JP2005336002A - Nitrite ion-type hydrotalcite powder, its manufacturing method, rust-preventive composition, and rust-preventive coating composition - Google Patents

Nitrite ion-type hydrotalcite powder, its manufacturing method, rust-preventive composition, and rust-preventive coating composition Download PDF

Info

Publication number
JP2005336002A
JP2005336002A JP2004155732A JP2004155732A JP2005336002A JP 2005336002 A JP2005336002 A JP 2005336002A JP 2004155732 A JP2004155732 A JP 2004155732A JP 2004155732 A JP2004155732 A JP 2004155732A JP 2005336002 A JP2005336002 A JP 2005336002A
Authority
JP
Japan
Prior art keywords
nitrite ion
hydrotalcite powder
rust
nitrite
hydrotalcite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004155732A
Other languages
Japanese (ja)
Other versions
JP4636587B2 (en
Inventor
Yasuhiro Abe
康弘 阿部
Masatoshi Chiba
正俊 千葉
Heiji Uchiyama
平二 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2004155732A priority Critical patent/JP4636587B2/en
Publication of JP2005336002A publication Critical patent/JP2005336002A/en
Application granted granted Critical
Publication of JP4636587B2 publication Critical patent/JP4636587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitrite ion-type hydrotalcite powder which gives superior rust preventability to metal materials, and a rust-preventive composition and a rust-preventive coating composition which use the nitrite ion-type hydrotalcite powder. <P>SOLUTION: The nitrite ion-containing hydrotalcite powder from which an amount of 35 mg/g or more of nitrite ions elute when 5 g of the hydrotalcite powder is added to 100 mL of 0.2 mol/L sodium chloride water solution to be left alone for 4 hours at 25°C, the rust-preventive composition, and the rust-preventive coating composition are provided. The hydrotalcite powder is preferably a nitrite ion-type hydrotalcite expressed by general formula (1) (wherein x shows 0.15<x<0.25, and t shows 0.5≤t≤2). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属材料に優れた防錆性を付与することができる亜硝酸イオン型ハイドロタルサイト粉末、その製造方法、これを用いた防錆剤組成物及び防錆塗料組成物に関するものである。   The present invention relates to a nitrite ion type hydrotalcite powder capable of imparting excellent rust prevention properties to a metal material, a method for producing the same, a rust preventive composition using the same, and a rust preventive coating composition. .

ハイドロタルサイトは、代表的には下記一般式(3)   Hydrotalcite is typically represented by the following general formula (3)

Figure 2005336002
Figure 2005336002

(式中、An-はn価のアニオンを表わし、xは0.2≦x≦0.33)で表わされる無機アニオン交換体で、主に塩化ビニル樹脂の安定剤として用いられているが、更なる用途が開発されている。 (Wherein, A n-represents an n-valent anion, x is 0.2 ≦ x ≦ 0.33) in an inorganic anion exchanger represented by, but is mainly used as a stabilizer for a vinyl chloride resin Further applications are being developed.

例えば、前記一般式(3)の式中のAのアニオンがNO2 -である亜硝酸イオン型ハイドロタルサイトを防錆顔料、或いは防錆塗料組成物として用いることも提案されている(例えば、特許文献1および特許文献2参照)。 For example, it has also been proposed to use a nitrite ion type hydrotalcite in which the anion of A in the formula of the general formula (3) is NO 2 as a rust preventive pigment or a rust preventive coating composition (for example, (See Patent Document 1 and Patent Document 2).

従来、亜硝酸イオン型ハイドロタルサイトの製造方法は、例えば、アルカリの存在下に水溶性マグネシウム化合物と、水溶性アルミニウム化合物との反応により得る方法(例えば、特許文献1、特許文献3、特許文献4、特許文献5、特許文献6参照)、或いは特許文献2には、下記一般式(4)   Conventionally, a method for producing a nitrite ion type hydrotalcite is, for example, a method obtained by a reaction between a water-soluble magnesium compound and a water-soluble aluminum compound in the presence of an alkali (for example, Patent Document 1, Patent Document 3, Patent Document). 4, Patent Document 5, and Patent Document 6), or Patent Document 2, the following general formula (4)

Figure 2005336002
Figure 2005336002

〔ただし、M1 はZn、Pb、Ca及びSrの少なくとも1種の元素、M2 はAl及び/又はFe、An-はn価のアニオン、0<x≦0.5、0≦z<0.5、0.5≦y+z<1、0≦m<2〕
で表される固溶体を400℃〜700℃に加熱し、pH3〜10で亜硝酸イオンを含有する水溶液に混合することにより製造する方法が提案されている。
特開平11−148029号公報 特開平5−306124号公報(第1頁、第6頁) 特公昭46−2280号公報 特公昭50−30039号公報 特公昭47−32198号公報 特公昭56−29893号公報
[However, M 1 is Zn, Pb, at least one element of Ca and Sr, M 2 is Al and / or Fe, A n-n-valent anion, 0 <x ≦ 0.5,0 ≦ z < 0.5, 0.5 ≦ y + z <1, 0 ≦ m <2]
The method of manufacturing by heating the solid solution represented by these to 400 to 700 degreeC and mixing with the aqueous solution containing nitrite ion by pH 3-10 is proposed.
Japanese Patent Laid-Open No. 11-148029 JP-A-5-306124 (first page, sixth page) Japanese Examined Patent Publication No. 46-2280 Japanese Patent Publication No. 50-30039 Japanese Patent Publication No. 47-32198 Japanese Patent Publication No.56-29893

しかしながら、特許文献2の方法において用いる原料のハイドロタルサイトは本発明の範囲外の組成のMg4.5 Al2 (OH)13・CO3 ・3.5H2 O(一般式(2)中のxが0.31の組成に相当)を用いており、また、本発明者らによれば、特許文献2で得られる亜硝酸イオン型ハイドロタルサイト粉末に至っても、金属材料に長期に亘る防錆性能を付与することが難しく、更に優れた防錆性能を有するハイドロタルサイトの開発が望まれていた。 However, the raw hydrotalcite used in the method of Patent Document 2 is Mg 4.5 Al 2 (OH) 13 .CO 3 .3.5H 2 O having a composition outside the scope of the present invention (wherein x in the general formula (2) is Furthermore, according to the present inventors, even when the nitrite ion type hydrotalcite powder obtained in Patent Document 2 is reached, the metal material has a long-term antirust performance. It has been desired to develop a hydrotalcite that is difficult to impart and has excellent rust prevention performance.

理論上、亜硝酸イオン型ハイドロタルサイト(例えば、Mg9.5Al2(OH)13・CO3・3.5H2O)は亜硝酸イオンを該化合物1gに対して179.5mg/g含有し、この含有された亜硝酸イオンはアニオン交換により全量放出可能であると考えられるが、従来の亜硝酸イオン型ハイドロタルサイトは、この亜硝酸イオンの放出量が多くとも32.7mg/g程度である。 Theoretically, nitrite ion type hydrotalcite (for example, Mg 9.5 Al 2 (OH) 13 .CO 3 .3.5H 2 O) contains 179.5 mg / g of nitrite ion with respect to 1 g of the compound, It is considered that the total amount of the contained nitrite ion can be released by anion exchange, but the conventional nitrite ion type hydrotalcite has a release amount of this nitrite ion of at most 32.7 mg / g. .

本発明者は、かかる実情において、防錆効果に優れたハイドロタルサイト型化合物について鋭意研究を重ねた結果、特定の一般式で表されるハイドロタルサイトを原料として用い、これを特定温度範囲で焼成し、該ハイドロタルサイトからアニオンを脱離させて複合酸化物となし、次いで該複合酸化物を亜硝酸イオンを含む水溶液に浸漬してハイドロタルサイト構造を再生させて得られる亜硝酸イオン型ハイドロタルサイト粉末は、従来の亜硝酸イオン型ハイドロタルサイトに比べ、アニオン交換により放出される亜硝酸イオンの量が多く、更に該ハイドロタルサイトを含有する防錆剤組成物は優れた防錆性能を発揮し、特に金属材料に長期に亘って優れた防錆性能を付与することができることを見出し本発明を完成するに至った。   In this situation, the present inventor has conducted extensive research on hydrotalcite-type compounds having an excellent rust-preventing effect, and as a result, used hydrotalcite represented by a specific general formula as a raw material. Nitrite ion type obtained by firing, desorbing anions from the hydrotalcite to form a complex oxide, and then regenerating the hydrotalcite structure by immersing the complex oxide in an aqueous solution containing nitrite ions Hydrotalcite powder has a larger amount of nitrite ions released by anion exchange compared to conventional nitrite ion type hydrotalcite, and the rust inhibitor composition containing the hydrotalcite is excellent in rust prevention. The present inventors have found that the present invention can exhibit performance, and in particular, can impart excellent rust prevention performance to a metal material over a long period of time.

即ち、本発明の目的は、金属材料に優れた防錆性を付与することができる亜硝酸イオン型ハイドロタルサイト粉末、その製造方法、それを用いた防錆剤組成物及び防錆塗料組成物を提供することにある。   That is, an object of the present invention is to provide a nitrite ion type hydrotalcite powder capable of imparting excellent rust prevention properties to a metal material, a production method thereof, a rust preventive composition and a rust preventive coating composition using the same. Is to provide.

本発明が提供しようとする第1の発明は、亜硝酸イオンを含有するハイドロタルサイト粉末であって、該ハイドロタルサイト粉末5gを0.2モル/Lの塩化ナトリウム水溶液100mLに加え25℃で4時間放置した時に溶出する亜硝酸イオンの量が35mg/g以上であることを特徴とする亜硝酸イオン型ハイドロタルサイト粉末である。   A first invention to be provided by the present invention is a hydrotalcite powder containing nitrite ions, and 5 g of the hydrotalcite powder is added to 100 mL of a 0.2 mol / L sodium chloride aqueous solution at 25 ° C. A nitrite ion-type hydrotalcite powder characterized in that the amount of nitrite ions eluted when left for 4 hours is 35 mg / g or more.

また、本発明が提供しようとする第2の発明は、下記一般式(2)   The second invention to be provided by the present invention is the following general formula (2).

Figure 2005336002
Figure 2005336002

(式中、MはMg、Ca、Ni、Cu及びZnからなる群から選ばれた少なくとも1種以上の2価金属イオン、Aはアニオン、xは0.18≦x≦0.28、tは0.5≦t≦2、nはアニオンの価数を示す。)
で表わされるハイドロタルサイトを400〜700℃で焼成し、前記一般式(2)中のアニオンAを脱離させる第1工程、次いで前記第1工程で得られた生成物を亜硝酸イオンを含む水溶液に浸漬する第2工程を有することを特徴とする亜硝酸イオン型ハイドロタルサイト粉末の製造方法である。
(Wherein M is at least one divalent metal ion selected from the group consisting of Mg, Ca, Ni, Cu and Zn, A is an anion, x is 0.18 ≦ x ≦ 0.28, and t is 0.5 ≦ t ≦ 2, n represents the valence of the anion.)
The first step of calcining the hydrotalcite represented by the formula (2) to desorb the anion A in the general formula (2), and then the product obtained in the first step contains nitrite ions. It is a manufacturing method of the nitrite ion type hydrotalcite powder characterized by having the 2nd process immersed in aqueous solution.

