JP2005338597A - 光学フイルムの製造方法 - Google Patents

光学フイルムの製造方法 Download PDF

Info

Publication number
JP2005338597A
JP2005338597A JP2004159436A JP2004159436A JP2005338597A JP 2005338597 A JP2005338597 A JP 2005338597A JP 2004159436 A JP2004159436 A JP 2004159436A JP 2004159436 A JP2004159436 A JP 2004159436A JP 2005338597 A JP2005338597 A JP 2005338597A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal compound
film
magnetic field
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004159436A
Other languages
English (en)
Inventor
Michio Nagai
道夫 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004159436A priority Critical patent/JP2005338597A/ja
Publication of JP2005338597A publication Critical patent/JP2005338597A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】 配向膜を使用せずに、シュリーレン欠陥の少ないハイブリッド配向の液晶化合物層を製造する。
【解決手段】 支持体の上に液晶化合物を塗布し、空気側界面と支持体側界面とを有する液晶化合物層を形成する工程、そして、液晶化合物層の形成と同時または形成後に、液晶化合物層に磁場を印加し、液晶化合物層の空気側界面における液晶化合物の平均チルト角が、液晶化合物層の支持体側界面における液晶化合物の平均チルト角よりも大きく、それらの差が10度以上となるように液晶化合物をハイブリッド配向させる工程により光学フイルムを製造する。
【選択図】 図1

