JP2005336666A - Lactic acid fiber having low heat shrinkability - Google Patents
Lactic acid fiber having low heat shrinkability Download PDFInfo
- Publication number
- JP2005336666A JP2005336666A JP2004159318A JP2004159318A JP2005336666A JP 2005336666 A JP2005336666 A JP 2005336666A JP 2004159318 A JP2004159318 A JP 2004159318A JP 2004159318 A JP2004159318 A JP 2004159318A JP 2005336666 A JP2005336666 A JP 2005336666A
- Authority
- JP
- Japan
- Prior art keywords
- polylactic acid
- fiber
- boiling water
- lactic acid
- water shrinkage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
本発明は、シンジオタクチックポリスチレンを含有したポリ乳酸からなる繊維に関するものである。 The present invention relates to a fiber made of polylactic acid containing syndiotactic polystyrene.
地球環境への意識が高まるなか、二酸化炭素による地球温暖化や限りある石油資源の枯渇が問題視されている。このような背景から、植物由来原料からなり、大量生産が可能なポリ乳酸が環境低負荷の合成高分子として注目されている。ポリ乳酸は植物から抽出したでんぷんを発酵することにより得られる乳酸を原料としたポリマーであり、力学特性、耐熱性、コストの面で優れている。現在、ポリ乳酸を利用した樹脂製品、繊維、フィルム等の開発が盛んに行われている。繊維産業においても溶融紡糸が可能であり、環境に対する負荷が低く、地球に優しい繊維として、ポリ乳酸繊維の開発は盛んに行われている(例えば、特許文献1、2参照)。 As awareness of the global environment increases, global warming due to carbon dioxide and the depletion of limited petroleum resources are regarded as problems. From such a background, polylactic acid, which is made of plant-derived materials and can be mass-produced, has attracted attention as a synthetic polymer having a low environmental load. Polylactic acid is a polymer made from lactic acid obtained by fermenting starch extracted from plants, and is excellent in terms of mechanical properties, heat resistance, and cost. Currently, development of resin products, fibers, films, and the like using polylactic acid is actively performed. In the textile industry, melt spinning is possible, and the development of polylactic acid fibers is actively carried out as a fiber that is low on the environment and friendly to the earth (see, for example, Patent Documents 1 and 2).
このようにポリ乳酸繊維は、環境問題に対応できる非常に有力な素材であるが、実際にポリ乳酸繊維を布帛(例えば不織布、織物、編物等)として使用する際には、ポリ乳酸の融点が低い(170℃程度)ことに起因する種々の問題が生じやすい。その一つとして、溶融紡糸を行い、延伸した後の熱セットを高温で行うことが困難であるため、繊維の沸水収縮率を低下させにくいという問題がある。このような沸水収縮率が高い繊維では、布帛にした際に染色等の熱水処理を施した際の収縮が大きく、得られる製品の寸法安定性が悪くなり、品位に劣った製品となるという問題がある。 Thus, polylactic acid fiber is a very powerful material that can cope with environmental problems. However, when polylactic acid fiber is actually used as a fabric (for example, non-woven fabric, woven fabric, knitted fabric, etc.), the melting point of polylactic acid is low. Various problems due to low (about 170 ° C.) are likely to occur. As one of them, there is a problem that it is difficult to reduce the boiling water shrinkage of the fiber because it is difficult to perform melt spinning and heat setting after drawing at a high temperature. In such a fiber having a high boiling water shrinkage rate, the shrinkage when subjected to hot water treatment such as dyeing is large when it is made into a fabric, the dimensional stability of the resulting product is deteriorated, and the product is inferior in quality. There's a problem.
そこで、ポリ乳酸繊維の沸水収縮率を低下させる方法も提案されている。例えば、特許文献3には、実用的に十分な弾性率と寸法安定性を有する生分解性のポリ乳酸繊維と、この繊維を工業的に生産性よく製造する方法が提案されている。このポリ乳酸繊維は、平均分子量や光学純度を特定なものとするポリ−L−乳酸を用いることにより、10%伸張時の弾性率を7g/d以上、沸水収縮率を13%以下とすることができるものである。 Therefore, a method for reducing the boiling water shrinkage of polylactic acid fibers has also been proposed. For example, Patent Document 3 proposes a biodegradable polylactic acid fiber having practically sufficient elastic modulus and dimensional stability and a method for industrially producing the fiber with high productivity. By using poly-L-lactic acid having a specific average molecular weight and optical purity, the polylactic acid fiber has an elastic modulus at 10% elongation of 7 g / d or more and a boiling water shrinkage of 13% or less. It is something that can be done.
