JP2005337784A - Breakage determination method in impact simulation - Google Patents
Breakage determination method in impact simulation Download PDFInfo
- Publication number
- JP2005337784A JP2005337784A JP2004154365A JP2004154365A JP2005337784A JP 2005337784 A JP2005337784 A JP 2005337784A JP 2004154365 A JP2004154365 A JP 2004154365A JP 2004154365 A JP2004154365 A JP 2004154365A JP 2005337784 A JP2005337784 A JP 2005337784A
- Authority
- JP
- Japan
- Prior art keywords
- strain
- equation
- simulation
- fracture
- maximum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 8
- 229920005989 resin Polymers 0.000 claims abstract description 19
- 239000011347 resin Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 4
- 238000009864 tensile test Methods 0.000 claims abstract description 4
- 230000001066 destructive effect Effects 0.000 claims description 5
- 238000002474 experimental method Methods 0.000 claims description 4
- 239000011342 resin composition Substances 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims 2
- 230000006378 damage Effects 0.000 claims 1
- 230000035939 shock Effects 0.000 claims 1
- -1 polyethylene Polymers 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本発明は産業上広く応用範囲のあるCAEによる衝撃シミュレーションに関するものである。 The present invention relates to impact simulation by CAE which has a wide range of applications in industry.
樹脂は粘弾性体であり、早く変形すればするほど硬くなるという性質を持つ。樹脂はこの性質を持っているために、シミュレーションの際に、変形の際の歪み速度がわからないと正確な破壊歪みが予想できない。特許文献1,2によると、破壊する落下高さ等の実験条件を正確に予測するには、実験条件を与えて計算し、その時の最大歪みが発生する個所の歪み速度で、材料の破壊歪みを測定し、そのデータより破壊の有無を判断し、破壊しない様なら実験条件を変えて、一連の解析、実験をやり直し、また実験条件を変更するといったことを何回も何十回もしなくてはならない。このような従来の方法では予測に膨大な時間と手間がかかるため、事実上実施不可能に近い。
本発明の第一の目的は、樹脂製品の衝撃シミュレーションを実施するに際し必要とされる樹脂材料が破壊する歪みの値を、実際の製品の歪み速度に合わせた引張試験を行わなくても算出できることであり、更に第二の目的は、2回から3回の少ない衝撃シミュレーションをするだけで、破壊に至る実験条件の予想を容易に算出できることである。 The first object of the present invention is to be able to calculate the value of the strain that the resin material that is required when performing the impact simulation of the resin product, without performing a tensile test in accordance with the strain rate of the actual product. In addition, the second object is to easily calculate the prediction of the experimental conditions leading to the fracture with only a few impact simulations two to three times.
上記目的を達成すべく成された本発明の衝撃シミュレーション方法は、その一実施形態を示す図1〜図3を用いて説明すると、数種類の引張速度を変えた引張試験結果のうち、歪み速度をx軸、破壊歪みをy軸にプロットして、その関係方程式(1)を求め、その方程式(1)に任意の歪み速度を代入することによって、破壊歪みを予測し、また数種類の実験条件を変えた製品の衝撃シミュレーション結果より得た最大歪み個所の歪み速度を方程式(1)に代入して得られる破壊歪みをy軸、その時の実験条件をx軸にプロットして、その関係方程式(2)を求め、また衝撃シミュレーション結果より得た最大歪みをy軸、実験条件をx軸にプロットして関係方程式(3)を求め、方程式(2)と方程式(3)の交差する点が破壊が発生する実験条件と破壊歪みであると判断することを特徴とするものである。
本発明者は、樹脂製品の衝撃シミュレーションについて鋭意検討を重ねた結果、実験条件と破壊歪みに関係方程式を当てはめることができることを見い出し、本発明に至ったものである。
The impact simulation method of the present invention, which has been achieved to achieve the above object, will be described with reference to FIGS. 1 to 3 showing an embodiment thereof. By plotting the x-axis and fracture strain on the y-axis, obtaining the relational equation (1), substituting an arbitrary strain rate into the equation (1), the fracture strain is predicted, and several experimental conditions are set. The fracture strain obtained by substituting the strain rate of the maximum strain location obtained from the impact simulation result of the changed product into the equation (1) is plotted on the y-axis and the experimental conditions at that time are plotted on the x-axis. ), And the maximum strain obtained from the impact simulation result is plotted on the y-axis and the experimental condition is plotted on the x-axis to obtain the relational equation (3), and the point where equation (2) and equation (3) intersect is broken Occur It is characterized in that it is determined that the test conditions to be destructive distortion.