Description

本発明は、液晶化合物をハイブリッド配向させて、光学フイルムを製造する方法に関する。
液晶化合物を配向させて製造した光学フイルムは、近年になって、液晶表示装置の光学補償シート、輝度向上フイルム、投射型表示装置の光学補償シートのような、様々な用途に展開されている。液晶表示装置の光学補償シートとしての発展は、とりわけ顕著である。
光学補償シートは、画像着色を解消し、視野角を拡大するために、様々な液晶表示装置で用いられている。従来は、光学補償シートとして、延伸複屈折フイルムが使用されていた(例えば、特許文献1参照)。しかし、近年では、延伸複屈折フイルムに代えて、透明支持体上に円盤状(ディスコティック)液晶化合物からなる液晶化合物層を有する光学補償シートを使用することが提案されている(例えば、特許文献2および3参照)。この液晶化合物層は、円盤状液晶化合物を含む組成物を配向膜の上に塗布し、配向温度よりも高い温度で加熱して円盤状液晶化合物を配向させ、その配向状態を固定することにより形成される液晶化合物層である。
一般に、円盤状液晶化合物は、大きな複屈折率を有するとともに、多様な配向形態がある。円盤状液晶化合物を用いることで、従来の延伸複屈折フイルムでは得ることができない光学的性質を実現することが可能になった。円盤状液晶化合物は、多様な配向形態があるため、所望の光学特性を発現させるためには、液晶化合物層における円盤状液晶化合物の配向を制御する必要がある。
例えば、円盤状液晶化合物を用いて、TNモードやOCBモードの液晶セルを光学的に補償する場合、円盤状液晶化合物の円盤面の傾斜角(平均チルト角)が液晶化合物層の厚み方向で変化するようにハイブリッド配向させることが好ましいとされている(例えば、特許文献2、4および5参照)。このような光学補償シートを製造するためには、液晶化合物の配向を制御する方法が重要である。
液晶化合物の配向を制御する方法として、配向膜(界面処理)を用いる方法が知られている。しかし配向膜の規制力だけでは、液晶分子を配向膜界面から空気界面まで均一に配向させることが難しく、また配向させるのに所用する時間(熟成時間)も長い。特に、生産性を向上させるために熟成時間を短縮すると、シュリーレン欠陥の発生が顕著になる。液晶化合物層にシュリーレン欠陥が生じると光散乱が起こり、光学特性を損なうという問題がある。
また、配向膜は、原則としてラビング処理を必要とする。ラビング処理を実施するために、光学フイルムの製造工程を一つ追加する必要がある。また、ラビング処理を実施すると、塵が発生する問題も指摘されている。
配向膜以外に液晶化合物の配向を制御する方法としては、磁場や電場を用いる方法が提案されている(例えば、特許文献6および7参照)。また、磁場や電場を配向膜と併用する方法も提案されている。磁場や電場を用いる方法あるいは磁場や電場を配向膜と併用する方法は、液晶化合物層において液晶化合物を全て同じ方向に均一に配向させるために有効な手段であることが報告されている。
特開平2−247602号公報 特開平7−191217号公報 欧州特許出願公開第0911656号明細書 特開平9−211444号公報 特開平11−316378号公報 特開平5−215921号公報 特開2003−255127号公報
本発明は、シュリーレン欠陥の少ないハイブリッド配向の液晶化合物層を、迅速に製造することを課題とする。
本発明は、配向膜を使用することなく、液晶化合物をハイブリッド配向させることも課題とする。
上記課題は、以下の手段により解決された。
(1)支持体の上に(配向膜を設けることなく)液晶化合物を塗布し、空気側界面と支持体側界面とを有する液晶化合物層を形成する工程、そして、液晶化合物層の形成と同時または形成後に、液晶化合物層に磁場を印加し、液晶化合物層の空気側界面における液晶化合物の平均チルト角が、液晶化合物層の支持体側界面における液晶化合物の平均チルト角よりも大きく、それらの差が10度以上となるように液晶化合物をハイブリッド配向させる工程からなる光学フイルムの製造方法。
(2)磁場の印加と同時または印加後に、液晶化合物の配向状態を固定する工程を実施する(1)に記載の光学フイルムの製造方法。
(3)液晶化合物が重合性基を有し、重合反応により液晶化合物の配向状態を固定する(2)に記載の光学フイルムの製造方法。
(4)液晶化合物の液晶転移温度よりも高い温度で磁場を印加する工程を実施し、磁場を印加しながら液晶転移温度よりも低い温度まで冷却することにより液晶化合物の配向状態を固定する(2)に記載の光学フイルムの製造方法。
(5)支持体の上に下塗り層を設け、下塗り層の上に液晶化合物を塗布する(1)に記載の光学フイルムの製造方法。
(6)液晶化合物が、円盤状液晶化合物である(1)に記載の光学フイルムの製造方法。
本発明において、液晶化合物のチルト角は、円盤状液晶化合物では円盤面と界面(空気側界面または配向膜側界面を構成する平面)との間の角度、棒状液晶性化合物では長軸方向と界面との間の角度を意味する。磁場のチルト角は、印加する磁場の方向と界面との間の角度を意味する。
また、液晶化合物の方位角は、液晶化合物の光軸(円盤状液晶化合物では円盤面の法線方向、棒状液晶性化合物では長軸方向)を界面に投影して得られる直線の方向を意味する。磁場の方位角は、印加する磁場の方向を界面に投影して得られる直線の方向を意味する。
本発明は、配向膜の使用に代えて、磁場の印加により、液晶化合物をハイブリッド配向させることを特徴とする。
従来のハイブリッド配向は、配向膜側界面近傍では配向膜の配向機能が強く、配向膜から遠い空気界面近傍では配向膜の配向機能が弱いことを利用して、液晶化合物のチルト角を液晶化合物層の厚み方向で変化させていた。例えば、配向膜が水平配向性であると、配向膜の水平配向機能が強い液晶化合物層の配向膜側界面近傍では、液晶化合物が水平に配向してチルト角が小さくなる。一方、配向膜の水平配向機能が弱い液晶化合物層の空気側界面近傍では、液晶化合物はあまり水平に配向せずチルト角が大きくなる。
ただし、配向膜の機能の強弱で自然にハイブリッド配向させる方法では、ハイブリッド配向の状態になるまでに時間がかかり、シュリーレン欠陥も発生しやすい。また、配向膜は、原則としてラビング処理を必要とする。
一方、磁場は、液晶化合物層に対して均一に作用する。従って、特開2003−255127号公報に記載されているように、磁場を用いる方法は、液晶化合物層において液晶化合物を全て同じ方向に均一に配向させるために有効な手段とされている。そのため、磁場のみで液晶化合物をハイブリッド配向させることは全く検討されていなかった。
ところが、本発明者が研究を進めたところ、予想外に、磁場を印加するだけで、液晶化合物をハイブリッド配向させることができることが判明した。
磁場は、液晶化合物の方位角の決定については、液晶化合物層内で均一かつ充分に作用する。従って、磁場を印加すると、方位角については、液晶化合物は磁場の方位角とほぼ同じ方向で均一に配向する。ところが、液晶化合物の傾斜角については、支持体側界面と空気側界面との違いが大きく、磁場が均一に作用しても、傾斜角が変化しやすいことが判明した。すなわち、支持体側界面では、支持体側の物質(すなわち、支持体または下塗り層の構成成分)との相互作用で液晶化合物は相対的に水平に配向する傾向がある。一方、空気側界面では、空気との関係で液晶化合物は水平には配向しにくい(相対的に傾斜して配向しやすい)傾向がある。磁場を均一に作用させても、これらの傾向が残存し、その結果として、液晶化合物をハイブリッド配向させることができる。
本発明では、磁場を印加することにより、シュリーレン欠陥のないハイブリッド配向を短時間で実現できる。また、本発明では、配向膜が不要であるため、ラビング処理を実施する必要がない。従って、光学フイルムの製造工程が簡略になり、ラビング処理により発生する塵の問題も解消できる。
[本発明の基本的な概念]
図1は、本発明の基本的な概念を示す模式図である。
本発明の製造方法は、下記の工程1〜4で実施することが好ましい。なお、下記1〜4から選ばれる複数の工程を同時に実施してもよい。ただし、1から4までの順序が逆転することはない。
工程1:支持体(1)上に、下塗り層(2)を形成する。
工程2:下塗り層(2)上に、液晶化合物層(3)を形成する。
工程3:液晶化合物層(3)に磁場(S(点線)N)を印加して、液晶化合物(d1、d2、d3)をハイブリッド配向させる。
工程4:液晶化合物層(3)における液晶化合物(d1、d2、d3)の配向状態を固定する。
工程3では、液晶化合物層(3)に磁場(S(点線)N)を印加して、液晶化合物層(3)の空気側界面(3a)における液晶化合物(d3)の平均チルト角(α)が、液晶化合物層(3)の支持体側界面(3b)における液晶化合物(d1)の平均チルト角(β)よりも大きく(β<α)、それらの差が10度以上となるように、液晶化合物(d1、d2、d3)をハイブリッド配向させる。すなわち、αとβは、α−β≧10°を満足する。α−β≧15°であることが好ましく、α−β≧20°であることがさらに好ましく、α−β≧30°であることが最も好ましい。