この繊維は、ある程度の寸法安定性に優れたものであったが、この繊維によると、ポリ乳酸の種類や製造方法は特定のものが好ましく、さらに汎用的なもの、さらに寸法安定性に優れたものが要望されていた。 This fiber was excellent in a certain degree of dimensional stability, but according to this fiber, the type and production method of polylactic acid are preferably specific, more general-purpose, and further excellent in dimensional stability. Things were requested.
一般に、繊維を織編物とする場合、繊維の沸水収縮率は、10%未満であることが好ましい。沸水収縮率が10%以上になると、織編物等の布帛にした場合の精練や染色工程などの熱水処理をする際に、織編物の表面にシワやスジによる凹凸が発生し、均一な外観が得られにくい。適度なふくらみと均一な外観を得るためには、中でも沸水収縮率は4〜8%の範囲にすることが好ましい。
そこで、本発明は上記のような問題点を解決し、沸水収縮性が低く、加工時、製品時における熱処理に対して十分な寸法安定性を有し、適度なふくらみとシワやスジによる凹凸のない均一な外観の布帛を得ることができるポリ乳酸繊維を提供することを技術的な課題とするものである。 Therefore, the present invention solves the above problems, has low boiling water shrinkage, has sufficient dimensional stability against heat treatment during processing and products, and has moderate swelling and unevenness due to wrinkles and lines. An object of the present invention is to provide a polylactic acid fiber capable of obtaining a fabric having a uniform appearance.
本発明者らは上記課題を解決するために検討した結果、ポリ乳酸にシンジオタクチックポリスチレンを混合することで、製造工程において特別な装置等で熱処理を施さなくても、ポリ乳酸繊維の沸水収縮率を低くすることができることを見い出し、本発明に到達した。 As a result of investigations to solve the above problems, the present inventors have mixed polylactic acid with syndiotactic polystyrene, so that boiling water shrinkage of polylactic acid fibers can be achieved without performing heat treatment with a special apparatus or the like in the production process. The inventors have found that the rate can be lowered and have reached the present invention.
すなわち、本発明は、シンジオタクチックポリスチレンを含有するポリ乳酸を少なくとも一部に用いた低熱収縮性ポリ乳酸繊維を要旨とするものである。 That is, the gist of the present invention is a low heat-shrinkable polylactic acid fiber using at least a part of polylactic acid containing syndiotactic polystyrene.
本発明の低熱収縮性ポリ乳酸繊維は、沸水収縮性が低く、加工時、製品時における熱処理に対して十分な寸法安定性を有し、適度なふくらみとシワやスジによる凹凸のない均一な外観の布帛を得ることが可能である。また、ポリ乳酸を用いた繊維であるため、生分解性を有しており、地球に優しい繊維である。 The low heat-shrinkable polylactic acid fiber of the present invention has low boiling water shrinkage, has sufficient dimensional stability against heat treatment during processing and product, and has a uniform appearance without irregularities due to moderate swelling and wrinkles and lines This fabric can be obtained. Moreover, since it is a fiber using polylactic acid, it is biodegradable and is a fiber friendly to the earth.
以下、本発明について詳細に説明する。
本発明のポリ乳酸繊維は、シンジオタクチックポリスチレン(以下、SPSとする)を含有するポリ乳酸を少なくとも一部に用いた繊維である。つまり、SPSを含有するポリ乳酸のみからなる繊維(単一型繊維)であってもよいし、SPSを含有するポリ乳酸を一成分とし、他成分として他の熱可塑性ポリマーを用いた複合繊維であってもよい。
Hereinafter, the present invention will be described in detail.
The polylactic acid fiber of the present invention is a fiber using at least part of polylactic acid containing syndiotactic polystyrene (hereinafter referred to as SPS). In other words, it may be a fiber (single-type fiber) composed only of polylactic acid containing SPS, or a composite fiber using polylactic acid containing SPS as one component and another thermoplastic polymer as the other component. There may be.
そして、本発明のポリ乳酸繊維は、沸水収縮率が10%以下であることが好ましく、中でも沸水収縮率が8〜4%であることが好ましい。 The polylactic acid fiber of the present invention preferably has a boiling water shrinkage of 10% or less, and more preferably a boiling water shrinkage of 8 to 4%.