また、本発明が提供しようとする第3の発明は、前記亜硝酸イオン型ハイドロタルサイトを含有する防錆剤組成物である。
また、本発明が提供しようとする第4の発明は、前記防錆剤組成物を含有する防錆塗料組成物である。
A third invention to be provided by the present invention is a rust preventive composition containing the nitrite ion type hydrotalcite.
Moreover, 4th invention which this invention tends to provide is the rust preventive coating composition containing the said rust preventive composition.

本発明の亜硝酸イオン型ハイドロタルサイト粉末は、従来の亜硝酸イオン型ハイドロタルサイト粉末と比べ、アニオン交換により放出される亜硝酸イオンの量が多く、更に該亜硝酸イオン型ハイドロタルサイトを含有する防錆剤組成物及び防錆塗料組成物は金属材料に優れた防錆性能を付与することができる。   The nitrite ion type hydrotalcite powder of the present invention has a larger amount of nitrite ions released by anion exchange than the conventional nitrite ion type hydrotalcite powder. The contained rust preventive composition and rust preventive coating composition can impart excellent rust prevention performance to metal materials.

以下、本発明を好ましい実施形態に基づき詳細に説明する。
本発明の亜硝酸イオン型ハイドロタルサイト粉末は、従来の亜硝酸イオン型ハイドロタルサイト粉末に比べて、特にアニオン交換により放出される亜硝酸イオンの量が多いことにおいて異なるものである。
Hereinafter, the present invention will be described in detail based on preferred embodiments.
The nitrite ion type hydrotalcite powder of the present invention is different from the conventional nitrite ion type hydrotalcite powder in that the amount of nitrite ions released by anion exchange is particularly large.

即ち、本発明の亜硝酸イオン型ハイドロタルサイト粉末は、該亜硝酸イオン型ハイドロタルサイト粉末5gをガラス瓶に入れ、0.2モル/Lの塩化ナトリウム水溶液100mLを加え、300rpm、25℃、4時間攪拌した後のろ液中の亜硝酸イオン濃度をイオンクロマトグラフ法で求めた値(以下、「亜硝酸イオン放出量」と呼ぶ。)が35mg/g以上、好ましくは40mg/g以上で、その上限値は140mg/gであるのに対して、従来の亜硝酸イオン型ハイドロタルサイト粉末はこの亜硝酸イオン放出量が多くても32.7mg/gで、本発明の亜硝酸イオン型ハイドロタルサイト粉末は従来の亜硝酸イオン型ハイドロタルサイト粉末に比べアニオン交換により放出される亜硝酸イオンの量が極めて多いところに特徴があり、従来品とは区別される。   That is, in the nitrite ion type hydrotalcite powder of the present invention, 5 g of the nitrite ion type hydrotalcite powder is put in a glass bottle, 100 mL of 0.2 mol / L sodium chloride aqueous solution is added, 300 rpm, 25 ° C., 4 ° C. The value obtained by ion chromatography (hereinafter referred to as “nitrite ion release amount”) of the nitrite ion concentration in the filtrate after stirring for a period of time is 35 mg / g or more, preferably 40 mg / g or more. The upper limit is 140 mg / g, whereas the conventional nitrite ion type hydrotalcite powder has a maximum release amount of 32.7 mg / g. The talcite powder is characterized in that the amount of nitrite ions released by anion exchange is extremely large compared to the conventional nitrite ion type hydrotalcite powder, It is distinguished from the coming goods.

本発明にかかる亜硝酸イオン型ハイドロタルサイト粉末は前記亜硝酸イオン放出量の多い特性を有することにより、該ハイドロタルサイト粉末を含有する防錆剤組成物は金属材料に長期に亘って優れた防錆性能を付与することができる。   The nitrite ion type hydrotalcite powder according to the present invention has a characteristic that the nitrite ion release amount is large, and thus the rust preventive composition containing the hydrotalcite powder is excellent for a metal material for a long time. Rust prevention performance can be imparted.

さらに、本発明の亜硝酸イオン型ハイドロタルサイト粉末は、前記した亜硝酸イオン放出量であることに加え、塩化物イオン吸着量が20mg/g以上、好ましくは25〜100mg/gであり、防錆性などの様々な効果を発現することができる。   Further, the nitrite ion type hydrotalcite powder of the present invention has a chloride ion adsorption amount of 20 mg / g or more, preferably 25 to 100 mg / g, in addition to the above-mentioned nitrite ion release amount. Various effects such as rusting can be exhibited.

なお、本発明において塩化物イオン吸着量は、亜硝酸イオン型ハイドロタルサイト粉末5gをガラス瓶に入れ、0.2モル/Lの塩化ナトリウム水溶液100mLを加え、300rpm、25℃、4時間攪拌後のろ液中の塩化物イオン濃度をイオンクロマトグラフ法で求めた値から、下記計算式(1)   In the present invention, the amount of chloride ion adsorption is 5 g of nitrite ion type hydrotalcite powder in a glass bottle, added with 100 mL of 0.2 mol / L sodium chloride aqueous solution, and stirred at 300 rpm, 25 ° C. for 4 hours. From the value obtained by ion chromatography for the chloride ion concentration in the filtrate, the following formula (1)

Figure 2005336002
Figure 2005336002

(Qは塩化物イオン吸着量(mg/g)、C0 は吸着前の塩化物イオン濃度(mg/L)、C1 は吸着後の塩化物イオン濃度(mg/L)を示す)
により求められる値である。
(Q is chloride ion adsorption amount (mg / g), C 0 is chloride ion concentration (mg / L) before adsorption, and C 1 is chloride ion concentration (mg / L) after adsorption)
Is a value obtained by

本発明の亜硝酸イオン型ハイドロタルサイト粉末は、アニオン成分として亜硝酸イオンを含有するハイドロタルサイトであり、該亜硝酸イオン型ハイドロタルサイト粉末の組成は、後述する原料のハイドロタルサイトの組成に大きく依存することから、その組成は多くの場合、下記一般式(5)   The nitrite ion type hydrotalcite powder of the present invention is a hydrotalcite containing nitrite ions as an anion component, and the composition of the nitrite ion type hydrotalcite powder is the composition of the raw material hydrotalcite described later. In many cases, the composition thereof is represented by the following general formula (5).

Figure 2005336002
Figure 2005336002

(式中、MはMg、Ca、Ni、Cu及びZnからなる群から選ばれた少なくとも1種以上の2価金属イオン、xは0<x≦0.5、tは0≦t≦2、nはアニオンの価数を示す。)で表わされるハイドロタルサイト粉末である。 (Wherein, M is at least one divalent metal ion selected from the group consisting of Mg, Ca, Ni, Cu and Zn, x is 0 <x ≦ 0.5, t is 0 ≦ t ≦ 2, n represents a valence of an anion.)

さらに、好ましい本発明の亜硝酸イオン型ハイドロタルサイト粉末は、下記一般式(1)   Furthermore, a preferable nitrite ion type hydrotalcite powder of the present invention is represented by the following general formula (1).

Figure 2005336002
Figure 2005336002

(式中、xは0.15<x<0.25、tは0.5≦t≦2を示す。)
で表わされる亜硝酸イオン型ハイドロタルサイト粉末であることが、複合酸化物からのハイドロタルサイト構造の再生効率に優れる点で特に好ましい。
(In the formula, x represents 0.15 <x <0.25, and t represents 0.5 ≦ t ≦ 2.)
The nitrite ion type hydrotalcite powder represented by the formula is particularly preferred from the viewpoint of excellent regeneration efficiency of the hydrotalcite structure from the composite oxide.

本発明の亜硝酸イオン型ハイドロタルサイト粉末のMgとAlの比は、MgO/Al23 のモル比として6.0〜6.5、好ましくは6.2〜6.5が望ましく、6.0〜6.5であると亜硝酸イオンの放出量が多く、また防錆性能に優れたものとなる。 The ratio of Mg to Al in the nitrite ion type hydrotalcite powder of the present invention is 6.0 to 6.5, preferably 6.2 to 6.5 as the molar ratio of MgO / Al 2 O 3. When it is from 0.0 to 6.5, the amount of nitrite ions released is large and the rust prevention performance is excellent.

本発明の亜硝酸イオン型ハイドロタルサイト粉末は、上記特性に加え、レーザー散乱法により求められる平均粒径が50μm以下、好ましくは20μm以下、特に好ましくは0.01〜20μmであると分散媒への分散性が良好且つコントロールしやすいので好ましい。   In addition to the above characteristics, the nitrite ion type hydrotalcite powder of the present invention has an average particle size determined by a laser scattering method of 50 μm or less, preferably 20 μm or less, particularly preferably 0.01 to 20 μm. The dispersibility is preferable because it is good and easy to control.

また、本発明の亜硝酸イオン型ハイドロタルサイト粉末は、組成と共にBET比表面積が大きいことに特徴を有し、具体的にはBET比表面積が30m2 /g以上、好ましくは35m2 /g以上、特に好ましくは35〜50m2 /gであり、このBET比表面積であるのでイオン交換効率が向上し、イオン吸着・放出量が理論値に近づくため特に好ましい。 The nitrite ion type hydrotalcite powder of the present invention is characterized by a large BET specific surface area as well as the composition. Specifically, the BET specific surface area is 30 m 2 / g or more, preferably 35 m 2 / g or more. Particularly preferred is 35 to 50 m 2 / g, and since this BET specific surface area improves ion exchange efficiency, the ion adsorption / release amount approaches the theoretical value, which is particularly preferred.

次いで、本発明の亜硝酸イオン型ハイドロタルサイト粉末の製造方法について説明する。
本発明の亜硝酸イオン型ハイドロタルサイト粉末は、下記一般式(2)
Subsequently, the manufacturing method of the nitrite ion type hydrotalcite powder of this invention is demonstrated.
The nitrite ion type hydrotalcite powder of the present invention has the following general formula (2)

Figure 2005336002
Figure 2005336002

(式中、MはMg、Ca、Ni、Cu及びZnからなる群から選ばれた少なくとも1種以上の2価金属イオン、Aはアニオン、xは0.18≦x≦0.28、tは0.5≦t≦2、nはアニオンの価数を示す。)
で表わされるハイドロタルサイトを400〜700℃で焼成し、前記一般式(2)中のアニオンAを脱離させる第1工程、次いで前記第1工程で得られた生成物を亜硝酸イオンを含む水溶液に浸漬する第2工程を実施することにより製造することができる。
(Wherein M is at least one divalent metal ion selected from the group consisting of Mg, Ca, Ni, Cu and Zn, A is an anion, x is 0.18 ≦ x ≦ 0.28, and t is 0.5 ≦ t ≦ 2, n represents the valence of the anion.)
The first step of calcining the hydrotalcite represented by the formula (2) to desorb the anion A in the general formula (2), and then the product obtained in the first step contains nitrite ions. It can manufacture by implementing the 2nd process immersed in aqueous solution.

