JP2005336331A - Method for producing recycled carbon fiber - Google Patents

Method for producing recycled carbon fiber Download PDF

Info

Publication number
JP2005336331A
JP2005336331A JP2004157117A JP2004157117A JP2005336331A JP 2005336331 A JP2005336331 A JP 2005336331A JP 2004157117 A JP2004157117 A JP 2004157117A JP 2004157117 A JP2004157117 A JP 2004157117A JP 2005336331 A JP2005336331 A JP 2005336331A
Authority
JP
Japan
Prior art keywords
carbon fiber
temperature
pressure
fluid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004157117A
Other languages
Japanese (ja)
Inventor
Koichi Fujie
幸一 藤江
Hiroyuki Daimon
裕之 大門
Takashi Saeki
孝 佐伯
Tsukasa Mizobuchi
司 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Mitsubishi Rayon Co Ltd
Original Assignee
Toyohashi University of Technology NUC
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC, Mitsubishi Rayon Co Ltd filed Critical Toyohashi University of Technology NUC
Priority to JP2004157117A priority Critical patent/JP2005336331A/en
Publication of JP2005336331A publication Critical patent/JP2005336331A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a recycled carbon fiber achieving excellent modification of the carbon fiber surface by using a supercritical fluid or a subcritical fluid. <P>SOLUTION: A carbon fiber-reinforced plastic (CFRP) 5 is treated at a high temperature in a pressure vessel 4 with supercritical water or subcritical water by adding a fresh water to the pressure vessel 4 while removing the supercritical water or subcritical water used in the high-temperature treatment from the vessel 4 and the recycled carbon fiber is separated and extracted from the resin. The surface of the recycled carbon fiber is modified by keeping the temperature of the supercritical water or subcritical water at or about the critical temperature (374°C) during the high-temperature treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭素繊維強化樹脂(以下、「CFRP」と称することがある)から炭素繊維を取り出すリサイクル炭素繊維の製造方法に関するものである。   The present invention relates to a method for producing recycled carbon fiber in which carbon fiber is taken out from a carbon fiber reinforced resin (hereinafter sometimes referred to as “CFRP”).

CFRPは、軽量であることに加え、強度や弾性率に優れているため、スポーツ、レジャー用品の構成部品や、宇宙航空機の構成部品等の幅広い分野に渡って、その用途開発が進められている。また最近では、CFRPの用途は、特殊品から汎用品に拡大してきていることから、CFRP廃棄物の処理をどのように行なうかが問題となってきている。   In addition to being lightweight, CFRP has excellent strength and elastic modulus, so its application is being developed across a wide range of fields, including components for sports and leisure equipment and components for spacecraft. . Recently, the use of CFRP has been expanded from a special product to a general-purpose product, and thus it has become a problem how to treat CFRP waste.

CFRP廃棄物の処理方法としては、(1)粉砕後溶鉱炉原料として使用する、(2)粉砕後複合材料原料として使用する、(3)樹脂を分解して炭素繊維を回収する等の検討がされている。炭素繊維はガラス繊維に比べて価格が高価であることから、前記(3)樹脂を分解して炭素繊維を回収し、リサイクル炭素繊維として使用する方法が最も好ましい方法である。CFRPから炭素繊維を回収する際に用いられる樹脂の分解方法としては、熱分解、化学分解、化学溶解、光分解等の方法が検討されており、これらの中でも熱分解が多く検討されている。   CFRP waste treatment methods include (1) use as a blast furnace raw material after pulverization, (2) use as a composite material after pulverization, and (3) recovering carbon fiber by decomposing resin. ing. Since carbon fiber is more expensive than glass fiber, (3) the method of decomposing the resin to recover the carbon fiber and using it as recycled carbon fiber is the most preferable method. As a method for decomposing a resin used for recovering carbon fiber from CFRP, methods such as thermal decomposition, chemical decomposition, chemical dissolution, and photodecomposition have been studied. Among them, thermal decomposition is often studied.

一方、近年になって、超臨界及び亜臨界流体を用いた廃棄物の処理に関する研究が行われている。例えば、特開平10−87872号公報には、繊維強化プラスチックを耐圧処理容器内で超臨界水または亜臨界水と反応させることにより、繊維を分離回収し、再利用する繊維回収再利用方法が開示されている。また、特開2003−190759号公報には、CFRPを耐圧処理容器内で超臨界水または亜臨界水と反応させて繊維を分離回収する際に、水を連続的に耐圧処理容器から取り除く方法が開示されている。
特開平10−87872号公報 特開2003−190759号公報
On the other hand, in recent years, research on the treatment of waste using supercritical and subcritical fluids has been conducted. For example, Japanese Patent Laid-Open No. 10-87872 discloses a fiber recovery and reuse method in which fibers are separated and recovered by reacting fiber reinforced plastics with supercritical water or subcritical water in a pressure-resistant processing vessel. Has been. Japanese Patent Laid-Open No. 2003-190759 discloses a method of continuously removing water from a pressure-resistant treatment container when CFRP is reacted with supercritical water or subcritical water in the pressure-resistant treatment container to separate and recover fibers. It is disclosed.
Japanese Patent Laid-Open No. 10-87872 JP 2003-190759 A

特開2003−190759号公報に開示された技術は、非常に有効な方法であるものの、細かい条件設定においては、未だに改良の余地が残されていた。
また、炭素繊維からCFRPを製造する際に、炭素繊維と樹脂との結合力を高めるために、予め炭素繊維の表面に酸素を結合させ、酸素/炭素濃度比を向上させておく(改質しておく)ことが行われる。従来、表面改質のひとつに、炭素繊維の酸化処理を行っていた。そのためには、多量の薬品を使用し、複雑なプロセスを経なければならない場合があった。
Although the technique disclosed in Japanese Patent Laid-Open No. 2003-190759 is a very effective method, there is still room for improvement in fine condition setting.
In addition, when producing CFRP from carbon fiber, in order to increase the bonding force between the carbon fiber and the resin, oxygen is bonded to the surface of the carbon fiber in advance to improve the oxygen / carbon concentration ratio (modified). Is done). Conventionally, carbon fiber oxidation treatment has been performed as one of the surface modifications. For this purpose, a large amount of chemicals must be used and a complicated process may be required.