SPSが繊維の沸水収縮率を下げる機構ははっきりと解っていないが、ポリ乳酸繊維よりも熱寸法安定性に優れるSPSが、延伸工程により繊維の長手方向に沿って略均一な状態でポリ乳酸繊維内に分散し、ポリ乳酸の分子を結ぶアンカーとして働くことにより、ポリ乳酸繊維の沸水収縮率を低下させることができるものと考えられる。 Although the mechanism by which SPS lowers the boiling water shrinkage of fibers is not clearly understood, SPS, which has better thermal dimensional stability than polylactic acid fibers, is in a substantially uniform state along the longitudinal direction of the fibers by a drawing process. It is considered that the boiling water shrinkage of the polylactic acid fiber can be reduced by dispersing it inside and acting as an anchor that links the polylactic acid molecules.
本発明における沸水収縮率とは、以下のようにして測定するものである。本発明のポリ乳酸繊維を10回巻きの綛取りにし、0.1cN/dtexの荷重下で原長L0 を測定する。荷重を取り外して無荷重にした後、100℃に調温された沸水バスの中でポリ乳酸繊維の綛を15分間処理して取り出す。これを風乾した後、0.1cN/dtexの荷重下で処理後長L1 を測定する。そして、次式によって得られる値を沸水収縮率とする。
沸水収縮率(S0)(%)={(L0 −L1 )/L0 }×100
The boiling water shrinkage in the present invention is measured as follows. The polylactic acid fiber of the present invention is wound 10 times, and the original length L0 is measured under a load of 0.1 cN / dtex. After removing the load to make it unloaded, the polylactic acid fiber cocoon is removed for 15 minutes in a boiling water bath adjusted to 100 ° C. After this is air-dried, the post-treatment length L1 is measured under a load of 0.1 cN / dtex. And let the value obtained by following Formula be a boiling-water shrinkage | contraction rate.
Boiling water shrinkage (S0) (%) = {(L0−L1) / L0} × 100
本発明のポリ乳酸繊維においては、単一型繊維、複合繊維ともに、ポリ乳酸中のSPSの含有量は3〜15質量%とすることが好ましく、中でも5〜12質量%とすることが好ましい。SPSの含有量が3質量%未満であると、沸水収縮率を低くする効果が乏しくなり、一方、含有量が15質量%を超えると曳糸性が悪化し、紡糸、延伸が困難となりやすい。 In the polylactic acid fiber of the present invention, the content of SPS in the polylactic acid is preferably 3 to 15% by mass, and preferably 5 to 12% by mass in both the single type fiber and the composite fiber. When the SPS content is less than 3% by mass, the effect of lowering the boiling water shrinkage becomes poor. On the other hand, when the content exceeds 15% by mass, the spinnability is deteriorated, and spinning and stretching tend to be difficult.
なお、本発明のポリ乳酸繊維は、上記のような沸水収縮率や生分解性を考慮すると、単一型繊維とすることが好ましい。 The polylactic acid fiber of the present invention is preferably a single type fiber in consideration of the boiling water shrinkage and biodegradability as described above.
複合繊維とする場合は、SPSを含有するポリ乳酸の割合が繊維全体の50質量%以上であることが好ましい。また、他の成分としては特に限定するものではなく、ポリエステルやポリアミド等の熱可塑性ポリマーを用いることができるが、生分解性を考慮すると、脂肪族ポリエステル等の生分解性のポリマーを用いることが好ましく、中でもポリ乳酸を用いることが好ましい。 When it is set as a composite fiber, it is preferable that the ratio of the polylactic acid containing SPS is 50 mass% or more of the whole fiber. Further, the other components are not particularly limited, and a thermoplastic polymer such as polyester or polyamide can be used. However, in consideration of biodegradability, a biodegradable polymer such as aliphatic polyester may be used. Among them, polylactic acid is preferably used.
SPSとは、普通のポリスチレンとは立体構造が異なるものであり、構成繰り返し単位が主鎖にキラルな原子を持ち、かつ互いに鏡像異性体の関係にある繰り返し単位が主鎖に沿って交互に配列しているものである。
具体的には出光石油化学社製の『ザレック(商標名)』を用いることが好ましい。
SPS is different from ordinary polystyrene in that the three-dimensional structure is different. The repeating units of the structural unit have a chiral atom in the main chain, and the repeating units that are in an enantiomeric relationship with each other are arranged alternately along the main chain. It is what you are doing.
