JP2005338308A - Semiconductor optical parts and their manufacturing method - Google Patents

Semiconductor optical parts and their manufacturing method Download PDF

Info

Publication number
JP2005338308A
JP2005338308A JP2004155439A JP2004155439A JP2005338308A JP 2005338308 A JP2005338308 A JP 2005338308A JP 2004155439 A JP2004155439 A JP 2004155439A JP 2004155439 A JP2004155439 A JP 2004155439A JP 2005338308 A JP2005338308 A JP 2005338308A
Authority
JP
Japan
Prior art keywords
semiconductor optical
optical fiber
optical element
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004155439A
Other languages
Japanese (ja)
Other versions
JP4062705B2 (en
Inventor
Hironori Honda
裕徳 本多
Masanobu Kato
昌伸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosemi Corp
Original Assignee
Kyosemi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosemi Corp filed Critical Kyosemi Corp
Priority to JP2004155439A priority Critical patent/JP4062705B2/en
Publication of JP2005338308A publication Critical patent/JP2005338308A/en
Application granted granted Critical
Publication of JP4062705B2 publication Critical patent/JP4062705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure with which high density packaging is made possible and hermetically seal is also realized for an optical communication module. <P>SOLUTION: Electrode wiring metal 2, which is constituted by a metal or the like, is formed on the side surface or the side surface and the end face of an optical fiber 1. A semiconductor optical element 3 such as a PD and an LD is arranged on the end face side, that is an optically incident and outgoing window, of the optical fiber 1. The electrode wiring metal 2 on the side surface or the end face of the optical fiber 1 and the semiconductor optical element 3 are electrically connected and the vicinity of the element 3 is covered by low melting glass 4 or resin and the low melting glass and sealed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光通信用半導体光学部品に関し、特に光ファイバーと光学素子とを組合せた構成物及び、前記光ファイバーと前記光学素子を組合せるために必要な部材の製造方法に関するものである。 The present invention relates to a semiconductor optical component for optical communication, and more particularly, to a structure in which an optical fiber and an optical element are combined, and a method for manufacturing a member necessary for combining the optical fiber and the optical element.

光通信網の普及に伴い、伝送容量の拡大が要求されている。近年では、伝送容量を飛躍的に増大できるWDM方式を利用した光通信システムが普及しはじめている。このWDMを実現するためには、波長の異なる複数個の発光素子(LDまたはLED)と波長毎の光信号を受光できる複数個の受光素子(PD)が必要となる。 With the spread of optical communication networks, expansion of transmission capacity is required. In recent years, optical communication systems using the WDM system that can dramatically increase transmission capacity have begun to spread. In order to realize this WDM, a plurality of light emitting elements (LD or LED) having different wavelengths and a plurality of light receiving elements (PD) capable of receiving an optical signal for each wavelength are required.

従来の光モジュールは、特開2003−295003に開示されるもののように、光ファイバー径(φ0.125mm〜φ1mm程度)と比較してパッケージサイズ(数mm〜数十mm程度)が極端に大きい。そのため、複数個の光モジュールを実装する場合、パッケージサイズに制約され、当該光モジュールの高密度実装が困難である、と言う問題があった。 The conventional optical module has an extremely large package size (several mm to several tens of mm) as compared with the optical fiber diameter (about φ0.125 mm to φ1 mm) as disclosed in Japanese Patent Application Laid-Open No. 2003-295003. For this reason, when a plurality of optical modules are mounted, there is a problem that the high-density mounting of the optical modules is difficult due to restrictions on the package size.

受光モジュールでは、高密度実装を実現するために、複数のPDが並んだPDアレイを使用する場合が多い。この場合、高密度実装が容易になるため利用価値が高いのだが、当該PDアレイを気密封止することが困難である、と言う問題があった。光通信用のPDはInPエピウェハを使用しているため、高湿度雰囲気下で使用すると短寿命になると言う欠点がある。そのため、気密封止して高湿度雰囲気下にさらさないことが重要になる。
特開2003−295003号
In order to realize high-density mounting, a light receiving module often uses a PD array in which a plurality of PDs are arranged. In this case, since the high-density mounting becomes easy, the utility value is high, but there is a problem that it is difficult to hermetically seal the PD array. Since the PD for optical communication uses an InP epiwafer, there is a disadvantage that the life is shortened when used in a high humidity atmosphere. Therefore, it is important to hermetically seal and not expose to a high humidity atmosphere.
JP 2003-295003 A

上記の問題を解決するために、本願第1の発明からなる半導体光学部品は、図1に示すように、光ファイバー1の側面または側面及び端面に金属等で構成される電極配線メタル2が形成され、光の出入射窓にあたる当該光ファイバー1の端面側にPD、LDのような半導体光学素子3が設置され、前記光ファイバー1の側面または端面の電極配線メタル2と当該半導体光学素子3とが電気的に接続されていることを特徴とする。 In order to solve the above problem, the semiconductor optical component according to the first invention of the present application is formed with the electrode wiring metal 2 made of metal or the like on the side surface or the side surface and the end surface of the optical fiber 1 as shown in FIG. A semiconductor optical element 3 such as PD or LD is installed on the end face side of the optical fiber 1 corresponding to the light exit / incident window, and the electrode wiring metal 2 on the side surface or end face of the optical fiber 1 and the semiconductor optical element 3 are electrically connected. It is characterized by being connected to.

本願第2の発明からなる半導体光学部品は、図2に示すように、本願第1の発明からなる半導体光学部品の前記半導体光学素子3を低融点ガラス4または樹脂等で覆って封止していることを特徴とする。 As shown in FIG. 2, the semiconductor optical component according to the second invention of the present application is sealed by covering the semiconductor optical element 3 of the semiconductor optical component according to the first invention of the present application with low-melting glass 4 or resin or the like. It is characterized by being.

本願第3の発明からなる半導体光学部品は、図3に示すように、電極配線ガイド5が光ファイバー1の側面に固定され、半導体光学素子3が当該電極配線ガイド5の2つのメタルと電気的に接続され、低融点ガラス4、樹脂等または蓋6で封止していることを特徴とする。 As shown in FIG. 3, in the semiconductor optical component according to the third invention of the present application, the electrode wiring guide 5 is fixed to the side surface of the optical fiber 1, and the semiconductor optical element 3 is electrically connected to the two metals of the electrode wiring guide 5. It is connected and sealed with a low melting point glass 4, a resin or the like or a lid 6.

本願第4の発明からなる半導体光学部品は、図4に示すように、光ファイバー1の側面と接しているガイド7と、半導体光学素子3が固定されたビアホール付き基板8とが固定され、気密封止されていることを特徴とする。 As shown in FIG. 4, the semiconductor optical component according to the fourth invention of the present application has a guide 7 in contact with the side surface of the optical fiber 1 and a substrate 8 with a via hole to which the semiconductor optical element 3 is fixed. It is characterized by being stopped.