本発明は上記事情に鑑みてなされたものであり、その目的は、超臨界流体または亜臨界流体を用いて、リサイクル炭素繊維を製造する方法であって、炭素繊維表面を適度に改質するものを提供することである。   The present invention has been made in view of the above circumstances, and an object thereof is a method for producing recycled carbon fiber using a supercritical fluid or a subcritical fluid, which appropriately modifies the surface of the carbon fiber. Is to provide.

本発明者らは、鋭意検討の結果、CFRPを耐圧処理容器中で超臨界流体または亜臨界流体で処理して、炭素繊維を分離回収する方法において、流体を耐圧処理容器に流通させると共に、反応流体の温度を臨界温度の近傍とすることにより、樹脂を分離抽出された炭素繊維の表面が改質されていることを見出し、基本的には本発明を完成するに至った。
こうして上記目的を達成するための発明に係るリサイクル炭素繊維の製造方法は、耐圧処理容器中で炭素繊維強化樹脂を超臨界流体または亜臨界流体で高温処理すると共に、その高温処理中に処理に供した超臨界流体または亜臨界流体を前記耐圧処理容器から取り除きつつ、新たな流体を前記耐圧処理容器に加えながら炭素繊維を樹脂から分離抽出する方法であって、高温処理中の超臨界流体または亜臨界流体の温度を臨界温度の近傍に保持することを特徴とする。
As a result of intensive investigations, the inventors of the present invention processed CFRP with a supercritical fluid or a subcritical fluid in a pressure-resistant treatment container, and separated and recovered the carbon fiber. By making the temperature of the fluid near the critical temperature, it was found that the surface of the carbon fiber from which the resin was separated and extracted was modified, and the present invention was basically completed.
In this way, the method for producing recycled carbon fiber according to the invention for achieving the above-described object involves high-temperature treatment of a carbon fiber reinforced resin with a supercritical fluid or a subcritical fluid in a pressure-resistant treatment container, and the treatment during the high-temperature treatment. A method of separating and extracting carbon fiber from a resin while removing a supercritical fluid or subcritical fluid from the pressure-resistant treatment vessel while adding a new fluid to the pressure-resistant treatment vessel, the method comprising: The temperature of the critical fluid is maintained in the vicinity of the critical temperature.

「流体」としては、水、メタノール、エタノール、二酸化炭素等が例示されるが、本発明は、これらに限定されるものではない。また、これらの流体のうち、水を用いることが好ましい。
「超臨界流体」とは、状態図で温度、圧力、エントロピー線図の臨界点(例えば、水では374.3℃、22.1MPa、メタノールでは239℃、8.1MPa、エタノールでは243.0℃、6.14MPa、二酸化炭素では31℃、7.4MPa)よりも高い温度・圧力を加えた超臨界状態にある流体を意味している。また、「亜臨界流体」とは、臨界点よりも温度または圧力の少なくとも一方が低い状態にある流体を意味しており、圧縮気体と圧縮液体とが共存している。
Examples of the “fluid” include water, methanol, ethanol, carbon dioxide and the like, but the present invention is not limited to these. Of these fluids, water is preferably used.
“Supercritical fluid” means a critical point of temperature, pressure, and entropy diagram in a phase diagram (for example, 374.3 ° C. and 22.1 MPa for water, 239 ° C. and 8.1 MPa for methanol, and 243.0 ° C. for ethanol). , 6.14 MPa, 31 ° C. for carbon dioxide, 7.4 MPa) and a fluid in a supercritical state to which a temperature and pressure higher than those are applied. The “subcritical fluid” means a fluid having a temperature or pressure lower than the critical point, and the compressed gas and the compressed liquid coexist.

「臨界温度の近傍」とは、例えば、流体が水の場合には、分離抽出された炭素繊維の表面元素濃度を測定したときに、340℃〜420℃の間の酸素/炭素比が、予想される滑らかな曲線よりも上側に突出する領域を意味している。具体的には、流体が水の場合には、臨界温度である374℃を挟んだ温度領域、つまり約360℃〜約395℃、好ましくは約365℃〜約390℃、更に好ましくは約370℃〜約385℃(または約380℃)である。   For example, when the fluid is water, the oxygen / carbon ratio between 340 ° C. and 420 ° C. is expected when the surface element concentration of the separated and extracted carbon fiber is measured. It means a region protruding above the smooth curve. Specifically, when the fluid is water, a temperature range including 374 ° C. which is a critical temperature, that is, about 360 ° C. to about 395 ° C., preferably about 365 ° C. to about 390 ° C., more preferably about 370 ° C. To about 385 ° C. (or about 380 ° C.).

