected by the n wiring. It is a solar battery cell.

ここで、本発明の太陽電池セルにおいては、p電極とn電極とが銀を含む材料によって形成され、p配線とn配線とが銅を含む材料によって形成されており、p電極とp配線との接続およびn電極とn配線との接続がそれぞれはんだを介して行われていることが好ましい。   Here, in the solar battery cell of the present invention, the p electrode and the n electrode are formed of a material containing silver, the p wiring and the n wiring are formed of a material containing copper, and the p electrode and the p wiring And the connection between the n electrode and the n wiring are preferably made via solder.

また、本発明の太陽電池セルにおいては、p配線とn配線とがそれぞれ櫛歯を含む櫛形状に形成され、p配線とn配線とが互いにそれぞれの櫛歯を向き合わせて設置されており、p配線の櫛歯とn配線の櫛歯とが絶縁性基板の一面に沿って交互に配列されていることが好ましい。   Further, in the solar battery cell of the present invention, the p wiring and the n wiring are each formed in a comb shape including comb teeth, and the p wiring and the n wiring are installed with the respective comb teeth facing each other, It is preferable that the comb teeth of the p wiring and the comb teeth of the n wiring are alternately arranged along one surface of the insulating substrate.

また、本発明の太陽電池セルにおいては、p電極とn電極とがそれぞれライン状に配列されており、p電極の配列ラインとn電極の配列ラインとが交互に配列されていることが好ましい。   In the solar cell of the present invention, it is preferable that the p electrode and the n electrode are arranged in a line, and the arrangement line of the p electrode and the arrangement line of the n electrode are alternately arranged.

また、本発明の太陽電池セルにおいては、絶縁性基板が透明であり得る。   Further, in the solar battery cell of the present invention, the insulating substrate can be transparent.

また、本発明の太陽電池セルにおいては、絶縁性基板の一面の反対側の面に反射膜が形成されていることが好ましい。   Moreover, in the photovoltaic cell of this invention, it is preferable that the reflecting film is formed in the surface on the opposite side of the one surface of an insulating substrate.

また、本発明は、半導体基板の受光面にn電極が点状に複数形成されている太陽電池ウエハと、絶縁性基板の一面上にn配線が形成されている配線基板と、を含み、太陽電池ウエハの一面上に配線基板の一面が設置されて、n電極がn配線によって電気的に接続されており、絶縁性基板が透明である太陽電池セルである。   The present invention also includes a solar cell wafer in which a plurality of n electrodes are formed in the shape of dots on the light receiving surface of a semiconductor substrate, and a wiring substrate in which n wiring is formed on one surface of an insulating substrate, One surface of the wiring substrate is installed on one surface of the battery wafer, the n electrodes are electrically connected by the n wiring, and the insulating substrate is a transparent solar cell.

また、本発明は、半導体基板の受光面にp電極が点状に複数形成されている太陽電池ウエハと、絶縁性基板の一面上にp配線が形成されている配線基板と、を含み、太陽電池ウエハの一面上に配線基板の一面が設置されて、p電極がp配線によって電気的に接続されており、絶縁性基板が透明である太陽電池セルである。   The present invention also includes a solar cell wafer in which a plurality of p-electrodes are formed in the shape of dots on a light receiving surface of a semiconductor substrate, and a wiring substrate in which p wiring is formed on one surface of an insulating substrate, One surface of the wiring substrate is placed on one surface of the battery wafer, the p-electrodes are electrically connected by the p-wiring, and the insulating substrate is a transparent solar cell.

さらに、本発明は、半導体基板の一面にp電極とn電極とがそれぞれ点状に複数形成されている複数の太陽電池ウエハと、絶縁性基板の一面にp配線とn配線とこれらの配線を電気的に接続する接続電極とが形成されている配線基板と、を含み、太陽電池ウエハのうち一の太陽電池ウエハのp電極がp配線と電気的に接続されており、一の太陽電池ウエハとは異なる他の太陽電池ウエハのn電極がn配線と電気的に接続されている太陽電池モジュールである。   Furthermore, the present invention provides a plurality of solar cell wafers in which a plurality of p-electrodes and n-electrodes are formed in a dot shape on one surface of a semiconductor substrate, p-wires, n-wires and these wires on one surface of an insulating substrate. A wiring substrate on which a connection electrode to be electrically connected is formed, and the p electrode of one solar cell wafer among the solar cell wafers is electrically connected to the p wiring, and the one solar cell wafer This is a solar cell module in which n electrodes of other solar cell wafers different from are electrically connected to n wiring.

ここで、本発明の太陽電池モジュールにおいては、p電極とn電極とが銀を含む材料によって形成され、p配線とn配線とが銅を含む材料によって形成されており、p電極とp配線との接続およびn電極とn配線との接続がそれぞれはんだを介して行われていることが好ましい。   Here, in the solar cell module of the present invention, the p electrode and the n electrode are formed of a material containing silver, the p wiring and the n wiring are formed of a material containing copper, and the p electrode and the p wiring And the connection between the n electrode and the n wiring are preferably made via solder.

また、本発明の太陽電池モジュールにおいては、p配線とn配線とがそれぞれ櫛歯を含む櫛形状に形成され、一の太陽電池ウエハのp電極およびn電極とそれぞれ電気的に接続しているp配線とn配線とが互いにそれぞれの櫛歯を向き合わせて設置されており、p配線の櫛歯とn配線の櫛歯とが絶縁性基板の一面に沿って交互に配列されていることが好ましい。   In the solar cell module of the present invention, the p wiring and the n wiring are each formed in a comb shape including comb teeth, and are electrically connected to the p electrode and the n electrode of one solar cell wafer, respectively. It is preferable that the wiring and the n wiring are arranged with their respective comb teeth facing each other, and the comb wiring teeth of the p wiring and the comb teeth of the n wiring are alternately arranged along one surface of the insulating substrate. .

本発明によれば、FF(Fill Factor)値が大きく、安価に製造することができる太陽電池セルおよびこれを用いた太陽電池モジュールを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the FF (Fill Factor) value is large, the photovoltaic cell which can be manufactured cheaply, and a solar cell module using the same can be provided.

以下、本発明の実施の形態について説明する。なお、本願の図面において、同一の参照符号は同一部分または相当部分を表わすものとする。また、本明細書において、太陽電池モジュールに太陽光が入射する側の面を受光面とし、受光面の反対側にあって太陽光が入射しない側の面を裏面とする。   Hereinafter, embodiments of the present invention will be described. In the drawings of the present application, the same reference numerals represent the same or corresponding parts. Further, in this specification, a surface on the side where sunlight enters the solar cell module is defined as a light receiving surface, and a surface on the opposite side of the light receiving surface and on which sunlight does not enter is defined as a back surface.

図1に、本発明の太陽電池セルの好ましい一例の模式的な断面図を示す。この太陽電池セルは、シリコン基板などの半導体基板1の裏面にp+層6とn+層5とが裏面に沿って交互に間隔をあけてそれぞれ複数形成されており、p+層6上に点状のp電極11が形成され、n+層5上に点状のn電極12が形成されている太陽電池ウエハ17と、p配線14とn配線15とが絶縁性基板16上に形成されている配線基板18とを含む。そして、太陽電池ウエハ17の裏面上に配線基板18が設置され、p電極11上にはんだ19を介してp配線14が設置されて複数の点状のp電極11が電気的に接続され、n電極12上にはんだ19を介してn配線15が設置されて複数の点状のn電極12が電気的に接続されている。   In FIG. 1, typical sectional drawing of a preferable example of the photovoltaic cell of this invention is shown. In this solar cell, a plurality of p + layers 6 and n + layers 5 are formed on the back surface of a semiconductor substrate 1 such as a silicon substrate at intervals along the back surface. A solar cell wafer 17 in which a dotted p-electrode 11 is formed and a dotted n-electrode 12 is formed on the n + layer 5, a p-wiring 14 and an n-wiring 15 are formed on an insulating substrate 16. Wiring board 18. Then, the wiring substrate 18 is installed on the back surface of the solar cell wafer 17, the p wiring 14 is installed on the p electrode 11 via the solder 19, and the plurality of dotted p electrodes 11 are electrically connected, and n An n wiring 15 is installed on the electrode 12 via a solder 19, and a plurality of dot-like n electrodes 12 are electrically connected.

図2に、本発明の太陽電池セルの製造工程の好ましい一例のフローチャートを示す。まず、ステップ1(S1)において、半導体基板1としてたとえばn型単結晶シリコン基板を用意する。そして、ステップ2(S2)において、APCVD法(常圧CVD法)を用いて、この半導体基板1の両面にSiOx膜を堆積させる。そして、ステップ3(S3)において、この半導体基板1の裏面にホトエッチング法により櫛形状パターンの窓明けを行なった後にBBr3気相拡散を行なうことによってp+層6を形成する。続いて、ステップ4(S4)において、半導体基板1の受光面に耐酸性テープを貼り付けた後に裏面についてHF(フッ化水素)によるクリーニングを行なう。そして、受光面の耐酸性テープを剥離した後に再度裏面にSiOx膜を堆積させる。次いで、ステップ5(S5)において、半導体基板1の裏面に櫛形状のp+層6と向き合うようにしてホトエッチング法により櫛形状パターンの窓明けを行なった後にPOCl3気相拡散によって櫛形状のn+層5を、p+層6の櫛歯とn+層5の櫛歯とが向き合うようにして半導体基板1の裏面に沿ってこれらの櫛歯が交互に配列されるように形成する。そして、ステップ6(S6)において、半導体基板1の全面をHFによりクリーンニングした後、半導体基板1の受光面にたとえばプラズマCVD法などによりSiN膜を堆積させる。 In FIG. 2, the flowchart of a preferable example of the manufacturing process of the photovoltaic cell of this invention is shown. First, in step 1 (S1), for example, an n-type single crystal silicon substrate is prepared as the semiconductor substrate 1. In step 2 (S2), SiOx films are deposited on both surfaces of the semiconductor substrate 1 by using an APCVD method (atmospheric pressure CVD method). Then, in step 3 (S3), a p + layer 6 is formed by carrying out BBr 3 vapor phase diffusion after opening a comb-shaped pattern on the back surface of the semiconductor substrate 1 by photo etching. Subsequently, in step 4 (S4), after the acid-resistant tape is attached to the light receiving surface of the semiconductor substrate 1, the back surface is cleaned with HF (hydrogen fluoride). Then, after removing the acid-resistant tape on the light receiving surface, a SiOx film is deposited again on the back surface. Next, in step 5 (S5), a comb-shaped pattern is opened by photo-etching on the back surface of the semiconductor substrate 1 so as to face the comb-shaped p + layer 6 and then the comb-shaped pattern is formed by POCl 3 vapor phase diffusion. The n + layer 5 is formed so that the comb teeth of the p + layer 6 and the comb teeth of the n + layer 5 face each other, and these comb teeth are alternately arranged along the back surface of the semiconductor substrate 1. In step 6 (S6), after cleaning the entire surface of the semiconductor substrate 1 with HF, a SiN film is deposited on the light receiving surface of the semiconductor substrate 1 by, for example, plasma CVD.