本願第5の発明からなる半導体光学部品は、図5に示すように、光ファイバー1の側面と接している第1導電型ガイド9と、第2導電型基板10とで半導体光学素子3を挟んで固定され、当該半導体光学素子3に過剰な負荷を掛けないためのスペーサー11が第1導電型ガイド9と第2導電型基板10とのそれぞれに接着されて気密封止していることを特徴とする。 As shown in FIG. 5, the semiconductor optical component according to the fifth invention of the present application sandwiches the semiconductor optical element 3 between the first conductivity type guide 9 in contact with the side surface of the optical fiber 1 and the second conductivity type substrate 10. A spacer 11 that is fixed and prevents an excessive load from being applied to the semiconductor optical element 3 is bonded and hermetically sealed to each of the first conductive type guide 9 and the second conductive type substrate 10. To do.

また、本願第3の発明からなる半導体光学部品に使用される電極配線ガイド5の製造方法については以下に記す。 A method for manufacturing the electrode wiring guide 5 used in the semiconductor optical component according to the third aspect of the present invention will be described below.

本願第6の発明からなる前記電極配線ガイド5の製造方法は、絶縁性物質板と導電性物質板とを貼り合せ、当該絶縁性物質板または絶縁性物質板及び導電性物質板に光ファイバー外径程度の穴を開けることを特徴とする。 The manufacturing method of the electrode wiring guide 5 according to the sixth invention of the present application is such that an insulating material plate and a conductive material plate are bonded together, and the outer diameter of the optical fiber is attached to the insulating material plate or the insulating material plate and the conductive material plate. It is characterized by opening a hole of a degree.

本願第7の発明からなる前記電極配線ガイド5の製造方法は、導電性物質上に絶縁性物質を形成した基板に、光ファイバー外径程度の幅で、半径程度の深さの溝を形成し、各々の基板の絶縁性物質同士を貼り合せることを特徴とする。 In the manufacturing method of the electrode wiring guide 5 according to the seventh invention of the present application, a groove having a width of about the outer diameter of an optical fiber and a depth of a radius is formed on a substrate in which an insulating material is formed on a conductive material. The insulating materials of the respective substrates are bonded to each other.

本願第8の発明からなる前記電極配線ガイド5の製造方法は、半導体物質または絶縁性物質からなる基板にV字型の溝(V溝)を形成し、当該基板のV溝形成面と対向する面上に導電性物質を形成し、当該基板のV溝面同士が絶縁性物質を挟んで固定される、または絶縁性接着剤で接着されることを特徴とする。 In the method of manufacturing the electrode wiring guide 5 according to the eighth invention of the present application, a V-shaped groove (V groove) is formed in a substrate made of a semiconductor material or an insulating material, and is opposed to the V groove forming surface of the substrate. A conductive material is formed on the surface, and the V-groove surfaces of the substrate are fixed with an insulating material interposed therebetween or bonded with an insulating adhesive.

本願第1の発明からなる半導体光学部品では、光の出入射窓にあたる光ファイバー端面に直接半導体光学素子を固定しているため、半導体光学素子サイズ程度もしくは光ファイバー径程度のスペースしか必要としない。一般的な半導体光学素子のサイズは、数百μm程度であるため、従来の光モジュールよりも極端に実装面積を小さくでき、超高密度実装が可能となる。 In the semiconductor optical component according to the first invention of the present application, since the semiconductor optical element is directly fixed to the end face of the optical fiber corresponding to the light exit / incident window, only a space about the size of the semiconductor optical element or the diameter of the optical fiber is required. Since the size of a general semiconductor optical element is about several hundred μm, the mounting area can be extremely reduced as compared with a conventional optical module, and ultra-high density mounting is possible.

本願第2の発明からなる半導体光学部品では、第1の発明の光学部品に低融点ガラス等で覆うため、熱による負荷で光学素子が故障する危険性があるが、外気の湿度を遮断することが可能となるため、長寿命、高信頼性が期待できる。 In the semiconductor optical component according to the second invention of the present application, since the optical component of the first invention is covered with a low melting point glass or the like, there is a risk that the optical element may fail due to heat load, but the humidity of the outside air is cut off. Therefore, long life and high reliability can be expected.

本願第3の発明からなる半導体光学部品では、第1及び第2の発明と比較すると高密度の実装はできなくなるが、従来の光モジュールよりも高密度実装が可能であり、気密封止も可能である。また、電極配線ガイドに半導体光学素子を固定してから光ファイバーに当該電極配線ガイドを固定することが可能となるため、第1及び第2の発明よりも実装が比較的容易になる。更に、電極配線ガイドの外形を直方体形状にすることにより、実装時のワイヤーボンディングも容易になる。 The semiconductor optical component according to the third invention of the present application cannot be mounted with a higher density than the first and second inventions, but can be mounted with a higher density than the conventional optical module and can be hermetically sealed. It is. Further, since it becomes possible to fix the electrode wiring guide to the optical fiber after fixing the semiconductor optical element to the electrode wiring guide, the mounting becomes relatively easier than in the first and second inventions. Furthermore, wire bonding at the time of mounting becomes easy by making the outer shape of the electrode wiring guide into a rectangular parallelepiped shape.

本願第4の発明からなる半導体光学部品は、第3の発明よりも半導体光学素子サイズを小さくする必要があり、尚且つビアホール基板に形成された電極との接続が困難であるが、第3の発明よりもガイド加工分の低コストが実現する。 The semiconductor optical component according to the fourth invention of the present application needs to have a smaller semiconductor optical element size than the third invention, and is difficult to connect with the electrode formed on the via hole substrate. Lower cost for guide processing than the invention.

本願第5の発明からなる半導体光学部品では、半導体光学素子厚のバラツキなどで気密封止が困難になるデメリットはあるが、第1から第4の発明のように、半導体光学素子のアノード、カソードの両電極を片面に形成する必要がなく、表面アノード電極、裏面カソード電極の典型的な表面入射型PD、面発光LD等をそのまま実装することが可能となる。 The semiconductor optical component according to the fifth invention of the present application has a disadvantage that hermetic sealing becomes difficult due to variations in the thickness of the semiconductor optical element. However, as in the first to fourth inventions, the anode and cathode of the semiconductor optical element. It is not necessary to form both electrodes on one side, and it is possible to mount a typical front-illuminated PD, surface-emitting LD, etc. of the front surface anode electrode and back surface cathode electrode as they are.

本願第6の発明からなる製造方法では、絶縁性物質板を導電性物質板で挟み、穴を開けることで形成できるため、エッチング、マスキング、蒸着等の工程が省け、コスト的に有利になる。 In the manufacturing method according to the sixth invention of the present application, the insulating material plate can be formed by sandwiching the conductive material plate between the conductive material plates and making holes, so that steps such as etching, masking, and vapor deposition are omitted, which is advantageous in terms of cost.