本発明の方法によれば、抽出された炭素繊維の表面は、酸素/炭素濃度比が向上することから、従来に使用していた薬品を用いる必要がなく、プロセスを簡素化させつつ、樹脂との間に強い結合力を備えた炭素繊維を得ることができる。   According to the method of the present invention, since the oxygen / carbon concentration ratio is improved on the surface of the extracted carbon fiber, there is no need to use a conventionally used chemical, and the process is simplified while the resin and A carbon fiber having a strong bonding force between the two can be obtained.

次に、本発明の実施形態について、図表を参照しつつ詳細に説明するが、本発明の技術的範囲は、下記の実施形態によって限定されるものではなく、その要旨を変更することなく、様々に改変して実施することができる。   Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the technical scope of the present invention is not limited by the following embodiments, and various changes can be made without changing the gist thereof. It can be carried out with modification.

本発明で処理されるCFRPを形成する炭素繊維は、ポリアクリロニトリル(以下、PANという)系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気層成長炭素繊維等のいずれの炭素繊維を用いることもできる。これらの炭素繊維のうち好ましくは、炭素繊維前駆体を酸化雰囲気中で耐炎化処理し、次いでこの耐炎化繊維を不活性ガス雰囲気中、800℃〜2000℃で焼成し、さらに必要に応じてこれをより高温の不活性ガス中で焼成して得られたPAN系炭素繊維を用いる。一般的には、炭素繊維は、樹脂との結合力を高めるために表面改質の目的で、焼成後更に電解酸化処理、気相酸化処理などの酸化処理を施され、サイズ剤を付与されCFRPに用いられる。しかしながら、本実施形態の方法によれば、そのような酸化処理を施すことなく、表面改質を行うことができる。   Any carbon fiber such as polyacrylonitrile (hereinafter referred to as PAN) carbon fiber, cellulosic carbon fiber, pitch carbon fiber, or gas-grown carbon fiber is used as the carbon fiber forming the CFRP treated in the present invention. You can also. Of these carbon fibers, the carbon fiber precursor is preferably flameproofed in an oxidizing atmosphere, and then the flameproofed fiber is fired at 800 ° C. to 2000 ° C. in an inert gas atmosphere. PAN-based carbon fiber obtained by firing in a higher temperature inert gas is used. Generally, carbon fibers are subjected to oxidation treatment such as electrolytic oxidation treatment and vapor phase oxidation treatment after firing for the purpose of surface modification in order to enhance the bonding strength with the resin, and sizing agents are added to the CFRP. Used for. However, according to the method of the present embodiment, surface modification can be performed without performing such oxidation treatment.

本実施形態で処理されるCFRPを形成する樹脂としては、熱硬化性樹脂または熱可塑性樹脂のいずれを用いることもできる。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリイミド、架橋アクリル樹脂等が例示される。熱可塑性樹脂としては、ポリ塩化ビニル、フッ素樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリメチルメタクリレート、ポリカーボネート、ポリアセタール、ポリエステル、変性PPE、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、ポリエーテルエーテルケトン、全芳香族ポリエステル、ポリアミドイミド、ポリエーテルイミド、液晶ポリエステル等が例示される。   As the resin forming the CFRP processed in the present embodiment, either a thermosetting resin or a thermoplastic resin can be used. Examples of the thermosetting resin include phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, polyimide, and cross-linked acrylic resin. Examples of thermoplastic resins include polyvinyl chloride, fluororesin, polyethylene, polypropylene, polyamide, polymethyl methacrylate, polycarbonate, polyacetal, polyester, modified PPE, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, polyetheretherketone, Examples include wholly aromatic polyesters, polyamide imides, polyether imides, and liquid crystal polyesters.

次に、CFRPを超臨界流体または亜臨界流体で処理する方法を具体的に説明する。超臨界流体又は亜臨界流体による処理の条件や方法は、使用する流体の種類、CFRPの種類及び樹脂含量、炭素繊維の形態、太さ、本数などに応じて任意に設定できる。例えば、流体として水を用いる場合には次のようにして行なうことができる。
まず、圧力センサが備えられた耐圧処理容器に、CFRPと水を投入して加熱する。水の臨界点は温度374.4℃、圧力22.1MPaであるので、約360℃〜約395℃、好ましくは約365℃〜約390℃、更に好ましくは約370℃〜約385℃(または約380℃)に加熱して、圧力を約20MPa〜約30MPaとし、水を耐圧処理容器内で超臨界状態または亜臨界状態とする。次いで、この状態で約10分間〜約3時間保持し、耐圧処理容器内のCFRPを処理する。亜臨界水を用いる場合には高温処理時間は約30分〜約3時間が好ましく、超臨界水を用いる場合には高温処理時間は約10分〜約2時間が好ましい。さらに、処理時間が上記範囲よりも短いと、樹脂の除去が不十分となる傾向があり、上記範囲を超えると炭素繊維の強度が低下する傾向がある。
Next, a method for treating CFRP with a supercritical fluid or a subcritical fluid will be specifically described. The conditions and method of treatment with the supercritical fluid or subcritical fluid can be arbitrarily set according to the type of fluid used, the type of CFRP and the resin content, the form, thickness, number, etc. of carbon fibers. For example, when water is used as the fluid, it can be performed as follows.
First, CFRP and water are put into a pressure-resistant processing vessel equipped with a pressure sensor and heated. Since the critical point of water is a temperature of 374.4 ° C. and a pressure of 22.1 MPa, it is about 360 ° C. to about 395 ° C., preferably about 365 ° C. to about 390 ° C., more preferably about 370 ° C. to about 385 ° C. (or about 380 ° C.), the pressure is set to about 20 MPa to about 30 MPa, and water is brought into a supercritical state or a subcritical state in the pressure-resistant treatment container. Next, this state is maintained for about 10 minutes to about 3 hours, and the CFRP in the pressure-resistant processing container is processed. When subcritical water is used, the high temperature treatment time is preferably about 30 minutes to about 3 hours, and when supercritical water is used, the high temperature treatment time is preferably about 10 minutes to about 2 hours. Furthermore, if the treatment time is shorter than the above range, removal of the resin tends to be insufficient, and if it exceeds the above range, the strength of the carbon fiber tends to decrease.