一般に、液晶化合物層(3)の空気側界面(3a)における液晶化合物(d3)の平均チルト角(α)は、磁場のチルト角(θ)に近い角度になる。具体的には、αとθは、|α−θ|<10°であることが好ましく、|α−θ|<7°であることがより好ましく、|α−θ|<5°であることがさらに好ましく、|α−θ|<3°であることが最も好ましい。
[支持体]
支持体は、透明であることが好ましい。透明とは、具体的には、光透過率が80%以上であることが好ましい。ただし、本発明に従って、不透明支持体上に液晶化合物層を形成し、液晶の配向状態を固定してから、液晶化合物層を(不透明支持体とは別の)透明支持体に転写することもできる。
ロール状の光学補償フイルムを製造する場合は、円筒状に巻き取ることができるポリマーフイルムを支持体として用いることが好ましい。
ポリマーフイルムを構成するポリマーの例は、セルロースエステル(例、セルロースアセテート、セルロースジアセテート)、ノルボルネン系ポリマーおよびポリオレフィン系ポリマー(例、ポリメチルメタクリレート)、ポリエステル(例、ポリカーボネート)やポリスルホンを含む。市販のポリマー(ノルボルネン系ポリマーでは、ARTON(日本合成ゴム(株)製)およびゼオネックス(日本ゼオン(株)製))を用いてもよい。
ポリマーは、セルロースエステルが好ましく、セルロースの低級脂肪酸エステルがさらに好ましい。低級脂肪酸とは、炭素原子数が6以下の脂肪酸を意味する。特に、炭素原子数が2(セルロースアセテート)、3(セルロースプロピオネート)または4(セルロースブチレート)が好ましい。セルロースアセテートプロピオネートやセルロースアセテートブチレートのようなセルロースの混合脂肪酸エステルを用いることもできる。
セルロースアセテートが最も好ましい。
セルロースアセテートの酢化度は、55.0〜62.5%が好ましく、57.0〜62.0%がさらに好ましい。酢化度は、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D−817−91(セルロースアセテート等の試験法)におけるアセチル化度の測定および計算によって求められる。
セルロースアセテートの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。セルロースアセテートは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の分子量分布が狭いことが好ましい。Mw/Mnの値は、1.0〜4.0が好ましく、1.0〜1.65がさらに好ましく、1.0〜1.6が最も好ましい。
セルロースアセテートでは、セルロースの2位、3位および6位のヒドロキシルが均等に置換されるのではなく、6位の置換度が小さくなる傾向がある。支持体として用いるポリマーフイルムでは、セルロースの6位置換度が、2位、3位に比べて同程度または多い方が好ましい。2位、3位および6位の置換度の合計に対する6位の置換度の割合は、30〜40%であることが好ましく、31〜40%であることがさらに好ましく、32〜40%であることが最も好ましい。6位の置換度は0.88以上であることが好ましい。なお、各位置の置換度は、NMRによって測定することできる。
6位置換度が高いセルロースアセテートは、特開平11−5851号公報の合成例1(0043〜0044)、合成例2(0048〜0049)および合成例3(0051〜0052)を参照して合成することができる。
支持体のReレターデーション値は、0〜70nmが好ましい。
支持体のRthレターデーション値は、40〜400nmが好ましい。
支持体のReレターデーション値およびRthレターデーション値は、それぞれ、下記式(I)および(II)で定義される。
(I) Re=(nx−ny)×d
(II) Rth={(nx+ny)/2−nz}×d
式(I)および(II)において、nxは支持体の面内の遅相軸方向(屈折率が最大となる方向)の屈折率、nyは支持体の面内の進相軸方向(屈折率が最小となる方向)の屈折率、nzは支持体の厚み方向の屈折率、dは単位をnmとする支持体の厚さである。
一つの液晶表示装置に、二枚の支持体を組み込む場合、一枚の支持体のRthレターデーション値は、40〜250nmであることが好ましい。一つの液晶表示装置に、二枚の支持体を組み込む場合、一枚の支持体のRthレターデーション値は、150〜400nmであることが好ましい。
支持体にセルロースアセテートフイルムを用いる場合、セルロースアセテートフイルムの複屈折率(Δn:nx−ny)は、0.00025〜0.00088であることが好ましい。また、セルロースアセテートフイルムの厚み方向の複屈折率{(nx+ny)/2−nz}は、0.00088〜0.005であることが好ましい。
支持体にセルロースアセテートフイルムを用いる場合、レターデーション上昇剤をフイルムに添加することが好ましい。レターデーション上昇剤については、特開2000−154261号および同2000−111914号の各公報に記載がある。
支持体(特に、液晶化合物層を設ける側の面)には、表面処理を実施するか、あるいは下塗り層を設けることが好ましい。表面処理と下塗り層との併用、すなわち、表面処理した支持体の表面に下塗り層を設けることが特に好ましい。
表面処理の例は、化学処理、機械処理、コロナ放電処理、火焔処理、UV処理、高周波処理、グロー放電処理、活性プラズマ処理およびオゾン酸化処理を含む。グロー放電処理が特に好ましい。
[下塗り層の形成]
下塗り層を、透明支持体上に、透明支持体と光学異方性層との接着強度を増大させるために設けることが好ましい。
下塗り層は、ポリマーの塗布層である。ポリマーは、疎水性ポリマー、親水性ポリマー疎水性と親水性基とを有するポリマー、それら併用のいずれでもよい。
支持体を構成するポリマーを膨張させ、下塗り層を構成するポリマーと界面で混合することにより、密着性を改善することもできる。この方法は、支持体を構成するポリマーが疎水性で、下塗り層を構成するポリマーが親水性である場合に特に有効である。
下塗り層を構成するポリマーは、親水性であることが好ましく、水溶性であることがさらに好ましい。ポリマーは、タンパク質(例、ゼラチン、カゼイン、それらの誘導体)、多糖類(例、寒天、アルギン酸ナトリウム、でんぷん、セルロース、それらの誘導体)および合成ポリマー(例、ポリビニルアルコール、ポリアクリル酸、無水マレイン酸重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリル酸エステル、ポリ酢酸ビニル、ポリブタジエン、それらの共重合体)を含む。
セルロースの誘導体は、セルロースエステルおよびセルロースエーテル(例、カルボキシメチルセルロース、ヒドロキシエチルセルロース)を含む。合成ポリマーは、ラテックスの状態で使用してもよい。
ゼラチンが最も好ましい。ゼラチンは、石灰処理ゼラチン、酸処理ゼラチン、酵素処理ゼラチンに加えて、一般にゼラチン誘導体または変性ゼラチンとされるものも含む。石灰処理ゼラチンおよび酸処理ゼラチンが特に好ましい。
ゼラチンは、0.11〜20000ppmの範囲で不純物、例えば、金属(例、Na、K、Li、Rb、Ca、Mg、Ba、Ce、Fe、Sn、Pb、Al、Si、Ti、Au、Ag、Zn、Ni)、金属イオン、陰イオン(例、F、Cl、Br、I、硫酸イオン、硝酸イオン、酢酸イオン)、アンモニウムイオンを含有していてもよい。
石灰処理ゼラチンは、一般に、CaやMgのイオンを含有する。ただし、それらの含有量は、3000ppm以下であることが好ましく、1000ppm以下であることがさらに好ましく、500ppm以下であることが最も好ましい。
下塗り層を形成するための塗布液は、必要に応じて各種の添加剤を含有させることができる。添加剤の例は、界面活性剤、耐電防止剤、顔料、塗布助剤を含む。
下塗り層をゼラチンで構成する場合、ゼラチン硬化剤を用いることができる。ゼラチン硬化剤の例は、クロム塩(例、クロム明ばん)、アルデヒド(例、ホルムアルデヒド、グルタールアルデヒド)、イソシアネート、エピクロルヒドリン樹脂、ポリアマイド−エピクロルヒドリン樹脂、シアヌルクロリド化合物、ビニルスルホン化合物、スルホニル系化合物、カルバモイルアンモニウム塩化合物、アミジニウム塩化合物、カルボジイミド化合物、ピリジニウム塩を含む。
下塗り層には、透明性を実質的に損なわない程度にマット剤を添加することができる。マット剤は、無機または有機の微粒子からなる。
無機微粒子を構成する無機材料は、シリカ(SiO)、二酸化チタン(TiO)、炭酸カルシウムおよび炭酸マグネシウムを含む。
有機微粒子を構成する有機材料は、一般にポリマー(例、ポリメチルメタクリレート、セルロースアセテートプロピオネート、ポリスチレン)である。有機微粒子を構成するポリマーについては、米国特許第4142894号に記載がある。
微粒子の平均粒径は、0.01〜10μmが好ましく、0.05〜5μmがさらに好ましい。
マット剤の添加量は、0.5乃至600mg/mが好ましく、1乃至400mg/mがさらに好ましい。