本願第7の発明からなる製造方法では、基板の貼り合せ精度によって搭載する半導体光学素子の固定が困難になる場合があるが、光ファイバー外径125μmのような微小な穴を開ける場合、第6の発明に比べ比較的容易になる。 In the manufacturing method according to the seventh invention of the present application, it may be difficult to fix the semiconductor optical element to be mounted depending on the bonding accuracy of the substrates. However, when a minute hole with an optical fiber outer diameter of 125 μm is formed, It is relatively easy compared to the invention.

本願第8の発明からなる製造方法では、本願第7と同様の短所を抱え、また気密には適さない点が問題だが、光通信業界で一般的に使われているSi-V溝の技術を利用すれば、低コストで尚且つ比較的安定して製造することが可能となる。 The manufacturing method according to the eighth invention of the present application has the same disadvantages as the seventh application of the present application and is not suitable for airtightness. However, the Si-V groove technology generally used in the optical communication industry is problematic. If used, it can be manufactured at low cost and relatively stably.

本願の最良の形態を実施例として以下に示す。本実施例では、半導体光学素子としてPDの場合を考えるが、面発光LDやLEDでも同様に作製することができる。また、本願第3の発明に使用される電極配線ガイド5の製造方法の実施例は、第3の発明の実施例内に記載する。 The best mode of the present application will be described below as an example. In this embodiment, the case of a PD as a semiconductor optical element is considered, but a surface-emitting LD or LED can be similarly manufactured. Moreover, the Example of the manufacturing method of the electrode wiring guide 5 used for this invention 3rd invention is described in the Example of 3rd invention.

本願第1の発明の実施例を以下に示す。図1は、本実施例の半導体光学部品の完成図であり、図6の光ファイバーと図7のPDとを組合せることによって形成される。 An embodiment of the first invention of the present application will be described below. FIG. 1 is a completed view of the semiconductor optical component of this embodiment, which is formed by combining the optical fiber of FIG. 6 and the PD of FIG.

図6は、本願第1の発明に使用される光ファイバーの斜視図である。光ファイバー1はクラッド径125μmのシングルモードファイバー等を使用し、光ファイバー1の側面及び端面にはCr/Auなどの金属膜が1μm程度の厚みで形成されている。光ファイバーのコア13(φ9.5μm)近傍には当該金属膜は形成されず、アノード用、カソード用に二分されている。当該金属膜を電極配線メタル2と呼ぶことにする。 FIG. 6 is a perspective view of an optical fiber used in the first invention of the present application. The optical fiber 1 uses a single mode fiber or the like having a cladding diameter of 125 μm, and a metal film such as Cr / Au is formed on the side surface and end surface of the optical fiber 1 with a thickness of about 1 μm. The metal film is not formed in the vicinity of the core 13 (φ9.5 μm) of the optical fiber, and is divided into two parts for the anode and the cathode. The metal film is referred to as electrode wiring metal 2.

前記電極配線メタル2のパターンは、マスキングテープもしくはホトレジストなどを使用してマスキングし、蒸着などで金属膜を形成した後、マスク部分を除去することで形成する。当該パターン形成は、全面に金属膜を形成した後でパターン部をマスキングし、エッチングでパターン形成しても構わない。 The pattern of the electrode wiring metal 2 is formed by masking using a masking tape or photoresist, forming a metal film by vapor deposition or the like, and then removing the mask portion. In the pattern formation, a metal film may be formed on the entire surface, the pattern portion may be masked, and the pattern may be formed by etching.

図7は、本願第1の発明に使用されるPDの斜視図である。当該PDはpn接合側(表面側)に受光窓14、アノード電極15、カソード電極16が形成されている。当該PDのように表面にアノード、カソードの両電極が形成されているPDは、フリップチップ実装用として広く一般的に使用されている素子であるため、当該PDの断面構造等の詳細については省略する。 FIG. 7 is a perspective view of a PD used in the first invention of the present application. In the PD, a light receiving window 14, an anode electrode 15, and a cathode electrode 16 are formed on the pn junction side (surface side). Since the PD having both anode and cathode electrodes formed on the surface like the PD is an element that is widely used for flip chip mounting, details such as the cross-sectional structure of the PD are omitted. To do.

前記PDのサイズは、光ファイバー径125μm以下であることが望ましいが、一般的な350μmから500μm程度でも構わない。 The size of the PD is preferably an optical fiber diameter of 125 μm or less, but may be about 350 μm to 500 μm.

図6の光ファイバー端面のアノード用、カソード用に二分された電極配線メタル2と、図7のPD表面のアノード電極15、カソード電極16とを、それぞれAuSn半田などで固定することで、本願第1の発明の半導体光学部品である図1が完成する。 The electrode wiring metal 2 divided into the anode and cathode for the end face of the optical fiber in FIG. 6 and the anode electrode 15 and the cathode electrode 16 on the PD surface in FIG. 7 are fixed with AuSn solder or the like, respectively. 1 which is the semiconductor optical component of the present invention is completed.

本願第2の発明の実施例を以下に示す。図2は、本実施例の半導体光学部品の完成斜視図である。 An embodiment of the second invention of the present application will be described below. FIG. 2 is a completed perspective view of the semiconductor optical component of this example.

本実施例の半導体光学部品は、第1の実施例の半導体光学素子3にあたる前記PD近傍を、融点が300℃から500℃程度の低融点ガラス4(PbO―SiO2―B2O3またはPbO―P2O3―SnF2)やTickガラス(PbF2―SnF2―SnO―P2O3)等で覆っている。ルツボ等で溶かした低融点ガラスに前記PD近傍まで漬け込むことや、溶けた低融点ガラスを滴下することで形成する。 In the semiconductor optical component of this example, the low temperature glass 4 (PbO—SiO 2 —B 2 O 3 or PbO—P 2 O 3 —SnF 2) having a melting point of about 300 ° C. to 500 ° C. is provided in the vicinity of the PD corresponding to the semiconductor optical element 3 of the first example. ) Or Tick glass (PbF2-SnF2-SnO-P2O3) or the like. It is formed by immersing it in the vicinity of the PD in a low melting point glass melted with a crucible or the like, or by dropping the melted low melting point glass.

本実施例の場合、PD近傍を液化した低融点ガラスに直接漬け込むと、素子に熱ダメージを与えて故障する場合がある。また、前記AuSn半田が熱によって溶け、PDが光ファイバーから剥離される場合もある。そこで、PD近傍を先ず樹脂で覆い、その上から低融点ガラスで封止しても良い。 In the case of this example, if the vicinity of the PD is directly immersed in the liquefied low melting point glass, the element may be damaged due to thermal damage. In some cases, the AuSn solder is melted by heat and the PD is peeled off from the optical fiber. Therefore, the vicinity of the PD may be first covered with a resin and then sealed with a low melting point glass.