前記第1工程は、前記一般式(2)で表わされるハイドロタルサイトを原料として用い、これを特定温度範囲で焼成を行って、該ハイドロタルサイトを脱アニオン化して複合酸化物を得る。即ち、この第1工程では、前記一般式(2)で表わされる特定の化学組成のハイドロタルサイトを用いること及び焼成温度を400〜700℃、好ましくは450〜600℃で行うことが重要な要件の一つとなる。   In the first step, the hydrotalcite represented by the general formula (2) is used as a raw material, which is fired in a specific temperature range, and the hydrotalcite is deanionized to obtain a composite oxide. That is, in this first step, it is important to use hydrotalcite having a specific chemical composition represented by the general formula (2) and to perform the firing temperature at 400 to 700 ° C., preferably 450 to 600 ° C. It becomes one of.

原料の前記一般式(2)で表わされるハイドロタルサイトは、公知の方法により容易に製造することができる。その一例を示せば、アルカリの存在下、好ましくはpH9〜13で、水溶性の2価金属塩(M)と水溶性アルミニウム塩(Al)とをMとAlのモル比(M/Al)が2.0〜8.0となるように0〜100℃で0.5〜6時間反応させる方法により容易に製造することができる(例えば、特公昭46−2280号公報、特公昭50−30039号公報、特公昭47−32198号公報、特公昭56−29893号公報参照)。また、前記一般式(2)の式中のMがMgで、AがCO3 2- のハイドロタルサイトは、市販品、例えば、協和化学工業社製の商品名DHT−6を用いることができることから工業的に特に有利である。 The hydrotalcite represented by the general formula (2) as a raw material can be easily produced by a known method. For example, the molar ratio of M to Al (M / Al) between a water-soluble divalent metal salt (M) and a water-soluble aluminum salt (Al) is preferably 9 to 13 in the presence of alkali. It can be easily produced by a method of reacting at 0 to 100 ° C. for 0.5 to 6 hours so that it becomes 2.0 to 8.0 (for example, Japanese Patent Publication No. 46-2280, Japanese Patent Publication No. 50-30039). Gazette, Japanese Patent Publication No. 47-32198, Japanese Patent Publication No. 56-29893). Moreover, as for the hydrotalcite in which M in the formula of the general formula (2) is Mg and A is CO 3 2- , a commercially available product, for example, trade name DHT-6 manufactured by Kyowa Chemical Industry Co., Ltd. can be used. It is particularly advantageous industrially.

かかる原料のハイドロタルサイトの諸物性は、前記組成の範囲内のものであれば特に制限されるものではないが、得られる亜硝酸イオン型ハイドロタルサイトの粒径は原料のハイドロタルサイトの粒径に大きく依存することから、原料のハイドロタルサイトの粒径は、レーザー散乱法により求められる平均粒径が50μm以下、好ましくは20μm以下、特に好ましくは0.01〜20μmであると上記した平均粒径の亜硝酸イオン型ハイドロタルサイトが容易に得られることから好ましい。   The physical properties of the hydrotalcite of the raw material are not particularly limited as long as they are within the above-mentioned composition range, but the particle size of the obtained nitrite ion type hydrotalcite is the particle size of the raw hydrotalcite. Since the particle size of the raw hydrotalcite is greatly dependent on the diameter, the average particle diameter determined by the laser scattering method is 50 μm or less, preferably 20 μm or less, and particularly preferably 0.01 to 20 μm. Nitrite ion-type hydrotalcite having a particle size is preferable because it can be easily obtained.

本発明では、前記したハイドロタルサイトを焼成し、ハイドロタルサイトの構造中からアニオンが脱離した複合酸化物を得る。
この第1工程では焼成によりハイドロタルサイトからアニオンを完全に除去した複合酸化物を得ることが不純物含量が少なく、イオン交換容量を大きく取ることが出来る上で重要であり、通常は複合酸化物に含有されるアニオンの量が2000ppm以下、好ましくは100ppm以下となるまで十分に焼成を行うことが好ましい。
In the present invention, the above-mentioned hydrotalcite is fired to obtain a composite oxide from which anions are eliminated from the hydrotalcite structure.
In this first step, it is important to obtain a composite oxide in which anions are completely removed from hydrotalcite by calcination in order to reduce the impurity content and increase the ion exchange capacity. It is preferable to perform sufficient firing until the amount of anions contained is 2000 ppm or less, preferably 100 ppm or less.

焼成温度は400〜700℃、好ましくは450〜600℃である。焼成温度が400℃未満ではアニオンの脱離が不十分となり、不純物の量が多くなり、一方、700℃を越えると複合酸化物の結晶化が進行し、ハイドロタルサイト構造の再生が進行しにくくなるからである。   The firing temperature is 400 to 700 ° C, preferably 450 to 600 ° C. When the calcination temperature is less than 400 ° C., the desorption of anions becomes insufficient and the amount of impurities increases. On the other hand, when the calcination temperature exceeds 700 ° C., the crystallization of the composite oxide proceeds and the regeneration of the hydrotalcite structure is difficult to proceed. Because it becomes.

焼成時間は、上記範囲内のアニオン含有量となるまで十分に行う必要があり、多くの場合1時間以上、好ましくは2時間以上である。
焼成雰囲気は、特に制限されるものではなく、空気中或いは不活性ガス雰囲気中であってもよい。
The firing time must be sufficient until the anion content is within the above range, and in many cases is 1 hour or longer, preferably 2 hours or longer.
The firing atmosphere is not particularly limited, and may be in air or in an inert gas atmosphere.

なお、本発明において、前記焼成は必要により繰り返し行うことができる。
次いで、第2工程では、前記第1工程で得られた複合酸化物を亜硝酸イオンを含む溶液に浸漬し、ハイドロタルサイト構造を再生させ、ハイドロタルサイト構造中に亜硝酸イオンを含有させる。
In the present invention, the firing can be repeated as necessary.
Next, in the second step, the composite oxide obtained in the first step is immersed in a solution containing nitrite ions to regenerate the hydrotalcite structure, and nitrite ions are contained in the hydrotalcite structure.

前記亜硝酸イオンを含む溶液は、亜硝酸又は亜硝酸塩を溶解した水溶液であり、用いることができる亜硝酸塩としては、水に溶解するものであれば特に制限はなく、例えば、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸バリウム、亜硝酸カルシウム、亜硝酸マグネシウム、亜硝酸亜鉛等が挙げられ、これらは1種又は2種以上で用いることができる。   The solution containing nitrite ions is an aqueous solution in which nitrite or nitrite is dissolved, and nitrite that can be used is not particularly limited as long as it is soluble in water. Examples thereof include sodium nitrate, potassium nitrite, barium nitrite, calcium nitrite, magnesium nitrite, zinc nitrite and the like, and these can be used alone or in combination of two or more.

亜硝酸イオンを含む溶液は、多くの場合、亜硝酸イオンを5〜40重量%、好ましくは5〜20重量%含む溶液として調製する。
前記複合酸化物1gは理論上亜硝酸イオンを多くの場合0.27gまで取り込むことが可能であるが、本発明では、亜硝酸イオンを含む溶液の添加量は、複合酸化物100重量部に対して亜硝酸イオンとして理論量以上の27重量部以上、好ましくは30重量部以上、特に好ましくは50〜150重量部とすることが亜硝酸イオンを理論値に近い量まで取り込ませることが出来るので好ましい。
The solution containing nitrite ions is often prepared as a solution containing 5 to 40% by weight, preferably 5 to 20% by weight of nitrite ions.
1 g of the composite oxide can theoretically incorporate nitrite ions up to 0.27 g in many cases. In the present invention, the amount of the solution containing nitrite ions is 100 parts by weight of the composite oxide. It is preferable that the amount of nitrite ions is 27 parts by weight or more, preferably 30 parts by weight or more, particularly preferably 50 to 150 parts by weight, because the nitrite ions can be taken up to an amount close to the theoretical value. .

第2工程の具体的な操作は、所定量の複合酸化物と亜硝酸イオンを含む溶液とを0〜100℃、好ましくは10〜60℃で2時間以上、好ましくは4時間以上、特に好ましくは4〜24時間、攪拌下に反応を行って、ハイドロタルサイト構造の再生と亜硝酸イオンの導入を行う。   The specific operation of the second step is that a solution containing a predetermined amount of complex oxide and nitrite ions is 0 to 100 ° C., preferably 10 to 60 ° C. for 2 hours or longer, preferably 4 hours or longer, particularly preferably. The reaction is carried out with stirring for 4 to 24 hours to regenerate the hydrotalcite structure and introduce nitrite ions.

反応終了後、濾過、水洗、乾燥、必要により粉砕、分級して、製品とする。
かくして得られる亜硝酸イオン型ハイドロタルサイト粉末は、前記亜硝酸イオン放出量が35mg/g以上、好ましくは40mg/g以上で、その上限値は140mg/gであり、塩化物イオン吸着量が20mg/g以上、好ましくは25〜100mg/gである。
After completion of the reaction, the product is filtered, washed with water, dried, and pulverized and classified as necessary to obtain a product.
The nitrite ion-type hydrotalcite powder thus obtained has a release amount of nitrite ions of 35 mg / g or more, preferably 40 mg / g or more, an upper limit of 140 mg / g, and a chloride ion adsorption amount of 20 mg. / G or more, preferably 25 to 100 mg / g.

また、亜硝酸イオン型ハイドロタルサイト粉末の好ましい物性として、レーザー散乱法により求められる平均粒径が50μm以下、好ましくは20μm以下、特に好ましくは0.01〜20μmである。また、BET比表面積が30m2 /g以上、好ましくは35m2 /g以上、特に好ましくは35〜50m2 /gであることが好ましい。 Further, as a preferable physical property of the nitrite ion type hydrotalcite powder, an average particle size determined by a laser scattering method is 50 μm or less, preferably 20 μm or less, particularly preferably 0.01 to 20 μm. Further, BET specific surface area of 30 m 2 / g or more, preferably 35m 2 / g or more, particularly preferably preferably 35~50m 2 / g.