こうしてCFRPを超臨界流体または亜臨界流体で処理した後、高温処理に供された超臨界流体または亜臨界流体を耐圧処理容器から取り除きつつ、新たな流体を耐圧処理容器に加えながら処理を行う。このとき、超臨界流体または亜臨界流体の流量は、CFRP1gに対し、2.5ml/分以上とすることが好ましい。高温処理によって樹脂から分離抽出されたリサイクル炭素繊維は、処理が終了した後に、耐圧処理容器を冷却して常圧に戻し、取り出される。
なお、耐圧処理容器の形態には特に制限はないが、超臨界流体または亜臨界流体と直接接触する部分が、ハステロイ(Ni、Cr、Moなどからなる合金)、SUS等の耐腐食性材料から形成されたものを使用することが好ましい。
After the CFRP is treated with the supercritical fluid or subcritical fluid in this way, the processing is performed while removing the supercritical fluid or subcritical fluid subjected to the high temperature treatment from the pressure resistant processing vessel and adding a new fluid to the pressure resistant processing vessel. At this time, the flow rate of the supercritical fluid or subcritical fluid is preferably 2.5 ml / min or more with respect to 1 g of CFRP. The recycled carbon fiber separated and extracted from the resin by the high-temperature treatment is taken out after the treatment is completed, the pressure-resistant treatment container is cooled to normal pressure.
The form of the pressure-resistant treatment vessel is not particularly limited, but the portion in direct contact with the supercritical fluid or subcritical fluid is made of a corrosion-resistant material such as Hastelloy (an alloy made of Ni, Cr, Mo, etc.) or SUS. It is preferable to use the formed one.

以上のような高温処理においては、流体として、水以外に、メタノール、エタノール、二酸化炭素などを使用できる。適当な流体を選択した場合には、その流体の臨界状態付近の温度及び圧力を保持しつつ、CFRPを処理できる。但し、扱いやすく、低コストであり、さらに反応性に富んでいることから流体として水を選択することが最も好ましい。なお、処理されるCFRP中の炭素繊維の形態には制限はなく、例えば短繊維であっても連続繊維であってもよい。また、高温処理に際しては、予め流体を超臨界状態または亜臨界状態となるように予熱しておいた耐圧処理容器内にCFRPを導入してもよい。   In the high-temperature treatment as described above, methanol, ethanol, carbon dioxide, or the like can be used as the fluid in addition to water. If an appropriate fluid is selected, the CFRP can be processed while maintaining the temperature and pressure near the critical state of the fluid. However, it is most preferable to select water as the fluid because it is easy to handle, low in cost, and rich in reactivity. In addition, there is no restriction | limiting in the form of the carbon fiber in CFRP processed, For example, it may be a short fiber or a continuous fiber. In addition, during high temperature processing, CFRP may be introduced into a pressure resistant processing vessel in which the fluid is preheated so as to be in a supercritical state or a subcritical state.

このようにして処理することによって、CFRPを形成する樹脂が流体中に溶解、または加水分解や酸化反応により変性、分解することによって、炭素繊維から樹脂をほとんど除去することができる。更に高温処理に供された超臨界流体または亜臨界流体を耐圧処理容器から取り除くことにより、分離抽出されたリサイクル炭素繊維を後洗浄することなく耐圧処理容器から回収することが可能である。また、高温処理中の超臨界流体または亜臨界流体の温度を臨界温度の近傍に保持することにより、分離抽出されたリサイクル炭素繊維の表面を改質することができるので、再利用の際に酸処理する必要がない。   By treating in this way, the resin forming CFRP is dissolved in the fluid, or is modified or decomposed by hydrolysis or oxidation reaction, whereby the resin can be almost removed from the carbon fiber. Further, by removing the supercritical fluid or subcritical fluid subjected to the high temperature treatment from the pressure resistant container, it is possible to recover the separated and extracted recycled carbon fiber from the pressure resistant container without post-washing. In addition, by maintaining the temperature of the supercritical fluid or subcritical fluid during the high temperature treatment close to the critical temperature, the surface of the separated and extracted recycled carbon fiber can be modified. There is no need to process.

次に、実施例を挙げて本発明を具体的に説明する。図1には、実施例に使用したリサイクル炭素繊維の製造システムを示した。このシステムには、流体である水Wを送る高圧ポンプ1と、所定の温度に制御可能な溶融塩槽2と、この溶融塩槽2に浸漬される熱交換器3と、耐圧処理容器4とが設けられている。CFRP5は、耐圧処理容器4の内部に収容されている。この耐圧処理容器4には、高圧ポンプ1から送られて、熱交換器3によって所定の温度とされた水Wが、連続的に流入および流出される。なお、図中の矢印は、水Wが流れる方向を示している。   Next, the present invention will be specifically described with reference to examples. In FIG. 1, the manufacturing system of the recycled carbon fiber used for the Example was shown. This system includes a high-pressure pump 1 that sends water W as a fluid, a molten salt bath 2 that can be controlled to a predetermined temperature, a heat exchanger 3 that is immersed in the molten salt bath 2, and a pressure treatment vessel 4. Is provided. The CFRP 5 is accommodated inside the pressure-resistant processing container 4. Water W sent from the high-pressure pump 1 and brought to a predetermined temperature by the heat exchanger 3 is continuously flowed into and out of the pressure-resistant treatment container 4. In addition, the arrow in a figure has shown the direction through which the water W flows.