本願第3の発明の実施例を以下に示す。図3は、本実施例の半導体光学部品の完成品断面図である。本実施例の完成品は、図8の部材を組合せることによって形成される。尚、本実施例内に電極配線ガイド5の製造方法の実施例も記載した。 An embodiment of the third invention of the present application will be described below. FIG. 3 is a sectional view of a finished product of the semiconductor optical component of this example. The finished product of this embodiment is formed by combining the members shown in FIG. In addition, the Example of the manufacturing method of the electrode wiring guide 5 was also described in the present Example.

図8は、本願第3の発明に使用される部材の斜視図である。光ファイバー1には、クラッド径125μmのシングルモードファイバー等を使用する。 FIG. 8 is a perspective view of members used in the third invention of the present application. For the optical fiber 1, a single mode fiber having a cladding diameter of 125 μm is used.

電極配線ガイド5には、光ファイバー1が挿入されるための穴20が形成されている。当該電極配線ガイド5の外形は直方体形状になっている。電極配線ガイド5を円柱状にした場合、当該ガイド5の固定及びワイヤー接続が難しくなることに配慮したもので、直方体形状にすることで、これらの問題は解消される。当該電極配線ガイド5のサイズは、高密度実装を考慮して、1mm角程度が好ましい。 A hole 20 for inserting the optical fiber 1 is formed in the electrode wiring guide 5. The outer shape of the electrode wiring guide 5 has a rectangular parallelepiped shape. When the electrode wiring guide 5 is formed in a columnar shape, it is considered that the guide 5 is difficult to be fixed and wire connection is difficult, and these problems are solved by making the electrode wiring guide 5 into a rectangular parallelepiped shape. The size of the electrode wiring guide 5 is preferably about 1 mm square in consideration of high-density mounting.

当該電極配線ガイド5の製造方法の実施例1としては、図9に示すように、セラミックのような絶縁性物質18の板を1枚と金属19のような導電性物質の板2枚とで挟んで固定し、絶縁性物質18または絶縁性物質18及び金属19に光ファイバー1の外径程度の穴20を開け、個別に切り出すことで製造する。 As Example 1 of the manufacturing method of the electrode wiring guide 5, as shown in FIG. 9, one plate of an insulating material 18 such as ceramic and two plates of a conductive material such as a metal 19 are used. It manufactures by pinching and pinching, opening the hole 20 about the outer diameter of the optical fiber 1 in the insulating substance 18 or the insulating substance 18, and the metal 19, and cutting out separately.

当該電極配線ガイド5の製造方法の実施例2としては、図10に示すように、金属19のような導電性物質の板上にセラミック材のような絶縁性物質18を形成し、光ファイバー1の外径程度の幅で、外径の半分程度の深さで溝21を形成する。当該2つの溝付き金属板22の絶縁性物質18同士を接着させることで製造する。 As Example 2 of the manufacturing method of the said electrode wiring guide 5, as shown in FIG. 10, the insulating substance 18 like a ceramic material is formed on the board | plate of a conductive substance like the metal 19, and the optical fiber 1 of FIG. The groove 21 is formed with a width of about the outer diameter and a depth of about half of the outer diameter. It manufactures by adhere | attaching the insulating substances 18 of the said 2 metal plate 22 with a groove | channel.

当該電極配線ガイド5の製造方法の実施例3としては、図11に示すように、シリコンのような半導体の基板23に、ホトリソ及びウェットエッチングによって結晶方位にそったV字型の溝(V溝24)を形成する。当該V溝24を形成する場合、基板23を傾けてダイシングソーでV溝24を加工しても構わない。この場合は、基板23が結晶方位をもたない絶縁性物質でも同等の形状が得られる。当該V溝24は、光ファイバー挿入側25からPD固定側26まで同じ深さで形成しても構わないが、PD固定側26のV溝を光ファイバーのコア13が端面から見える程度に浅くすれば、実装時に光ファイバーを挿入する際に、光ファイバー端面がPDに当たって受光面を傷つけるような心配がなくなる。 As a third embodiment of the method for manufacturing the electrode wiring guide 5, as shown in FIG. 11, a V-shaped groove (V groove) along a crystal orientation by photolithography and wet etching is formed on a semiconductor substrate 23 such as silicon. 24). When forming the V groove 24, the substrate 23 may be inclined and the V groove 24 may be processed with a dicing saw. In this case, an equivalent shape can be obtained even if the substrate 23 has no crystal orientation. The V-groove 24 may be formed at the same depth from the optical fiber insertion side 25 to the PD fixing side 26, but if the V-groove on the PD fixing side 26 is shallow enough to see the optical fiber core 13 from the end face, When inserting an optical fiber at the time of mounting, there is no need to worry that the end face of the optical fiber hits the PD and damages the light receiving surface.

当該V溝形成基板27の裏面と端面とに導電性物質を形成する。この場合、V溝形成基板27を傾けて金属19(例えば、Cr/Au等)を蒸着すると良い。金属19が形成されたV溝形成基板27同士が絶縁性物質18を挟んで固定されている、もしくは絶縁性の接着剤等でV溝形成基板27同士が接着されることによって製造する。 A conductive material is formed on the back surface and the end surface of the V-groove forming substrate 27. In this case, the metal 19 (for example, Cr / Au or the like) is preferably deposited by tilting the V groove forming substrate 27. The V-groove forming substrates 27 formed with the metal 19 are fixed to each other with the insulating material 18 interposed therebetween, or the V-groove forming substrates 27 are bonded to each other with an insulating adhesive or the like.

当該電極配線ガイド5の実施例4としては、光ファイバーの外径程度の穴を開けたセラミック等の絶縁性物質を使用し、実施例1の前記電極配線メタルの形成方法と同じ製法で配線を形成することで製造する。 As Example 4 of the electrode wiring guide 5, an insulating material such as a ceramic with a hole having an outer diameter of an optical fiber is used, and wiring is formed by the same manufacturing method as the electrode wiring metal forming method of Example 1. To manufacture.

当該電極配線ガイド5は、光ファイバー1の側面に金属のような導電性物質とセラミック材のような絶縁性物質とを組合せて形成されるものである。導電性物質及び絶縁性物質がそれぞれ別の部材であっても、組合せて本実施例と同様な構造になる場合は、本実施例と同一物と見なせる。 The electrode wiring guide 5 is formed on the side surface of the optical fiber 1 by combining a conductive material such as a metal and an insulating material such as a ceramic material. Even if the conductive material and the insulating material are different members, if they are combined to form a structure similar to that of this embodiment, they can be regarded as the same as this embodiment.

PDは図7の素子を使用する。PD17のサイズは光ファイバー1の径よりも大きいことが望ましく、500μm角程度が実装しやすい。 The PD uses the element of FIG. The size of the PD 17 is desirably larger than the diameter of the optical fiber 1, and about 500 μm square is easy to mount.

PD17は電極配線ガイド5の端面に配置され、電極配線ガイド5に形成された2つのメタルと、PD17表面のアノード電極15、カソード電極16とを、それぞれAuSn半田などで電気的に接続し、尚且つPD17を電極配線ガイド5に固定する。 The PD 17 is disposed on the end surface of the electrode wiring guide 5, and the two metals formed on the electrode wiring guide 5 are electrically connected to the anode electrode 15 and the cathode electrode 16 on the surface of the PD 17 with AuSn solder, respectively. One PD 17 is fixed to the electrode wiring guide 5.