次に、ステップ7(S7)において、図3の模式的平面図に示すように、半導体基板1の裏面に形成されたp+層6の範囲内にp電極11を、n+層5の範囲内にn電極12をそれぞれ複数の点状にスクリーン印刷し、その後焼成することにより形成する。ここで、太陽光の反射および導電性を向上させる観点からp電極11およびn電極12は銀からなり、スクリーン印刷材料としては銀ペーストが用いられる。そして、スクリーン印刷されたp電極11とn電極12とを乾燥して銀ペーストに含まれる溶剤を蒸発させた後に酸化性雰囲気下で焼成することによって銀からなるp電極11およびn電極12が形成される。また、図3に示すように、p電極11およびn電極12はそれぞれ直線状に配列されており、p電極11の配列ラインとn電極12の配列ラインとはそれぞれ半導体基板1の裏面に沿って交互に配列されている。   Next, in step 7 (S7), as shown in the schematic plan view of FIG. 3, the p electrode 11 is placed in the range of the p + layer 6 formed on the back surface of the semiconductor substrate 1, and the range of the n + layer 5 is reached. The n-electrodes 12 are formed by screen printing in a plurality of dot shapes, and then firing. Here, from the viewpoint of improving sunlight reflection and conductivity, the p-electrode 11 and the n-electrode 12 are made of silver, and a silver paste is used as the screen printing material. Then, the p-electrode 11 and the n-electrode 12 made of silver are formed by drying the screen-printed p-electrode 11 and the n-electrode 12 and evaporating the solvent contained in the silver paste, followed by firing in an oxidizing atmosphere. Is done. Further, as shown in FIG. 3, the p electrode 11 and the n electrode 12 are arranged linearly, and the arrangement line of the p electrode 11 and the arrangement line of the n electrode 12 are respectively along the back surface of the semiconductor substrate 1. They are arranged alternately.

そして、ステップ8(S8)において、p電極11およびn電極12はフラックスへ浸漬させられた後に乾燥される。その後、p電極11およびn電極12ははんだ浴に浸漬させられた後に洗浄および乾燥されてp電極11およびn電極12の表面にはんだ19がコーティングされて太陽電池ウエハ17が形成される。   In step 8 (S8), the p electrode 11 and the n electrode 12 are dipped in the flux and then dried. Thereafter, the p-electrode 11 and the n-electrode 12 are immersed in a solder bath, washed and dried, and the surface of the p-electrode 11 and the n-electrode 12 is coated with the solder 19 to form the solar cell wafer 17.

続いて、ステップ9(S9)において、絶縁性基板16の一面上にたとえば銅からなるp配線14とn配線15とが形成されている図4の模式的平面図に示すような配線基板18が用意される。ここで、配線基板18は、p配線14とn配線15とがそれぞれ複数の櫛歯を含む櫛形状に形成され、p配線14とn配線15とが互いにそれぞれの櫛歯を向き合わせて設置されている。そして、p配線14の櫛歯とn配線15の櫛歯とが絶縁性基板16の一面に沿って交互に配列されている。この配線基板18は、たとえば絶縁性基板16の一面の全面に銅からなる膜を形成した後に、銅からなる膜の一部をエッチングして除去することによってp配線14およびn配線15を形成して作製される。ここで、p配線14とn配線15の表面には、はんだがコーティングされる。   Subsequently, in step 9 (S9), the wiring substrate 18 as shown in the schematic plan view of FIG. 4 in which the p wiring 14 and the n wiring 15 made of, for example, copper are formed on one surface of the insulating substrate 16 is formed. Prepared. Here, the wiring substrate 18 is formed such that the p wiring 14 and the n wiring 15 each have a comb shape including a plurality of comb teeth, and the p wiring 14 and the n wiring 15 are disposed with their comb teeth facing each other. ing. Then, comb teeth of the p wiring 14 and comb teeth of the n wiring 15 are alternately arranged along one surface of the insulating substrate 16. In this wiring substrate 18, for example, after forming a film made of copper on the entire surface of the insulating substrate 16, a part of the film made of copper is removed by etching to form the p wiring 14 and the n wiring 15. Produced. Here, the surface of the p wiring 14 and the n wiring 15 is coated with solder.

そして、この配線基板18が太陽電池ウエハ17の裏面上に設置され、図5の模式的平面図に示すように、p電極11上およびn電極12上にそれぞれp配線14およびn配線15が設置される。そして、たとえば太陽電池ウエハ17側から熱風を吹きつけて双方のはんだを溶解させた後に冷却することによって、太陽電池ウエハ17と配線基板18とが一体化された太陽電池セルが完成する。   And this wiring board 18 is installed on the back surface of the solar cell wafer 17, and p wiring 14 and n wiring 15 are installed on the p electrode 11 and the n electrode 12, respectively, as shown in the schematic plan view of FIG. Is done. Then, for example, by blowing hot air from the solar cell wafer 17 side to melt both solders and then cooling, a solar cell in which the solar cell wafer 17 and the wiring substrate 18 are integrated is completed.

ここで、FF値の向上の観点から、図1に示す絶縁性基板16のp配線14とn配線15とが形成されている側と反対側の面に蒸着法などによりアルミニウム膜を反射膜として形成することもできる。この場合には、反射膜によって反射した太陽光が絶縁性基板16を透過する必要があるため、絶縁性基板16は透明であることが必要である。   Here, from the viewpoint of improving the FF value, an aluminum film is used as a reflective film on the surface opposite to the side where the p wiring 14 and the n wiring 15 of the insulating substrate 16 shown in FIG. It can also be formed. In this case, since the sunlight reflected by the reflective film needs to pass through the insulating substrate 16, the insulating substrate 16 needs to be transparent.

このように、上記においては、表面がはんだ19でコーティングされた銀からなる複数の点状のp電極11およびn電極12が、同じく表面がはんだ19でコーティングされた銅からなるp配線14およびn配線15によってそれぞれはんだ19を介して電気的に接続される。これにより、従来から大きな接触抵抗を引き起こしていた、銀ペーストを焼成して形成された点状の銀からなるp電極およびn電極と、同じく銀ペーストを焼成して形成された銀からなる連結電極との接触を回避することができる。したがって、本発明の太陽電池セルのFF(Fill Factor)値を従来よりも向上させることができる。また、連結電極の形成に用いられる銀ペースト量を減少させることができるため、従来よりも安価に製造することができる。さらに、配線基板を用いることによって、本発明の太陽電池セルの補強効果を得ることもできる。   Thus, in the above, a plurality of dot-like p-electrodes 11 and n-electrodes 12 made of silver whose surfaces are coated with solder 19, p-wires 14 and n made of copper whose surfaces are also coated with solder 19. The wirings 15 are electrically connected to each other via solder 19. As a result, a p-electrode and an n-electrode made of pointed silver formed by firing a silver paste, and a connecting electrode made of silver also formed by firing the silver paste, which has caused a large contact resistance. Can be avoided. Therefore, the FF (Fill Factor) value of the solar battery cell of the present invention can be improved as compared with the conventional case. Moreover, since the amount of silver paste used for formation of a connection electrode can be reduced, it can manufacture at a cheaper cost than before. Furthermore, the reinforcement effect of the photovoltaic cell of this invention can also be acquired by using a wiring board.

図6の模式的側面図に、本発明の太陽電池セルの好ましい他の一例の模式的な側面図を示す。この太陽電池セルの太陽電池ウエハ17においては、たとえばp型のシリコン基板からなる半導体基板1の受光面にn+層5が形成されており、n+層5上に反射防止膜(図示せず)と銀からなるn電極12とが設置されている。そして、半導体基板1の裏面にはp+層6が形成されており、半導体基板1の裏面の全面にp電極11が形成されている。また、太陽電池ウエハ17の受光面上には銅からなるn配線15が形成された配線基板18が設置されており、n配線15とn電極12とははんだ19を介して電気的に接続されている。   The schematic side view of FIG. 6 shows a schematic side view of another preferred example of the solar battery cell of the present invention. In solar cell wafer 17 of this solar cell, n + layer 5 is formed on the light receiving surface of semiconductor substrate 1 made of, for example, a p-type silicon substrate, and an antireflection film (not shown) is formed on n + layer 5. ) And an n-electrode 12 made of silver. A p + layer 6 is formed on the back surface of the semiconductor substrate 1, and a p-electrode 11 is formed on the entire back surface of the semiconductor substrate 1. Further, a wiring board 18 on which an n wiring 15 made of copper is formed is installed on the light receiving surface of the solar cell wafer 17, and the n wiring 15 and the n electrode 12 are electrically connected via a solder 19. ing.

ここで、n電極12とn配線15の表面にそれぞれはんだ19がコーティングがされており、複数の点状のn電極12は図7の模式的平面図に示すようにn+層5上にフィッシュボーン(魚の骨)状に配列されている。そして、太陽電池ウエハ17のn電極12上に、配線基板18に予めフィッシュボーン状に形成されているn配線15を設置して、たとえば太陽電池ウエハ17側から熱風を吹きつけて双方のはんだ19を溶解させた後に冷却することによって、太陽電池ウエハ17と配線基板18とが一体化されて図6に示す太陽電池セルが完成する。ここで、配線基板18における絶縁性基板16は透明であり、配線基板18側から入射してきた太陽光は透明である絶縁性基板16を透過して半導体基板1の受光面に到達する。   Here, the surfaces of the n electrode 12 and the n wiring 15 are respectively coated with solder 19, and the plurality of dot-like n electrodes 12 are fished on the n + layer 5 as shown in the schematic plan view of FIG. It is arranged in the shape of a bone (fish bone). Then, an n wiring 15 formed in a fishbone shape in advance on the wiring substrate 18 is installed on the n electrode 12 of the solar cell wafer 17, and hot air is blown from the solar cell wafer 17 side, for example, to both solders 19. Then, the solar cell wafer 17 and the wiring substrate 18 are integrated to complete the solar cell shown in FIG. Here, the insulating substrate 16 in the wiring substrate 18 is transparent, and sunlight incident from the wiring substrate 18 side passes through the transparent insulating substrate 16 and reaches the light receiving surface of the semiconductor substrate 1.

この太陽電池セルにおいても、表面がはんだ19でコーティングされた銀からなる複数の点状のn電極12が、同じく表面がはんだ19でコーティングされた銅からなるn配線15によってそれぞれはんだ19を介して電気的に接続されるので、太陽電池セルのFF(Fill Factor)値を従来よりも向上させることができる。また、上記の太陽電池セルと同様に、太陽電池セルの製造コストを低減させることができ、配線基板18による補強効果も得ることができる。また、この太陽電池セルにおいては半導体基板1の受光面にn電極12を形成し、このn電極12が配線基板18のn配線15と電気的に接続されているが、半導体基板1の受光面にp電極を形成し、このp電極が配線基板18のp配線と電気的に接続されていてもよいことは言うまでもない。   Also in this solar cell, a plurality of dot-like n electrodes 12 made of silver whose surface is coated with solder 19 are respectively connected via solder 19 by n wiring 15 made of copper whose surface is coated with solder 19. Since it is electrically connected, the FF (Fill Factor) value of the solar battery cell can be improved as compared with the prior art. Moreover, like the above-described solar battery cell, the manufacturing cost of the solar battery cell can be reduced, and the reinforcing effect by the wiring board 18 can also be obtained. In this solar cell, an n electrode 12 is formed on the light receiving surface of the semiconductor substrate 1, and the n electrode 12 is electrically connected to the n wiring 15 of the wiring substrate 18. It goes without saying that a p-electrode may be formed on the p-electrode, and this p-electrode may be electrically connected to the p-wiring of the wiring board 18.