溶融塩槽2は、ハステロイ製のものを用いることができる。この溶融塩槽2の内部に浸漬される熱交換器3は、細長い管体を螺旋状に巻いたものである。耐圧処理容器4は、ハステロイ製のものであり、その容積は100mlである。この耐圧処理容器4には、内部温度を測定する熱電対からなる温度計8が備えられている。耐圧処理容器4の下方には、熱交換器3から流入する水Wを受け入れる流入管10が設けられ、上方には、流出する水Wをトラップ7に送る流出管11が設けられている。流出管11の途中には、圧力計9が設けられている。また、流出管11において、圧力計9の下流側には、バルブ6が設けられている。   The molten salt tank 2 can be made of Hastelloy. The heat exchanger 3 immersed in the molten salt tank 2 is obtained by spirally winding an elongated tube body. The pressure-resistant treatment container 4 is made of Hastelloy, and its volume is 100 ml. The pressure-resistant processing container 4 is provided with a thermometer 8 made of a thermocouple for measuring the internal temperature. An inflow pipe 10 that receives the water W flowing in from the heat exchanger 3 is provided below the pressure-resistant processing container 4, and an outflow pipe 11 that sends the outflowing water W to the trap 7 is provided above the pressure-resistant treatment container 4. A pressure gauge 9 is provided in the middle of the outflow pipe 11. In the outflow pipe 11, a valve 6 is provided on the downstream side of the pressure gauge 9.

溶融塩槽2の内部には、ヒータ12と回転翼13とが設けられており、ヒータ12をつけた状態で、回転翼13を回転させることによって、溶融塩槽2の液体を混合して、均一な温度とすることができる。なお、ヒータ12には、図示しないコンピュータが接続されており、溶融塩槽2内の液体の温度を所定の範囲内に制御することができる。このシステムでは、溶融塩槽2の内部液体を約150℃〜約500℃の範囲内で温度制御することができる。
まず、耐圧処理容器4に、CFRP5と流体を投入して加熱した。反応温度は、330℃〜420℃の範囲の一定温度に保持し、圧力を30MPaとした。この状態で30分間保持し、耐圧処理容器4内のCFRP5を処理した。
Inside the molten salt tank 2, a heater 12 and a rotary blade 13 are provided. With the heater 12 attached, the rotary blade 13 is rotated to mix the liquid in the molten salt tank 2, A uniform temperature can be obtained. Note that a computer (not shown) is connected to the heater 12 so that the temperature of the liquid in the molten salt tank 2 can be controlled within a predetermined range. In this system, the temperature of the internal liquid of the molten salt bath 2 can be controlled within a range of about 150 ° C to about 500 ° C.
First, CFRP 5 and a fluid were put into the pressure-resistant treatment container 4 and heated. The reaction temperature was maintained at a constant temperature in the range of 330 ° C. to 420 ° C., and the pressure was 30 MPa. This state was maintained for 30 minutes, and the CFRP 5 in the pressure-resistant processing container 4 was processed.

高温処理中には、高圧ポンプ1を駆動させることにより、水を耐圧処理容器4内に送り込み、高温処理に供した超臨界水または亜臨界水を耐圧処理容器4から取り除きつつ、新たな流体を耐圧処理容器4に供給した。このとき、水:CFRPをほぼ1:25となるように調節した。高温処理によって樹脂から分離抽出されたリサイクル炭素繊維は、処理が終了した後に、耐圧処理容器4を冷却して常圧に戻し、耐圧処理容器4から取り出した。
CFRPから分離抽出された炭素繊維をX線光電子分光法−VG社製ESCALAB220iXL[X線源;Al-MONOkα200W、レンズモード;LargeAreaXL、Pass Energy;100eV(survey),20eV(narrow)]を用いて、表面元素(酸素、炭素、窒素)濃度を測定した。
During the high-temperature treatment, the high-pressure pump 1 is driven to send water into the pressure-resistant treatment vessel 4 and remove the supercritical water or subcritical water subjected to the high-temperature treatment from the pressure-resistant treatment vessel 4 while supplying a new fluid. The pressure-resistant treatment container 4 was supplied. At this time, water: CFRP was adjusted to be approximately 1:25. The recycled carbon fiber separated and extracted from the resin by the high-temperature treatment was cooled to the normal pressure by cooling the pressure-resistant treatment container 4 and removed from the pressure-resistant treatment container 4.
Using carbon fiber separated and extracted from CFRP using X-ray photoelectron spectroscopy-ESCALAB220iXL [X-ray source: Al-MONOkα200W, lens mode; LargeAreaXL, Pass Energy; 100 eV (survey), 20 eV (narrow)] manufactured by VG The concentration of surface elements (oxygen, carbon, nitrogen) was measured.