本発明の亜硝酸イオン型ハイドロタルサイト粉末は、優れたアニオン交換能を利用した、例えば、塩化ビニル樹脂の安定剤、砒素、セレン化合物などの有害なアニオンに対する吸着剤等の従来の無機アニオン交換体の用途に使用することができる。また、特に金属材料の防錆剤組成物として好適に使用することができる。   The nitrite ion type hydrotalcite powder of the present invention utilizes an excellent anion exchange ability, for example, a conventional inorganic anion exchange such as a stabilizer for vinyl chloride resin, an adsorbent for harmful anions such as arsenic and selenium compounds. Can be used for body applications. In particular, it can be suitably used as a rust preventive composition for metallic materials.

次いで、本発明の防錆剤組成物について説明する。
本発明の防錆剤組成物は、前記亜硝酸イオン型ハイドロタルサイト粉末を含有することを特徴とする。
かかる防錆剤組成物は、金属製支持体の表面に断熱部材、耐火物を接触させて用いる際の金属製支持体の防錆剤、特にセメント混和剤として使用してコンクリート構造物における鉄筋の防錆剤や、塗料分野における金属材料用の防錆剤として好適に用いることができる。
Next, the rust inhibitor composition of the present invention will be described.
The rust inhibitor composition of the present invention contains the nitrite ion type hydrotalcite powder.
Such a rust preventive composition is used as a rust preventive agent for a metal support, particularly as a cement admixture, when a heat-insulating member or a refractory is brought into contact with the surface of the metal support. It can be suitably used as a rust inhibitor and a rust inhibitor for metal materials in the paint field.

本発明の防錆剤組成物は、前記亜硝酸イオン型ハイドロタルサイト粉末を単独で使用することができることは勿論であるが、防錆顔料と併用することにより一層防錆効果を高めることができる。
併用することができる防錆顔料としては、特に制限はなく、例えば有機質顔料及び無機質顔料のいずれにでも適用できる。例えば、ニトリル系有機化合物顔料等の有機質防錆顔料、Mg、Ca、Ba、Sr、Zn又はAlの1種又は2種以上から選ばれたリンのオキシ酸塩、モリブデン酸塩、リンモリブデン酸塩、ホウ酸塩、ホウ珪酸塩及びリン珪酸塩、クロム酸塩及び鉛酸塩の1種又は2種以上の無機質防錆顔料が挙げられるが、本発明では環境上の問題からMg、Ca、Ba、Sr、Zn又はAlの1種又は2種以上から選ばれたリンのオキシ酸塩、モリブデン酸塩、リンモリブデン酸塩、ホウ酸塩、ホウ珪酸塩及びリン珪酸塩の白色系の防錆顔料が好ましく用いられる。
In the rust inhibitor composition of the present invention, the nitrite ion type hydrotalcite powder can be used alone, but the rust preventive effect can be further enhanced by using it together with a rust preventive pigment. .
There is no restriction | limiting in particular as a rust preventive pigment which can be used together, For example, it can apply to any of an organic pigment and an inorganic pigment. For example, organic rust preventive pigments such as nitrile organic compound pigments, phosphorus oxyacid salts, molybdates and phosphomolybdates selected from one or more of Mg, Ca, Ba, Sr, Zn or Al , Borate, borosilicate and phosphosilicate, chromate and lead salt include one or more inorganic rust preventive pigments. In the present invention, Mg, Ca, Ba are used due to environmental problems. , Sr, Zn or Al phosphorous oxyacid salt, molybdate, phosphomolybdate, borate, borosilicate and phosphosilicate white rust preventive pigments selected from one or more Is preferably used.

具体的には、リンのオキシ酸塩としては、Mg、Ca、Ba、Sr、Zn又はAlの1種又は2種以上から選ばれた亜リン酸塩、リン酸塩及び/又は縮合リン酸塩であって、亜リン酸塩としては、例えば亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸バリウム、亜リン酸ストロンチウム、亜リン酸亜鉛、亜リン酸アルミニウム、亜リン酸亜鉛カルシウム、亜リン酸亜鉛カリウム等が挙げられる。リン酸塩としては、例えば、リン酸マグネシウム、リン酸カルシウム、リン酸バリウム、リン酸ストロンチウム、リン酸亜鉛、リン酸アルミニウム、リン酸亜鉛マグネシウム、リン酸亜鉛カルシウム、リン酸亜鉛カリウム等が挙げられる。縮合リン酸塩としては、ポリリン酸マグネシウム、ポリリン酸カルシウム、ポリリン酸亜鉛、ポリリン酸アルミニウム、メタリン酸マグネシウム、メタリン酸カルシウム、メタリン酸バリウム、メタリン酸ストロンチウム、メタリン酸亜鉛、メタリン酸アルミニウム等が挙げられる。モリブデン酸塩としては、モリブデン酸亜鉛、モリブデン酸カルシウム、モリブデン酸バリウム、モリブデン酸アルミニウム、モリブデン酸マグネシウム、モリブデン酸ストロンチウム、モリブデン酸亜鉛カルシウム等及びモリブデン酸亜鉛カリウム等が挙げられる。   Specifically, as the oxyacid salt of phosphorus, phosphite, phosphate and / or condensed phosphate selected from one or more of Mg, Ca, Ba, Sr, Zn or Al As the phosphite, for example, magnesium phosphite, calcium phosphite, barium phosphite, strontium phosphite, zinc phosphite, aluminum phosphite, zinc calcium phosphite, zinc phosphite Potassium etc. are mentioned. Examples of the phosphate include magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, zinc phosphate, aluminum phosphate, zinc magnesium phosphate, zinc calcium phosphate, and potassium potassium phosphate. Examples of the condensed phosphate include magnesium polyphosphate, calcium polyphosphate, zinc polyphosphate, aluminum polyphosphate, magnesium metaphosphate, calcium metaphosphate, barium metaphosphate, strontium metaphosphate, zinc metaphosphate, aluminum metaphosphate, and the like. Examples of molybdate include zinc molybdate, calcium molybdate, barium molybdate, aluminum molybdate, magnesium molybdate, strontium molybdate, calcium calcium molybdate, and zinc potassium molybdate.

リンモリブデン酸塩としては、例えばリンモリブデン酸亜鉛、リンモリブデン酸カルシウム、リンモリブデン酸バリウム、リンモリブデン酸アルミニウム、リンモリブデン酸マグネシウム、リンモリブデン酸ストロンチウム及びモリブデン酸亜鉛カリウム等が挙げられる。   Examples of the phosphomolybdate include zinc phosphomolybdate, calcium phosphomolybdate, barium phosphomolybdate, aluminum phosphomolybdate, magnesium phosphomolybdate, strontium phosphomolybdate, and potassium potassium molybdate.

ホウ酸塩としては、例えばホウ酸亜鉛、ホウ酸カルシウム、ホウ酸バリウム、ホウ酸アルミニウム、ホウ酸マグネシウム、ホウ酸ストロンチウム、ホウ酸亜鉛カルシウム及びホウ酸亜鉛カリウム等が挙げられる。   Examples of the borate include zinc borate, calcium borate, barium borate, aluminum borate, magnesium borate, strontium borate, calcium calcium borate, and potassium potassium borate.

ホウ珪酸塩としては、例えばホウ珪酸亜鉛、ホウ珪酸カルシウム、ホウ珪酸バリウム、ホウ珪酸アルミニウム、ホウ珪酸マグネシウム、ホウ珪酸ストロンチウム、ホウ珪酸亜鉛カリウム、ホウ珪酸亜鉛カルシウムストロンチウム等が挙げられる。   Examples of the borosilicate include zinc borosilicate, calcium borosilicate, barium borosilicate, aluminum borosilicate, magnesium borosilicate, strontium borosilicate, zinc potassium borosilicate, zinc calcium borosilicate, and strontium borosilicate.

リン珪酸塩としては、例えばリン珪酸亜鉛、リン珪酸カルシウム、リン珪酸バリウム、リン珪酸アルミニウム、リン珪酸マグネシウム、リン珪酸ストロンチウム、リン珪酸亜鉛カリウム、リン珪酸亜鉛カルシウム、リン珪酸亜鉛ストロンチウム及びリン珪酸カルシウムストロンチウム亜鉛等が挙げられる。   Examples of phosphosilicates include zinc phosphosilicate, calcium phosphosilicate, barium phosphosilicate, aluminum phosphosilicate, magnesium phosphosilicate, strontium phosphosilicate, potassium phosphosilicate zinc, zinc calcium phosphosilicate, zinc strontium phosphosilicate, and calcium strontium phosphosilicate. Zinc etc. are mentioned.

これらの防錆顔料は、1種又は2種以上で用いられ、また、正塩、塩基性塩又は複合塩のいずれであってもよく、また、含水物又は無水物のいずれであってもよい。また、これらの防錆顔料は、レーザー散乱法により求められる平均粒径が20μm以下、好ましくは0.01〜10μmであると塗料分散性が良好となる点で好ましい。   These rust preventive pigments are used alone or in combination of two or more thereof, and may be any of a normal salt, a basic salt, or a complex salt, and may be either a hydrate or an anhydride. . Further, these rust preventive pigments are preferable in that the average particle size obtained by the laser scattering method is 20 μm or less, preferably 0.01 to 10 μm, in that the paint dispersibility is good.

本発明では、上記した防錆顔料を所望により酸性リン酸エステル又は/及びキレート能を有するホスホン酸、又はその誘導体から選ばれた有機リン酸化合物で表面処理したものであっても差し支えない。酸性リン酸エステルとしては、例えばメチルアシッドホスフェート、ジメチルアシッドホスフェート、エチルアシッドホスフェート、ジエチルアシッドホスフェート、メチルエチルアシッドホスフェート、正−またはイソープロピルアシッドホスフェート、正−またはイソ−ジプロピルアシッドホスフェート、メチルブチルアシッドホスフェート、エチルブチルアシッドホスフェート、プロピルブチルアシッドホスフェート、正−またはイソ−オクチルアシッドホスフェート、正−またはイソ−ジオクチルアシッドホスフェート、正−デシルアシッドホスフェート、正−ジデシルアシッドホスフェート、正−ラウリルアシッドホスフェート、正−ジラウリルアシッドホスフェート、正−またはイソ−セシルアシッドホスフェート、正−またはイソ−ジセシルアシッドホスフェート、正−ステアリルアシッドホスフェート、正−またはイソ−ジステアリルアシッドホスフェート、アリルアシッドホスフェート、ジアリルアシッドホスフェートなどが挙げられ、これら化合物のMg、Ca、Sr、Ba、Zn又はAlから選ばれた1種又は2以上の金属塩、アミン塩等が挙げられる。   In the present invention, the above-mentioned rust preventive pigment may be surface-treated with an organic phosphate compound selected from acidic phosphate esters and / or phosphonic acids having chelating ability, or derivatives thereof as desired. Acid phosphate esters include, for example, methyl acid phosphate, dimethyl acid phosphate, ethyl acid phosphate, diethyl acid phosphate, methyl ethyl acid phosphate, positive- or iso-propyl acid phosphate, positive- or iso-dipropyl acid phosphate, methyl butyl acid Phosphate, ethyl butyl acid phosphate, propyl butyl acid phosphate, positive- or iso-octyl acid phosphate, positive- or iso-dioctyl acid phosphate, positive-decyl acid phosphate, positive-didecyl acid phosphate, positive-lauryl acid phosphate, positive -Dilauryl acid phosphate, positive- or iso- ceyl acid phosphate, positive- or And so-dicesyl acid phosphate, normal-stearyl acid phosphate, positive- or iso-distearyl acid phosphate, allyl acid phosphate, diallyl acid phosphate, and the like, and from these compounds Mg, Ca, Sr, Ba, Zn or Al One or two or more selected metal salts, amine salts and the like can be mentioned.