図8に、本発明の太陽電池モジュールの裏面の好ましい一例の模式的な平面図を示す。この太陽電池モジュールは、図1に示す太陽電池ウエハと同じ構成を有する図9に示す太陽電池ウエハ17a、17b、17cと、図10に示す絶縁性基板16の一面にp電極11を電気的に接続するp配線14とn電極12を電気的に接続するn配線15とこれらの配線を電気的に接続する接続電極20とが形成されている配線基板18とを含む。そして、太陽電池ウエハ17のうち一の太陽電池ウエハ17aのp電極11が配線基板18のp配線14と電気的に接続されており、一の太陽電池ウエハ17aとは異なる他の太陽電池ウエハ17bのn電極12がn配線15と電気的に接続されている。また、太陽電池ウエハ17bのp電極11が配線基板18のp配線14と電気的に接続されており、太陽電池ウエハ17cのn電極12がn配線15と電気的に接続されている。   In FIG. 8, the typical top view of a preferable example of the back surface of the solar cell module of this invention is shown. This solar cell module is electrically connected to the solar cell wafers 17a, 17b, 17c shown in FIG. 9 having the same configuration as the solar cell wafer shown in FIG. 1, and the p-electrode 11 on one surface of the insulating substrate 16 shown in FIG. The wiring board 18 in which the p wiring 14 to connect, the n wiring 15 which electrically connects the n electrode 12, and the connection electrode 20 which electrically connects these wiring are formed is included. Then, the p-electrode 11 of one solar cell wafer 17a among the solar cell wafers 17 is electrically connected to the p-wiring 14 of the wiring substrate 18, and another solar cell wafer 17b different from the one solar cell wafer 17a. N electrode 12 is electrically connected to n wiring 15. The p-electrode 11 of the solar cell wafer 17 b is electrically connected to the p-wiring 14 of the wiring substrate 18, and the n-electrode 12 of the solar cell wafer 17 c is electrically connected to the n-wiring 15.

この太陽電池モジュールはたとえば以下のようにして製造される。まず、図9の模式的平面図に示すように、上記のようにして形成された太陽電池ウエハ17a、17b、17cをこれらの裏面側を上方に向けて配列する。次に、図10の模式的平面図に示すように、櫛形状の銅からなるp配線14とn配線15とがそれぞれ互いの複数の櫛歯を向き合わせてそれぞれの櫛歯が絶縁性基板16の一面に沿って交互に配列されるように形成されており、p配線14とn配線15とを電気的に接続する接続電極20が絶縁性基板16の一面に形成されている配線基板18を用意する。そして、この配線基板18をこれらの太陽電池ウエハ17a、17b、17cの裏面上に設置して、配線基板18のp配線14およびn配線15と太陽電池ウエハ17a、17b、17cのp電極11およびn電極12とをはんだを介してそれぞれ電気的に接続する。これにより、図8に示す本発明の太陽電池モジュールが完成する。なお、本発明においては、この太陽電池モジュールをEVA樹脂で挟んだ後にガラス基板などの基板に貼り付けることもできる。   This solar cell module is manufactured as follows, for example. First, as shown in the schematic plan view of FIG. 9, the solar cell wafers 17a, 17b, and 17c formed as described above are arranged with their back surfaces facing upward. Next, as shown in the schematic plan view of FIG. 10, the p wiring 14 and the n wiring 15 made of comb-shaped copper face each other, and each comb tooth is an insulating substrate 16. The wiring substrate 18 is formed so as to be alternately arranged along one surface, and the connection electrode 20 that electrically connects the p wiring 14 and the n wiring 15 is formed on one surface of the insulating substrate 16. prepare. And this wiring board 18 is installed on the back surface of these solar cell wafers 17a, 17b, 17c, and p wiring 14 and n wiring 15 of wiring board 18 and p electrode 11 of solar cell wafers 17a, 17b, 17c and The n electrode 12 is electrically connected to each other through solder. Thereby, the solar cell module of the present invention shown in FIG. 8 is completed. In the present invention, the solar cell module can be attached to a substrate such as a glass substrate after being sandwiched between EVA resins.

このように、本発明の太陽電池モジュールにおいては、点状に形成された太陽電池ウエハ17a、17b、17cのp電極11およびn電極12が配線基板18に予め形成されているp配線14およびn配線15とはんだを介してそれぞれ電気的に接続されている。これにより、太陽電池ウエハ17a、17b、17cのp電極11およびn電極12が銀からなる場合でも、p電極11とp配線14、n電極12とn配線15のそれぞれの接触抵抗を従来よりも低減することができる。また、予め接続電極20が設置された配線基板18を用いることによって、太陽電池ウエハ17a、17b、17cの電気的な接続と構成を同時に、しかも簡便に形成することができる。   Thus, in the solar cell module of the present invention, the p-electrode 11 and the n-electrode 12 of the solar cell wafers 17a, 17b, and 17c formed in a dot shape are formed in advance on the wiring board 18 and the p-wiring 14 and n. They are electrically connected to the wiring 15 via solder. Thereby, even when the p-electrode 11 and the n-electrode 12 of the solar cell wafers 17a, 17b, and 17c are made of silver, the contact resistances of the p-electrode 11 and the p-wiring 14, and the n-electrode 12 and the n-wiring 15 are made higher than those of the conventional one. Can be reduced. Further, by using the wiring substrate 18 on which the connection electrodes 20 are previously installed, the electrical connection and configuration of the solar cell wafers 17a, 17b, and 17c can be simultaneously and easily formed.

なお、上記において、配線基板18の絶縁性基板16としては、たとえばガラス基板、ガラス繊維からなる不織布にエポキシ樹脂を浸漬させて形成されたガラエポ基板、透明なポリエステルフィルム(PETフィルム)、ポリエチレンナフタレートフィルム(PENフィルム)、ポリイミドフィルムまたはポリプロピレンフィルムなども用いることができる。   In the above, as the insulating substrate 16 of the wiring substrate 18, for example, a glass substrate, a glass epoxy substrate formed by immersing an epoxy resin in a nonwoven fabric made of glass fiber, a transparent polyester film (PET film), polyethylene naphthalate A film (PEN film), a polyimide film, or a polypropylene film can also be used.

また、上記において、点状のp電極11およびn電極12はそれぞれ直線状に配列されているが、直線状に限定されず曲線状や渦巻き状などのライン状に配列されていればよい。   In the above description, the dot-like p-electrode 11 and the n-electrode 12 are each arranged in a straight line, but are not limited to a straight line and may be arranged in a line such as a curved line or a spiral.

また、上記において、配線基板18を構成する絶縁性基板16は、特に配線基板18が太陽電池ウエハ17の受光面上に設置される場合には、太陽光を透過させる観点から透明であることが好ましい。   In the above, the insulating substrate 16 constituting the wiring board 18 is transparent from the viewpoint of transmitting sunlight, particularly when the wiring board 18 is installed on the light receiving surface of the solar cell wafer 17. preferable.

また、上記において、n型とp型の導電型が入れ替わっていてもよいことは言うまでもない。   In the above description, it is needless to say that n-type and p-type conductivity may be interchanged.

また、上記において、p電極11、n電極12、p配線14およびn配線15の表面にはんだをコーティングしなくてもよいが、FF値の向上の観点からは、はんだをコーティングすることが好ましい。   Moreover, in the above, it is not necessary to coat the surface of the p electrode 11, the n electrode 12, the p wiring 14 and the n wiring 15, but from the viewpoint of improving the FF value, it is preferable to coat the solder.

また、上記において、p電極11およびn電極12は銀以外の材質からなっていてもよく、p配線14およびn配線15は銅以外の材質からなっていてもよいことは言うまでもない。   In the above description, it goes without saying that the p electrode 11 and the n electrode 12 may be made of a material other than silver, and the p wiring 14 and the n wiring 15 may be made of a material other than copper.

(実施例1)
以下のようにして図1に示す太陽電池セルを製造した。まず、アルカリ溶液を用いてエッチングされた幅125mm×長さ125mm×厚さ240μmの平板状のn型単結晶シリコン基板からなる半導体基板1の受光面および裏面に、APCVD法により約200nmのSiOx膜を堆積させた。次に、この半導体基板1の裏面にホトエッチング法により幅250μmの櫛形状の窓明けを行なった後、BBr3気相拡散を970℃で50分間行ない、約30Ω/□のp+層6を形成した。続いて、半導体基板1の受光面に耐酸性テープを貼り付けた後に裏面についてHF(フッ化水素)によるクリーニングを行なった。そして、半導体基板1の受光面の耐酸性テープを剥離した後に再度APCVD法により裏面にSiOx膜を約200nm堆積させた。次いで、半導体基板1の裏面に櫛形状のp+層6と向き合うようにしてホトエッチング法により幅250μmの櫛形状パターンの窓明けを行なった後にPOCl3気相拡散を830℃で20分間行ない、約40Ω/□の櫛形状のn+層5を形成した。ここで、p+層6およびn+層5は、p+層6の櫛歯とn+層5の櫛歯とが向き合うようにして半導体基板1の裏面に沿ってこれらの櫛歯が交互に配列されるように形成された。そして、半導体基板1の全面をHFによりクリーニングした後、半導体基板1の受光面にプラズマCVD法により700nmの厚みのSiN膜を堆積させた。
(Example 1)
The solar battery cell shown in FIG. 1 was manufactured as follows. First, a SiOx film of about 200 nm is formed on the light-receiving surface and the back surface of a semiconductor substrate 1 made of a flat n-type single crystal silicon substrate having a width of 125 mm, a length of 125 mm, and a thickness of 240 μm etched using an alkaline solution by an APCVD method. Was deposited. Next, a comb-shaped window having a width of 250 μm is opened on the back surface of the semiconductor substrate 1 by photo-etching, and BBr 3 vapor phase diffusion is performed at 970 ° C. for 50 minutes to form a p + layer 6 of about 30Ω / □. Formed. Subsequently, after the acid-resistant tape was attached to the light receiving surface of the semiconductor substrate 1, the back surface was cleaned with HF (hydrogen fluoride). Then, after the acid-resistant tape on the light receiving surface of the semiconductor substrate 1 was peeled off, an SiOx film was deposited on the back surface by about 200 nm again by the APCVD method. Next, a comb-shaped pattern having a width of 250 μm is opened on the back surface of the semiconductor substrate 1 so as to face the comb-shaped p + layer 6 by a photoetching method, and then POCl 3 vapor phase diffusion is performed at 830 ° C. for 20 minutes. A comb-shaped n + layer 5 of about 40Ω / □ was formed. Here, the p + layer 6 and the n + layer 5 are alternately arranged along the back surface of the semiconductor substrate 1 so that the comb teeth of the p + layer 6 and the comb teeth of the n + layer 5 face each other. Formed to be arranged. Then, after cleaning the entire surface of the semiconductor substrate 1 with HF, a SiN film having a thickness of 700 nm was deposited on the light receiving surface of the semiconductor substrate 1 by plasma CVD.

次に、図3に示すように、半導体基板1の裏面に形成されたp+層6の範囲内に複数の点状のp電極11を、n+層5の範囲内に複数の点状のn電極12をそれぞれ銀ペーストを用いてスクリーン印刷した。ここで、p電極11およびn+層5の上面の直径は150μmであった。その後、スクリーン印刷された銀ペーストを約150℃の温度で乾燥させた後、約620℃の酸化性雰囲気下で1〜2分程度焼成した。その後、p電極11およびn電極12をフラックスへ浸漬させた後に乾燥した。そして、約200℃のはんだ浴に浸漬させてはんだ19をコーティングし、p電極11およびn電極12を洗浄および乾燥させた後、太陽電池ウエハ17を形成した。   Next, as shown in FIG. 3, a plurality of dot-like p-electrodes 11 are formed in the range of the p + layer 6 formed on the back surface of the semiconductor substrate 1, and a plurality of dot-like p-type electrodes in the range of the n + layer 5 Each n-electrode 12 was screen-printed using a silver paste. Here, the diameters of the upper surfaces of the p electrode 11 and the n + layer 5 were 150 μm. Thereafter, the screen-printed silver paste was dried at a temperature of about 150 ° C. and then fired in an oxidizing atmosphere at about 620 ° C. for about 1 to 2 minutes. Thereafter, the p electrode 11 and the n electrode 12 were immersed in the flux and then dried. And it immersed in the solder bath of about 200 degreeC, the solder 19 was coated, the p electrode 11 and the n electrode 12 were wash | cleaned and dried, and the solar cell wafer 17 was formed.