As a result of intensive studies on the impact simulation of resin products, the present inventor has found that a relational equation can be applied to the experimental conditions and the fracture strain, leading to the present invention.
樹脂の歪み速度に対する特性と、実験条件に依存する衝撃シミュレーション結果を方程式化することを工夫したため、今までほとんど不可能だった精度の高い破壊が発生する実験条件の予測を容易に出来る。 Since we devised equations for impact characteristics that depend on the strain rate of the resin and the experimental conditions, we can easily predict the experimental conditions that cause high-precision fracture that was almost impossible until now.
以下、本発明の一実施形態を示す図1〜図3を参照して本発明を詳細に説明する。なお、図1は歪み速度と破壊歪みとの関係を表す方程式の求め方の図、図2は実験条件と破壊歪みとの関係を表す方程式の求め方の図、図3は実験条件と発生する最大歪みとの関係を表す方程式の求め方の図である。
本発明は自動車部品、家電製品、OA製品、工業製品等、CAEによる衝撃シミュレーションを行うすべての製品に有効である。
図1〜図3で示した関係方程式は一例のため1次方程式であるが、データによって2次方程式、指数方程式等如何なる方程式を用いることが出来る。方程式の精度を高めるため、可能な限り、データ点数は多い方がよい。またx軸に使用するデータ(歪み速度と実験条件)はそれぞれの値が近すぎない方がよい。また図1〜図3のように方程式を求めるためにグラフを使用したが、方程式が別な方法で求めることができるならば、グラフを書くこと自体は特に本発明を限定しない。
Hereinafter, the present invention will be described in detail with reference to FIGS. 1 to 3 showing an embodiment of the present invention. 1 is a diagram of how to obtain an equation representing the relationship between strain rate and fracture strain, FIG. 2 is a diagram of how to obtain an equation representing the relationship between experimental conditions and fracture strain, and FIG. It is a figure of how to obtain | require the equation showing the relationship with maximum distortion.
The present invention is effective for all products that perform impact simulation by CAE, such as automobile parts, home appliances, OA products, and industrial products.
The relational equations shown in FIGS. 1 to 3 are linear equations as an example, but any equation such as a quadratic equation or an exponential equation can be used depending on the data. To increase the accuracy of the equation, it is better to have as many data points as possible. In addition, it is better that the data used for the x-axis (strain rate and experimental conditions) are not too close to each other. In addition, although the graph is used to obtain the equations as shown in FIGS. 1 to 3, if the equations can be obtained by another method, writing the graph itself does not limit the present invention.
本発明でいう実験条件とは、製品の使用目的によって、衝突速度、落下高さ、衝突エネルギー等のことであるが、数値化できるものであれば如何なる条件も使用することが出来る。ただし方程式(2)を求める実験条件と方程式(3)を求める実験条件は同じものにする必要がある。方程式(2)及び(3)を求めるのに、実験条件は2水準以上変える必要があるが、好ましくは3水準以上変えて行うことが好ましい。
衝撃シミュレーションを行う樹脂としてはポリエチレン、ポリプロピレン、ポリスチレン、ABS、ポリ塩化ビニル、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンスルフィド、ポリイミド、ポリアミドイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、液晶ポリマー、ポリテトラフルオロエチレン、熱可塑性エラストマー等の様々な樹脂又はこれらの樹脂混合物が挙げられ、更には、これらの樹脂又は樹脂混合物に充填材、難燃剤、安定剤等の添加剤を添加した樹脂組成物に用いることができる。
衝撃シミュレーションを行うソフトウエアはLS−DYNA、RADIOSS、MASYMO、MSC.dytoran、PAM−CLASH等が挙げられるが本発明の目的に適うものであれば如何なるソフトウエアも用いることができる。
The experimental conditions referred to in the present invention are the collision speed, the drop height, the collision energy, etc. depending on the purpose of use of the product, but any conditions can be used as long as they can be quantified. However, the experimental condition for obtaining equation (2) and the experimental condition for obtaining equation (3) must be the same. In order to obtain the equations (2) and (3), it is necessary to change the experimental conditions by two or more levels, but it is preferable to change the experiment conditions by three or more levels.