(実施例1)ポリアクリロニトリル系炭素繊維パイロフィルTR50S(三菱レイヨン社製)とエポキシ樹脂とからなるCFRP1gを純水とともに耐圧処理容器に仕込み、密閉した。耐圧処理容器の密閉後、予め330℃に加熱しておいた溶融塩槽に投入し、水を流速5ml/分で耐圧処理容器に注入しながら、圧力を30MPaに保った。この時、排水側のバルブを流速5ml/分で排水できるように調整した。圧力が30MPaになった時点を0分として、高温処理を開始した。30分後、溶融塩槽内から処理容器を引き上げた後、耐圧処理容器全体を水中につけ、室温まで冷却した。その後、耐圧処理容器内のリサイクル炭素繊維試料を回収した。   (Example 1) 1 g of CFRP composed of polyacrylonitrile-based carbon fiber pyrofil TR50S (manufactured by Mitsubishi Rayon Co., Ltd.) and an epoxy resin was charged into a pressure-resistant treatment container together with pure water and sealed. After sealing the pressure-resistant treatment container, it was put into a molten salt bath that had been heated to 330 ° C. in advance, and the pressure was maintained at 30 MPa while water was poured into the pressure-resistant treatment container at a flow rate of 5 ml / min. At this time, the drain side valve was adjusted so that it could drain at a flow rate of 5 ml / min. The time when the pressure reached 30 MPa was set as 0 minutes, and the high temperature treatment was started. After 30 minutes, the processing container was pulled up from the molten salt tank, and then the entire pressure-resistant processing container was immersed in water and cooled to room temperature. Thereafter, a recycled carbon fiber sample in the pressure resistant container was collected.

(実施例2)温度を340℃とする他は、実施例1と同様に処理した。
(実施例3)温度を350℃とする他は、実施例1と同様に処理した。
(実施例4)温度を360℃とする他は、実施例1と同様に処理した。
(実施例5)温度を370℃とする他は、実施例1と同様に処理した。
(実施例6)温度を375℃とする他は、実施例1と同様に処理した。
(実施例7)温度を380℃とする他は、実施例1と同様に処理した。
(実施例8)温度を390℃とする他は、実施例1と同様に処理した。
(実施例9)温度を400℃とする他は、実施例1と同様に処理した。
(実施例10)温度を420℃とする他は、実施例1と同様に処理した。
(Example 2) The treatment was performed in the same manner as in Example 1 except that the temperature was 340 ° C.
(Example 3) The process was performed in the same manner as in Example 1 except that the temperature was 350 ° C.
(Example 4) The treatment was performed in the same manner as in Example 1 except that the temperature was 360 ° C.
(Example 5) The same treatment as in Example 1 was conducted except that the temperature was 370 ° C.
(Example 6) The process was performed in the same manner as in Example 1 except that the temperature was 375 ° C.
(Example 7) The treatment was performed in the same manner as in Example 1 except that the temperature was 380 ° C.
(Example 8) The treatment was performed in the same manner as in Example 1 except that the temperature was 390 ° C.
(Example 9) The treatment was performed in the same manner as in Example 1 except that the temperature was 400 ° C.
(Example 10) The same treatment as in Example 1 was conducted except that the temperature was 420 ° C.

<結果および考察>
図2には、330℃〜420℃で、CFRPを処理した後に分離回収されたリサイクル炭素繊維の表面元素濃度比(窒素/炭素、及び酸素/炭素)を示した。
窒素/炭素濃度比は、330℃〜420℃の処理温度において、ほぼ一定(約0.025)であり変化は見られなかった(図2中のP領域)。炭素繊維では、外表面から内側中心部に向かうにつれて、窒素/炭素濃度比が上昇することが知られている。このため、炭素繊維の表面に亀裂が入ると、窒素/炭素濃度比が上昇する。上記実施例では、温度を420℃まで上昇させても、窒素/炭素濃度比が変化しなかったことから、リサイクル炭素繊維の表面には損傷が生じていないことが分かった。
<Results and discussion>
FIG. 2 shows surface element concentration ratios (nitrogen / carbon and oxygen / carbon) of recycled carbon fibers separated and recovered after treating CFRP at 330 ° C. to 420 ° C.
The nitrogen / carbon concentration ratio was almost constant (about 0.025) at the processing temperature of 330 ° C. to 420 ° C., and no change was observed (P region in FIG. 2). In carbon fiber, it is known that the nitrogen / carbon concentration ratio increases from the outer surface toward the inner center. For this reason, when a crack enters the surface of the carbon fiber, the nitrogen / carbon concentration ratio increases. In the above examples, even when the temperature was raised to 420 ° C., the nitrogen / carbon concentration ratio did not change, and thus it was found that the surface of the recycled carbon fiber was not damaged.

酸素/炭素濃度比は、330℃〜420℃の処理温度において、全体として温度上昇に伴って、減少する傾向が認められた(図2中のQ領域)。CFRPに含まれる樹脂(エポキシ樹脂)は、分子内に酸素原子を有している。一方、炭素繊維自体は、ほぼ炭素原子のみから構成されているため、その表面には酸素原子を有していない。CFRP内の炭素繊維の表面には、樹脂に由来する酸素原子が付着していると考えられる。このため、330℃〜340℃の低温領域において、リサイクル炭素繊維の表面に見られた酸素原子は、CFRPの樹脂に由来するものである。処理温度が上昇するに従って、酸素/炭素濃度比が減少することから、炭素繊維表面の樹脂の除去が進行しているものと考えられた。   The oxygen / carbon concentration ratio tended to decrease as the temperature increased as a whole at a processing temperature of 330 ° C. to 420 ° C. (Q region in FIG. 2). Resin (epoxy resin) contained in CFRP has an oxygen atom in the molecule. On the other hand, since the carbon fiber itself is substantially composed only of carbon atoms, the surface thereof does not have oxygen atoms. It is considered that oxygen atoms derived from the resin are attached to the surface of the carbon fiber in the CFRP. For this reason, in the low temperature range of 330 ° C. to 340 ° C., oxygen atoms found on the surface of the recycled carbon fiber originate from the CFRP resin. Since the oxygen / carbon concentration ratio decreased as the treatment temperature increased, it was considered that the resin on the carbon fiber surface was being removed.