一方、幅150mm×長さ150mm×厚さ1.6mmの平板状のガラエポ基板からなる絶縁性基板16の一面上に、表面にはんだコーティングされた銅からなる厚さ20μmのp配線14とn配線15とが形成されている図4に示す配線基板18を用意した。そして、図5に示すように、90℃に予備加熱されたこの配線基板18の位置合わせマーカーに太陽電池ウエハ17を重ね合わせ、太陽電池ウエハ17側から熱風を吹きつけて双方のはんだを溶解させた後に冷却することによって、太陽電池ウエハ17と配線基板18とが一体化された図1に示す太陽電池セルを完成した。   On the other hand, on one surface of an insulating substrate 16 made of a flat glass epoxy substrate having a width of 150 mm, a length of 150 mm and a thickness of 1.6 mm, a p wiring 14 and an n wiring made of copper having a surface coated with solder are formed. A wiring board 18 shown in FIG. Then, as shown in FIG. 5, the solar cell wafer 17 is superposed on the alignment marker of the wiring board 18 preheated to 90 ° C., and hot air is blown from the solar cell wafer 17 side to melt both solders. After cooling, the solar battery cell shown in FIG. 1 in which the solar battery wafer 17 and the wiring board 18 were integrated was completed.

この太陽電池セルの電流−電圧曲線を作製し、この電流−電圧曲線から、短絡電流Isc(mA)、開放電圧Voc(mA)、FF値および最大電力値Pm(W)を算出した。その結果を表1に示す。   A current-voltage curve of this solar battery cell was prepared, and the short-circuit current Isc (mA), the open-circuit voltage Voc (mA), the FF value, and the maximum power value Pm (W) were calculated from the current-voltage curve. The results are shown in Table 1.

(実施例2)
図4に示す絶縁性基板16としてガラエポ基板の代わりに、厚みが約200μmのポリエステルフィルムを用いたこと以外は実施例1と同様にして太陽電池セルを製造した。そして、この太陽電池セルの電流−電圧曲線を作製し、この電流−電圧曲線から、短絡電流Isc(mA)、開放電圧Voc(mA)、FF値および最大電力値Pm(W)を算出した。その結果を表1に示す。
(Example 2)
A solar battery cell was manufactured in the same manner as in Example 1 except that a polyester film having a thickness of about 200 μm was used instead of the glass epoxy substrate as the insulating substrate 16 shown in FIG. And the current-voltage curve of this photovoltaic cell was produced, and short circuit current Isc (mA), open circuit voltage Voc (mA), FF value, and maximum electric power value Pm (W) were computed from this current-voltage curve. The results are shown in Table 1.

(実施例3)
実施例2のポリエステルフィルムのp配線およびn配線が形成されている側の面と反対側の面に厚みが約2μmのアルミニウム膜を反射膜として蒸着させたこと以外は実施例2と同様にして太陽電池セルを製造した。そして、この太陽電池セルの電流−電圧曲線を作製し、この電流−電圧曲線から、短絡電流Isc(mA)、開放電圧Voc(mA)、FF値および最大電力値Pm(W)を算出した。その結果を表1に示す。
(Example 3)
Except that an aluminum film having a thickness of about 2 μm was deposited as a reflective film on the surface opposite to the surface on which the p wiring and n wiring of the polyester film of Example 2 were formed, the same as in Example 2. Solar cells were manufactured. And the current-voltage curve of this photovoltaic cell was produced, and short circuit current Isc (mA), open circuit voltage Voc (mA), FF value, and maximum electric power value Pm (W) were computed from this current-voltage curve. The results are shown in Table 1.

(比較例1)
図4に示す配線基板18を用いずに、図15に示す連結電極113a、113bを形成してp電極111およびn電極112を電気的に接続したこと以外は実施例1と同様にして図11に示す太陽電池セルを製造した。ここで、連結電極113a、113bは、幅180μmの銀ペーストをスクリーン印刷した後に約150℃の温度で乾燥させ、約620℃の酸化性雰囲気下で1〜2分程度焼成することによって形成された。そして、この太陽電池セルの電流−電圧曲線を作製し、この電流−電圧曲線から、短絡電流Isc(mA)、開放電圧Voc(mA)、FF値および最大電力値Pm(W)を算出した。その結果を表1に示す。
(Comparative Example 1)
11 except that the connection electrodes 113a and 113b shown in FIG. 15 are formed and the p-electrode 111 and the n-electrode 112 are electrically connected without using the wiring substrate 18 shown in FIG. The solar battery cell shown in FIG. Here, the connection electrodes 113a and 113b were formed by screen-printing a silver paste having a width of 180 μm, drying the paste at a temperature of about 150 ° C., and firing it for about 1 to 2 minutes in an oxidizing atmosphere of about 620 ° C. . And the current-voltage curve of this photovoltaic cell was produced, and short circuit current Isc (mA), open circuit voltage Voc (mA), FF value, and maximum electric power value Pm (W) were computed from this current-voltage curve. The results are shown in Table 1.

Figure 2005340362
Figure 2005340362

表1に示すように、実施例1〜3の太陽電池セルは比較例1の太陽電池セルと比べて、FF値およびPmが共に増大する傾向にあった。これは、実施例1〜3の太陽電池セルにおいては銅からなるp配線14とn配線15とが形成されている配線基板18の設置によって太陽電池セルの銀からなるp電極11およびn電極12がはんだを介して電気的に接続されているため、p配線14とp電極11間、n配線15とn電極12間の接触抵抗が増大しなかったことによるものと考えられる。   As shown in Table 1, both the FF value and Pm tended to increase for the solar cells of Examples 1 to 3 as compared to the solar cell of Comparative Example 1. This is because, in the solar cells of Examples 1 to 3, the p-electrode 11 and the n-electrode 12 made of silver of the solar cell are provided by installing the wiring substrate 18 on which the p-wiring 14 and the n-wiring 15 made of copper are formed. Is electrically connected via the solder, it is considered that the contact resistance between the p wiring 14 and the p electrode 11 and between the n wiring 15 and the n electrode 12 did not increase.

また、実施例3の太陽電池セルは実施例1〜2の太陽電池セルと比べてPmが増大する傾向にあった。これは、ポリエステルフィルムに形成された反射膜の効果によるものと考えられる。   Moreover, the solar cell of Example 3 tended to increase Pm as compared with the solar cells of Examples 1-2. This is considered to be due to the effect of the reflective film formed on the polyester film.

(実施例4)
以下のようにして図6に示すような太陽電池セルを製造した。まず、テクスチャエッチングされた幅125mm×長さ125mm×厚み330μmのp型シリコン基板からなる半導体基板1の受光面に、リンを含む溶液を塗布した後、約900℃で熱拡散を行うことにより、約50Ω/□の面抵抗値を有するn+層5を形成した。そして、n+層5上に厚さ約60nmのTiOx膜からなる反射防止膜(図示せず)を形成した。
Example 4
A solar battery cell as shown in FIG. 6 was produced as follows. First, by applying a solution containing phosphorus on the light-receiving surface of the semiconductor substrate 1 made of a p-type silicon substrate having a width of 125 mm, a length of 125 mm, and a thickness of 330 μm, and performing thermal diffusion at about 900 ° C., An n + layer 5 having a sheet resistance value of about 50Ω / □ was formed. Then, an antireflection film (not shown) made of a TiOx film having a thickness of about 60 nm was formed on the n + layer 5.

次に、半導体基板1の裏面の全面にアルミニウムペーストをスクリーン印刷により約50μmの厚さで印刷し、150℃で約4分間乾燥させて、p+層6とp電極11とを同時に形成した。また、半導体基板1の受光面側に銀ペーストを点状に複数スクリーン印刷し、150℃で約4分間乾燥させて、銀からなるn電極12を形成して太陽電池ウエハ17を完成させた。ここで、n電極12は、図7の模式的平面図に示すように、半導体基板1の受光面にフィッシュボーン状に形成された。その後、n電極12をはんだ槽に浸漬させて、その表面にはんだコーティングを行なった。   Next, an aluminum paste was printed on the entire back surface of the semiconductor substrate 1 to a thickness of about 50 μm by screen printing, and dried at 150 ° C. for about 4 minutes to form the p + layer 6 and the p electrode 11 simultaneously. Further, a plurality of silver pastes were printed on the light receiving surface side of the semiconductor substrate 1 in the form of dots and dried at 150 ° C. for about 4 minutes to form an n-electrode 12 made of silver, thereby completing the solar cell wafer 17. Here, the n-electrode 12 was formed in a fishbone shape on the light-receiving surface of the semiconductor substrate 1 as shown in the schematic plan view of FIG. Thereafter, the n-electrode 12 was immersed in a solder bath, and the surface thereof was coated with solder.

また、表面にはんだコーティングされた銅からなるn配線15がポリエステルフィルムに形成された配線基板18を太陽電池ウエハ17の受光面上に設置し、上記と同様の方法で太陽電池ウエハ17側から熱風を吹きつけて双方のはんだを溶解させた後に冷却することによって、太陽電池ウエハ17と配線基板18とが一体化されて図6に示す太陽電池セルを製造した。   In addition, a wiring board 18 having a n-wiring 15 made of copper coated with solder and formed on a polyester film is placed on the light-receiving surface of the solar cell wafer 17, and hot air is blown from the solar cell wafer 17 side in the same manner as described above. The solar battery wafer 17 and the wiring board 18 were integrated with each other by cooling after melting both solders by spraying the solar cell shown in FIG.

この太陽電池セルの電流−電圧曲線を作製して電流−電圧曲線から短絡電流Isc(mA)、開放電圧Voc(mA)およびFF値を算出した。その結果を表2に示す。   A current-voltage curve of this solar cell was prepared, and a short-circuit current Isc (mA), an open-circuit voltage Voc (mA), and an FF value were calculated from the current-voltage curve. The results are shown in Table 2.

(比較例2)
配線基板18を用いることなく、銀からなる連結電極によって複数の点状のn電極12を電気的に接続したこと以外は実施例4と同様にして太陽電池セルを製造した。そして、この太陽電池セルの電流−電圧曲線を作製し、この電流−電圧曲線から、短絡電流Isc(mA)、開放電圧Voc(mA)およびFF値を算出した。その結果を表2に示す。
(Comparative Example 2)
A solar battery cell was manufactured in the same manner as in Example 4 except that the plurality of dot-like n electrodes 12 were electrically connected by a connecting electrode made of silver without using the wiring substrate 18. And the current-voltage curve of this photovoltaic cell was produced, and short circuit current Isc (mA), open circuit voltage Voc (mA), and FF value were computed from this current-voltage curve. The results are shown in Table 2.

Figure 2005340362
Figure 2005340362

表2に示すように、太陽電池ウエハ17の受光面上に配線基板18を設置した場合であっても複数の点状の銀からなるn電極12が銅からなるn配線15によって電気的に接続されているため接触抵抗が減少し、実施例4の太陽電池セルは比較例2の太陽電池セルと同等の大きなFF値を有していた。   As shown in Table 2, even when the wiring substrate 18 is installed on the light receiving surface of the solar cell wafer 17, a plurality of dotted n-electrodes 12 are electrically connected by an n-wiring 15 made of copper. Therefore, the contact resistance decreased, and the solar cell of Example 4 had a large FF value equivalent to that of the solar cell of Comparative Example 2.

(実施例5)
図10に示す絶縁性基板16として幅150mm×長さ550mmのガラエポ基板を用意した。そして、このガラエポ基板に表面がはんだ19によってコーティングされた銅からなるp配線14とn配線15とを形成し、さらに幅15mm×長さ150mmの銅からなる接続電極20を形成して、図10に示す配線基板18を形成した。
(Example 5)
A glass epoxy substrate having a width of 150 mm and a length of 550 mm was prepared as the insulating substrate 16 shown in FIG. Then, the p wiring 14 and the n wiring 15 made of copper whose surfaces are coated with the solder 19 are formed on the glass epoxy substrate, and the connection electrode 20 made of copper having a width of 15 mm × a length of 150 mm is formed. The wiring board 18 shown in FIG.