Specifically, “Zalek (trade name)” manufactured by Idemitsu Petrochemical Co., Ltd. is preferably used.
そして、本発明の繊維における、SPSを含有するポリ乳酸としては、ポリD−乳酸、ポリL−乳酸、ポリD−乳酸とポリL−乳酸との共重合体であるポリDL−乳酸、ポリD−乳酸とポリL−乳酸との混合物(ステレオコンプレックス)、ポリD−乳酸とヒドロキシカルボン酸との共重合体、ポリL−乳酸とヒドロキシカルボン酸との共重合体、ポリD−乳酸又はポリL−乳酸と脂肪族ジカルボン酸及び脂肪族ジオールとの共重合体、あるいはこれらのブレンド体とすることが好ましい。 The polylactic acid containing SPS in the fiber of the present invention includes poly-D-lactic acid, poly-L-lactic acid, poly-DL-lactic acid that is a copolymer of poly-D-lactic acid and poly-L-lactic acid, and poly-D. -Lactic acid and poly L-lactic acid mixture (stereo complex), poly D-lactic acid and hydroxycarboxylic acid copolymer, poly L-lactic acid and hydroxycarboxylic acid copolymer, poly D-lactic acid or poly L -It is preferable to use a copolymer of lactic acid, aliphatic dicarboxylic acid and aliphatic diol, or a blend thereof.
そして、ポリ乳酸は、上記のようにL−乳酸とD−乳酸が単独で用いられているもの、もしくは併用されているものであるが、中でも融点が120℃以上、融解熱が10J/g以上であることが好ましい。 The polylactic acid is one in which L-lactic acid and D-lactic acid are used alone or in combination as described above. Among them, the melting point is 120 ° C. or more, and the heat of fusion is 10 J / g or more. It is preferable that
ポリ乳酸のホモポリマーであるL−乳酸やD−乳酸の融点は約180℃であるが、D−乳酸とL−乳酸との共重合体の場合、いずれかの成分の割合を10モル%程度とすると、融点はおよそ130℃程度となる。さらに、いずれかの成分の割合を18モル%以上とすると、融点は120℃未満、融解熱は10J/g未満となって、ほぼ完全に非晶性の性質となる。このような非晶性のポリマーとなると、製造工程において特に熱延伸し難くなり、高強度の繊維が得られ難くくなるという問題が生じたり、繊維が得られたとしても、沸水収縮率が高いものとなったり、耐熱性、耐摩耗性に劣ったものとなるため好ましくない。 The melting point of L-lactic acid and D-lactic acid, which are homopolymers of polylactic acid, is about 180 ° C., but in the case of a copolymer of D-lactic acid and L-lactic acid, the proportion of any component is about 10 mol%. Then, the melting point is about 130 ° C. Furthermore, when the proportion of any of the components is 18 mol% or more, the melting point is less than 120 ° C. and the heat of fusion is less than 10 J / g, which is almost completely amorphous. When such an amorphous polymer is used, it becomes difficult to heat-stretch particularly in the production process, and it becomes difficult to obtain high-strength fibers. Even if fibers are obtained, the boiling water shrinkage rate is high. It is not preferable because it becomes inferior or has poor heat resistance and wear resistance.
そこで、ポリ乳酸としては、ラクチドを原料として重合する時のL−乳酸やD−乳酸の含有割合で示されるL−乳酸とD−乳酸の含有比(モル比)であるL/D又はD/Lが、82/18以上のものが好ましく、中でも90/10以上、さらには95/15以上とすることが好ましい。このような共重合比のものとすることにより沸水収縮率の低く、耐熱性に優れた繊維となる傾向がある。 Therefore, as polylactic acid, L / D or D / which is the content ratio (molar ratio) of L-lactic acid and D-lactic acid indicated by the content ratio of L-lactic acid or D-lactic acid when polymerizing using lactide as a raw material. L is preferably 82/18 or more, more preferably 90/10 or more, and even more preferably 95/15 or more. By setting it as such a copolymerization ratio, there exists a tendency for it to become a fiber with low boiling-water shrinkage and excellent heat resistance.