キレート能を有するホスホン酸の化合物としては、例えばアミノアルキレンホスホン酸、エチレンジアミンテトラアルキレンホスホン酸、アルキルメタン−1−ヒドロキシ−1,1−ジホスホン酸又は、2−ヒドロキシホスホノ酢酸などが代表的な化合物として挙げられる。このうちアミノアルキレンホスホン酸としては、例えば、ニトリロトリスチレンホスホン酸、ニトリロトリスプロピレンホスホン酸、ニトリロジエチルメチレンホスホン酸、ニトリロプロピルビスメチレンホスホン酸等が挙げられる。エチレンジアミンテトラアルキレンホスホン酸としては、例えば、エチレンジアミンテトラメチレンホスホン酸、エチレンジアミンテトラエチレンホスホン酸、エチレンジアミンテトラプロピレンホスホン酸等が挙げられる。アルキレン−1−ヒドロキシ−1,1−ジホスホン酸としては、例えば、メタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、プロパン−1−ヒドロキシ−1,1−ジホスホン酸等が挙げられ、これら化合物のMg、Ca、Sr、Ba、Zn又はAlから選ばれた1種又は2種以上の複合塩であってもよいが、これら化合物に限定されるものではない。また、上記の酸性リン酸エステルとキレート能を有するホスホン酸の化合物を1種または2種以上を組み合わせて用いてもよい。リンのオキシ酸塩に対する酸性リン酸エステル又は/およびキレート能を有するホスホン酸の配合量は、用いる化合物の物性や種類等によって一様ではないが、通常0.1〜30重量%、好ましくは、1〜10重量%である。   Typical examples of the phosphonic acid compound having chelating ability include aminoalkylenephosphonic acid, ethylenediaminetetraalkylenephosphonic acid, alkylmethane-1-hydroxy-1,1-diphosphonic acid, and 2-hydroxyphosphonoacetic acid. As mentioned. Among these, examples of the aminoalkylenephosphonic acid include nitrilotristyrenephosphonic acid, nitrilotrispropylenephosphonic acid, nitrilodiethylmethylenephosphonic acid, nitrilopropylbismethylenephosphonic acid, and the like. Examples of the ethylenediaminetetraalkylenephosphonic acid include ethylenediaminetetramethylenephosphonic acid, ethylenediaminetetraethylenephosphonic acid, ethylenediaminetetrapropylenephosphonic acid, and the like. Examples of the alkylene-1-hydroxy-1,1-diphosphonic acid include methane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, and propane-1-hydroxy-1 , 1-diphosphonic acid, and the like. These compounds may be one or two or more complex salts selected from Mg, Ca, Sr, Ba, Zn, or Al, but are limited to these compounds. It is not a thing. Moreover, you may use 1 type or in combination of 2 or more types of the compound of said phosphoric acid which has chelate ability with acidic phosphate ester. The amount of acidic phosphoric acid ester or / and phosphonic acid having chelating ability relative to the oxyacid salt of phosphorus is not uniform depending on the physical properties and type of the compound used, but is usually 0.1 to 30% by weight, preferably, 1 to 10% by weight.

本発明にかかる防錆剤組成物に含有される亜硝酸イオン型ハイドロタルサイト粉末の含有量は、0.01〜30重量%、好ましくは0.1〜20重量%の範囲が望ましい。
また、亜硝酸イオン型ハイドロタルサイト粉末と防錆顔料の配合割合は特に制限されるものではないが、多くの場合、亜硝酸イオン型ハイドロタルサイト粉末100重量部に対して防錆顔料3〜3000重量部、好ましくは5〜2000重量部とすることが防錆効果の設計自由度と経済性の面で好ましい。
The content of the nitrite ion type hydrotalcite powder contained in the rust preventive composition according to the present invention is 0.01 to 30% by weight, preferably 0.1 to 20% by weight.
Further, the mixing ratio of the nitrite ion type hydrotalcite powder and the rust preventive pigment is not particularly limited, but in many cases, the rust preventive pigment 3 to 100 parts by weight of the nitrite ion type hydrotalcite powder is not limited. 3000 parts by weight, preferably 5 to 2000 parts by weight, is preferable from the viewpoint of the degree of freedom in designing the rust-proofing effect and the economy.

なお、本発明の亜硝酸イオン型ハイドロタルサイト粉末は必要に応じて分散性を改善する目的で高級脂肪酸またはその誘導体、界面活性剤、シランカップリング剤でさらに表面処理したものであってもよい。   The nitrite ion-type hydrotalcite powder of the present invention may be further surface-treated with a higher fatty acid or a derivative thereof, a surfactant or a silane coupling agent for the purpose of improving dispersibility, if necessary. .

本発明にかかる防錆剤組成物は、セメント混和剤として、普通、早強、超早強等の各種ポルトランドセメント、これらポルトランドセメントに高炉スラグ、フライアッシュ、及びシリカを混合した各種混合セメント、中庸熱セメント、ビ−ライトセメント、並びに、アルミナセメント等のセメント成分に含有させて用いることができる。この場合、防錆剤組成物の使用量は特に限定されるものではないが、通常、セメント成分100重量部に対して0.5〜30重量部、好ましくは1〜10重量部とすることが好ましい。   The rust preventive composition according to the present invention includes, as cement admixtures, various portland cements such as ordinary, early strength, and ultra-early strength, various mixed cements obtained by mixing blast furnace slag, fly ash, and silica with these portland cements, medium cocoons It can be used by containing in cement components such as thermal cement, belite cement, and alumina cement. In this case, although the usage-amount of a rust preventive composition is not specifically limited, Usually, it is 0.5-30 weight part with respect to 100 weight part of cement components, Preferably it is 1-10 weight part. preferable.

また、セメント成分と防錆剤組成物の他に、減水剤、消泡剤、防凍剤、凝結促進剤や凝結遅延剤等の凝結調整剤、セメント膨張材、セメント急硬材、無機硫酸塩、ベントナイトやゼオライト等の粘土鉱物、ハイドロドカルマイト等のアニオン交換体等を、本発明の目的を実質的に阻害しない範囲で併用することができる。
また、本発明の防錆剤組成物は、塗料の一成分として塗料組成物中に含有させた防錆塗料として好適に用いることができる。
In addition to cement components and rust preventive compositions, water reducing agents, antifoaming agents, antifreeze agents, setting modifiers such as setting accelerators and setting retarders, cement expansion materials, cement rapid hardening materials, inorganic sulfates, Clay minerals such as bentonite and zeolite, anion exchangers such as hydrocalumite, and the like can be used in combination as long as the object of the present invention is not substantially inhibited.
Moreover, the rust preventive composition of the present invention can be suitably used as a rust preventive paint contained in the paint composition as one component of the paint.

次いで、本発明の防錆塗料組成物について説明する。
本発明の防錆塗料組成物は、前記防錆剤組成物と塗料ビヒクルを含有するものである。塗料ビヒクルとは、塗料成分を分散させる媒体をいう。即ち、塗膜形成成分である重合油、天然または合成樹脂、無機系結合剤、繊維素やゴムの誘導体等の高分子物質やそれらを溶剤に溶解させたものである。
Next, the rust preventive coating composition of the present invention will be described.
The rust preventive coating composition of the present invention contains the rust preventive composition and a paint vehicle. A paint vehicle refers to a medium in which paint components are dispersed. That is, a polymer material that is a coating film forming component, a natural or synthetic resin, an inorganic binder, a high-molecular substance such as a fiber or rubber derivative, or the like is dissolved in a solvent.

前記合成樹脂としては、例えばフェノール樹脂、アルキド樹脂、メラミン樹脂、グアナジン樹脂、ビニル樹脂、エポキシ樹脂、ポリアミン樹脂、アクリル樹脂、ポリブタジエン樹脂、ポリエステル樹脂、ウレタン樹脂、ケイ素樹脂、含フッ素樹脂等が挙げられ、これらは必要に応じ、混合系または変性された樹脂であっても差し支えない。   Examples of the synthetic resin include phenol resin, alkyd resin, melamine resin, guanazine resin, vinyl resin, epoxy resin, polyamine resin, acrylic resin, polybutadiene resin, polyester resin, urethane resin, silicon resin, and fluorine-containing resin. These may be mixed systems or modified resins as required.

また、前記無機系結合剤としては、水溶性珪酸塩、変性水溶液珪酸塩、アルキルシリケート、アルコキシシリケート、カップリング剤、コロイダルシリカ等が挙げられる。
前記水溶性珪酸塩としては、一般式M2 O・xSiO2 ・yH2 Oで表され、Mはナトリウム、リチウム、カリウム等のアルカリ金属、N(C24 OH)2 、N(CH2 OH)4 、N(C24 OH)4 、C(NH23 NHを示し、式中のx及びyは整数を示し、具体的な化合物としては例えば、珪酸ナトリウム、珪酸カリウム、珪酸リチウム等の珪酸アルカリ金属塩、珪酸トリエタノールアミン、珪酸テトラメタノールアンモニウム、珪酸テトラエタノールアンモニウム等が挙げられる。
Examples of the inorganic binder include water-soluble silicate, modified aqueous silicate, alkyl silicate, alkoxy silicate, coupling agent, colloidal silica, and the like.
The water-soluble silicate of the general formula represented by M 2 O · xSiO 2 · yH 2 O, M is sodium, lithium, an alkali metal such as potassium, N (C 2 H 4 OH ) 2, N (CH 2 OH) 4 , N (C 2 H 4 OH) 4 , C (NH 2 ) 3 NH, wherein x and y are integers, and specific compounds include, for example, sodium silicate, potassium silicate, silicic acid Examples thereof include alkali metal silicates such as lithium, triethanolamine silicate, tetramethanol ammonium silicate, tetraethanol ammonium silicate and the like.