また、図9に示すように幅125mm×長さ125mmの太陽電池ウエハ17a、17b、17cを3枚配列した。そして、これらの太陽電池ウエハ17a、17b、17cの裏面上に配線基板18を設置して、配線基板18の銅からなるp配線14およびn配線15と太陽電池ウエハ17a、17b、17cの銀からなるp電極11およびn電極12とをそれぞれはんだを介して電気的に接続した。これにより、図8に示す太陽電池モジュールを製造した。この太陽電池モジュールの出力を測定したところ3.5Wであった。   Further, as shown in FIG. 9, three solar cell wafers 17a, 17b, and 17c each having a width of 125 mm and a length of 125 mm were arranged. And wiring board 18 is installed on the back of these solar cell wafers 17a, 17b and 17c, and p wiring 14 and n wiring 15 made of copper of wiring board 18 and silver of solar cell wafers 17a, 17b and 17c. The p electrode 11 and the n electrode 12 are electrically connected to each other through solder. Thereby, the solar cell module shown in FIG. 8 was manufactured. It was 3.5W when the output of this solar cell module was measured.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明によれば、FF(Fill Factor)値が大きく、安価に製造することができる太陽電池セルおよびこれを用いた太陽電池モジュールを提供することができるので、本発明は、太陽電池分野に好適に利用することができる。   According to the present invention, it is possible to provide a solar cell that has a large FF (Fill Factor) value and can be manufactured at low cost, and a solar cell module using the solar cell. Therefore, the present invention is suitable for the solar cell field. Can be used.

本発明の太陽電池セルの好ましい一例の模式的な断面図である。It is typical sectional drawing of a preferable example of the photovoltaic cell of this invention. 本発明の太陽電池セルの製造工程の好ましい一例のフローチャートである。It is a flowchart of a preferable example of the manufacturing process of the photovoltaic cell of this invention. 本発明に用いられる半導体基板の受光面に形成されたp電極およびn電極の配列の好ましい一例の模式的な平面図である。FIG. 3 is a schematic plan view of a preferred example of an arrangement of p electrodes and n electrodes formed on a light receiving surface of a semiconductor substrate used in the present invention. 本発明に用いられる配線基板の好ましい一例の模式的な平面図である。It is a typical top view of a desirable example of a wiring board used for the present invention. 本発明に用いられる配線基板が太陽電池ウエハの裏面上に設置されるときの好ましい一例の模式的な平面図である。It is a typical top view of a preferable example when the wiring board used for this invention is installed on the back surface of a solar cell wafer. 本発明の太陽電池セルの好ましい他の一例の模式的な側面図である。It is a typical side view of another example of the preferable photovoltaic cell of this invention. 本発明に用いられる半導体基板の受光面に形成されたn電極の配列の好ましい一例の模式的な平面図である。It is a typical top view of a preferable example of the arrangement | sequence of the n electrode formed in the light-receiving surface of the semiconductor substrate used for this invention. 本発明の太陽電池モジュールの裏面の好ましい一例の模式的な平面図である。It is a typical top view of a preferable example of the back surface of the solar cell module of the present invention. 本発明の太陽電池モジュールに用いられる太陽電池ウエハが配列されている状態の好ましい一例の模式的な平面図である。It is a typical top view of a desirable example of the state where the solar cell wafer used for the solar cell module of the present invention is arranged. 本発明の太陽電池モジュールに用いられる配線基板の好ましい一例の模式的な平面図である。It is a typical top view of a desirable example of a wiring board used for a solar cell module of the present invention. 従来の裏面接合型太陽電池セルの一例の模式的な断面図である。It is typical sectional drawing of an example of the conventional back junction type photovoltaic cell. 従来の裏面接合型太陽電池セルの裏面の一例の模式的な平面図である。It is a typical top view of an example of the back surface of the conventional back junction type photovoltaic cell. 従来の裏面接合型太陽電池セルの製造工程の一例のフローチャートである。It is a flowchart of an example of the manufacturing process of the conventional back junction type photovoltaic cell. 従来の裏面接合型太陽電池セルの裏面に形成されたp電極とn電極の配列を示した模式的な平面図である。It is the typical top view which showed the arrangement | sequence of the p electrode and n electrode which were formed in the back surface of the conventional back junction type photovoltaic cell. 従来の裏面接合型太陽電池セルの裏面に形成された連結電極の一例を示した模式的な平面図である。It is the typical top view which showed an example of the connection electrode formed in the back surface of the conventional back junction type photovoltaic cell. 従来の太陽電池モジュールの裏面の一例の模式的な平面図である。It is a typical top view of an example of the back of the conventional solar cell module.

符号の説明Explanation of symbols

1 半導体基板、5,105 n+層、6,106 p+層、11,111 p電極、12,112 n電極、14 p配線、15 n配線、16 絶縁性基板、17,17a,17b,17c 太陽電池ウエハ、18 配線基板、19 はんだ、20,107 接続電極、101 シリコン基板、113a,113b 連結電極。   DESCRIPTION OF SYMBOLS 1 Semiconductor substrate, 5,105 n + layer, 6,106 p + layer, 11,111 p electrode, 12,112 n electrode, 14 p wiring, 15 n wiring, 16 Insulating substrate, 17, 17a, 17b, 17c Solar cell wafer, 18 wiring board, 19 solder, 20, 107 connection electrode, 101 silicon substrate, 113a, 113b connecting electrode.

Claims (11)

半導体基板の一面にp電極とn電極とがそれぞれ点状に複数形成されている太陽電池ウエハと、絶縁性基板の一面にp配線とn配線とが互いに電気的に絶縁されて形成されている配線基板と、を含み、前記太陽電池ウエハの一面上に前記配線基板の一面が設置されて、前記p電極が前記p配線によって電気的に接続され、前記n電極が前記n配線によって電気的に接続されていることを特徴とする、太陽電池セル。   A solar cell wafer in which a plurality of p-electrodes and n-electrodes are formed in a dot shape on one surface of a semiconductor substrate and a p-wiring and n-wiring are formed on one surface of the insulating substrate so as to be electrically insulated from each other. A wiring substrate, wherein one surface of the wiring substrate is disposed on one surface of the solar cell wafer, the p electrode is electrically connected by the p wiring, and the n electrode is electrically connected by the n wiring. A solar battery cell that is connected. 前記p電極と前記n電極とが銀を含む材料によって形成され、前記p配線と前記n配線とが銅を含む材料によって形成されており、前記p電極と前記p配線との接続および前記n電極と前記n配線との接続がそれぞれはんだを介して行われていることを特徴とする、請求項1に記載の太陽電池セル。   The p electrode and the n electrode are formed of a material containing silver, the p wiring and the n wiring are formed of a material containing copper, and the connection between the p electrode and the p wiring and the n electrode The solar cell according to claim 1, wherein the connection to the n wiring is made through solder. 前記p配線と前記n配線とがそれぞれ櫛歯を含む櫛形状に形成され、前記p配線と前記n配線とが互いにそれぞれの櫛歯を向き合わせて設置されており、前記p配線の櫛歯と前記n配線の櫛歯とが前記絶縁性基板の一面に沿って交互に配列されていることを特徴とする、請求項1または2に記載の太陽電池セル。   The p wiring and the n wiring are each formed in a comb shape including comb teeth, and the p wiring and the n wiring are disposed so that the respective comb teeth face each other, 3. The solar cell according to claim 1, wherein the comb teeth of the n wiring are alternately arranged along one surface of the insulating substrate. 前記p電極と前記n電極とがそれぞれライン状に配列されており、前記p電極の配列ラインと前記n電極の配列ラインとが交互に配列されていることを特徴とする、請求項1から3のいずれかに記載の太陽電池セル。   The p electrode and the n electrode are respectively arranged in a line, and the arrangement line of the p electrode and the arrangement line of the n electrode are alternately arranged. The solar cell according to any one of the above. 前記絶縁性基板が透明であることを特徴とする、請求項1から4のいずれかに記載の太陽電池セル。   The solar cell according to claim 1, wherein the insulating substrate is transparent. 前記絶縁性基板の一面の反対側の面に反射膜が形成されていることを特徴とする、請求項5に記載の太陽電池セル。   The solar cell according to claim 5, wherein a reflective film is formed on a surface opposite to one surface of the insulating substrate. 半導体基板の受光面にn電極が点状に複数形成されている太陽電池ウエハと、絶縁性基板の一面上にn配線が形成されている配線基板と、を含み、前記太陽電池ウエハの一面上に前記配線基板の一面が設置されて、前記n電極が前記n配線によって電気的に接続されており、前記絶縁性基板が透明であることを特徴とする、太陽電池セル。   A solar cell wafer in which a plurality of n electrodes are formed in a dot shape on a light receiving surface of a semiconductor substrate, and a wiring substrate in which n wiring is formed on one surface of an insulating substrate, on one surface of the solar cell wafer A solar battery cell, wherein one surface of the wiring substrate is installed on the substrate, the n electrodes are electrically connected by the n wiring, and the insulating substrate is transparent. 半導体基板の受光面にp電極が点状に複数形成されている太陽電池ウエハと、絶縁性基板の一面上にp配線が形成されている配線基板と、を含み、前記太陽電池ウエハの一面上に前記配線基板の一面が設置されて、前記p電極が前記p配線によって電気的に接続されており、前記絶縁性基板が透明であることを特徴とする、太陽電池セル。   A solar cell wafer in which a plurality of p-electrodes are formed in a dot shape on a light receiving surface of a semiconductor substrate; and a wiring substrate in which p wiring is formed on one surface of an insulating substrate, on one surface of the solar cell wafer A solar battery cell, wherein one surface of the wiring substrate is disposed on the p-electrode, the p-electrode is electrically connected by the p-wiring, and the insulating substrate is transparent. 半導体基板の一面にp電極とn電極とがそれぞれ点状に複数形成されている複数の太陽電池ウエハと、絶縁性基板の一面にp配線とn配線とこれらの配線を電気的に接続する接続電極とが形成されている配線基板と、を含み、前記太陽電池ウエハのうち一の太陽電池ウエハのp電極が前記p配線と電気的に接続されており、前記一の太陽電池ウエハとは異なる他の太陽電池ウエハのn電極が前記n配線と電気的に接続されていることを特徴とする、太陽電池モジュール。   A plurality of solar cell wafers each having a plurality of p-electrodes and n-electrodes formed in a dot shape on one surface of a semiconductor substrate, and a connection for electrically connecting p-wires, n-wires, and these wires to one surface of an insulating substrate A p-electrode of one of the solar cell wafers is electrically connected to the p-wiring, and is different from the one solar cell wafer. An n-electrode of another solar cell wafer is electrically connected to the n wiring, and the solar cell module. 前記p電極と前記n電極とが銀を含む材料によって形成され、前記p配線と前記n配線とが銅を含む材料によって形成されており、前記p電極と前記p配線との接続および前記n電極と前記n配線との接続がそれぞれはんだを介して行われていることを特徴とする、請求項9に記載の太陽電池モジュール。   The p electrode and the n electrode are formed of a material containing silver, the p wiring and the n wiring are formed of a material containing copper, and the connection between the p electrode and the p wiring and the n electrode The solar cell module according to claim 9, wherein the n wiring and the n wiring are respectively connected via solder. 前記p配線と前記n配線とがそれぞれ櫛歯を含む櫛形状に形成され、前記一の太陽電池ウエハのp電極およびn電極とそれぞれ電気的に接続しているp配線とn配線とが互いにそれぞれの櫛歯を向き合わせて設置されており、前記p配線の櫛歯と前記n配線の櫛歯とが前記絶縁性基板の一面に沿って交互に配列されていることを特徴とする、請求項9または10に記載の太陽電池モジュール。   The p wiring and the n wiring are each formed in a comb shape including comb teeth, and the p wiring and the n wiring respectively electrically connected to the p electrode and the n electrode of the one solar cell wafer are respectively connected to each other. The comb teeth of the p wiring and the comb teeth of the n wiring are alternately arranged along one surface of the insulating substrate. The solar cell module according to 9 or 10.
JP2004154845A 2004-05-25 2004-05-25 Solar cell and solar cell module Pending JP2005340362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154845A JP2005340362A (en) 2004-05-25 2004-05-25 Solar cell and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154845A JP2005340362A (en) 2004-05-25 2004-05-25 Solar cell and solar cell module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009001895A Division JP5329980B2 (en) 2009-01-07 2009-01-07 Solar cell module