また、ポリ乳酸の分子量としては、分子量の指標として用いられるASTM D−1238法に準じ、温度210℃、荷重2160gで測定したメルトフローレートが、1〜100(g/10分)であることが好ましく、より好ましくは5〜50(g/10分)である。メルトフローレートをこの範囲とすることにより、強度、湿熱分解性、耐摩耗性が向上する。 In addition, the molecular weight of polylactic acid is 1 to 100 (g / 10 min) as measured by a temperature of 210 ° C. and a load of 2160 g according to the ASTM D-1238 method used as an index of molecular weight. More preferably, it is 5-50 (g / 10min). By setting the melt flow rate within this range, strength, wet heat decomposability, and wear resistance are improved.
さらに、本発明のポリ乳酸繊維においては、ポリ乳酸及び複合繊維とするときの他成分のポリマーともに、効果を損なわない範囲であれば、高級脂肪酸金属塩などの滑剤、ブロッキング防止剤、無機充填剤、補強剤、酸化防止剤、可塑剤、難燃材、艶消剤、顔料などの各種添加剤を含有されていてもよい。 Furthermore, in the polylactic acid fiber of the present invention, both the polylactic acid and the polymer of other components when making a composite fiber are within a range that does not impair the effect, such as a lubricant such as a higher fatty acid metal salt, an antiblocking agent, and an inorganic filler. Further, various additives such as a reinforcing agent, an antioxidant, a plasticizer, a flame retardant, a matting agent, and a pigment may be contained.
本発明のポリ乳酸繊維は、モノフィラメントでもマルチフィラメントでもよく、また、短繊維、長繊維のいずれであってもよい。そして、用途や目的に応じて、繊度、強度、伸度、断面形状、フィラメント数を設定することができる。また、後加工により撚りを付与したり、捲縮を付与してもよく、この場合も用途に応じて撚り数や捲縮数、捲縮率を適宜設定すればよい。 The polylactic acid fiber of the present invention may be a monofilament or a multifilament, and may be either a short fiber or a long fiber. The fineness, strength, elongation, cross-sectional shape, and number of filaments can be set according to the application and purpose. Further, twisting or crimping may be applied by post-processing, and in this case as well, the number of twists, the number of crimps, and the crimping rate may be set as appropriate according to the application.
次に、本発明のポリ乳酸繊維(単一型)の製造方法について一例を用いて説明する。まず、ポリ乳酸にSPSを含有させる手段としては、チップ状のポリ乳酸とSPSを直接混合した後に溶融押出機で押し出してもよいし、また予めSPSを混合したポリ乳酸を溶融混練してマスターバッチとしておき、それを溶融押出機で押し出してもよい。中でもチップ状のポリ乳酸にSPSを直接混合する方法が、ポリ乳酸の熱履歴による分子量の低下が少なくなるため好ましい。 Next, a method for producing the polylactic acid fiber (single type) of the present invention will be described using an example. First, as means for incorporating SPS into polylactic acid, chip-shaped polylactic acid and SPS may be directly mixed and then extruded by a melt extruder, or polylactic acid premixed with SPS may be melt-kneaded to obtain a master batch. And it may be extruded with a melt extruder. Among them, the method of directly mixing SPS with chip-like polylactic acid is preferable because the decrease in molecular weight due to the thermal history of polylactic acid is reduced.
そして、このようなSPS含有ポリ乳酸を通常の溶融紡糸装置に供給し、紡糸温度260〜290℃で溶融紡糸する。紡糸して得られた繊維を冷却固化させた後、紡糸油剤を付与して、一旦巻き取るか、もしくは巻き取ることなく連続して延伸、熱処理を行う。このとき、延伸倍率1.5〜4.5倍程度とし、80〜130℃程度で延伸し、120〜150℃程度で熱処理を行う。この後、巻き取ることにより本発明の低熱収縮性ポリ乳酸繊維を得ることができる。 Then, such SPS-containing polylactic acid is supplied to a normal melt spinning apparatus and melt-spun at a spinning temperature of 260 to 290 ° C. After the fiber obtained by spinning is cooled and solidified, a spinning oil agent is applied, and the fiber is once wound or continuously stretched and heat-treated without being wound. At this time, the draw ratio is about 1.5 to 4.5 times, the film is stretched at about 80 to 130 ° C., and heat treatment is performed at about 120 to 150 ° C. Thereafter, the low heat shrinkable polylactic acid fiber of the present invention can be obtained by winding.