The resin for impact simulation is polyethylene, polypropylene, polystyrene, ABS, polyvinyl chloride, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyimide, polyamideimide, polyarylate, polysulfone, poly Various resins such as ether sulfone, polyether ether ketone, liquid crystal polymer, polytetrafluoroethylene, thermoplastic elastomer and the like, and a mixture of these resins, and further, a filler, a flame retardant, It can be used for a resin composition to which an additive such as a stabilizer is added.
Software for performing impact simulation is LS-DYNA, RADIUS, MASYMO, MSC. dytoran, PAM-CLASH, etc., but any software can be used as long as it meets the object of the present invention.
以下に実施例を挙げて本発明を更に詳細に説明するが、これは本発明を限定するものではない。
(実施例1)
図4に本実施例を示す。製品形状は箱型で、幅50mm、高さ100mm、奥行き35mm、肉厚はすべて5mmである。図4の矢印方向に製品を剛体床面に落とした際の破壊発生実験条件を求める。使用樹脂はガラス繊維を10重量%添加して強化した変性ポリフェニレンエーテルを用いる。使用ソフトウエアはLS−DYNA(Livermore Software Technology社製)である。実験条件は床面に当たる直前の落下速度である。
使用樹脂の歪み速度と破壊歪みの関係は図5のようになり、関係方程式(1)はy=−0.000129x+0.0313となる。
製品を1000mm/s、2000mm/s、4000mm/sの落下速度で剛体に衝突した際のシミュレーションを行う。それぞれの実験条件での最大歪みが発生する個所の歪み速度を方程式(1)に代入し、落下速度と破壊歪みの関係方程式(2)は図6に示すようにy=−0.0000172x+0.0319となる。また落下速度とシミュレーションで求めた最大歪みとの関係方程式(3)は図7に示すようにy=0.000000939x−0.000180となる。方程式(2)と方程式(3)の連立方程式を解くことにより、破壊が発生する落下速度は1760mm/sであることがわかる。
The present invention will be described in more detail with reference to the following examples, but it is not intended to limit the present invention.
(Example 1)
FIG. 4 shows this embodiment. The product shape is box-shaped, width 50 mm,
The relationship between the strain rate and the fracture strain of the resin used is as shown in FIG. 5, and the relational equation (1) is y = −0.000129x + 0.0313.
A simulation is performed when the product collides with a rigid body at a drop speed of 1000 mm / s, 2000 mm / s, and 4000 mm / s. The strain rate at which the maximum strain occurs under each experimental condition is substituted into equation (1), and the relational equation (2) between the drop rate and the fracture strain is y = −0.0000172x + 0.0319 as shown in FIG. It becomes. The relational equation (3) between the drop speed and the maximum strain obtained by the simulation is y = 0.000000939x−0.000180 as shown in FIG. By solving the simultaneous equations of Equation (2) and Equation (3), it can be seen that the drop speed at which fracture occurs is 1760 mm / s.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004154365A JP2005337784A (en) | 2004-05-25 | 2004-05-25 | Breakage determination method in impact simulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004154365A JP2005337784A (en) | 2004-05-25 | 2004-05-25 | Breakage determination method in impact simulation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005337784A true JP2005337784A (en) | 2005-12-08 |
Family
ID=35491535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004154365A Pending JP2005337784A (en) | 2004-05-25 | 2004-05-25 | Breakage determination method in impact simulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005337784A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008006151A1 (en) * | 2006-07-12 | 2008-01-17 | The University Of Queensland | A method of predicting breakage properties of a particulate material when subjected to impact |
CN101676709A (en) * | 2008-09-17 | 2010-03-24 | 宝理塑料株式会社 | Method for predicting impact breakage |
JP2014006721A (en) * | 2012-06-25 | 2014-01-16 | Toyota Auto Body Co Ltd | Method of creating brittle fracture model |
JP2015175682A (en) * | 2014-03-14 | 2015-10-05 | 日本電信電話株式会社 | elastic force measurement method |
CN105334105A (en) * | 2015-07-10 | 2016-02-17 | 南京航空航天大学 | Method for acquiring high speed blanking crack generation critical damage threshold, and apparatus thereof |
-
2004
- 2004-05-25 JP JP2004154365A patent/JP2005337784A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008006151A1 (en) * | 2006-07-12 | 2008-01-17 | The University Of Queensland | A method of predicting breakage properties of a particulate material when subjected to impact |
EA014375B1 (en) * | 2006-07-12 | 2010-10-29 | Де Юниверсити Оф Квинсленд | A method of predicting breakage properties of a particulate material when subjected to impact |
US8271236B2 (en) | 2006-07-12 | 2012-09-18 | The University Of Queensland | Method of predicting breakage properties of a particulate material when subjected to impact |
AU2007272296B2 (en) * | 2006-07-12 | 2013-02-14 | The University Of Queensland | A method of predicting breakage properties of a particulate material when subjected to impact |
CN101676709A (en) * | 2008-09-17 | 2010-03-24 | 宝理塑料株式会社 | Method for predicting impact breakage |
JP2010071734A (en) * | 2008-09-17 | 2010-04-02 | Polyplastics Co | Method of estimating impact fracture |
JP2014006721A (en) * | 2012-06-25 | 2014-01-16 | Toyota Auto Body Co Ltd | Method of creating brittle fracture model |
JP2015175682A (en) * | 2014-03-14 | 2015-10-05 | 日本電信電話株式会社 | elastic force measurement method |
CN105334105A (en) * | 2015-07-10 | 2016-02-17 | 南京航空航天大学 | Method for acquiring high speed blanking crack generation critical damage threshold, and apparatus thereof |
CN105334105B (en) * | 2015-07-10 | 2018-03-02 | 南京航空航天大学 | A kind of acquisition methods and device of high speed blanking crack initiation Critical Damage threshold values |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Impact fracture analysis enhanced by contact of peridynamic and finite element formulations | |
JP4329848B2 (en) | Structure analysis apparatus and structure analysis method | |
JP6254325B1 (en) | Coarse-grained molecular dynamics simulation method for polymer materials | |
JP4685747B2 (en) | How to create a rubber material analysis model | |
Hütter et al. | A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model | |
EP2535828A1 (en) | Method for simulating the loss tangent of rubber compound | |
Li et al. | Energy analysis of crack interaction with an elastic inclusion | |
EP2672405A1 (en) | Method for simulating dispersion of fillers in high polymer material | |
EP2682883A2 (en) | Method for simulating polymer material | |
JP2005337784A (en) | Breakage determination method in impact simulation | |
JP5210100B2 (en) | Impact fracture prediction method | |
JP2014203262A (en) | Simulation method of high-polymer material | |
Kim et al. | Numerical simulation of concrete abrasion induced by unbreakable ice floes | |
US11060214B2 (en) | Processing methods and apparatus to manufacture a functional, multi-scale, tapered fiber from polymer filament | |
JP5324820B2 (en) | How to create an analysis model | |
JP6200193B2 (en) | Method for simulating polymer materials | |
JP6055359B2 (en) | Method for simulating polymer materials | |
JP5893333B2 (en) | Particle behavior analysis method, particle behavior analysis apparatus, and analysis program | |
JP2008027026A (en) | Method for analyzing destructive behavior | |
JP2018112525A (en) | Simulation method of high polymer material | |
JP6101159B2 (en) | Calculation method of energy loss of polymer materials | |
JP6458097B1 (en) | Coarse-grained molecular dynamics simulation method for polymer materials | |
JP2019032278A (en) | Simulation method for high polymer material, and destruction property evaluation method for high polymer material | |
JP2017224202A (en) | Simulation method for polymeric material | |
JP7571535B2 (en) | Polymer material simulation method |