Publications (1)

Publication Number Publication Date
JP2005340362A true JP2005340362A (en) 2005-12-08

Family

ID=35493603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154845A Pending JP2005340362A (en) 2004-05-25 2004-05-25 Solar cell and solar cell module

Country Status (1)

Country Link
JP (1) JP2005340362A (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041502A1 (en) * 2006-09-28 2008-04-10 Sharp Kabushiki Kaisha Solar cell, light concentrating photovoltaic power generation module, light concentrating photovoltaic power generation unit, solar cell manufacturing method and solar cell manufacturing apparatus
WO2008090718A1 (en) 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha Solar battery cell, solar battery array, solar battery module and method for manufacturing solar battery array
JP2008218863A (en) * 2007-03-07 2008-09-18 Shin Etsu Chem Co Ltd Method for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
WO2009019940A1 (en) 2007-08-07 2009-02-12 Sharp Kabushiki Kaisha Solar cell module
WO2009025147A1 (en) 2007-08-23 2009-02-26 Sharp Kabushiki Kaisha Rear surface bonding type solar cell, rear surface bonding type solar cell having wiring board, solar cell string and soar cell module
WO2009041212A1 (en) 2007-09-28 2009-04-02 Sharp Kabushiki Kaisha Solar battery, method for manufacturing solar battery, method for manufacturing solar battery module, and solar battery module
WO2009060753A1 (en) 2007-11-09 2009-05-14 Sharp Kabushiki Kaisha Solar battery module and method for manufacturing solar battery module
WO2009066583A1 (en) 2007-11-22 2009-05-28 Sharp Kabushiki Kaisha Wiring member between elements, photoelectric conversion element, and photoelectric conversion element connecting body and photoelectric conversion module using the wiring member between elements and the photoelectric conversion element
JP2009130116A (en) * 2007-11-22 2009-06-11 Sharp Corp Inter-element wiring member, photoelectric conversion element, photoelectric conversion element connector using these, and photoelectric conversion module
WO2009096114A1 (en) 2008-01-31 2009-08-06 Sharp Kabushiki Kaisha Method for manufacturing solar battery module
WO2009116394A1 (en) 2008-03-17 2009-09-24 シャープ株式会社 Solar battery module and method for manufacturing solar battery module
JP2009224597A (en) * 2008-03-17 2009-10-01 Sharp Corp Solar cell module, and manufacturing method of solar cell module
JP2009224598A (en) * 2008-03-17 2009-10-01 Sharp Corp Solar cell module, and manufacturing method of solar cell module
DE102008018360A1 (en) * 2008-04-11 2009-10-15 Seho Systemtechnik Gmbh Method for fitting solar cells on connecting support of solar cell module, involves connecting solar cells with connecting support, where connecting support is provided with conductive paths
US20090260672A1 (en) * 2008-04-21 2009-10-22 Sanyo Electric Co., Ltd. Solar cell module
WO2009144996A1 (en) * 2008-05-30 2009-12-03 シャープ株式会社 Solar battery, method for manufacturing solar battery, and solar battery module
WO2010001927A1 (en) 2008-07-02 2010-01-07 シャープ株式会社 Solar battery module and method for manufacturing the same
JP2010034540A (en) * 2008-06-26 2010-02-12 Hitachi Chem Co Ltd Electrode base material for solar cell
WO2010082594A1 (en) * 2009-01-16 2010-07-22 シャープ株式会社 Solar cell module and method for manufacturing solar cell module
JP2010182877A (en) * 2009-02-05 2010-08-19 Sharp Corp Solar cell, wiring sheet, solar cell with wiring sheet, and solar cell module
JP2010199228A (en) * 2009-02-24 2010-09-09 Hitachi Cable Ltd Wiring component for solar cell and method of manufacturing the same, and solar cell module
WO2010116973A1 (en) * 2009-04-08 2010-10-14 シャープ株式会社 Interconnect sheet, solar cell with interconnect sheet, solar module, and method of producing solar cell with interconnect sheet
CN101863162A (en) * 2008-12-09 2010-10-20 帕洛阿尔托研究中心公司 Micro-extrusion printhead with nozzle valves
JP2010245398A (en) * 2009-04-08 2010-10-28 Sharp Corp Wiring sheet, solar cell with wiring sheet, solar cell module, method of manufacturing solar cell with wiring sheet, and method of manufacturing solar cell module
WO2010122935A1 (en) 2009-04-23 2010-10-28 シャープ株式会社 Wiring sheet, solar cell provided with wiring sheet, and solar cell module
WO2010135153A2 (en) * 2009-05-20 2010-11-25 Nanogram Corporation Back contact solar cells with effective and efficient designs and corresponding patterning processes
JP2010539684A (en) * 2007-09-07 2010-12-16 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Patterned assembly for solar cell manufacturing and method for manufacturing solar cell
WO2010147037A1 (en) 2009-06-18 2010-12-23 シャープ株式会社 Back electrode type solar cell, solar cell provided with wiring sheet, and solar cell module
WO2010150735A1 (en) * 2009-06-22 2010-12-29 シャープ株式会社 Wiring sheet, solar cell with wiring sheet attached, wiring sheet roll, solar cell module, and method for producing wiring sheet
WO2011001837A1 (en) 2009-07-02 2011-01-06 シャープ株式会社 Solar battery cell with wiring sheet, solar battery module, and method for producing solar battery cell with wiring sheet
JP2011003854A (en) * 2009-06-22 2011-01-06 Sharp Corp Wiring sheet, solar cell with wiring sheet, solar cell module and wiring sheet roll
JP2011003938A (en) * 2007-08-24 2011-01-06 Sanyo Electric Co Ltd Solar cell and solar cell module
JP2011054831A (en) * 2009-09-03 2011-03-17 Sharp Corp Back contact type solar cell, solar cell string, and solar cell module
JP2011077130A (en) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd Solar cell module
CN102024855A (en) * 2009-09-17 2011-04-20 夏普株式会社 Solar battery module substrate and solar battery module
JP2011086675A (en) * 2009-10-13 2011-04-28 Namics Corp Solar cell module and method of manufacturing the same
JP2011129858A (en) * 2009-11-18 2011-06-30 Dainippon Printing Co Ltd Wiring sheet, solar cell modules, and manufacturing methods thereof
WO2011090169A1 (en) 2010-01-22 2011-07-28 シャープ株式会社 Back contact solar cell, wiring sheet, solar cell having wiring sheet, solar cell module and production method for solar cell having wiring sheet
US20110197951A1 (en) * 2008-08-22 2011-08-18 Yoshiya Abiko Solar battery module and method of manufacturing the same
JP2011181818A (en) * 2010-03-03 2011-09-15 Sharp Corp Tandem type solar cell
JP2011258996A (en) * 2011-09-29 2011-12-22 Sharp Corp Solar cell module and its manufacturing method
US20120006380A1 (en) * 2009-03-23 2012-01-12 Rui Mikami Solar cell with connecting sheet, solar cell module, and fabrication method of solar cell with connecting sheet
JP2012070015A (en) * 2012-01-12 2012-04-05 Sanyo Electric Co Ltd Solar cell module
JP2012070011A (en) * 2012-01-10 2012-04-05 Sharp Corp Solar cell module
KR101135591B1 (en) * 2009-03-11 2012-04-19 엘지전자 주식회사 Solar cell and solar cell module
EP2450959A1 (en) * 2009-06-29 2012-05-09 Sharp Kabushiki Kaisha Wiring sheet, solar cell with wiring sheet, solar cell module and wiring sheet roll
JP2012099566A (en) * 2010-10-29 2012-05-24 Sharp Corp Semiconductor device, backside contact solar battery cell with wiring board, solar cell module, manufacturing method of semiconductor device
JP2012109414A (en) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd Solar cell module
JP2012109415A (en) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd Solar cell module and manufacturing method of the same
EP2479802A1 (en) * 2009-09-15 2012-07-25 Sharp Kabushiki Kaisha Solar cell module and method for manufacturing same
CN102646728A (en) * 2012-05-02 2012-08-22 苏州阿特斯阳光电力科技有限公司 Back electrode structure of back contact silicon solar cell panel and manufacture method thereof
JP2012531758A (en) * 2009-06-29 2012-12-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for producing a film-like electrical connector for solar cells, connection element thus produced, and method for electrically connecting at least two solar cells to one solar module
CN102884636A (en) * 2010-05-06 2013-01-16 原子能和代替能源委员会 Photovoltaic cell comprising a region suspended by a conductive pattern and production process
JP2013016860A (en) * 2012-09-27 2013-01-24 Sharp Corp Solar cell module
WO2013042417A1 (en) * 2011-09-23 2013-03-28 三洋電機株式会社 Solar cell module and solar cell
US8409976B2 (en) 2007-02-16 2013-04-02 Nanogram Corporation Solar cell structures, photovoltaic panels and corresponding processes
CN103066151A (en) * 2012-11-30 2013-04-24 宫昌萌 Manufacturing method of back-contacted solar cell bunches
JP2013093610A (en) * 2013-01-17 2013-05-16 Sharp Corp Solar cell structure and solar cell module
JP2013141040A (en) * 2013-04-23 2013-07-18 Sharp Corp Photoelectric conversion element connection body and photoelectric conversion module
JP2013165248A (en) * 2012-02-13 2013-08-22 Nippon Avionics Co Ltd Solar cell module manufacturing method and manufacturing device
JP2013175743A (en) * 2013-04-01 2013-09-05 Sharp Corp Solar battery module
JP2014030057A (en) * 2013-10-28 2014-02-13 Sharp Corp Wiring board, solar cell module, and solar cell module manufacturing method
JP2014160865A (en) * 2014-05-09 2014-09-04 Sharp Corp Solar battery module
US8912083B2 (en) 2011-01-31 2014-12-16 Nanogram Corporation Silicon substrates with doped surface contacts formed from doped silicon inks and corresponding processes
US20150007874A1 (en) * 2013-07-02 2015-01-08 E I Du Pont De Nemours And Company Back-contact solar cell module
US9035173B2 (en) 2010-11-30 2015-05-19 Sharp Kabushiki Kaisha Back electrode type solar cell, back electrode type solar cell with interconnection sheet, solar cell module, method of manufacturing back electrode type solar cell with interconnection sheet, and method of manufacturing solar cell module
KR20150086617A (en) * 2014-01-20 2015-07-29 엘지전자 주식회사 Solar cell module
KR20150100144A (en) * 2014-02-24 2015-09-02 엘지전자 주식회사 Solar cell module
JP2016081947A (en) * 2014-10-10 2016-05-16 東レ株式会社 Insulation sheet for solar cell
US20160163898A1 (en) * 2014-12-03 2016-06-09 Sharp Kabushiki Kaisha Photovoltaic device
WO2016103883A1 (en) * 2014-12-26 2016-06-30 シャープ株式会社 Solar cell module, wiring sheet for solar cell module, and method for manufacturing wiring sheet for solar cell module
US9666746B2 (en) 2011-06-14 2017-05-30 Dai Nippon Printing Co., Ltd. Conductive base for forming wiring pattern of collector sheet for solar cells, and method for producing collector sheet for solar cells
JP2019004189A (en) * 2018-10-10 2019-01-10 シャープ株式会社 Photoelectric conversion device
US10181543B2 (en) * 2009-11-03 2019-01-15 Lg Electronics Inc. Solar cell module having a conductive pattern part
JP2020509585A (en) * 2017-02-24 2020-03-26 泰州中来光電科技有限公司Jolywood (Taizhou) Solar Technology Co.,Ltd. Back contact type solar cell string, method for manufacturing the same, module and system
US11594652B2 (en) 2014-04-07 2023-02-28 Solaero Technologies Corp. Interconnection of neighboring solar cells on a flexible supporting film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394194A (en) * 1977-01-28 1978-08-17 Toshiba Corp Substrate for photoelectric transducer
JPS63287077A (en) * 1987-05-20 1988-11-24 Hitachi Ltd Photoelectric conversion device
JPH01125563U (en) * 1988-02-22 1989-08-28
JPH01176957U (en) * 1988-06-02 1989-12-18
JPH08298334A (en) * 1995-04-26 1996-11-12 Mitsubishi Electric Corp Solar cell board
JPH1140832A (en) * 1997-07-17 1999-02-12 Ion Kogaku Kenkyusho:Kk Thin-film solar cell and manufacture therefor
JP2002164556A (en) * 2000-11-27 2002-06-07 Kyocera Corp Back electrode type solar battery element
JP2002532888A (en) * 1998-11-25 2002-10-02 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Thin film solar cell array system and method of manufacturing the same
JP2003101049A (en) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd Method for manufacturing photoelectric transducer
JP2004071828A (en) * 2002-08-06 2004-03-04 Toyota Motor Corp Solar cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394194A (en) * 1977-01-28 1978-08-17 Toshiba Corp Substrate for photoelectric transducer
JPS63287077A (en) * 1987-05-20 1988-11-24 Hitachi Ltd Photoelectric conversion device
JPH01125563U (en) * 1988-02-22 1989-08-28
JPH01176957U (en) * 1988-06-02 1989-12-18
JPH08298334A (en) * 1995-04-26 1996-11-12 Mitsubishi Electric Corp Solar cell board
JPH1140832A (en) * 1997-07-17 1999-02-12 Ion Kogaku Kenkyusho:Kk Thin-film solar cell and manufacture therefor
JP2002532888A (en) * 1998-11-25 2002-10-02 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Thin film solar cell array system and method of manufacturing the same
JP2002164556A (en) * 2000-11-27 2002-06-07 Kyocera Corp Back electrode type solar battery element
JP2003101049A (en) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd Method for manufacturing photoelectric transducer
JP2004071828A (en) * 2002-08-06 2004-03-04 Toyota Motor Corp Solar cell

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041502A1 (en) * 2006-09-28 2008-04-10 Sharp Kabushiki Kaisha Solar cell, light concentrating photovoltaic power generation module, light concentrating photovoltaic power generation unit, solar cell manufacturing method and solar cell manufacturing apparatus
JPWO2008090718A1 (en) * 2007-01-25 2010-05-13 シャープ株式会社 Solar cell, solar cell array and solar cell module
WO2008090718A1 (en) 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha Solar battery cell, solar battery array, solar battery module and method for manufacturing solar battery array
US9343606B2 (en) 2007-02-16 2016-05-17 Nanogram Corporation Solar cell structures, photovoltaic panels and corresponding processes
US8853527B2 (en) 2007-02-16 2014-10-07 Nanogram Corporation Solar cell structures, photovoltaic panels and corresponding processes
US8409976B2 (en) 2007-02-16 2013-04-02 Nanogram Corporation Solar cell structures, photovoltaic panels and corresponding processes
JP2008218863A (en) * 2007-03-07 2008-09-18 Shin Etsu Chem Co Ltd Method for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
US20110155203A1 (en) * 2007-08-07 2011-06-30 Yasushi Funakoshi Solar cell module
WO2009019940A1 (en) 2007-08-07 2009-02-12 Sharp Kabushiki Kaisha Solar cell module
WO2009025147A1 (en) 2007-08-23 2009-02-26 Sharp Kabushiki Kaisha Rear surface bonding type solar cell, rear surface bonding type solar cell having wiring board, solar cell string and soar cell module
JP5093821B2 (en) * 2007-08-23 2012-12-12 シャープ株式会社 Back junction solar cell with wiring board, solar cell string and solar cell module
JP2011003938A (en) * 2007-08-24 2011-01-06 Sanyo Electric Co Ltd Solar cell and solar cell module
JP2010539684A (en) * 2007-09-07 2010-12-16 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Patterned assembly for solar cell manufacturing and method for manufacturing solar cell
JP2009088145A (en) * 2007-09-28 2009-04-23 Sharp Corp Solar battery, manufacturing method for the solar battery, manufacturing method for solar battery module, and the solar battery module
EP3258504A1 (en) 2007-09-28 2017-12-20 Sharp Kabushiki Kaisha Solar battery, method for manufacturing solar battery, method for manufacturing solar cell module, and solar cell module
US9349896B2 (en) 2007-09-28 2016-05-24 Sharp Kabushiki Kaisha Solar battery, method for manufacturing solar battery, method for manufacturing solar cell module, and solar cell module
US10319869B2 (en) 2007-09-28 2019-06-11 Sharp Kabushiki Kaisha Solar battery, method for manufacturing solar battery, method for manufacturing solar cell module, and solar cell module
WO2009041212A1 (en) 2007-09-28 2009-04-02 Sharp Kabushiki Kaisha Solar battery, method for manufacturing solar battery, method for manufacturing solar battery module, and solar battery module
CN101874305B (en) * 2007-09-28 2012-11-21 夏普株式会社 Solar battery, method for manufacturing solar battery, method for manufacturing solar battery module, and solar battery module
JPWO2009060753A1 (en) * 2007-11-09 2011-03-24 シャープ株式会社 Solar cell module and method for manufacturing solar cell module
CN101855730A (en) * 2007-11-09 2010-10-06 夏普株式会社 Solar battery module and method for manufacturing solar battery module
WO2009060753A1 (en) 2007-11-09 2009-05-14 Sharp Kabushiki Kaisha Solar battery module and method for manufacturing solar battery module
KR101164345B1 (en) 2007-11-22 2012-07-09 샤프 가부시키가이샤 Wiring member between elements, photoelectric conversion element, and photoelectric conversion element connecting body and photoelectric conversion module using the wiring member between elements and the photoelectric conversion element
JP2009130116A (en) * 2007-11-22 2009-06-11 Sharp Corp Inter-element wiring member, photoelectric conversion element, photoelectric conversion element connector using these, and photoelectric conversion module
WO2009066583A1 (en) 2007-11-22 2009-05-28 Sharp Kabushiki Kaisha Wiring member between elements, photoelectric conversion element, and photoelectric conversion element connecting body and photoelectric conversion module using the wiring member between elements and the photoelectric conversion element
JP5067815B2 (en) * 2007-11-22 2012-11-07 シャープ株式会社 Inter-element wiring member, photoelectric conversion element connector, and photoelectric conversion module
JP2009182244A (en) * 2008-01-31 2009-08-13 Sharp Corp Method of manufacturing solar battery module
WO2009096114A1 (en) 2008-01-31 2009-08-06 Sharp Kabushiki Kaisha Method for manufacturing solar battery module
US8034639B2 (en) 2008-01-31 2011-10-11 Sharp Kabushiki Kaisha Method for manufacturing solar cell module
JP2009224598A (en) * 2008-03-17 2009-10-01 Sharp Corp Solar cell module, and manufacturing method of solar cell module
JP2009224597A (en) * 2008-03-17 2009-10-01 Sharp Corp Solar cell module, and manufacturing method of solar cell module
WO2009116394A1 (en) 2008-03-17 2009-09-24 シャープ株式会社 Solar battery module and method for manufacturing solar battery module
DE102008018360A1 (en) * 2008-04-11 2009-10-15 Seho Systemtechnik Gmbh Method for fitting solar cells on connecting support of solar cell module, involves connecting solar cells with connecting support, where connecting support is provided with conductive paths
JP2009266848A (en) * 2008-04-21 2009-11-12 Sanyo Electric Co Ltd Solar cell module
US9196776B2 (en) 2008-04-21 2015-11-24 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
US20090260672A1 (en) * 2008-04-21 2009-10-22 Sanyo Electric Co., Ltd. Solar cell module
WO2009144996A1 (en) * 2008-05-30 2009-12-03 シャープ株式会社 Solar battery, method for manufacturing solar battery, and solar battery module
US20110114179A1 (en) * 2008-05-30 2011-05-19 Yasushi Funakoshi Solar battery, method for manufacturing solar battery, and solar cell module
EP2284907A1 (en) * 2008-05-30 2011-02-16 Sharp Kabushiki Kaisha Solar battery, method for manufacturing solar battery, and solar battery module
JP2009290105A (en) * 2008-05-30 2009-12-10 Sharp Corp Solar battery, method of manufacturing solar battery, and solar battery module
EP2284907A4 (en) * 2008-05-30 2012-11-28 Sharp Kk Solar battery, method for manufacturing solar battery, and solar battery module
JP2010034540A (en) * 2008-06-26 2010-02-12 Hitachi Chem Co Ltd Electrode base material for solar cell
JP2010016074A (en) * 2008-07-02 2010-01-21 Sharp Corp Solar cell module, and its manufacturing method
WO2010001927A1 (en) 2008-07-02 2010-01-07 シャープ株式会社 Solar battery module and method for manufacturing the same
KR101178765B1 (en) * 2008-07-02 2012-09-07 샤프 가부시키가이샤 Solar battery module and method for manufacturing the same
US8993875B2 (en) 2008-07-02 2015-03-31 Sharp Kabushiki Kaisha Solar battery module and method for manufacturing the same
US20110197951A1 (en) * 2008-08-22 2011-08-18 Yoshiya Abiko Solar battery module and method of manufacturing the same
CN101863162A (en) * 2008-12-09 2010-10-20 帕洛阿尔托研究中心公司 Micro-extrusion printhead with nozzle valves
JPWO2010082594A1 (en) * 2009-01-16 2012-07-05 シャープ株式会社 Solar cell module and method for manufacturing solar cell module
WO2010082594A1 (en) * 2009-01-16 2010-07-22 シャープ株式会社 Solar cell module and method for manufacturing solar cell module
CN102356472A (en) * 2009-01-16 2012-02-15 夏普株式会社 Solar cell module and method for manufacturing solar cell module
JP5324602B2 (en) * 2009-01-16 2013-10-23 シャープ株式会社 Manufacturing method of solar cell module
JP2010182877A (en) * 2009-02-05 2010-08-19 Sharp Corp Solar cell, wiring sheet, solar cell with wiring sheet, and solar cell module
JP2010199228A (en) * 2009-02-24 2010-09-09 Hitachi Cable Ltd Wiring component for solar cell and method of manufacturing the same, and solar cell module
KR101135591B1 (en) * 2009-03-11 2012-04-19 엘지전자 주식회사 Solar cell and solar cell module
US10784385B2 (en) 2009-03-11 2020-09-22 Lg Electronics Inc. Solar cell and solar cell module
US20120006380A1 (en) * 2009-03-23 2012-01-12 Rui Mikami Solar cell with connecting sheet, solar cell module, and fabrication method of solar cell with connecting sheet
CN102362363A (en) * 2009-03-23 2012-02-22 夏普株式会社 Wiring-sheet-attached solar battery cell, solar cell module, and process for manufacturing wiring-sheet-attached solar battery cell
US9263603B2 (en) 2009-03-23 2016-02-16 Sharp Kabushiki Kaisha Solar cell with connecting sheet, solar cell module, and fabrication method of solar cell with connecting sheet
WO2010116973A1 (en) * 2009-04-08 2010-10-14 シャープ株式会社 Interconnect sheet, solar cell with interconnect sheet, solar module, and method of producing solar cell with interconnect sheet
JP2010245398A (en) * 2009-04-08 2010-10-28 Sharp Corp Wiring sheet, solar cell with wiring sheet, solar cell module, method of manufacturing solar cell with wiring sheet, and method of manufacturing solar cell module
JPWO2010116973A1 (en) * 2009-04-08 2012-10-18 シャープ株式会社 Solar cell with wiring sheet, solar cell module, and method for manufacturing solar cell with wiring sheet
WO2010122935A1 (en) 2009-04-23 2010-10-28 シャープ株式会社 Wiring sheet, solar cell provided with wiring sheet, and solar cell module
WO2010135153A2 (en) * 2009-05-20 2010-11-25 Nanogram Corporation Back contact solar cells with effective and efficient designs and corresponding patterning processes
WO2010135153A3 (en) * 2009-05-20 2011-03-10 Nanogram Corporation Back contact solar cells with effective and efficient designs and corresponding patterning processes
EP2445016A1 (en) * 2009-06-18 2012-04-25 Sharp Kabushiki Kaisha Back electrode type solar cell, solar cell provided with wiring sheet, and solar cell module
WO2010147037A1 (en) 2009-06-18 2010-12-23 シャープ株式会社 Back electrode type solar cell, solar cell provided with wiring sheet, and solar cell module
EP2445016A4 (en) * 2009-06-18 2012-10-24 Sharp Kk Back electrode type solar cell, solar cell provided with wiring sheet, and solar cell module
WO2010150735A1 (en) * 2009-06-22 2010-12-29 シャープ株式会社 Wiring sheet, solar cell with wiring sheet attached, wiring sheet roll, solar cell module, and method for producing wiring sheet
JP2011003854A (en) * 2009-06-22 2011-01-06 Sharp Corp Wiring sheet, solar cell with wiring sheet, solar cell module and wiring sheet roll
JPWO2010150735A1 (en) * 2009-06-22 2012-12-10 シャープ株式会社 WIRING SHEET, SOLAR CELL WITH WIRING SHEET, WIRING SHEET ROLL, SOLAR CELL MODULE, AND WIRING SHEET MANUFACTURING METHOD
EP2450959A4 (en) * 2009-06-29 2012-12-12 Sharp Kk Wiring sheet, solar cell with wiring sheet, solar cell module and wiring sheet roll
US9307650B2 (en) 2009-06-29 2016-04-05 Solarworld Industries Thueringen Gmbh Method for manufacturing a foil-like electrical connector for connecting solar cells
US8609983B2 (en) 2009-06-29 2013-12-17 Sharp Kabushiki Kaisha Interconnection sheet, solar cell with interconnection sheet, solar cell module, and interconnection sheet roll
EP2450959A1 (en) * 2009-06-29 2012-05-09 Sharp Kabushiki Kaisha Wiring sheet, solar cell with wiring sheet, solar cell module and wiring sheet roll
JP2012531758A (en) * 2009-06-29 2012-12-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for producing a film-like electrical connector for solar cells, connection element thus produced, and method for electrically connecting at least two solar cells to one solar module
WO2011001837A1 (en) 2009-07-02 2011-01-06 シャープ株式会社 Solar battery cell with wiring sheet, solar battery module, and method for producing solar battery cell with wiring sheet
JP2011054831A (en) * 2009-09-03 2011-03-17 Sharp Corp Back contact type solar cell, solar cell string, and solar cell module
EP2479802A1 (en) * 2009-09-15 2012-07-25 Sharp Kabushiki Kaisha Solar cell module and method for manufacturing same
EP2479802A4 (en) * 2009-09-15 2014-01-29 Sharp Kk Solar cell module and method for manufacturing same
CN102024855A (en) * 2009-09-17 2011-04-20 夏普株式会社 Solar battery module substrate and solar battery module
JP2011077130A (en) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd Solar cell module
JP2011086675A (en) * 2009-10-13 2011-04-28 Namics Corp Solar cell module and method of manufacturing the same
US10181543B2 (en) * 2009-11-03 2019-01-15 Lg Electronics Inc. Solar cell module having a conductive pattern part
JP2011129858A (en) * 2009-11-18 2011-06-30 Dainippon Printing Co Ltd Wiring sheet, solar cell modules, and manufacturing methods thereof
WO2011090169A1 (en) 2010-01-22 2011-07-28 シャープ株式会社 Back contact solar cell, wiring sheet, solar cell having wiring sheet, solar cell module and production method for solar cell having wiring sheet
JP2011181818A (en) * 2010-03-03 2011-09-15 Sharp Corp Tandem type solar cell
JP2013526072A (en) * 2010-05-06 2013-06-20 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Solar cell having region floating by conductive pattern and method for manufacturing the same
CN102884636A (en) * 2010-05-06 2013-01-16 原子能和代替能源委员会 Photovoltaic cell comprising a region suspended by a conductive pattern and production process
JP2012099566A (en) * 2010-10-29 2012-05-24 Sharp Corp Semiconductor device, backside contact solar battery cell with wiring board, solar cell module, manufacturing method of semiconductor device
JP2012109414A (en) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd Solar cell module
JP2012109415A (en) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd Solar cell module and manufacturing method of the same
US9035173B2 (en) 2010-11-30 2015-05-19 Sharp Kabushiki Kaisha Back electrode type solar cell, back electrode type solar cell with interconnection sheet, solar cell module, method of manufacturing back electrode type solar cell with interconnection sheet, and method of manufacturing solar cell module
US9378957B2 (en) 2011-01-31 2016-06-28 Nanogram Corporation Silicon substrates with doped surface contacts formed from doped silicon based inks and corresponding processes
US8912083B2 (en) 2011-01-31 2014-12-16 Nanogram Corporation Silicon substrates with doped surface contacts formed from doped silicon inks and corresponding processes
US9666746B2 (en) 2011-06-14 2017-05-30 Dai Nippon Printing Co., Ltd. Conductive base for forming wiring pattern of collector sheet for solar cells, and method for producing collector sheet for solar cells
JPWO2013042417A1 (en) * 2011-09-23 2015-03-26 三洋電機株式会社 Solar cell module and solar cell
WO2013042417A1 (en) * 2011-09-23 2013-03-28 三洋電機株式会社 Solar cell module and solar cell
JP2011258996A (en) * 2011-09-29 2011-12-22 Sharp Corp Solar cell module and its manufacturing method
JP2012070011A (en) * 2012-01-10 2012-04-05 Sharp Corp Solar cell module
JP2012070015A (en) * 2012-01-12 2012-04-05 Sanyo Electric Co Ltd Solar cell module
JP2013165248A (en) * 2012-02-13 2013-08-22 Nippon Avionics Co Ltd Solar cell module manufacturing method and manufacturing device
CN102646728B (en) * 2012-05-02 2015-11-11 苏州阿特斯阳光电力科技有限公司 Back electrode structure of a kind of back contact silicon solar battery sheet and preparation method thereof
CN102646728A (en) * 2012-05-02 2012-08-22 苏州阿特斯阳光电力科技有限公司 Back electrode structure of back contact silicon solar cell panel and manufacture method thereof
JP2013016860A (en) * 2012-09-27 2013-01-24 Sharp Corp Solar cell module
CN103066151A (en) * 2012-11-30 2013-04-24 宫昌萌 Manufacturing method of back-contacted solar cell bunches
JP2013093610A (en) * 2013-01-17 2013-05-16 Sharp Corp Solar cell structure and solar cell module
JP2013175743A (en) * 2013-04-01 2013-09-05 Sharp Corp Solar battery module
JP2013141040A (en) * 2013-04-23 2013-07-18 Sharp Corp Photoelectric conversion element connection body and photoelectric conversion module
US20150007874A1 (en) * 2013-07-02 2015-01-08 E I Du Pont De Nemours And Company Back-contact solar cell module
CN104282778A (en) * 2013-07-02 2015-01-14 E.I.内穆尔杜邦公司 Back-contact solar cell module
JP2014030057A (en) * 2013-10-28 2014-02-13 Sharp Corp Wiring board, solar cell module, and solar cell module manufacturing method
KR102257808B1 (en) * 2014-01-20 2021-05-28 엘지전자 주식회사 Solar cell module
KR20150086617A (en) * 2014-01-20 2015-07-29 엘지전자 주식회사 Solar cell module
KR20150100144A (en) * 2014-02-24 2015-09-02 엘지전자 주식회사 Solar cell module
KR102233873B1 (en) * 2014-02-24 2021-03-30 엘지전자 주식회사 Solar cell module
US11594652B2 (en) 2014-04-07 2023-02-28 Solaero Technologies Corp. Interconnection of neighboring solar cells on a flexible supporting film
JP2014160865A (en) * 2014-05-09 2014-09-04 Sharp Corp Solar battery module
JP2016081947A (en) * 2014-10-10 2016-05-16 東レ株式会社 Insulation sheet for solar cell
US20160163898A1 (en) * 2014-12-03 2016-06-09 Sharp Kabushiki Kaisha Photovoltaic device
JP2016127053A (en) * 2014-12-26 2016-07-11 シャープ株式会社 Solar battery module, solar battery module wiring sheet and manufacturing method for the same
WO2016103883A1 (en) * 2014-12-26 2016-06-30 シャープ株式会社 Solar cell module, wiring sheet for solar cell module, and method for manufacturing wiring sheet for solar cell module
JP2020509585A (en) * 2017-02-24 2020-03-26 泰州中来光電科技有限公司Jolywood (Taizhou) Solar Technology Co.,Ltd. Back contact type solar cell string, method for manufacturing the same, module and system
JP2019004189A (en) * 2018-10-10 2019-01-10 シャープ株式会社 Photoelectric conversion device