但し、水の臨界温度(374℃)を挟んだ近傍の温度領域(360℃〜390℃)では、酸素/炭素濃度比は、その他の温度領域(330℃〜350℃、及び400℃〜420℃)のデータから予想される滑らかな曲線よりも上側に突出していた(図2中のR領域を含む領域)。これは、高温高圧水が炭素繊維の表面と反応し、一部の酸素原子(及び水素原子)が付着したものであると考えられた。一般に、炭素繊維表面の酸素/炭素濃度比が高い方が、樹脂との結合性が優れていることが知られている。実際に従来の炭素繊維では、表面を改質するために、薬品を用いる処理を行っていた。本実施例によれば、臨界温度の近傍では、リサイクル炭素繊維の表面改質が行われ、後の薬品処理が不要であることが分かった。   However, in the temperature range (360 ° C. to 390 ° C.) in the vicinity of the critical temperature of water (374 ° C.), the oxygen / carbon concentration ratio is other temperature ranges (330 ° C. to 350 ° C. and 400 ° C. to 420 ° C.). ) Protruded above the smooth curve expected from the data (region including the R region in FIG. 2). This was considered that high-temperature high-pressure water reacted with the surface of the carbon fiber and some oxygen atoms (and hydrogen atoms) were attached. In general, it is known that the higher the oxygen / carbon concentration ratio on the surface of the carbon fiber, the better the bondability with the resin. Actually, conventional carbon fibers have been treated with chemicals in order to modify the surface. According to the present Example, it turned out that the surface modification | reformation of a recycled carbon fiber is performed in the vicinity of critical temperature, and a chemical | medical treatment after that is unnecessary.

<結論>
このように、本実施例によれば、CFRPを水の臨界温度の近傍で、水を入れ替えつつ高温処理することにより、樹脂を除去してリサイクル炭素繊維を分離抽出することができる。また、この処理の際には、リサイクル炭素繊維の表面改質を同時に行うことができるので、再利用する際の酸処理の手間が省ける。
<Conclusion>
As described above, according to this example, CFRP can be subjected to high-temperature treatment in the vicinity of the critical temperature of water while replacing water, thereby removing the resin and separating and extracting the recycled carbon fiber. In this treatment, the surface modification of the recycled carbon fiber can be performed at the same time, so that it is possible to save the trouble of the acid treatment when reusing.

本実施例におけるリサイクル炭素繊維の製造システムの概要を示す図である。It is a figure which shows the outline | summary of the manufacturing system of the recycled carbon fiber in a present Example. CFRPから分離回収されたリサイクル炭素繊維の表面元素濃度比と反応温度との関係を示すグラフである。It is a graph which shows the relationship between the surface element density | concentration ratio of the recycled carbon fiber separated and collect | recovered from CFRP, and reaction temperature.

符号の説明Explanation of symbols

1…高圧ポンプ、2…溶融塩槽、3…熱交換器、4…耐圧処理容器、5…CFRP、6…バルブ、7…トラップ、8…温度計、9…圧力計 DESCRIPTION OF SYMBOLS 1 ... High pressure pump, 2 ... Molten salt tank, 3 ... Heat exchanger, 4 ... Pressure-resistant processing container, 5 ... CFRP, 6 ... Valve, 7 ... Trap, 8 ... Thermometer, 9 ... Pressure gauge

Claims (3)

耐圧処理容器中で炭素繊維強化樹脂を超臨界流体または亜臨界流体で高温処理すると共に、その高温処理中に処理に供した超臨界流体または亜臨界流体を前記耐圧処理容器から取り除きつつ、新たな流体を前記耐圧処理容器に加えながら炭素繊維を樹脂から分離抽出する方法であって、高温処理中の超臨界流体または亜臨界流体の温度を臨界温度の近傍に保持することを特徴とするリサイクル炭素繊維の製造方法。 The carbon fiber reinforced resin is subjected to high-temperature treatment with a supercritical fluid or subcritical fluid in a pressure-resistant treatment vessel, and the supercritical fluid or subcritical fluid subjected to the treatment during the high-temperature treatment is removed from the pressure-resistant treatment vessel, A method for separating and extracting carbon fibers from a resin while adding a fluid to the pressure-resistant treatment vessel, wherein the temperature of the supercritical fluid or subcritical fluid during high-temperature treatment is maintained near the critical temperature. A method for producing fibers. 前記流体が水であることを特徴とする請求項1に記載のリサイクル炭素繊維の製造方法。 The method for producing recycled carbon fiber according to claim 1, wherein the fluid is water. 前記臨界温度の近傍が、約365℃〜約390℃であることを特徴とする請求項2に記載のリサイクル炭素繊維の製造方法。 The method for producing recycled carbon fiber according to claim 2, wherein the vicinity of the critical temperature is about 365 ° C to about 390 ° C.
JP2004157117A 2004-05-27 2004-05-27 Method for producing recycled carbon fiber Pending JP2005336331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157117A JP2005336331A (en) 2004-05-27 2004-05-27 Method for producing recycled carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157117A JP2005336331A (en) 2004-05-27 2004-05-27 Method for producing recycled carbon fiber