[液晶化合物層の形成]
液晶化合物層は、液晶化合物から形成する。
液晶化合物は、棒状液晶化合物または円盤状液晶化合物が好ましく、円盤状液晶化合物がさらに好ましい。
液晶化合物は、通常の低分子液晶化合物に加えて、高分子液晶化合物(液晶ポリマー)を含む。また、本発明の方法において、液晶化合物を重合または架橋することにより、液晶性が失われてもよい。
棒状液晶化合物は、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類を含む。棒状液晶化合物には、金属錯体も含まれる。また、棒状液晶化合物に相当する分子構造を繰り返し単位中に含む液晶ポリマーも用いることができる。言い換えると、棒状液晶化合物は、ポリマーと結合していてもよい。
棒状液晶化合物については、季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章および第11章、および液晶デバイスハンドブック日本学術振興会第142委員会編の第3章に記載がある。
棒状液晶化合物の複屈折率は、0.001〜0.7であることが好ましい。
棒状液晶化合物は、その配向状態を固定するために、重合性基を有することが好ましい。重合性基は、不飽和重合性基またはエポキシ基が好ましく、不飽和重合性基がさらに好ましく、エチレン性不飽和重合性基が最も好ましい。
円盤状液晶化合物は、ベンゼン誘導体(C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載)、トルキセン誘導体(C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physics Lett,A,78巻、82頁(1990)に記載)、シクロヘキサン誘導体(B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載)およびアザクラウン系やフェニルアセチレン系のマクロサイクル(J.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載)を含む。
円盤状液晶化合物は、一般に、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基または置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造を有する。分子または分子の集合体が、回転対称性を有し、一定の配向を付与できる化合物であることが好ましい。
円盤状液晶化合物から形成される液晶化合物層化合物は、円盤状液晶化合物と同じ化合物である必要はなく、液晶性を示す必要もない。例えば、熱または光で反応する基を有する低分子の円盤状液晶化合物を、熱または光により重合または架橋させ、高分子量化することによって層を形成する場合、液晶化合物層中に含まれる化合物は液晶性を失うことが普通である。円盤状液晶化合物については、特開平8−50206号公報に記載がある。円盤状液晶化合物の重合については、特開平8−27284号公報に記載がある。
円盤状液晶化合物を重合により固定するためには、円盤状液晶化合物の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。従って、重合性基を有する円盤状液晶化合物は、下記式(III)で表わされる化合物であることが好ましい。
式(III) D(−L−Q)n
式中、Dは円盤状コアであり、Lは二価の連結基であり、Qは重合性基であり、nは4〜12の整数である。
円盤状コア(D)の例を以下に示す。以下の各例において、LQ(またはQL)は、二価の連結基(L)と重合性基(Q)との組み合わせを意味する。
Figure 2005338597
Figure 2005338597
Figure 2005338597
Figure 2005338597
式(III)において、二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、−CO−、−NH−、−O−、−S−およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、−CO−、−NH−、−O−および−S−からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることがさらに好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、−CO−および−O−からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることが最も好ましい。前記アルキレン基の炭素原子数は、1〜12であることが好ましい。アルケニレン基の炭素原子数は、2〜12であることが好ましい。アリーレン基の炭素原子数は、6〜10であることが好ましい。
二価の連結基(L)の例を以下に示す。左側が円盤状コア(D)に結合し、右側が重合性基(Q)に結合する。ALはアルキレン基またはアルケニレン基、ARはアリーレン基を意味する。なお、アルキレン基、アルケニレン基およびアリーレン基は、置換基(例、アルキル基)を有していてもよい。
L1:−AL−CO−O−AL−
L2:−AL−CO−O−AL−O−
L3:−AL−CO−O−AL−O−AL−
L4:−AL−CO−O−AL−O−CO−
L5:−CO−AR−O−AL−
L6:−CO−AR−O−AL−O−
L7:−CO−AR−O−AL−O−CO−
L8:−CO−NH−AL−
L9:−NH−AL−O−
L10:−NH−AL−O−CO−
L11:−O−AL−
L12:−O−AL−O−
L13:−O−AL−O−CO−
L14:−O−AL−O−CO−NH−AL−
L15:−O−AL−S−AL−
L16:−O−CO−AR−O−AL−CO−
L17:−O−CO−AR−O−AL−O−CO−
L18:−O−CO−AR−O−AL−O−AL−O−CO−
L19:−O−CO−AR−O−AL−O−AL−O−AL−O−CO−
L20:−S−AL−
L21:−S−AL−O−
L22:−S−AL−O−CO−
L23:−S−AL−S−AL−
L24:−S−AR−AL−
式(III)の重合性基(Q)は、重合反応の種類に応じて決定する。重合性基(Q)は、不飽和重合性基またはエポキシ基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが最も好ましい。
式(III)において、nは4〜12の整数である。具体的な数字は、円盤状コア(D)の種類に応じて決定される。なお、複数のLとQの組み合わせは、異なっていてもよいが、同一であることが好ましい。
液晶化合物と併用する化合物は、液晶化合物と相溶性を有し、液晶化合物の傾斜角の変化を与えられるか、あるいは配向を阻害しないことが好ましい。液晶化合物と併用する化合物は、可塑剤、界面活性剤および重合性モノマー(例、ビニル基、ビニルオキシ基、アクリロイル基およびメタクリロイル基を有する化合物)を含む。上記化合物の添加量は、液晶化合物に対して、1〜50質量%が好ましく、5〜30質量%の範囲がさらに好ましい。なお、重合性の反応性官能基数が4以上のモノマーを混合して用いると、配向膜と液晶化合物層との間の密着性を高めることができる。
円盤状液晶化合物を用いる場合は、円盤状液晶化合物とある程度の相溶性を有し、円盤状液晶化合物に傾斜角の変化を与えられるポリマーを用いることが好ましい。
ポリマーは、セルロースエステル(例、セルロースアセテート、セルロースアセテートプロピオネート、ヒドロキシプロピルセルロース、セルロースアセテートブチレート)が好ましい。ポリマーの添加量は、円盤状液晶化合物の配向を阻害しないように調節することが好ましい。ポリマーの添加量は、円盤状液晶化合物に対して0.1〜10質量%が好ましく、0.1〜8質量%がさらに好ましく、0.1〜5質量%の範囲にあることが最も好ましい。
液晶化合物層は、液晶化合物を支持体(または下塗り層)の上に塗布することにより形成する。一般に、液晶化合物を溶媒に溶解した塗布液を調製し、塗布液を支持体(または下塗り層)の上に塗布する。溶媒は、有機溶媒が好ましい。有機溶媒の例は、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)およびエーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)を含む。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
均一性が高い液晶化合物層を作製するため、塗布液の表面張力は、25mN/m以下が好ましく、22mN/m以下がさらに好ましい。
塗布液の表面張力を低下させるため、塗布液に、界面活性剤、フッ素化合物またはフッ素ポリマーを添加することが好ましい。フッ素化合物は、下記式(3)で表されるフルオロ脂肪族基含有モノマーが好ましい。
Figure 2005338597