Similar Documents

Publication Publication Date Title
JP2005340362A (en) Solar cell and solar cell module
JP4738149B2 (en) Solar cell module
JP6328606B2 (en) Semiconductor wafer cell and module processing for back contact photovoltaic modules
JP6400071B2 (en) Self-supporting metal articles for semiconductors
US9508884B2 (en) Solar cell metallisation and interconnection method
US8563347B2 (en) Method for producing a thin-film photovoltaic cell having an etchant-resistant electrode and an integrated bypass diode and a panel incorporating the same
US10249775B2 (en) Solar cell and method for producing solar cell
JP5726303B2 (en) Solar cell and method for manufacturing the same
JPH04276665A (en) Integrated solar battery
US20200091362A1 (en) Solar cell module and method for producing same
JPWO2008090718A1 (en) Solar cell, solar cell array and solar cell module
US20170288081A1 (en) Photovoltaic module
JP2016512394A (en) Self-supporting metal articles for semiconductors
JPH0621501A (en) Solar cell module and manufacture thereof
JP2009253096A (en) Solar battery cell manufacturing method, solar battery module manufacturing method, and solar battery module
JP5329980B2 (en) Solar cell module
JP4185332B2 (en) Solar cell and solar cell module using the same
WO2013094556A1 (en) Solar cell with wiring sheet, solar cell module, and solar cell manufacturing method
US20120295395A1 (en) Method for producing an array of thin-film photovoltaic cells having a totally separated integrated bypass diode associated with a plurality of cells and method for producing a panel incorporating the same
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
JP2005260158A (en) Solar cell module
JP6455099B2 (en) Solar cell unit and method for manufacturing solar cell unit
JP4761714B2 (en) Solar cell and solar cell module using the same
JPWO2018150598A1 (en) Method of manufacturing solar cell and solar cell
JP2023500440A (en) Photovoltaic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301