蓋6で封止して完成となる。この場合、電極配線ガイド5の2電極がショートしないように十分配慮する必要がある。また、実施例2同様に低融点ガラス等または樹脂及び低融点ガラス等でPD近傍を封止しても構わない。 Sealing with the lid 6 completes. In this case, it is necessary to give sufficient consideration so that the two electrodes of the electrode wiring guide 5 do not short-circuit. Further, similarly to Example 2, the vicinity of the PD may be sealed with a low melting point glass or the like, or a resin and a low melting point glass.

本願第4の発明の実施例を以下に示す。図4は、本実施例の半導体光学部品の完成品断面図である。本実施例の完成品は、図12の部材を組合せることによって形成される。 An embodiment of the fourth invention of the present application will be described below. FIG. 4 is a sectional view of a finished product of the semiconductor optical component of this example. The finished product of this embodiment is formed by combining the members shown in FIG.

図12は、本願第4の発明に使用される部材の斜視図である。光ファイバー1には、クラッド径125μmのシングルモードファイバー等を使用する。 FIG. 12 is a perspective view of members used in the fourth invention of the present application. For the optical fiber 1, a single mode fiber having a cladding diameter of 125 μm is used.

ガイド7は円筒状であり、当該ガイド7に形成される穴20の光ファイバー1挿入側の内径は光ファイバー1の外径よりも若干広く、ビアホール基板8固定側の内径はPD17が接触しない程度に広く形成されている。当該ガイド7の外径はビアホール基板8の外径とほぼ同等で、高密度実装を考慮してφ1mm程度が望ましい。また、当該ガイド7の材質は金属が好ましい。 The guide 7 has a cylindrical shape, the inner diameter of the hole 20 formed in the guide 7 on the optical fiber 1 insertion side is slightly wider than the outer diameter of the optical fiber 1, and the inner diameter of the via hole substrate 8 fixed side is wide enough to prevent the PD 17 from contacting. Is formed. The outer diameter of the guide 7 is substantially the same as the outer diameter of the via-hole substrate 8 and is preferably about φ1 mm in consideration of high-density mounting. The material of the guide 7 is preferably a metal.

PD17は、図7の素子の裏面に反射防止膜コートしたものを使用する。当該PD17は、裏面入射型のフリップチップ実装用として広く一般的に使用されている素子であるため、当該PDの断面構造等の詳細については省略する。 As the PD 17, an antireflection film coated on the back surface of the element shown in FIG. 7 is used. Since the PD 17 is an element that is widely and generally used for back-illuminated flip chip mounting, details of the cross-sectional structure and the like of the PD are omitted.

図13は、ビアホール基板の表面(PD実装面)及び裏面を示している。破線はPD搭載箇所29を示している。ビアホール基板8は絶縁性基板30と金属19(例えばAu、Cu、Al等)とで形成され、絶縁性基板30表面の金属19と当該裏面の金属19とが電気的に接続しているものである。当該金属19と、PD17のアノード電極15、カソード電極16とを、それぞれAuSn半田などで固定する。当該ビアホール基板8の金属19部にリード線が接続されているものを使用しても良い。 FIG. 13 shows the front surface (PD mounting surface) and back surface of the via-hole substrate. The broken line indicates the PD mounting location 29. The via-hole substrate 8 is formed of an insulating substrate 30 and a metal 19 (for example, Au, Cu, Al, etc.), and the metal 19 on the surface of the insulating substrate 30 and the metal 19 on the back surface are electrically connected. is there. The metal 19 and the anode electrode 15 and the cathode electrode 16 of the PD 17 are fixed with AuSn solder or the like, respectively. You may use what the lead wire is connected to the metal 19 part of the said via-hole board | substrate 8. FIG.

PD17を搭載したビアホール基板8とガイド7とを半田31等で固定し、当該ガイド7と光ファイバー1とを固定する。光ファイバー1は側面に金属膜を形成したものであれば、ガイド7と半田で固定することが可能となり気密封止ができるが、金属膜を形成せずに接着剤や低融点ガラス等でガイド7と光ファイバー1を固定しても構わない。 The via-hole substrate 8 on which the PD 17 is mounted and the guide 7 are fixed with solder 31 or the like, and the guide 7 and the optical fiber 1 are fixed. If the optical fiber 1 has a metal film on the side surface, it can be fixed to the guide 7 with solder and can be hermetically sealed. However, the guide 7 can be formed with an adhesive, low melting point glass, or the like without forming the metal film. And the optical fiber 1 may be fixed.

本願第5の発明の実施例を以下に示す。図5は、本実施例の半導体光学部品の完成品断面図である。本実施例の完成品は、図14の部材を組合せることによって形成される。 An embodiment of the fifth invention of the present application will be described below. FIG. 5 is a sectional view of a completed product of the semiconductor optical component of this example. The finished product of this embodiment is formed by combining the members shown in FIG.

図14は、本願第5の発明に使用される部材の斜視図である。光ファイバー1には、クラッド径125μmのシングルモードファイバー等を使用する。 FIG. 14 is a perspective view of a member used in the fifth invention of the present application. For the optical fiber 1, a single mode fiber having a cladding diameter of 125 μm is used.

第1導電型ガイド9に形成された穴20の内径は光ファイバー1の外径よりも若干広く、PD17サイズよりも狭い。外形は第2導電型基板10とほぼ同等で、高密度実装を考慮して1mm角程度が望ましい。また、当該第1導電型ガイド9の材質は金属が好ましいが、セラミック等で表面に金属膜を形成したものでも構わない。 The inner diameter of the hole 20 formed in the first conductivity type guide 9 is slightly wider than the outer diameter of the optical fiber 1 and narrower than the PD17 size. The outer shape is almost the same as that of the second conductivity type substrate 10 and is preferably about 1 mm square considering high-density mounting. The material of the first conductivity type guide 9 is preferably a metal, but may be a ceramic or the like with a metal film formed on the surface.

第2導電型基板10の材質は金属が好ましいが、セラミック等の絶縁性物質表面に金属膜を形成したものでも良い。 The material of the second conductivity type substrate 10 is preferably a metal, but may be one in which a metal film is formed on the surface of an insulating material such as ceramic.

本実施例では、PD17に光通信に使用される典型的な表面入射型のInGaAs―PDを使用する例を示した。当該PD17は表面に受光窓14とアノード電極15があり、裏面がカソード電極になっている。本実施例の組合せであれば、第1導電型ガイド9がアノード、第2導電型基板10がカソードになる。PDによっては電極の極性が上記の逆にもなりえる。 In the present embodiment, an example in which a typical front-illuminated type InGaAs-PD used for optical communication is used as the PD 17 is shown. The PD 17 has a light receiving window 14 and an anode electrode 15 on the front surface, and a cathode electrode on the back surface. In the case of the combination of the present embodiment, the first conductivity type guide 9 becomes the anode, and the second conductivity type substrate 10 becomes the cathode. Depending on the PD, the polarity of the electrodes can be reversed.