式(3)において、Rは、水素原子またはメチルであり;Xは、酸素原子、イオウ原子または−N(R)−であり;pは、1〜6の整数であり;qは、2または3であり;Rは、水素原子または炭素原子数が1〜4のアルキル基である。
また、フッ素ポリマーとして、上記(3)で表されるフルオロ脂肪族基含有モノマーを重合させた繰り返し単位と、ポリ(オキシアルキレン)アクリレートまたはポリ(オキシアルキレン)メタクリレートを重合させた繰り返し単位からなるコポリマーを用いることもできる。
フッ素系ポリマーの質量平均分子量は、3000〜100000が好ましく、6000〜80000がさらに好ましい。フッ素系ポリマーの添加量は、液晶化合物層の塗布液組成物(溶媒を除いた塗布成分)に対して0.005〜8質量%が好ましく、0.01〜1質量%がさらに好ましく、0.05〜0.5質量%が最も好ましい。
塗布液の配向膜への塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。塗布量は、液晶化合物層の所望の厚みに基づいて決定する。
形成する液晶化合物層は、粘度が10cp〜10000cpであることが好ましく、100cp〜1000cpであることがさらに好ましい。粘度が低すぎると、配向時の乾燥風の影響を受けやすく、連続生産のために、非常に高精度に風速や風向を制御する必要がある。一方、粘度が高いと風の影響は受けにくいが、液晶の配向が遅くなり、生産性が非常に悪化する。
液晶化合物層の粘度は、液晶化合物の分子構造によって適宜制御できる。また、前述した添加剤(特に、セルロースエステルのようなポリマーやゲル化剤)を適量使用することで、所望の粘度に調整することもできる。
液晶化合物層の厚さは、0.1〜20μmが好ましく、0.5〜15μmがさらに好ましく、1〜10μmが最も好ましい。
本発明では、液晶セルの製造(二枚の配向膜の間に液晶を注入)とは、液晶化合物層を一つの配向膜の上に形成する。よって、形成される液晶化合物層は、空気側界面と配向膜側界面とを有する。
[磁場による液晶化合物の配向]
液晶化合物層の形成と同時または形成後に、磁場を印加して、液晶化合物をハイブリッド配向させる(配向工程)。液晶化合物層を乾燥する工程(乾燥工程)を実施する場合、配向工程は、乾燥工程と同時または乾燥工程後に実施できる。
乾燥工程の温度は、塗布液に用いた溶媒の沸点および支持体および配向膜の素材により決定する。
配向工程における加熱温度(配向温度)は、一般に、液晶化合物の液晶転移温度以上の温度である。
液晶転移温度は、液晶相−固相の転移温度である。円盤状液晶化合物を用いる場合、配向温度は、70〜300℃が好ましく、70〜170℃がさらに好ましい。
加熱は、所定の温度に調整した温風を、フイルムに送風することによって実施できる。また、所定の温度に維持された加熱室内で、フイルムを搬送してもよい。
配向後の液晶化合物の方位角は、フイルムの長手方向に対して−2°〜+2°または43°〜47°となることが好ましい。
前述したように、液晶化合物の方位角については、原則として磁場の方位角で決定できる。
ハイブリッド配向では、液晶化合物のチルト角が、液晶化合物層の深さ方向で(支持体の面からの距離の増加と共に)増加または減少している。本発明では、液晶化合物のチルト角を、支持体の面からの距離の増加と共に増加させる。
チルト角の変化は、連続的増加、間欠的増加、連続的増加と連続的減少を含む変化、あるいは、増加および減少を含む間欠的変化が可能である。間欠的変化は、厚さ方向の途中で傾斜角が変化しない領域を含んでいる。
角度変化は、チルト角の変化しない領域を含んでいても、全体として増加または減少していればよい。ただし、チルト角は連続的に変化する方が好ましい。
前述したように、液晶化合物層の空気側界面における液晶化合物の平均チルト角と、液晶化合物層の配向膜側界面における液晶化合物の平均チルト角との差は、10°以上であり、15°以上であることが好ましく、20°以上であることがさらに好ましく、30°以上であることが最も好ましい。
空気側界面における液晶化合物の平均チルト角は、磁場の印加により制御できる。ただし、補助的に液晶化合物または液晶化合物と共に使用する添加剤の種類を選択することで、空気側界面における平均チルト角を調整することもできる。添加剤の例は、可塑剤、界面活性剤、重合性モノマーおよびポリマーを含む。平均チルト角の変化の程度も、液晶化合物と添加剤との選択により調整できる。界面活性剤に関しては、前述した塗布液の表面張力の制御との関係も調整することが好ましい。
磁場のチルト角は、液晶化合物層の空気側界面における液晶化合物の平均チルト角として想定している角度で印加することが好ましい。磁場のチルト角と、空気側界面における液晶化合物の平均チルト角との差は、10°未満が好ましく、7°未満がより好ましく、5°未満がさらに好ましく、3°未満が最も好ましい。
磁場の方位角は、液晶化合物の方位角として想定している角度で印加することが好ましい。磁場の方位角と、液晶化合物の平均方位角との差は、10°未満が好ましく、7°未満がより好ましく、5°未満がさらに好ましく、3°未満が最も好ましい。
磁場強度は、0.1テスラ以上であることが好ましく、1.0テスラ以上であることがさらに好ましい。
磁場の印加は、永久磁石または電磁石を用いて実施できる。
複数の磁石を束にして用いて、広いフイルム面全体に対して同時に磁場を印加してもよい。また、一定方向に磁場を生じさせた領域内でフイルムを搬送することにより、磁場を印加することもできる。
[配向状態の固定]
磁場の印加と同時、または磁場の印加後に、液晶化合物の配向状態を固定することが好ましい。
例えば、液晶化合物の液晶転移温度よりも高い温度で磁場を印加する工程を実施し、磁場を印加しながら液晶転移温度よりも低い温度まで冷却することにより液晶化合物の配向状態を固定することができる。
ただし、重合性基を有する液晶化合物を用いて、重合反応により液晶化合物の配向状態を固定することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
光重合開始剤の例は、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)を含む。
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%の範囲にあることが好ましく、0.5〜5質量%の範囲にあることがさらに好ましい。
光重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm〜50J/cmの範囲が好ましく、20〜5000mJ/cmの範囲がさらに好ましく、100〜800mJ/cmの範囲が最も好ましい。
光重合反応を促進するため、加熱しながら光照射を実施してもよい。光照射は、フイルムを1以上の光源が上下および左右のいずれかの位置に配置された搬送路を通過させることによって実施することができる。
[後処理]
形成した液晶化合物層の光学特性を、連続的に測定することにより検査する検査工程を実施してもよい。
液晶化合物層の上に、保護層を設けることもできる。例えば、予め準備した保護層用フイルムを、液晶化合物層の表面に連続的にラミネートすることができる。
ロール状の光学フイルムを製造する場合、長尺状のフイルムを巻き取る工程を実施する。巻き取りは、例えば、連続的に搬送されるフイルムを、円筒状の芯に巻きつけることによって実施できる。ロール形態に巻き取ると、大量に製造する場合にもその取り扱いが容易であり、そのままの形態で保管・搬送できる。
その他の光学フイルムの製造工程および使用可能な装置については、特開平9−73081号公報に記載がある。
[用途]
製造した光学フイルムは、光学補償フイルムとして特に有利に用いられる。
光学補償フイルムは、液晶表示装置、特にTN方式またはOCB方式の透過型液晶表示装置、あるいはECB方式の反射型液晶表示装置に有利に用いられる。
透過型液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光板からなる。液晶セルは、二枚の電極基板の間に液晶を担持している。
光学補償フイルムは、液晶セルと一方の偏光板との間に、一枚配置するか、あるいは液晶セルと双方の偏光板との間に二枚配置する。光学補償フイルムを偏光板の保護フイルムとして用いると、偏光板が光学補償フイルムの機能も兼ねるので、液晶表示装置の薄型・軽量化の点で好ましい。
TN方式の液晶表示装置の液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60〜120゜にねじれ配向している。TN方式の液晶セルは、黒白、およびカラー液晶表示装置として最も多く利用されており、多数の文献に記載がある。
OCB方式の液晶表示装置は、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置であり、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードと呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
ECB方式の液晶表示装置は、棒状液晶分子を液晶セルの上部と下部で実質的に同じ方向に配向させる水平配向モードの液晶セルを用いた、最も古くから知られている構成の液晶表示装置である。
[実施例1]
(支持体の作製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
────────────────────────────────────────
セルロースアセテート溶液
────────────────────────────────────────
酢化度60.9%のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 45質量部
染料(住化ファインケム(株)製、360FP) 0.0009質量部
────────────────────────────────────────
別のミキシングタンクに、下記のレターデーション上昇剤16質量部、メチレンクロライド80質量部およびメタノール20質量部を投入し、加熱しながら攪拌して、レターデーション上昇剤溶液を調製した。
Figure 2005338597
セルロースアセテート溶液464質量部に、レターデーション上昇剤溶液36質量部、およびシリカ微粒子(アイロジル製、R972)1.1質量部を混合し、充分に攪拌してドープを調製した。レターデーション上昇剤の添加量は、セルロースアセテート100質量部に対して、5.0質量部であった。また、シリカ微粒子の添加量は、セルロースアセテート100質量部に対して、0.15質量部であった。
得られたドープを、幅2mで長さ65mの長さのバンドを有する流延機を用いて流延した。バンド上での膜面温度が40℃となってから、1分乾燥し、剥ぎ取った後、140℃の乾燥風で、テンターを用いて幅方向に28%延伸した。この後、135℃の乾燥風で20分間乾燥し、残留溶剤量が0.3質量%の支持体を製造した。
得られた支持体の幅は1340mmであり、厚さは92μmであった。
エリプソメーター(M−150、日本分光(株)製)を用いて、波長590nmにおけるReレターデーション値を測定したところ、38nmであった。また、波長590nmにおけるRthレターデーション値を測定したところ、175nmであった。
(下塗り層の形成)
支持体上に、下塗り層として厚さ0.1μmのゼラチン層を塗布により形成した。
(液晶化合物層の形成)
102Kgのメチルエチルケトンに、下記の円盤状液晶化合物41.01Kg、エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06Kg、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.35Kg、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35Kg、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45Kg、クエン酸エステル(三協化学製 AS3)0.45Kgを溶解した。溶液に、フルオロ脂肪族基含有共重合体(メガファックF780 大日本インキ(株)製)を0.1Kg加えて塗布液を調製した。
Figure 2005338597
下塗り層を設けた支持体を20m/分で搬送し、#3.2のワイヤーバーを391回転で搬送方向と同じ方向に回転させて、塗布液を下塗り層面に連続的に塗布した。
室温から100℃に連続的に加温する工程で溶媒を乾燥させた。
[磁場の印加]
130℃の乾燥ゾーンで、磁場のチルト角(図1のθ)が62°磁場の強度が0.7テスラとなるように磁場を印加しながら、液晶化合物層を約90秒間加熱し、円盤状液晶化合物を配向させた。磁場の方位角は、光学フイルムの長手方向に対して、45°とした。
(光学フイルムの製造)
フイルムを25℃の乾燥ゾーンに搬送し、フイルムの表面温度が68℃の状態で、紫外線照射装置(紫外線ランプ:出力160W/cm、発光長1.6m)により、照度600mWの紫外線を4秒間照射し、重合反応を進行させて、円盤状液晶化合物をその配向に固定した。
その後、室温まで放冷し、円筒状に巻き取ってロール状の形態にした。このようにして、ロール状光学フイルムを作製した。
作製したロール状光学フイルムの一部を切り取り、サンプルとして用いて、光学特性を測定した。波長546nmで測定した液晶化合物層のReレターデーション値は37nmであった。また、液晶化合物層中の円盤状液晶化合物の円盤面と支持体面とのチルト角は、層の深さ方向で連続的に変化し、平均で32°であった。液晶化合物層の空気側界面における平均チルト角(図1のα)は58°、配向膜側界面における平均チルト角(図1のβ)は、6°であった。
さらに、サンプルから液晶化合物層のみを剥離し、液晶化合物の方位角の平均方向を測定したところ、光学フイルムの長手方向に対して、45°であった。
さらに、偏光板をクロスニコル配置とし、得られた光学補償フイルムのムラを観察したところ、正面、および法線から60°まで傾けた方向から見ても、ムラは検出されなかった。
また、偏光顕微鏡下にて光学フイルムを観察したところ、シュリーレン欠陥は見られなかった。
(偏光板の作製)
平均重合度1700、ケン化度99.5mol%のポリビニルアルコールフイルム(厚み80μm、幅2500mm)を40℃の温水中で8倍に縦一軸延伸し、そのままヨウ素0.2g/l、ヨウ化カリウム60g/lの水溶液中に30℃にて5分間浸漬し、次いでホウ酸100g/l、ヨウ化カリウム30g/lの水溶液中に浸漬した。このときフイルム幅1300mm、厚みは17μmであった。
さらにこのフイルムを水洗層にて20℃、10秒間浸漬した後、ヨウ素0.1g/l、ヨウ化カリウム20g/lの水溶液中に30℃にて15秒間浸漬し、このフイルムを室温にて24時間乾燥してヨウ素系偏光膜を得た。
ポリビニルアルコール系接着剤を用いて、作製した光学フイルムの支持体面を偏光膜の片側に貼り付けた。また、厚さ80μmのトリアセチルセルロースフイルム(TD−80U:富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。
偏光膜の長手方向、支持体の長手方向、市販のトリアセチルセルロースフイルムの長手方向は、全て平行になるように配置した。このようにして片面に光学フイルム、他方の面に市販のトリアセチルセルロースフイルムを有する偏光板を作製した。
別に、ポリビニルアルコール系接着剤を用いて、作製した光学フイルムの支持体面で偏光膜の片側に貼り付けた。また、市販の反射防止機能付きフイルム(富士フイルムCVクリアビューUA、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。
偏光子の長手方向、支持体の長手方向、反射防止機能付きフイルムの長手方向とが全て平行になるように配置した。このようにして、片面に光学フイルム、他方の面に市販の反射防止機能付きフイルムを有する偏光板を作製した。
(ベンド配向液晶セルの作製)
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた二枚のガラス基板をラビング方向が平行となる配置で向かい合わせ、セルギャップを4.5μmに設定した。セルギャップにΔnが0.1396の液晶化合物(ZLI1132、メルク社製)を注入し、ベンド配向液晶セルを作製した。液晶セルの大きさは20インチであった。
作製したベンド配向セルを挟むように、片面に光学フイルム、他方の面に市販の反射防止機能付きフイルムを有する偏光板を視認側に、片面に光学フイルム、他方の面に市販のトリアセチルセルロースフイルムを有する偏光板をバックライト側に各々貼り付けた。偏光板の液晶化合物層がセル基板に対面し、液晶セルのラビング方向とそれに対面する液晶化合物層のラビング方向とが反平行となるように配置した。
液晶セルに55Hzの矩形波電圧を印加した。白表示2V、黒表示5Vのノーマリーホワイトモードとした。透過率の比(白表示/黒表示)をコントラスト比として、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角を測定した。その結果、コントラスト比が10以上で黒川の諧調反転(L1とL2との間の反転)のない範囲は、上、下、左右のいずれも、80°以上であった。
また、正面コントラスト(CR:白表示の輝度/黒表示の輝度)を求めたところ、500との高いコントラストが得られた。
[比較例1]
液晶化合物層に磁場を印加せずに約90秒間加熱した以外は、実施例1と同様にし、光学フイルムを作製した。
偏光顕微鏡下にて光学フイルムを観察したところ、液晶化合物は全く配向していなかった。
本発明の基本的な概念を示す模式図である。
符号の説明
1 支持体
2 下塗り層
3 液晶化合物層
3a 空気側界面
3b 支持体側界面
α 空気側界面における平均チルト角
β 支持体側界面における平均チルト角
θ 磁場のチルト角
d1、d2、d3 液晶化合物
S(点線)N 磁場方向

Claims (6)

  1. 支持体の上に液晶化合物を塗布し、空気側界面と支持体側界面とを有する液晶化合物層を形成する工程、そして、液晶化合物層の形成と同時または形成後に、液晶化合物層に磁場を印加し、液晶化合物層の空気側界面における液晶化合物の平均チルト角が、液晶化合物層の支持体側界面における液晶化合物の平均チルト角よりも大きく、それらの差が10度以上となるように液晶化合物をハイブリッド配向させる工程からなる光学フイルムの製造方法。
  2. 磁場の印加と同時または印加後に、液晶化合物の配向状態を固定する工程を実施する請求項1に記載の光学フイルムの製造方法。
  3. 液晶化合物が重合性基を有し、重合反応により液晶化合物の配向状態を固定する請求項2に記載の光学フイルムの製造方法。
  4. 液晶化合物の液晶転移温度よりも高い温度で磁場を印加する工程を実施し、磁場を印加しながら液晶転移温度よりも低い温度まで冷却することにより液晶化合物の配向状態を固定する請求項2に記載の光学フイルムの製造方法。
  5. 支持体の上に下塗り層を設け、下塗り層の上に液晶化合物を塗布する請求項1に記載の光学フイルムの製造方法。
  6. 液晶化合物が、円盤状液晶化合物である請求項1に記載の光学フイルムの製造方法。
JP2004159436A 2004-05-28 2004-05-28 光学フイルムの製造方法 Pending JP2005338597A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159436A JP2005338597A (ja) 2004-05-28 2004-05-28 光学フイルムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159436A JP2005338597A (ja) 2004-05-28 2004-05-28 光学フイルムの製造方法