前記変性水溶性珪酸塩としては、前記水溶性珪酸塩をアルミニウム、マグネシウム、カルシウム、バリウム、ストロンチウム、亜鉛、ジルコニウム、バナジウムから選ばれる金属の酸化物、水酸化物、弗化物、珪弗化物の1種又は2種以上で変性させたもの、或いは珪弗化ナトリウム、トリ珪弗化亜鉛酸カリウム、フルオロアルミニウム錯塩、フルオロ亜鉛錯塩等で変性させたもの(特開昭53−18636号参照。)等が挙げられる。   As the modified water-soluble silicate, the water-soluble silicate is selected from the group consisting of oxides, hydroxides, fluorides, and silicon fluorides of metals selected from aluminum, magnesium, calcium, barium, strontium, zinc, zirconium, and vanadium. Modified with seeds or two or more, or modified with sodium silicofluoride, potassium trisilicofluorinated zincate, fluoroaluminum complex salt, fluorozinc complex salt, etc. (see JP-A-53-18636), etc. Is mentioned.

前記アルキルシリケートとしては、一般式;SiR4 又はSiXR3 で表され、式中のRはアルキル基を示し、Xはアルコキシ基、ビニル基、エポキシ基、アミノ基、メタクリル基、メルカプト基を示す。前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の炭素数1〜5の直鎖状又は分岐状のアルキル基が挙げられ、具体的な化合物として、例えば、テトラメチルシリケート、テトラエチルシリケート、テトラプロピルシリケート、テトラブチルシリケート等が挙げられる。 The alkyl silicate is represented by the general formula; SiR 4 or SiXR 3 , wherein R represents an alkyl group, and X represents an alkoxy group, a vinyl group, an epoxy group, an amino group, a methacryl group, or a mercapto group. Examples of the alkyl group include linear or branched alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group. Specific examples of the alkyl group include tetramethyl Examples thereof include silicate, tetraethyl silicate, tetrapropyl silicate, tetrabutyl silicate and the like.

前記アルコキシシランとしては、一般式;Si(OR)4 又はSiX(OR)3 、SiR(OR)3 で表され、式中のRはアルキル基を示し、Xはビニル基、エポキシ基、アミノ基、メタクリル基、メルカプト基を示す。前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の炭素数1〜5の直鎖状又は分岐状のアルキル基が挙げられ、具体的な化合物として、例えば、テトラメチルキシシリケート、テトラエトキシシリケート、テトラプロポキシシリケート、テトラブトキシシリケート等が挙げられる。 The alkoxysilane is represented by the general formula; Si (OR) 4 or SiX (OR) 3 , SiR (OR) 3 , wherein R represents an alkyl group, and X represents a vinyl group, an epoxy group, or an amino group. , A methacryl group and a mercapto group. Examples of the alkyl group include linear or branched alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group. Specific examples of the alkyl group include tetramethyl Examples thereof include xyl silicate, tetraethoxy silicate, tetrapropoxy silicate, tetrabutoxy silicate and the like.

前記カップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシランや、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネートや、テトラオクチルビス(ジドデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート等のチタン系カップリング剤、アルミニウム系カップリング剤、ジルコニウム系カップリング剤等が挙げられる。   Examples of the coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and vinyltriethoxysilane. Silane coupling agents such as γ-methacryloxytrimethoxysilane and γ-mercaptopropyltrimethoxysilane, isopropyltriisostearoyl titanate, tetraoctylbis (didodecyl) phosphite titanate, isopropyltrioctanoyl titanate, isopropyltridodecyl Examples include titanium coupling agents such as benzenesulfonyl titanate, aluminum coupling agents, and zirconium coupling agents.

前記コロイダルシリカとしては、粒径が通常2〜100nm程度のもので、固形分20〜40%程度で0.7%以下のNa2 Oを含むもので、特に好ましくはpH8〜10でアルカリで安定化されたコロイダルシリカを用いることができる。 The colloidal silica usually has a particle size of about 2 to 100 nm, contains 20 to 40% solids and contains 0.7% or less Na 2 O, and is particularly preferably stable at pH 8 to 10 with alkali. Colloidal silica can be used.

前記塗膜成分は1種又は2種以上で適宜組み合わせて用いることができる。
また、希釈剤としては、水、アルコール類、ケトン類、ベンゼン類、トルエン、キシレンの如き芳香族炭化水素類、液化パラフィンの如き脂肪族炭化水素類など、一般的に塗料で用いられている溶剤が適用できる。
The coating film components can be used alone or in combination of two or more.
As diluents, solvents commonly used in paints such as water, alcohols, ketones, benzenes, aromatic hydrocarbons such as toluene and xylene, and aliphatic hydrocarbons such as liquefied paraffin Is applicable.

塗料ビヒクルに対する本発明の防錆剤組成物の配合量は、通常0.3〜40重量%、好ましくは1〜30重量%、更に好ましくは5〜15重量%である。配合量が0.3重量%より小さくなると防錆力が低くなり、40重量%より大きくなると、塗料粘性が高くなり、好ましい塗料特性が得られなくなる。   The blending amount of the rust inhibitor composition of the present invention with respect to the paint vehicle is usually 0.3 to 40% by weight, preferably 1 to 30% by weight, and more preferably 5 to 15% by weight. When the blending amount is less than 0.3% by weight, the rust preventive power is lowered, and when it is more than 40% by weight, the viscosity of the paint is increased, and preferable paint properties cannot be obtained.

本発明の防錆塗料組成物は上記以外の成分として塗料分野で一般的に用いられる各種の添加剤を含有させて用いることができる。
本発明に係る防錆塗料組成物は、刷毛やローラー塗り、スプレー塗装、静電気塗装、粉体塗装、ロールコーター、カーテンフローコーター、ディッピング塗装や電着塗装等に供することができる。
The anticorrosive coating composition of the present invention can be used by containing various additives generally used in the coating field as components other than those described above.
The rust preventive coating composition according to the present invention can be used for brush, roller coating, spray coating, electrostatic coating, powder coating, roll coater, curtain flow coater, dipping coating, electrodeposition coating, and the like.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
組成がMg6 Al2 (OH)16・CO3 ・3.5H2 O(協和化学工業社製;商品名DHT−6、平均粒径0.8μm)であるハイドロタルサイト粉末100gを500℃で2時間保持し、冷却後、得られた複合酸化物をデシケータにて1日放置して複合酸化物58.5gを得た。
次いで、亜硝酸ナトリウム114gを純水に溶解して1Lとした亜硝酸ナトリウム水溶液に複合酸化物50gを攪拌下に25℃で4時間浸漬した。
次いで、得られた試料を濾過、乾燥、粉砕して白色粉末91.5gを得た。
得られた試料を粉末X線回折法により結晶構造を解析したところ、該試料はハイドロタルサイト構造を持つ化合物であることを確認した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
Example 1
100 g of hydrotalcite powder having a composition of Mg 6 Al 2 (OH) 16 .CO 3 .3.5H 2 O (manufactured by Kyowa Chemical Industry Co., Ltd .; trade name DHT-6, average particle size 0.8 μm) at 500 ° C. After maintaining for 2 hours and cooling, the resulting composite oxide was left in a desiccator for 1 day to obtain 58.5 g of composite oxide.
Next, 50 g of the composite oxide was immersed in a sodium nitrite aqueous solution prepared by dissolving 114 g of sodium nitrite in pure water to 1 L at 25 ° C. for 4 hours with stirring.
Next, the obtained sample was filtered, dried and pulverized to obtain 91.5 g of a white powder.
When the crystal structure of the obtained sample was analyzed by a powder X-ray diffraction method, it was confirmed that the sample was a compound having a hydrotalcite structure.

比較例1
組成がMg4.5 Al2 (OH)13・CO3 ・3.5H2 O(協和化学工業社製;商品名DHT−4、平均粒径1.0μm)であるハイドロタルサイト粉末100gを500℃で2時間保持し、冷却後、得られた複合酸化物をデシケータにて1日放置して複合酸化物56.8gを得た。
次いで、亜硝酸ナトリウム114gを純水に溶解して1Lとした亜硝酸ナトリウム水溶液に複合酸化物50gを攪拌下に25℃で4時間浸漬した。
次いで、得られた試料を濾過、乾燥、粉砕して白色粉末96.7gを得た。
得られた試料を実施例1と同様、粉末X線回折法により結晶構造を解析したところ、該試料はハイドロタルサイト構造を持つ化合物であることを確認した。
Comparative Example 1
100 g of hydrotalcite powder having a composition of Mg 4.5 Al 2 (OH) 13 .CO 3 .3.5H 2 O (manufactured by Kyowa Chemical Industry Co., Ltd .; trade name DHT-4, average particle size 1.0 μm) at 500 ° C. After maintaining for 2 hours and cooling, the obtained composite oxide was left in a desiccator for 1 day to obtain 56.8 g of composite oxide.
Next, 50 g of the composite oxide was immersed in a sodium nitrite aqueous solution prepared by dissolving 114 g of sodium nitrite in pure water to 1 L at 25 ° C. for 4 hours with stirring.
Subsequently, the obtained sample was filtered, dried and pulverized to obtain 96.7 g of a white powder.
When the crystal structure of the obtained sample was analyzed by powder X-ray diffraction as in Example 1, it was confirmed that the sample was a compound having a hydrotalcite structure.

比較例2〜3
硫酸マグネシウム7水和物246.48g、亜硝酸カルシウム132.09g及び水500mlを仕込み、25℃で1時間反応を行った。次いで、析出した石膏を濾過により除去し、17.5重量%亜硝酸マグネシウム水溶液660gを得た。
次いで、前記亜硝酸マグネシウム水溶液100gに、MgO/Al23 のモル比が6となるようにアルミン酸ソーダ4.1gを混合し、次いで、水酸化ナトリウムによりpHを8.5(比較例2)、10.5(比較例3)となるように調製し、25℃で4時間反応を行った。
次いで、濾過、洗浄、乾燥、粉砕し白色粉末を得た。得られた試料を粉末X線回折法により結晶構造を解析したところ、該試料はハイドロタルサイト構造を持つ化合物であることを確認した。
Comparative Examples 2-3
246.48 g of magnesium sulfate heptahydrate, 132.09 g of calcium nitrite, and 500 ml of water were charged and reacted at 25 ° C. for 1 hour. Next, the precipitated gypsum was removed by filtration to obtain 660 g of a 17.5 wt% magnesium nitrite aqueous solution.
Next, 4.1 g of sodium aluminate was mixed with 100 g of the magnesium nitrite aqueous solution so that the molar ratio of MgO / Al 2 O 3 was 6, and then the pH was adjusted to 8.5 with sodium hydroxide (Comparative Example 2). ) 10.5 (Comparative Example 3), and reacted at 25 ° C. for 4 hours.
Then, filtration, washing, drying and pulverization gave a white powder. When the crystal structure of the obtained sample was analyzed by a powder X-ray diffraction method, it was confirmed that the sample was a compound having a hydrotalcite structure.

<化学組成の評価>
実施例1及び比較例1〜3で得たハイドロタルサイトを硫酸で溶解、希釈した後、ICP原子発光法によりMgとAlの濃度を測定し、そのモル比から組成式を求めた。その結果を表1に示す。
<Evaluation of chemical composition>
After dissolving and diluting the hydrotalcite obtained in Example 1 and Comparative Examples 1 to 3 with sulfuric acid, the concentrations of Mg and Al were measured by ICP atomic emission method, and the composition formula was determined from the molar ratio. The results are shown in Table 1.

Figure 2005336002
Figure 2005336002

<物性評価>
(1)亜硝酸イオン放出量
前記の実施例1及び比較例1〜3で得られた亜硝酸イオン型ハイドロタルサイト粉末5gをガラス瓶に入れ、0.2モル/Lの塩化ナトリウム水溶液100mLを加え、300rpm、25℃、4時間攪拌後のろ液中の亜硝酸イオン濃度をイオンクロマトグラフ法で求めた。その結果を表2に示す。
(2)塩化物イオン吸着量
塩化物イオン吸着量は上記のろ液をイオンクロマトグラフ法で濃度を測定し,初期濃度から差し引いた値をサンプル量1g当たりに換算して求めた。
(3)平均粒径
上記で得られた亜硝酸イオン型ハイドロタルサイト粉末の平均粒径をレーザー散乱法により求めた。
(4)BET比表面積
上記で得られた亜硝酸イオン型ハイドロタルサイト粉末の比表面積をBET法で測定して求めた。
(5)理論上の亜硝酸イオン含有量
上記の化学組成から算出される理論上の亜硝酸イオン含有量を示す。
<Physical property evaluation>
(1) Amount of nitrite ion released 5 g of nitrite ion type hydrotalcite powder obtained in Example 1 and Comparative Examples 1 to 3 was put in a glass bottle, and 100 mL of 0.2 mol / L sodium chloride aqueous solution was added. The concentration of nitrite ions in the filtrate after stirring for 4 hours at 300 rpm, 25 ° C. was determined by ion chromatography. The results are shown in Table 2.
(2) Chloride ion adsorption amount Chloride ion adsorption amount was determined by measuring the concentration of the above filtrate by ion chromatography and subtracting it from the initial concentration per 1 g of sample amount.
(3) Average particle diameter The average particle diameter of the nitrite ion type hydrotalcite powder obtained above was determined by a laser scattering method.
(4) BET specific surface area The specific surface area of the nitrite ion type hydrotalcite powder obtained above was measured by the BET method.
(5) Theoretical nitrite ion content The theoretical nitrite ion content calculated from the above chemical composition is shown.

以上の評価の結果を表2に示す。   The results of the above evaluation are shown in Table 2.

Figure 2005336002
Figure 2005336002

<防錆性能の評価>
(1)防錆塗料の調製
下記組成の主剤に硬化剤を添加して、ペイントコンディショナー法にて常乾型エポキシ樹脂塗料を調製した。
<Evaluation of rust prevention performance>
(1) Preparation of rust preventive paint A curing agent was added to the main component having the following composition, and a normally dry epoxy resin paint was prepared by a paint conditioner method.

主剤の成分 配合割合(重量部)
エピコート1001X751) 41.5
キシレン/メチルエチルケトン(1/1:V/V) 21.0
防錆剤組成物 7.8
炭酸カルシウム 5.0
酸化チタン 2.5
ガラスビーズ 80.0
硬化剤の成分
トーマイド410−N2) 48.1
キシレン/イソブタノール(7/3:V/V) 10.0
(注)
1)エピコート1001X75(ジャパンエポキシレジン社製)
2)トーマイド410−N(富士化成工業社製)
Main ingredient component ratio (parts by weight)
Epicoat 1001X75 1) 41.5
Xylene / Methyl ethyl ketone (1/1: V / V) 21.0
Rust preventive composition 7.8
Calcium carbonate 5.0
Titanium oxide 2.5
Glass beads 80.0
Ingredients of curing agent tomide 410-N 2) 48.1
Xylene / isobutanol (7/3: V / V) 10.0
(note)
1) Epicoat 1001X75 (Japan Epoxy Resin Co., Ltd.)
2) Tomide 410-N (Fuji Kasei Kogyo Co., Ltd.)

なお、防錆剤組成物は下記表3の組成のものを使用した。   In addition, the thing of the composition of following Table 3 was used for the rust preventive composition.

Figure 2005336002
Figure 2005336002

(注)亜燐酸亜鉛は市販の平均粒径が3μmのものを使用した。 (Note) Zinc phosphite with a commercially available average particle size of 3 μm was used.

(2)塗料分散性の評価
(1)で調製した塗料をJIS K5101に準ずるグラインドゲージにて防錆剤組成物の分散度合を評価した。その結果を表4に示した。
良:10μm以下の分散
可:10〜50μmの分散
不可:50μm以上の分散
(2) Evaluation of paint dispersibility The degree of dispersion of the rust inhibitor composition was evaluated using a grind gauge according to JIS K5101 for the paint prepared in (1). The results are shown in Table 4.
Good: Dispersion of 10 μm or less Possible: Dispersion of 10-50 μm Impossible: Dispersion of 50 μm or more

(3)塗装鋼板の調製
上記の防錆塗料を70×150×0.7mmの日本テストパネル製、SPCC−SD鋼板に乾燥塗装膜厚が30〜35μmになるようにバーコーターにて塗布し、25℃、湿度60%の恒温恒湿器で1時間乾燥させて塗装鋼板を得た。
(3) Preparation of coated steel plate The above rust preventive coating was applied to a SPCC-SD steel plate made by Nippon Test Panel 70 x 150 x 0.7 mm with a bar coater so that the dry coating film thickness was 30 to 35 µm. The coated steel sheet was obtained by drying for 1 hour in a constant temperature and humidity chamber at 25 ° C. and a humidity of 60%.

(4)防錆試験
(3)で調製した塗装鋼板の裏面および端面を3M社製、スコッチブランドテープでマスキングした後、クロスカットして、塩水噴霧試験機にセットし、濃度5重量%の食塩水を噴霧して防錆試験を行った。
(4) Rust prevention test After masking the back and end surfaces of the coated steel plate prepared in (3) with 3M Co., Scotch brand tape, cross-cut, and set in a salt spray tester. Rust prevention test was conducted by spraying water.

(5)防錆性能の評価
塩水噴霧試験400時間及び600時間に於ける結果を下記の5段階評価法により評価し、防錆顔料の防錆効果を判定した。その結果を表4に示した。
5:クロスカット部以外の錆発生が全くなく、ブリスターもない。
4:クロスカット部から片側2mm以内に錆が発生、ブリスターもない。
3:クロスカット部から片側6mm以内に錆及び部分的にブリスターが発生
2:クロスカット部から片側12mm以内に錆および部分的にブリスターが発生。
1:鋼板全体に錆およびブリスターが発生。
(5) Evaluation of rust preventive performance The results of the salt spray test at 400 hours and 600 hours were evaluated by the following five-step evaluation method, and the rust preventive effect of the rust preventive pigment was determined. The results are shown in Table 4.
5: There is no rust generation | occurrence | production other than a crosscut part, and there is no blister.
4: Rust is generated within 2 mm on one side from the crosscut part, and there is no blister.
3: Rust and partial blister occurred within 6 mm on one side from cross cut part 2: Rust and partial blister occurred within 12 mm on one side from cross cut part.
1: Rust and blister occur on the whole steel plate.

Figure 2005336002
Figure 2005336002

本発明の亜硝酸イオン型ハイドロタルサイト粉末は、アニオン交換により放出される亜硝酸イオンの量が多く、金属材料に優れた防錆性能を付与することができるので、防錆剤組成物及び防錆塗料組成物に利用することができる。   The nitrite ion type hydrotalcite powder of the present invention has a large amount of nitrite ions released by anion exchange and can impart excellent rust prevention performance to metal materials. It can be used for a rust coating composition.

Claims (11)

亜硝酸イオンを含有するハイドロタルサイト粉末であって、該ハイドロタルサイト粉末5gを0.2モル/Lの塩化ナトリウム水溶液100mLに加え25℃で4時間放置した時に溶出する亜硝酸イオンの量が35mg/g以上であることを特徴とする亜硝酸イオン型ハイドロタルサイト粉末。   A hydrotalcite powder containing nitrite ion, and the amount of nitrite ion eluted when 5 g of the hydrotalcite powder is added to 100 mL of 0.2 mol / L sodium chloride aqueous solution and left at 25 ° C. for 4 hours. A nitrite ion type hydrotalcite powder characterized by being 35 mg / g or more. 前記ハイドロタルサイト粉末5gを0.2モル/Lの塩化ナトリウム水溶液100mLに加え25℃で4時間放置した時に吸着する塩化物イオンの吸着量が20mg/g以上である請求項1記載の亜硝酸イオン型ハイドロタルサイト粉末。   2. The nitrous acid according to claim 1, wherein when 5 g of the hydrotalcite powder is added to 100 mL of 0.2 mol / L sodium chloride aqueous solution and left at 25 ° C. for 4 hours, the adsorption amount of chloride ions is 20 mg / g or more. Ionic hydrotalcite powder. 平均粒径が50μm以下である請求項1又は2記載の亜硝酸イオン型ハイドロタルサイト粉末。   The nitrite ion type hydrotalcite powder according to claim 1 or 2, wherein the average particle size is 50 µm or less. BET比表面積が30m2 /g以上である請求項1乃至3のいずれかの項に記載の亜硝酸イオン型ハイドロタルサイト粉末。 The nitrite ion-type hydrotalcite powder according to any one of claims 1 to 3, wherein the BET specific surface area is 30 m 2 / g or more. 下記一般式(1)
Figure 2005336002
(式中、xは0.15<x<0.25、tは0.5≦t≦2を示す。)
で表わされる請求項1乃至4のいずれかの項に記載の亜硝酸イオン型ハイドロタルサイト粉末。
The following general formula (1)
Figure 2005336002
(In the formula, x represents 0.15 <x <0.25, and t represents 0.5 ≦ t ≦ 2.)
The nitrite ion type hydrotalcite powder according to any one of claims 1 to 4, represented by:
下記一般式(2)
Figure 2005336002
(式中、MはMg、Ca、Ni、Cu及びZnからなる群から選ばれた少なくとも1種以上の2価金属イオン、Aはアニオン、xは0.18≦x≦0.28、tは0.5≦t≦2、nはアニオンの価数を示す。)
で表わされるハイドロタルサイトを400〜700℃で焼成し、前記一般式(2)中のアニオンAを脱離させる第1工程、次いで前記第1工程で得られた生成物を亜硝酸イオンを含む水溶液に浸漬する第2工程を有することを特徴とする亜硝酸イオン型ハイドロタルサイト粉末の製造方法。
The following general formula (2)
Figure 2005336002
(Wherein M is at least one divalent metal ion selected from the group consisting of Mg, Ca, Ni, Cu and Zn, A is an anion, x is 0.18 ≦ x ≦ 0.28, and t is 0.5 ≦ t ≦ 2, n represents the valence of the anion.)
The first step of calcining the hydrotalcite represented by the formula (2) to desorb the anion A in the general formula (2), and then the product obtained in the first step contains nitrite ions. The manufacturing method of the nitrite ion type hydrotalcite powder characterized by having the 2nd process immersed in aqueous solution.
前記一般式(2)で表わされるハイドロタルサイトの平均粒径が50μm以下である請求項6記載の亜硝酸イオン型ハイドロタルサイト粉末の製造方法。   The method for producing a nitrite ion type hydrotalcite powder according to claim 6, wherein the hydrotalcite represented by the general formula (2) has an average particle size of 50 µm or less. 前記一般式(2)で表わされるハイドロタルサイトのMがMgであり、AがCO3 2- である請求項6又は7記載の亜硝酸イオン型ハイドロタルサイト粉末の製造方法。 The method for producing a nitrite ion type hydrotalcite powder according to claim 6 or 7, wherein M of the hydrotalcite represented by the general formula (2) is Mg and A is CO 3 2- . 請求項1乃至5のいずれかに記載の亜硝酸イオン型ハイドロタルサイト粉末を含有することを特徴とする防錆剤組成物。   A rust preventive composition comprising the nitrite ion type hydrotalcite powder according to any one of claims 1 to 5. 更に、防錆顔料を含有する請求項9記載の防錆剤組成物。   Furthermore, the rust preventive composition of Claim 9 containing a rust preventive pigment. 請求項9又は10に記載の防錆剤組成物を含有することを特徴とする防錆塗料組成物。   A rust preventive coating composition comprising the rust preventive composition according to claim 9 or 10.
JP2004155732A 2004-05-26 2004-05-26 Nitrite ion type hydrotalcite powder, production method thereof, rust preventive composition and rust preventive coating composition Active JP4636587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155732A JP4636587B2 (en) 2004-05-26 2004-05-26 Nitrite ion type hydrotalcite powder, production method thereof, rust preventive composition and rust preventive coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155732A JP4636587B2 (en) 2004-05-26 2004-05-26 Nitrite ion type hydrotalcite powder, production method thereof, rust preventive composition and rust preventive coating composition

Publications (2)

Publication Number Publication Date
JP2005336002A true JP2005336002A (en) 2005-12-08
JP4636587B2 JP4636587B2 (en) 2011-02-23

Family

ID=35489970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155732A Active JP4636587B2 (en) 2004-05-26 2004-05-26 Nitrite ion type hydrotalcite powder, production method thereof, rust preventive composition and rust preventive coating composition

Country Status (1)

Country Link
JP (1) JP4636587B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101217140B1 (en) * 2010-04-21 2012-12-31 한국세라믹기술원 Inorganic filler for heavy duty paint and heavy duty paint composition using the same
JP2015520018A (en) * 2012-04-17 2015-07-16 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH Method of coating a metal surface with a coating composition containing layered double hydroxide particles
JP2016511300A (en) * 2013-01-17 2016-04-14 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH Method for producing anticorrosion coating
JP2016108427A (en) * 2014-12-05 2016-06-20 丸尾カルシウム株式会社 Hydrotalcite composition, resin composition containing the composition and molded body thereof
CN107986661A (en) * 2017-11-29 2018-05-04 中国科学院海洋研究所 A kind of triazole corrosion inhibitor compound of active group containing salicylide of hydrotalcite intercalation chlorion probe modification and its application
CN107986663A (en) * 2017-11-29 2018-05-04 中国科学院海洋研究所 A kind of corrosion inhibitor compound of triazole containing schiff bases of hydrotalcite intercalation chlorion probe modification and its application
CN111204782A (en) * 2020-01-19 2020-05-29 中国科学院宁波材料技术与工程研究所 Nitrite intercalation hydrotalcite material, aqueous resin composite coating and preparation method thereof
WO2021014492A1 (en) * 2019-07-19 2021-01-28 株式会社ジェーエフシーテック Anticorrosive filler used in organic paint, anticorrosive filler manufacturing method, and paint
JP7356705B2 (en) 2019-10-25 2023-10-05 国立大学法人神戸大学 Rust prevention sheet and rust prevention method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101247332B1 (en) 2010-12-30 2013-03-26 한국세라믹기술원 Silica based inorganic filler for heavy duty paint and heavy duty paint composition comprising thereof and method of manufacturing thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462280B1 (en) * 1966-07-25 1971-01-20
JPS5030039B1 (en) * 1967-07-17 1975-09-27
JPS63273670A (en) * 1987-05-02 1988-11-10 Kyowa Chem Ind Co Ltd Corrosion-resistant coating compound composition
JPH05306124A (en) * 1992-04-30 1993-11-19 Nippon Paint Co Ltd Rust-preventing pigment, production of rust-preventing pigment and corrosion-resistant coating composition
JPH0733431A (en) * 1993-07-21 1995-02-03 Nippon Chem Ind Co Ltd Production of hydrocalmite
JPH10508281A (en) * 1994-07-16 1998-08-18 メタルゲゼルシャフト・アクチエンゲゼルシャフト Layered lattice compound and stabilizer for halogen-containing polymer containing this compound
JPH11148029A (en) * 1997-11-18 1999-06-02 Nippon Chem Ind Co Ltd Rust-preventive pigment composition and rust-preventive paint containing the same
JP2000191943A (en) * 1998-10-19 2000-07-11 Nts:Kk Film-forming composition and its production
JP2000313852A (en) * 1999-04-30 2000-11-14 Kansai Paint Co Ltd Cationic electrodeposition coating material
JP2004352994A (en) * 2004-06-28 2004-12-16 Sumitomo Seika Chem Co Ltd Polyolefin-based powder coating composition
JP2005112998A (en) * 2003-10-07 2005-04-28 Nippon Chem Ind Co Ltd Inorganic coating composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462280B1 (en) * 1966-07-25 1971-01-20
JPS5030039B1 (en) * 1967-07-17 1975-09-27
JPS63273670A (en) * 1987-05-02 1988-11-10 Kyowa Chem Ind Co Ltd Corrosion-resistant coating compound composition
JPH05306124A (en) * 1992-04-30 1993-11-19 Nippon Paint Co Ltd Rust-preventing pigment, production of rust-preventing pigment and corrosion-resistant coating composition
JPH0733431A (en) * 1993-07-21 1995-02-03 Nippon Chem Ind Co Ltd Production of hydrocalmite
JPH10508281A (en) * 1994-07-16 1998-08-18 メタルゲゼルシャフト・アクチエンゲゼルシャフト Layered lattice compound and stabilizer for halogen-containing polymer containing this compound
JPH11148029A (en) * 1997-11-18 1999-06-02 Nippon Chem Ind Co Ltd Rust-preventive pigment composition and rust-preventive paint containing the same
JP2000191943A (en) * 1998-10-19 2000-07-11 Nts:Kk Film-forming composition and its production
JP2000313852A (en) * 1999-04-30 2000-11-14 Kansai Paint Co Ltd Cationic electrodeposition coating material
JP2005112998A (en) * 2003-10-07 2005-04-28 Nippon Chem Ind Co Ltd Inorganic coating composition
JP2004352994A (en) * 2004-06-28 2004-12-16 Sumitomo Seika Chem Co Ltd Polyolefin-based powder coating composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101217140B1 (en) * 2010-04-21 2012-12-31 한국세라믹기술원 Inorganic filler for heavy duty paint and heavy duty paint composition using the same
JP2015520018A (en) * 2012-04-17 2015-07-16 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH Method of coating a metal surface with a coating composition containing layered double hydroxide particles
US9903037B2 (en) 2012-04-17 2018-02-27 Chemetall Gmbh Process for coating metallic surfaces with coating compositions containing particles of a layered double hydroxide
JP2016511300A (en) * 2013-01-17 2016-04-14 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH Method for producing anticorrosion coating
JP2016108427A (en) * 2014-12-05 2016-06-20 丸尾カルシウム株式会社 Hydrotalcite composition, resin composition containing the composition and molded body thereof
CN107986661A (en) * 2017-11-29 2018-05-04 中国科学院海洋研究所 A kind of triazole corrosion inhibitor compound of active group containing salicylide of hydrotalcite intercalation chlorion probe modification and its application
CN107986663A (en) * 2017-11-29 2018-05-04 中国科学院海洋研究所 A kind of corrosion inhibitor compound of triazole containing schiff bases of hydrotalcite intercalation chlorion probe modification and its application
WO2021014492A1 (en) * 2019-07-19 2021-01-28 株式会社ジェーエフシーテック Anticorrosive filler used in organic paint, anticorrosive filler manufacturing method, and paint
JP7356705B2 (en) 2019-10-25 2023-10-05 国立大学法人神戸大学 Rust prevention sheet and rust prevention method
CN111204782A (en) * 2020-01-19 2020-05-29 中国科学院宁波材料技术与工程研究所 Nitrite intercalation hydrotalcite material, aqueous resin composite coating and preparation method thereof

Also Published As

Publication number Publication date
JP4636587B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP5014762B2 (en) Antirust pigment and antirust paint composition containing the same
EP2985320B1 (en) Coating compositions with anticorrosion properties
JP6104298B2 (en) Anticorrosive particles
KR100904813B1 (en) Use of MoO3 as corrosion inhibitor, and coating composition containing such an inhibitor
US4474607A (en) Method of inhibiting corrosion using cations
JP3859731B2 (en) Antirust pigment composition and antirust paint containing the same
JP5175472B2 (en) Production method of hydrocalumite
JP2015520018A (en) Method of coating a metal surface with a coating composition containing layered double hydroxide particles
JP4636587B2 (en) Nitrite ion type hydrotalcite powder, production method thereof, rust preventive composition and rust preventive coating composition
JP3865907B2 (en) Antirust pigment composition and antirust paint containing the same
JP4230983B2 (en) Anticorrosion paint composition
JP3871403B2 (en) Antirust pigment composition and antirust paint containing the same
Grigoriev et al. Ferrites as Non‐Toxic Pigments for Eco‐Friendly Corrosion Protection Coatings
JPH1192692A (en) Rust-preventive coating composition
JP3871404B2 (en) Antirust pigment composition and antirust paint containing the same
JP2006097023A (en) Rust preventive pigment containing composite hydroxide of calcium and specific metal
JP2005112997A (en) Inorganic coating composition
JP3261538B2 (en) Zinc phosphate double salt rust preventive pigment, method for producing the same, and rust preventive paint containing the same
JP4059449B2 (en) Organosiloxane anticorrosive coating composition
JP3907791B2 (en) Antirust pigment composition and antirust paint containing the same
JP3871402B2 (en) Antirust pigment composition and antirust paint containing the same
JP2005112998A (en) Inorganic coating composition
JP3868071B2 (en) Antirust pigment composition and antirust paint containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4636587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250