PD17に過剰な負荷を掛けないため、また封止をするために、スペーサー11を挿入する。当該スペーサー11の厚みはPD17厚と同程度であり、材質はセラミック等の絶縁性物質が良い。内径はPD17サイズ以上であり、外形は第1導電型ガイド9、第2導電型基板10と同程度である。第1導電型ガイド9と第2導電型基板10と接触する箇所には金属膜が形成され、半田等で固定できるようになっている。 The spacer 11 is inserted so as not to apply an excessive load to the PD 17 and to seal it. The thickness of the spacer 11 is about the same as the thickness of the PD 17, and the material is preferably an insulating material such as ceramic. The inner diameter is PD17 size or more, and the outer shape is about the same as the first conductive type guide 9 and the second conductive type substrate 10. A metal film is formed at a location where the first conductivity type guide 9 and the second conductivity type substrate 10 are in contact with each other, and can be fixed with solder or the like.

PD17を第2導電型基板10に半田や銀ペースト等で固定し、スペーサー11を第2導電型基板10に半田等で固定する。PD17、スペーサー11を固定した第2導電型基板10を第1導電型ガイド9に半田等で固定し、第1導電型ガイド9と光ファイバー1とを接着剤または低融点ガラス等で固定する。当該光ファイバー1の側面に金属膜が形成されている場合は、半田で固定することも可能である。 The PD 17 is fixed to the second conductivity type substrate 10 with solder, silver paste or the like, and the spacer 11 is fixed to the second conductivity type substrate 10 with solder or the like. The second conductivity type substrate 10 to which the PD 17 and the spacer 11 are fixed is fixed to the first conductivity type guide 9 with solder or the like, and the first conductivity type guide 9 and the optical fiber 1 are fixed with an adhesive or low melting point glass or the like. When a metal film is formed on the side surface of the optical fiber 1, it can be fixed with solder.

本実施例ではPD17の厚みにバラツキがあると、PD17が第1導電型ガイド9に接触できずにオープンになったり、負荷が掛かりすぎてPD17を破壊してしまったりする。そこで、PD17と第1導電型ガイド9との間に当該ガイド9の内径よりも大きく、PD17サイズよりも小さいバネ12を挿入し、PD17の厚みバラツキを吸収する方が好ましい。当該バネ12の代わりに、PD17に負荷を掛けない程度の軟性を持つ導電性物質を負荷吸収物質として用いても構わない。 In this embodiment, if there is variation in the thickness of the PD 17, the PD 17 cannot be brought into contact with the first conductivity type guide 9 and becomes open, or a load is applied too much and the PD 17 is destroyed. Therefore, it is preferable to insert a spring 12 larger than the inner diameter of the guide 9 and smaller than the PD 17 size between the PD 17 and the first conductivity type guide 9 to absorb the thickness variation of the PD 17. Instead of the spring 12, a conductive material that is soft enough not to apply a load to the PD 17 may be used as the load absorbing material.

尚、実施例1、2では光ファイバー自体に電極配線パターンを設け、光ファイバーに直接PDを実装するもので、このような構造の出願は見受けられず、本願は新規性の高いものと言える。また、実施例3から5においては、PDに特に工夫を施しておらず、現状の光通信デバイスメーカー各社が保有している実装技術において十分対応可能なものである。光ファイバーに固定されるガイドが電極となる本構造は、新規性の高いものであると判断している。 In the first and second embodiments, an electrode wiring pattern is provided on the optical fiber itself, and the PD is directly mounted on the optical fiber. There is no application for such a structure, and it can be said that the present application is highly novel. In the third to fifth embodiments, the PD is not particularly devised, and can be sufficiently handled by the mounting technology possessed by the current optical communication device manufacturers. The present structure in which the guide fixed to the optical fiber serves as an electrode is judged to be highly novel.

また、上記の実施例では光ファイバーの径はクラッドの径を例示しているが、本発明では被覆付きの光ファイバーを使用しても構わない。 In the above embodiment, the diameter of the optical fiber is exemplified by the diameter of the clad. However, in the present invention, a coated optical fiber may be used.

第1の発明の実施例である半導体光学部品斜視図(実施例1)Semiconductor optical component perspective view which is an embodiment of the first invention (Embodiment 1) 第2の発明の実施例である半導体光学部品斜視図(実施例2)Semiconductor optical component perspective view of an embodiment of the second invention (Example 2) 第3の発明の実施例である半導体光学部品断面図(実施例3)Sectional view of a semiconductor optical component which is an embodiment of the third invention (Example 3) 第4の発明の実施例である半導体光学部品断面図(実施例4)Sectional view of a semiconductor optical component which is an embodiment of the fourth invention (Example 4) 第5の発明の実施例である半導体光学部品断面図(実施例5)Sectional view of a semiconductor optical component which is an embodiment of the fifth invention (Example 5) 光ファイバー斜視図Optical fiber perspective view PD斜視図PD perspective view 実施例3に使用される部材構成斜視図Member configuration perspective view used in Example 3 電極配線ガイド製造方法の実施例1Example 1 of electrode wiring guide manufacturing method 電極配線ガイド製造方法の実施例2Example 2 of electrode wiring guide manufacturing method 電極配線ガイド製造方法の実施例3Example 3 of electrode wiring guide manufacturing method 実施例4に使用される部材構成斜視図Member configuration perspective view used in Example 4 ビアホール基板模式図Via hole board schematic diagram 実施例5に使用される部材構成斜視図Member configuration perspective view used in Example 5

符号の説明Explanation of symbols

1:光ファイバー
2:電極配線メタル
3:半導体光学素子
4:低融点ガラス
5:電極配線ガイド
6:蓋
7:ガイド
8: ビアホール基板
9:第1導電型ガイド
10:第2導電型基板
11:スペーサー
12:バネ
13:光ファイバーのコア
14:受光窓
15:アノード電極
16:カソード電極
17:PD(受光素子)
18:絶縁性物質
19:金属
20:穴
21:溝
22:溝付き金属板
23:基板
24:V溝
25:光ファイバー挿入側
26:PD固定側
27:V溝形成基板
28:蒸着方向
29:PD搭載箇所
30:絶縁性基板
31:半田

1: optical fiber 2: electrode wiring metal 3: semiconductor optical element 4: low melting point glass 5: electrode wiring guide 6: lid 7: guide 8: via hole substrate 9: first conductivity type guide 10: second conductivity type substrate 11: spacer 12: Spring 13: Optical fiber core 14: Light receiving window 15: Anode electrode 16: Cathode electrode 17: PD (light receiving element)
18: insulating material 19: metal 20: hole 21: groove 22: grooved metal plate 23: substrate 24: V groove 25: optical fiber insertion side 26: PD fixing side 27: V groove forming substrate 28: vapor deposition direction 29: PD Mounting location 30: Insulating substrate 31: Solder