なお、本発明においては、このような通常の製造方法により沸水収縮率の低いポリ乳酸繊維を得ることができるが、SPSを含有していないポリ乳酸を用いた場合は、沸水収縮率が10%以上のものとなり、沸水収縮率を低くするためには延伸時や延伸後にさらに熱処理を施す必要があり、工程が複雑化するとともに、得られるポリ乳酸繊維の強度等の他の特性値も低下しやすくなる。 In the present invention, a polylactic acid fiber having a low boiling water shrinkage rate can be obtained by such a normal production method. However, when polylactic acid not containing SPS is used, the boiling water shrinkage rate is 10%. In order to reduce the boiling water shrinkage rate, it is necessary to further heat-treat at the time of stretching or after stretching, which complicates the process and reduces other characteristic values such as the strength of the polylactic acid fiber obtained. It becomes easy.
次に、本発明のポリ乳酸繊維について実施例を用いて具体的に説明する。
実施例中の各種の値は以下のようにして測定した。なお、沸水収縮率、メルトフローレートは前記の方法で測定したものである。
〔ポリ乳酸の融点(℃)、融解熱(J/g)〕
パーキンエルマー社製の示差走査熱量計DSC−2型を使用し、昇温速度20℃/分の条件で測定した。
〔ポリ乳酸のL−乳酸とD−乳酸の含有比(モル比)〕
超純水と1Nの水酸化ナトリウムのメタノール溶液の等質量混合溶液を溶媒とし、高速液体クロマトグラフィー(HPLC)法により測定した。カラムにはsumichiral OA6100を使用し、UV吸収測定装置により検出した。
Next, the polylactic acid fiber of the present invention will be specifically described with reference to examples.
Various values in the examples were measured as follows. The boiling water shrinkage rate and the melt flow rate are measured by the above methods.
[Melting point of polylactic acid (° C), heat of fusion (J / g)]
A differential scanning calorimeter DSC-2 manufactured by Perkin Elmer was used, and the measurement was performed under the condition of a heating rate of 20 ° C./min.
[Content ratio (molar ratio) of L-lactic acid and D-lactic acid in polylactic acid]
It measured by the high performance liquid chromatography (HPLC) method by using the equal mass mixed solution of the ultrapure water and the methanol solution of 1N sodium hydroxide as a solvent. The column used was sumichiral OA6100, and was detected by a UV absorption measuring device.
実施例1
ポリ乳酸として、融点170℃、融解熱38J/g、L−乳酸とD−乳酸の含有比(モル比)であるL/Dが98.5/1.5、メルトフローレート値(以降、MFRとする。)が4.3g/10分、相対粘度3.10のものを用いた。SPSとして、出光石油化学社製『ザレック(商標名)』の品番142AFを用いた。そして、SPSをポリ乳酸中に5質量%となるようにして混合した。
この混合ポリマーを通常の溶融紡糸装置に供給し、紡糸温度270℃、吐出量29.1g/分の条件下で、孔数24の紡糸口金より溶融防糸した。次に、紡出糸条を冷却装置にて冷却し、紡糸油剤(分子量600のポリエチレングリコ−ルモノオレ−トを20質量%含有した油剤)を0.6質量%の付着量となるように付与した後、550m/分で一旦巻き取った。その後、第1ローラ(90℃)で予熱し、130℃のホットプレートを第2ローラ(130℃)との間に設け、450m/分の延伸速度で3.8倍に熱延伸し、第2ローラ(130℃)で熱セットを行い、巻き取った。
得られたポリ乳酸繊維は、140dtex/24f、沸水収縮率(S0)は5.3%であった。
Example 1
Polylactic acid has a melting point of 170 ° C., a heat of fusion of 38 J / g, an L / D content ratio (molar ratio) between L-lactic acid and D-lactic acid of 98.5 / 1.5, a melt flow rate value (hereinafter referred to as MFR). And a relative viscosity of 3.10 was used. As SPS, product number 142AF of “Zalek (trade name)” manufactured by Idemitsu Petrochemical Co., Ltd. was used. And SPS was mixed so that it might become 5 mass% in polylactic acid.
This mixed polymer was supplied to a normal melt spinning apparatus and melt-proofed from a spinneret with 24 holes under the conditions of a spinning temperature of 270 ° C. and a discharge rate of 29.1 g / min. Next, after cooling the spun yarn with a cooling device, and applying a spinning oil agent (an oil agent containing 20% by mass of polyethylene glycol monooleate having a molecular weight of 600) to an amount of 0.6% by mass, It was wound up once at 550 m / min. After that, preheat with the first roller (90 ℃), provide a 130 ℃ hot plate between the second roller (130 ℃) and heat stretch 3.8 times at a stretching speed of 450m / min. Heat set at 130 ° C.) and wound up.