Publications (1)

Publication Number Publication Date
JP2005338597A true JP2005338597A (ja) 2005-12-08

Family

ID=35492242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159436A Pending JP2005338597A (ja) 2004-05-28 2004-05-28 光学フイルムの製造方法

Country Status (1)

Country Link
JP (1) JP2005338597A (ja)

Similar Documents

Publication Publication Date Title
JP4667109B2 (ja) 光学補償フィルム及び液晶表示装置
JP4284221B2 (ja) 液晶表示装置
KR20040104568A (ko) 중합체 필름을 포함하는 광학 보상 시트
JPH11212078A (ja) 液晶表示装置
JP2008250234A (ja) 液晶表示装置
JP2007187910A (ja) 液晶表示装置
JP2009229814A (ja) 光学フィルム、偏光板及び液晶表示装置
JP2007057607A (ja) 光学補償フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP2008026824A (ja) 光学補償フィルムの製造方法、光学補償フィルム、偏光板、及び液晶表示装置
JP2003232922A (ja) 偏光板および液晶表示装置
JP4344566B2 (ja) 光学補償フィルムの製造方法
JP2009086379A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2009020495A (ja) 液晶表示装置
JP2008250237A (ja) 液晶表示装置
JP2009098633A (ja) 積層光学フィルム、偏光板及び液晶表示装置
JP2008139368A (ja) 液晶表示装置
JP2007272136A (ja) 液晶表示装置
JP2005202212A (ja) 液晶表示装置および楕円偏光板
WO2013061965A1 (ja) 液晶表示装置
JP2005338597A (ja) 光学フイルムの製造方法
JP2005316175A (ja) 光学フイルムの製造方法
JP2006071966A (ja) 偏光板一体型光学補償フイルム及び液晶表示装置
JP2009086378A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2006259210A (ja) 偏光板及び液晶表示装置
JP2007264449A (ja) 光学補償シート、光学補償シートの製造方法、偏光板及び液晶表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309