Claims (16)

光ファイバーの側面または側面及び端面に導電性物質で構成される電極配線メタルが形成され、光の出入射窓にあたる光ファイバー端面に半導体光学素子が設置され、前記光ファイバー側面または端面の電極配線メタルと当該半導体光学素子とが電気的に接続されていることを特徴とする半導体光学部品。 An electrode wiring metal made of a conductive material is formed on the side surface or side surface and end surface of the optical fiber, and a semiconductor optical element is installed on the end surface of the optical fiber corresponding to the light entrance / exit window, and the electrode wiring metal on the side surface or end surface of the optical fiber and the semiconductor A semiconductor optical component characterized in that an optical element is electrically connected. 前記半導体光学素子近傍を低融点ガラスや樹脂などの絶縁性物質で覆うことを特徴とする請求項1記載の半導体光学部品。 2. The semiconductor optical component according to claim 1, wherein the vicinity of the semiconductor optical element is covered with an insulating material such as low-melting glass or resin. 前記半導体光学素子近傍を樹脂で覆い、当該樹脂の上から低融点ガラス等のガラス質で覆うことを特徴とする請求項1記載の半導体光学部品。 The semiconductor optical component according to claim 1, wherein the vicinity of the semiconductor optical element is covered with a resin, and the glass is covered with a glass such as a low-melting glass from the top of the resin. 前記半導体光学部品が受光素子であることを特徴とする請求項1または2または3記載の半導体光学部品。 4. The semiconductor optical component according to claim 1, wherein the semiconductor optical component is a light receiving element. 導電性物質と絶縁性物質とで形成された電極配線ガイドが光ファイバーの側面または側面及び端面に固定され、当該電極配線ガイドの導電性物質と半導体光学素子の電極が電気的に接続されていることを特徴とする半導体光学部品。 An electrode wiring guide formed of a conductive material and an insulating material is fixed to the side surface or side surface and end surface of the optical fiber, and the conductive material of the electrode wiring guide and the electrode of the semiconductor optical element are electrically connected. A semiconductor optical component characterized by the above. 前記半導体光学素子近傍を低融点ガラスや樹脂などの絶縁性物質で覆うことを特徴とする請求項5記載の半導体光学部品。 6. The semiconductor optical component according to claim 5, wherein the vicinity of the semiconductor optical element is covered with an insulating material such as low-melting glass or resin. 前記半導体光学素子近傍に蓋を被せて気密封止することを特徴とする請求項5記載の半導体光学部品。 6. The semiconductor optical component according to claim 5, wherein the semiconductor optical element is hermetically sealed by covering a lid in the vicinity of the semiconductor optical element. 前記電極配線ガイドの光ファイバー挿入側の面と対向する面に前記半導体光学素子が固定されることを特徴とする請求項5記載の半導体光学部品。 6. The semiconductor optical component according to claim 5, wherein the semiconductor optical element is fixed to a surface of the electrode wiring guide facing the optical fiber insertion side. 前記半導体光学素子が受光素子であることを特徴とする請求項5記載の半導体光学部品。 6. The semiconductor optical component according to claim 5, wherein the semiconductor optical element is a light receiving element. 光ファイバーの側面に固定されるガイドと、絶縁性基板と導電性物質とで形成され、絶縁性基板表面の導電性物質と当該裏面の導電性物質とが電気的に接続しているビアホール基板に半導体光学素子が固定され、当該ビアホール基板と前記ガイドとが固定されていることを特徴とする半導体光学部品。 A semiconductor is formed on a via-hole substrate that is formed of a guide fixed to the side surface of an optical fiber, an insulating substrate, and a conductive material, and the conductive material on the surface of the insulating substrate is electrically connected to the conductive material on the back surface. An optical element is fixed, and the via hole substrate and the guide are fixed. 光ファイバーの側面と接している第1導電型ガイドと、第2導電型基板とで半導体光学素子が挟まれて固定され、絶縁性物質で形成されたスペーサーが第1導電型ガイドと第2導電型基板とのそれぞれに接着されていることを特徴とする半導体光学部品。 A semiconductor optical element is sandwiched and fixed between a first conductivity type guide in contact with the side surface of the optical fiber and a second conductivity type substrate, and a spacer formed of an insulating material is provided between the first conductivity type guide and the second conductivity type. A semiconductor optical component which is bonded to each of the substrates. 前記半導体光学素子の厚みバラツキなどで、過剰に負荷が掛からないように、導電性物質で形成されるバネ等の負荷吸収物質を前記第1導電型ガイドと前記半導体光学素子との間に挿入することを特徴とする請求項11記載の半導体光学部品。 A load absorbing material such as a spring formed of a conductive material is inserted between the first conductive type guide and the semiconductor optical element so that an excessive load is not applied due to a thickness variation of the semiconductor optical element. The semiconductor optical component according to claim 11. 板状の絶縁性物質と導電性物質とを貼り合せ、当該絶縁性物質または絶縁性物質及び導電性物質に光ファイバー外径程度の穴を開けることを特徴とする前記電極配線ガイドの製造方法。 A method of manufacturing the electrode wiring guide, comprising: bonding a plate-like insulating substance and a conductive substance, and forming a hole having an outer diameter of an optical fiber in the insulating substance or the insulating substance and the conductive substance. 導電性物質上に絶縁性物質を形成した基板に、光ファイバー外径程度の幅で、半径程度の深さの溝を形成し、当該基板の絶縁性物質同士を貼り合せることを特徴とする前記電極配線ガイドの製造方法。 An electrode having a width of about the outer diameter of an optical fiber and a depth of about a radius formed on a substrate having an insulating material formed on a conductive material, and the insulating materials of the substrate are bonded together Manufacturing method of wiring guide. 半導体物質または絶縁性物質からなる基板にV字型の溝(V溝)を形成し、当該基板のV溝形成面と対向する面上に導電性物質を形成し、当該基板のV溝面側同士で絶縁性物質を挟む、またはV溝面側同士を絶縁性の接着剤で固定することを特徴とする前記電極配線ガイドの製造方法。 A V-shaped groove (V-groove) is formed in a substrate made of a semiconductor material or an insulating material, a conductive material is formed on a surface of the substrate facing the V-groove forming surface, and the V-groove surface side of the substrate is formed. The method for producing an electrode wiring guide, wherein an insulating substance is sandwiched between the V-groove surfaces or the V-groove surfaces are fixed with an insulating adhesive. 前記基板の半導体光学素子固定側の面にも導電性物質を形成することを特徴とする請求項15記載の製造方法。
The manufacturing method according to claim 15, wherein a conductive material is also formed on a surface of the substrate on the semiconductor optical element fixing side.
JP2004155439A 2004-05-26 2004-05-26 Semiconductor optical component and manufacturing method thereof Expired - Fee Related JP4062705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155439A JP4062705B2 (en) 2004-05-26 2004-05-26 Semiconductor optical component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155439A JP4062705B2 (en) 2004-05-26 2004-05-26 Semiconductor optical component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005338308A true JP2005338308A (en) 2005-12-08
JP4062705B2 JP4062705B2 (en) 2008-03-19