The obtained polylactic acid fiber had 140 dtex / 24f and a boiling water shrinkage (S0) of 5.3%.
実施例2
SPSをポリ乳酸中に8質量%の含有量となるようにして変更した以外が、実施例1と同様に行った。
得られたポリ乳酸繊維は、140dtex/24f、沸水収縮率(S0)は4.2%であった。
Example 2
The same procedure as in Example 1 was conducted except that SPS was changed to a content of 8% by mass in polylactic acid.
The obtained polylactic acid fiber had 140 dtex / 24f and a boiling water shrinkage (S0) of 4.2%.
比較例1
SPSを含有しないポリ乳酸を用いた以外は、実施例1と同様に行い、ポリ乳酸繊維を得た。
得られたポリ乳酸繊維は、140dtex/24f、沸水収縮率(S0)は12.0%であった。
Comparative Example 1
Except having used polylactic acid which does not contain SPS, it carried out like Example 1 and obtained polylactic acid fiber.
The obtained polylactic acid fiber had 140 dtex / 24f and a boiling water shrinkage (S0) of 12.0%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004159318A JP2005336666A (en) | 2004-05-28 | 2004-05-28 | Lactic acid fiber having low heat shrinkability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004159318A JP2005336666A (en) | 2004-05-28 | 2004-05-28 | Lactic acid fiber having low heat shrinkability |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005336666A true JP2005336666A (en) | 2005-12-08 |
Family
ID=35490539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004159318A Pending JP2005336666A (en) | 2004-05-28 | 2004-05-28 | Lactic acid fiber having low heat shrinkability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005336666A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2147934A1 (en) | 2008-07-25 | 2010-01-27 | Total Petrochemicals France | Process to make a composition comprising a monovinylaromatic polymer and a polymer made from renewable resources |
-
2004
- 2004-05-28 JP JP2004159318A patent/JP2005336666A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2147934A1 (en) | 2008-07-25 | 2010-01-27 | Total Petrochemicals France | Process to make a composition comprising a monovinylaromatic polymer and a polymer made from renewable resources |
US9527993B2 (en) | 2008-07-25 | 2016-12-27 | Total Research & Technology Feluy | Process to make a composition comprising a monovinylaromatic polymer and a polymer made from renewable resources |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2534176C (en) | Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products | |
JP4872339B2 (en) | Core-sheath type composite fiber, crimped yarn, and fiber structure using them | |
JP3966043B2 (en) | Production method of polylactic acid fiber excellent in heat resistance | |
JP4954955B2 (en) | High-shrinkage polyester fiber and production method and use thereof | |
JP2006233375A (en) | Synthetic fiber and fiber structure composed of the same | |
JP4773290B2 (en) | Polylactic acid composite fiber | |
JP2008057082A (en) | Method for producing polylactic acid monofilament | |
JP4758317B2 (en) | Polyester core-sheath composite fiber | |
JP2005336666A (en) | Lactic acid fiber having low heat shrinkability | |
JP5137768B2 (en) | Cross-sectional shape control fiber and manufacturing method thereof | |
JP4335987B2 (en) | Method for producing polylactic acid-based multifilament | |
JP2007107122A (en) | Polylactic acid fiber | |
JP5045610B2 (en) | Polyester core-sheath composite partially oriented fiber and cheese-like package and false twisted fiber | |
TW201734273A (en) | Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention | |
JP6084398B2 (en) | Manufacturing method of core-sheath type composite fiber | |
WO2007099858A1 (en) | Vinyl chloride resin fiber and method for producing same | |
JP2018150667A (en) | Core-sheath composite thermally fusible yarn and manufacturing method thereof | |
JP2010100950A (en) | Polylactic acid monofilament and woven fabric using the same | |
JP2005068840A (en) | Tatami mat edging with biodegradability | |
Ophir | Thermal analysis of poly (vinyl alcohol) fibers | |
JP2023111771A (en) | Biodegradable polyester fiber and manufacturing method thereof | |
JP2011106060A (en) | Polyarylene sulfide fiber | |
JP4835287B2 (en) | Buckled crimp and carpet | |
JP2012112054A (en) | Method for producing recycled polyester fiber for net | |
JP2002155440A (en) | Flat yarn or method for producing the same |