Publications (1)

Publication Number Publication Date
JP2005336331A true JP2005336331A (en) 2005-12-08

Family

ID=35490244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157117A Pending JP2005336331A (en) 2004-05-27 2004-05-27 Method for producing recycled carbon fiber

Country Status (1)

Country Link
JP (1) JP2005336331A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181071A (en) * 2011-04-22 2011-09-14 中国科学院宁波材料技术与工程研究所 Method for reclaiming carbon fiber reinforced epoxy resin composite material
JP2013203826A (en) * 2012-03-28 2013-10-07 National Univ Corp Shizuoka Univ Method for producing recycled fiber, and system for producing recycled fiber
WO2017167332A1 (en) * 2016-04-01 2017-10-05 Bünger Helmuth Method and system for recycling carbon-fiber-reinforced polymers
US10487191B2 (en) 2016-03-30 2019-11-26 Vartega, Inc. Recovery of reinforcing fibers from fiber-reinforced composites
JP2020023087A (en) * 2018-08-07 2020-02-13 宇部興産株式会社 Waste treatment system and waste treatment method
US10610911B1 (en) 2017-10-04 2020-04-07 Vartega Inc. Cosolvent processing of reinforcing fiber-containing products for recycling reinforcing fibers
US10829611B1 (en) 2017-09-06 2020-11-10 Vartega, Inc. Recovery of reinforcing fibers from continuous fiber-reinforced composites
US11135743B1 (en) 2017-10-04 2021-10-05 Vartega Inc. Removal of sizing material from reinforcing fibers for recycling of reinforcing fibers

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181071A (en) * 2011-04-22 2011-09-14 中国科学院宁波材料技术与工程研究所 Method for reclaiming carbon fiber reinforced epoxy resin composite material
CN102181071B (en) * 2011-04-22 2013-07-10 中国科学院宁波材料技术与工程研究所 Method for reclaiming carbon fiber reinforced epoxy resin composite material
JP2013203826A (en) * 2012-03-28 2013-10-07 National Univ Corp Shizuoka Univ Method for producing recycled fiber, and system for producing recycled fiber
US10487191B2 (en) 2016-03-30 2019-11-26 Vartega, Inc. Recovery of reinforcing fibers from fiber-reinforced composites
US11142626B2 (en) 2016-03-30 2021-10-12 Vartega Inc. Recovery of reinforcing fibers from fiber-reinforced composites
WO2017167332A1 (en) * 2016-04-01 2017-10-05 Bünger Helmuth Method and system for recycling carbon-fiber-reinforced polymers
US10829611B1 (en) 2017-09-06 2020-11-10 Vartega, Inc. Recovery of reinforcing fibers from continuous fiber-reinforced composites
US10610911B1 (en) 2017-10-04 2020-04-07 Vartega Inc. Cosolvent processing of reinforcing fiber-containing products for recycling reinforcing fibers
US11135743B1 (en) 2017-10-04 2021-10-05 Vartega Inc. Removal of sizing material from reinforcing fibers for recycling of reinforcing fibers
JP2020023087A (en) * 2018-08-07 2020-02-13 宇部興産株式会社 Waste treatment system and waste treatment method

Similar Documents

Publication Publication Date Title
KR101573358B1 (en) Nature-friendly graphene oxide manufaturing system using couette-taylor reactor
US4127989A (en) Method for separating metal values from brine
TWI422575B (en) Processes for the production of diaryl carbonates and treatment of alkalichloride solutions resulting therefrom
JP2005336331A (en) Method for producing recycled carbon fiber
CH625505A5 (en)
JP2001508925A (en) Lithium recovery and purification
JP7094453B2 (en) Plants with thermal integration in urea production process and low pressure recovery section
TW201032887A (en) Process for the recovery of ammonia from a gaseous stream
US4725425A (en) Continuous vacuum process for recovering bromine
KR20150096899A (en) Graphene oxide manufaturing system using couette-taylor reactor and method thereof
JP2006265057A (en) Method for preparing iodine heptafluoride by fluorine circulation system
JP2003190759A (en) Method for manufacturing recycled carbon fiber
US20070107748A1 (en) Vacuum cavitational streaming
KR20120093341A (en) Fluorine gas generating apparatus
PT99194B (en) A process for the treatment of washing water from a gas washing system of an iron ore mining reducing device and apparatus for its accomplishment
JP4334162B2 (en) Reaction vessel
JP4936454B2 (en) Hydrogen production apparatus and hydrogen production method
CN106380017A (en) Apparatus and method used for processing mother liquor in chemical engineering production
CH649071A5 (en) WET OXIDATION OF POLLUTANTS BY LIQUID OXYGEN.
JP3254333B2 (en) Halogen-containing waste treatment method and treatment device
US20090226351A1 (en) Supercritical Oxidation Process for the Treatment of Corrosive Materials
JP4509651B2 (en) Fiber surface modification method and apparatus
JPH11276879A (en) High pressure reactor
CN218393045U (en) Tail gas treatment system of desulfurization catalyst apparatus for producing
JP2007031225A (en) Apparatus and method for producing hydrogen by thermochemical process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707