Family

ID=35491975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155439A Expired - Fee Related JP4062705B2 (en) 2004-05-26 2004-05-26 Semiconductor optical component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4062705B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009912A1 (en) * 2019-07-18 2021-01-21 日本電信電話株式会社 Photoelectric fiber and communication device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394410U (en) * 1986-12-10 1988-06-17
JPH08254635A (en) * 1995-02-09 1996-10-01 At & T Ipm Corp Optical interconnection device
JPH09159882A (en) * 1995-12-08 1997-06-20 Nec Tohoku Ltd Structure and method for coupling between optical element and optical fiber
JPH09289330A (en) * 1996-04-24 1997-11-04 Nec Corp Photosensitive module
JPH1039162A (en) * 1996-07-24 1998-02-13 Mitsubishi Electric Corp Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
JPH10505433A (en) * 1994-06-29 1998-05-26 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Packaged optical device
JP2000021222A (en) * 1998-06-30 2000-01-21 Seiko Epson Corp Light emitting device and manufacture thereof
JP2000155242A (en) * 1998-11-19 2000-06-06 Canon Inc Optical module containing optical fiber
JP2000206376A (en) * 1999-01-08 2000-07-28 Furukawa Electric Co Ltd:The Light receiving/emitting element module, and manufacture thereof
JP2000349307A (en) * 1999-06-08 2000-12-15 Seiko Epson Corp Optical module, platform, manufacture thereof and optical transmitting device
JP2001059924A (en) * 1999-06-16 2001-03-06 Seiko Epson Corp Optical module, production thereof and light transmission device
JP2001127312A (en) * 1999-10-28 2001-05-11 Seiko Epson Corp Optical module, manufacturing method therefor, and optical transmission device
JP2001159724A (en) * 1999-12-02 2001-06-12 Seiko Epson Corp Optical module, its manufacturing method, and optical transfer device
JP2002033546A (en) * 2000-07-19 2002-01-31 Canon Inc Surface emitting optical element, surface emitting optical element mount, its manufacturing method and optical wiring device using the same
JP2002202440A (en) * 2000-12-28 2002-07-19 Japan Aviation Electronics Industry Ltd Structure and method of mounting optical module
JP2002286977A (en) * 2001-03-27 2002-10-03 Rohm Co Ltd Optical communication module

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394410U (en) * 1986-12-10 1988-06-17
JPH10505433A (en) * 1994-06-29 1998-05-26 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Packaged optical device
JPH08254635A (en) * 1995-02-09 1996-10-01 At & T Ipm Corp Optical interconnection device
JPH09159882A (en) * 1995-12-08 1997-06-20 Nec Tohoku Ltd Structure and method for coupling between optical element and optical fiber
JPH09289330A (en) * 1996-04-24 1997-11-04 Nec Corp Photosensitive module
JPH1039162A (en) * 1996-07-24 1998-02-13 Mitsubishi Electric Corp Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
JP2000021222A (en) * 1998-06-30 2000-01-21 Seiko Epson Corp Light emitting device and manufacture thereof
JP2000155242A (en) * 1998-11-19 2000-06-06 Canon Inc Optical module containing optical fiber
JP2000206376A (en) * 1999-01-08 2000-07-28 Furukawa Electric Co Ltd:The Light receiving/emitting element module, and manufacture thereof
JP2000349307A (en) * 1999-06-08 2000-12-15 Seiko Epson Corp Optical module, platform, manufacture thereof and optical transmitting device
JP2001059924A (en) * 1999-06-16 2001-03-06 Seiko Epson Corp Optical module, production thereof and light transmission device
JP2001127312A (en) * 1999-10-28 2001-05-11 Seiko Epson Corp Optical module, manufacturing method therefor, and optical transmission device
JP2001159724A (en) * 1999-12-02 2001-06-12 Seiko Epson Corp Optical module, its manufacturing method, and optical transfer device
JP2002033546A (en) * 2000-07-19 2002-01-31 Canon Inc Surface emitting optical element, surface emitting optical element mount, its manufacturing method and optical wiring device using the same
JP2002202440A (en) * 2000-12-28 2002-07-19 Japan Aviation Electronics Industry Ltd Structure and method of mounting optical module
JP2002286977A (en) * 2001-03-27 2002-10-03 Rohm Co Ltd Optical communication module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009912A1 (en) * 2019-07-18 2021-01-21 日本電信電話株式会社 Photoelectric fiber and communication device
JPWO2021009912A1 (en) * 2019-07-18 2021-01-21
JP7334782B2 (en) 2019-07-18 2023-08-29 日本電信電話株式会社 Optical fiber, communication device and method for manufacturing optical fiber
US11934022B2 (en) 2019-07-18 2024-03-19 Nippon Telegraph And Telephone Corporation Photoelectric fiber and communication device

Also Published As

Publication number Publication date
JP4062705B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US6932519B2 (en) Optical device package
US6786654B2 (en) Encapsulated optical fiber end-coupled device
EP0872748B1 (en) Method for hermetically sealing optical fiber feedthrough and hermetically sealed structure
US8233757B2 (en) Wafer based optical chassis and associated methods
JP3566842B2 (en) Semiconductor light receiving device, method of manufacturing semiconductor light receiving device, bidirectional optical semiconductor device, and optical transmission system
US20070278666A1 (en) Method for Production of Electronic and Optoelectronic Circuits
KR20060125509A (en) Optical assemblies
JP2010225824A (en) Optical module and wavelength multiplex optical module
JPS6155792B2 (en)
JP2007096093A (en) Optical module
JP2002006183A (en) Optical coupling device
JP2006054457A (en) Housing for optoelectronics components, and optical assembly
US8772822B2 (en) Light emitting device
JP4728625B2 (en) Optical semiconductor device and optical module using the same
JP2005338308A (en) Semiconductor optical parts and their manufacturing method
JP2020113695A (en) Stem for semiconductor package and semiconductor package
JP2009253176A (en) Photoelectric conversion module and optical subassembly
JPH11289038A (en) Electronic temperature adjusting device
JP2007333912A (en) Optical module
JP2004317629A (en) Optical transmission module
WO2023229017A1 (en) Laser device and package for mounting optical component
WO2021162108A1 (en) Opto-electric hybrid board
CA2523418C (en) Package for optoelectronic device on wafer level and associated methods
JP2022091315A (en) Stem for semiconductor package and method of manufacturing the same, and semiconductor package
JP2004133486A (en) Semiconductor photoreceiving device, manufacturing method of semiconductor photoreceiving device, bidirectional optical semiconductor device and light transmission system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees