JP2005334948A - Immersion nozzle for continuous casting and continuous casting method for steel - Google Patents

Immersion nozzle for continuous casting and continuous casting method for steel Download PDF

Info

Publication number
JP2005334948A
JP2005334948A JP2004157993A JP2004157993A JP2005334948A JP 2005334948 A JP2005334948 A JP 2005334948A JP 2004157993 A JP2004157993 A JP 2004157993A JP 2004157993 A JP2004157993 A JP 2004157993A JP 2005334948 A JP2005334948 A JP 2005334948A
Authority
JP
Japan
Prior art keywords
immersion nozzle
nozzle
continuous casting
molten steel
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004157993A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
浩史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004157993A priority Critical patent/JP2005334948A/en
Publication of JP2005334948A publication Critical patent/JP2005334948A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve productive efficiency by effectively suppressing the sticking of alumina to the vicinity of discharge holes, thereby effectively preventing the clogging of a nozzle. <P>SOLUTION: The immersion nozzle is a gas blowing type immersion nozzle 11 for continuous casting having confronted two discharge holes 11a at the bottom, and is used in the case the quality Q of molten steel into the immersion nozzle 11 to be fed is ≤10 ton/min. In the immersion nozzle, porous refractories 7 disposed in a gas blowing part has a length L (mm) in the flowing-down direction of molten steel controlled to a value defined by the inequality of 0.05×Q≤L/L0≤0.20×Q, and further, the porous refractories 7 are each arranged at a position where the distance L1 between the lower end of each porous refractory 7 and the upper end of each discharge hole 11a reaches ≤50 mm; in the inequality, L0 is the length (mm) in the flowing-down direction of molten steel from the upper attaching end of the immersion nozzle to the upper end of each discharge hole. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼の連続鋳造方法において使用される、底部に対向する2つの吐出孔を有するガス吹込み型の浸漬ノズル、及び、この浸漬ノズルを使用した鋼の連続鋳造方法に関するものである。   The present invention relates to a gas blowing type immersion nozzle having two discharge holes facing the bottom, and a steel continuous casting method using this immersion nozzle, which are used in a steel continuous casting method.

通常、連続鋳造においては、図4に示すように、取鍋内溶鋼1はタンディッシュ2から浸漬ノズル5を介して鋳型6に鋳込まれるが、タンディッシュ2の底には、スライディングゲートプレート4のようなものが設けられ、ノズル開度を調節できるようになっている。従って、浸漬ノズル5を用いる連続鋳造では、長時間操業を続けると、浸漬ノズル5のノズル孔5a内壁にアルミナが付着し、ノズル詰まりを起こし易くなる。なお、図4中の3はタンディッシュ2の底部に設けられた上ノズル、5bは浸漬ノズル5の底部に対向して設けられた2つの吐出孔である。   Usually, in continuous casting, as shown in FIG. 4, the molten steel 1 in the ladle is cast into the mold 6 from the tundish 2 through the immersion nozzle 5, but the sliding gate plate 4 is placed at the bottom of the tundish 2. The nozzle opening degree can be adjusted. Therefore, in continuous casting using the immersion nozzle 5, if operation is continued for a long time, alumina adheres to the inner wall of the nozzle hole 5a of the immersion nozzle 5 and nozzle clogging is likely to occur. In FIG. 4, 3 is an upper nozzle provided at the bottom of the tundish 2, and 5 b is two discharge holes provided facing the bottom of the immersion nozzle 5.

ノズル詰まりが生じると、浸漬ノズルの吐出孔から鋳型内に吐出される溶鋼流が変動し、鋳片品質に悪影響を及ぼすと共に、浸漬ノズルの交換頻度が多くなり、生産効率の低下を余儀なくされる。   When nozzle clogging occurs, the molten steel flow discharged from the discharge hole of the immersion nozzle into the mold fluctuates, adversely affecting the quality of the slab, and the replacement frequency of the immersion nozzle increases, resulting in a reduction in production efficiency. .

そこで、この浸漬ノズルのノズル詰まりを抑制する技術として、図5に示すように、浸漬ノズル5内に多孔質耐火物(内孔体)7を挿入し、この多孔質耐火物7の内壁から、ノズル孔5aにArその他の不活性ガスを吹込み、その不活性ガス皮膜でアルミナがノズル孔5aの内壁に付着するのを防止するものが提案されている。
実開平5−84454号公報 特開平6−106313号公報
Therefore, as a technique for suppressing the nozzle clogging of the immersion nozzle, as shown in FIG. 5, a porous refractory (inner hole body) 7 is inserted into the immersion nozzle 5, and from the inner wall of the porous refractory 7, It has been proposed that Ar or other inert gas is blown into the nozzle hole 5a and that the inert gas film prevents alumina from adhering to the inner wall of the nozzle hole 5a.
Japanese Utility Model Publication No. 5-84454 JP-A-6-106313

また、前記特許文献1,2のようなガス吹き型浸漬ノズルにおいて、少なくとも吐出孔付近の内壁の材質をZrO2−CaO−C質とし、吐出孔付近に付着するアルミナとCaOとの反応により、低融点化合物を形成させ、吐出孔付近にアルミナが付着するのを防止する技術が提案されている。
特開平5−318059号公報
Further, in the gas blown immersion nozzle as in Patent Documents 1 and 2, at least the inner wall material near the discharge hole is made of ZrO 2 —CaO—C, and by the reaction between alumina and CaO adhering to the vicinity of the discharge hole, A technique has been proposed in which a low melting point compound is formed and alumina is prevented from adhering to the vicinity of the discharge hole.
JP-A-5-318059

しかしながら、後述のように、浸漬ノズルのノズル孔内ではその溶鋼流下方向の途中で負圧から正圧へと圧力が変化するので、前記特許文献1,2で開示された技術では、吐出孔の近傍は高い流体圧力のためにガス吹きが難しくなり、吐出孔付近にアルミナが付着することを効果的に抑制することは出来ない。また、ノズル詰まりの抑制能力を向上するために、不活性ガス流量を増加した場合、多量に吹込まれた不活性ガスは、鋳型内に持越された結果、凝固界面に捕捉され、欠陥として鋳片に残留する可能性がある。   However, as described later, the pressure changes from negative pressure to positive pressure in the middle of the molten steel flow direction in the nozzle hole of the immersion nozzle. In the vicinity, gas blowing becomes difficult due to the high fluid pressure, and it is impossible to effectively suppress the adhesion of alumina near the discharge hole. In addition, when the flow rate of the inert gas is increased in order to improve the ability to suppress nozzle clogging, a large amount of the inert gas blown into the mold is trapped at the solidification interface, resulting in a slab as a defect. May remain.

また、前記特許文献3の技術では、生成する低融点化合物が鋳片内に取り込まれた場合、品質欠陥に繋がる恐れがある。   Moreover, in the technique of the said patent document 3, when the low melting-point compound to produce | generate is taken in in a slab, there exists a possibility of leading to a quality defect.

本発明が解決しようとする問題点は、従来のただ単に多孔質耐火物を内挿するだけの浸漬ノズルのノズル詰まり抑制技術では、吐出孔付近へのアルミナ付着を効果的に抑制することが出来ない、或いは、前記アルミナの付着を抑制するための不活性ガスや、アルミナ付着を防止するために生成させる低融点化合物が鋳型内の凝固界面に取り込まれ、鋳片の品質欠陥につながるという点である。   The problem to be solved by the present invention is that the conventional nozzle clogging suppression technology that simply inserts a porous refractory can effectively suppress alumina adhesion near the discharge hole. Or the inert gas to suppress the adhesion of alumina and the low melting point compound to be generated to prevent the adhesion of alumina are taken into the solidification interface in the mold, leading to a quality defect of the slab. is there.

発明者は、浸漬ノズル内への溶鋼供給量Qが10トン/分以下の場合に、浸漬ノズルへの不活性ガス吹込みは、従来通り積極的に実施し、その上で更なる詰まり防止効果を発揮するための最適なガス吹込み用多孔質耐火物の溶鋼流下方向長さ(以下、単に「長さ」と言う。)及び設置位置について種々実験並びにシミュレーションを重ねた結果、以下の本発明を成立させた。   The inventor, when the molten steel supply amount Q into the immersion nozzle is 10 ton / min or less, the inert gas blowing into the immersion nozzle is actively carried out as before, and further clogging prevention effect is obtained. As a result of repeated experiments and simulations on the length of the molten steel flow-down porous refractory (hereinafter simply referred to as “length”) and the installation position of the optimum gas blasting porous refractory for exhibiting Was established.

すなわち、本発明の連続鋳造用浸漬ノズルは、
浸漬ノズルのノズル詰まり、並びに、鋳片の品質欠陥を抑制して鋳片の品質向上を可能とするために、多孔質耐火物の最適な長さ及び設置位置を明らかにしたもので、
対向する2つの吐出孔を底部に有し、ノズル内への溶鋼供給量Qが10トン/分以下の場合に使用するガス吹込み型の連続鋳造用浸漬ノズルであって、
ガス吹込み部にあたる多孔質耐火物の長さを次式で定義する長さとなすと共に、
この多孔質耐火物を、多孔質耐火物の下端と前記吐出孔の上端との距離が50mm以下となる位置に配置したことを主要な特徴としている。
0.05×Q≦L/L0≦0.20×Q
L:多孔質耐火物の長さ(mm)
L0:浸漬ノズルの取り付け上端から吐出孔の上端までの溶鋼流下方向の長さ(mm)
That is, the immersion nozzle for continuous casting of the present invention is
In order to suppress the nozzle clogging of the immersion nozzle and improve the quality of the slab by suppressing the quality defect of the slab, the optimum length and installation position of the porous refractory were clarified.
A gas-blowing type continuous casting immersion nozzle used in the case where two opposing discharge holes are provided at the bottom and the molten steel supply amount Q into the nozzle is 10 tons / min or less,
The length of the porous refractory that corresponds to the gas blowing part is defined as the length defined by the following equation,
The main feature of the porous refractory is that the distance between the lower end of the porous refractory and the upper end of the discharge hole is 50 mm or less.
0.05 × Q ≦ L / L0 ≦ 0.20 × Q
L: Length of porous refractory (mm)
L0: Length of molten steel flowing from the upper end of the immersion nozzle to the upper end of the discharge hole (mm)

本発明の連続鋳造用浸漬ノズルにおいて、多孔質耐火物を、その下端と浸漬ノズル吐出孔の上端との距離が50mm以下の位置に配置する理由は、多孔質耐火物を、その下端が浸漬ノズル吐出孔の上端より50mmを超える位置に設けた場合には、多孔質耐火物から吹き出す不活性ガスが、ノズル詰まりの発生し易い吐出孔近傍まで届かず、ノズル詰まりを抑制することができないからである。   In the immersion nozzle for continuous casting of the present invention, the porous refractory is disposed at a position where the distance between the lower end and the upper end of the immersion nozzle discharge hole is 50 mm or less. When it is provided at a position exceeding 50 mm from the upper end of the discharge hole, the inert gas blown out from the porous refractory does not reach the vicinity of the discharge hole where nozzle clogging is likely to occur, and nozzle clogging cannot be suppressed. is there.

また、本発明において、多孔質耐火物の長さLを前記式で定義する長さとする理由は、L/L0が0.05×Qより小さい場合には、多孔質耐火物の長さLが短くなりすぎて不活性ガスを吹き出す範囲が狭すぎ、ノズル孔内面におけるノズル詰まり発生の抑制範囲が狭くなるからである。一方、L/L0が0.20×Qより大きい場合には、多孔質耐火物の長さLが長くなりすぎて不活性ガスの大半はノズル孔上部の負圧の部分から吹き出し、ノズル詰まりが発生し易い吐出孔近傍からの不活性ガスの吹き出しが難しくなるからである。   In the present invention, the reason why the length L of the porous refractory is defined by the above formula is that when L / L0 is smaller than 0.05 × Q, the length L of the porous refractory is This is because the range in which the inert gas is blown out is too narrow due to being too short, and the range in which the nozzle clogging is suppressed on the inner surface of the nozzle hole is narrowed. On the other hand, when L / L0 is larger than 0.20 × Q, the length L of the porous refractory becomes too long, and most of the inert gas blows out from the negative pressure portion above the nozzle hole, resulting in nozzle clogging. This is because it becomes difficult to blow out the inert gas from the vicinity of the discharge holes that are easily generated.

前記本発明の連続鋳造用浸漬ノズルを用いて鋳型内に溶鋼を鋳込んだ場合、浸漬ノズルのノズル詰まりを効果的に抑制でき、操業に際し、浸漬ノズルの交換頻度が少なくなって生産効率が向上する。これが本発明の鋼の連続鋳造方法である。   When molten steel is cast in a mold using the immersion nozzle for continuous casting according to the present invention, nozzle clogging of the immersion nozzle can be effectively suppressed, and during operation, the replacement frequency of the immersion nozzle is reduced and the production efficiency is improved. To do. This is the steel continuous casting method of the present invention.

本発明は、ガス吹込み型浸漬ノズルにおいて、不活性ガスの吹き込みが難しく、ノズル詰まりが発生し易い正圧域の吐出孔近傍においても、ノズル詰まりを効果的に防止することが出来るので、生産効率が向上するという利点がある。   Since the present invention can effectively prevent nozzle clogging even in the vicinity of the discharge hole in the positive pressure region where inert gas blowing is difficult and nozzle clogging is likely to occur in a gas blowing type immersion nozzle. There is an advantage that efficiency is improved.

以下、本発明を実施するための最良の形態について、図1及び図2を用いて説明する。
発明者は、溶鋼供給量Qが10トン/分以下のガス吹込み型連続鋳造用浸漬ノズルの実用化に際し、種々実験並びにシミュレーションを重ねた結果、ノズル詰まりを効果的に抑制しつつ、鋳片品質の改善効果を発揮するための、ガス吹込み部にあたる多孔質耐火物の最適な長さ及び設置位置を見出し、これらの問題点を解消する手法としての前記の本発明を完成するに到ったのである。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.
The inventor has conducted various experiments and simulations for the practical use of a submerged nozzle for gas blowing type continuous casting with a molten steel supply amount Q of 10 ton / min or less. The optimum length and installation position of the porous refractory corresponding to the gas blowing portion for exhibiting the quality improvement effect are found, and the present invention as a method for solving these problems is completed. It was.

すなわち、浸漬ノズルの場合、垂直方向(溶鋼流下方向)において、ノズル孔内壁に圧力勾配を有することが水モデル実験により知られている。図1にその一例を示すが、この図1より、浸漬ノズルでは、(1)負圧となるノズル孔の内壁上部から正圧となる内壁下部へと圧力勾配を有すること、更に、(2)ノズル内溶鋼供給量Q(●印は5.0トン/分、○印は4.0トン/分)によって、前記負圧から正圧への分岐点が変化すること、が分かる。   That is, in the case of an immersion nozzle, it is known from a water model experiment that there is a pressure gradient on the inner wall of the nozzle hole in the vertical direction (downstream of the molten steel). An example is shown in FIG. 1. From FIG. 1, the immersion nozzle has (1) a pressure gradient from the upper part of the inner wall of the nozzle hole that becomes negative pressure to the lower part of the inner wall that becomes positive pressure, and (2) It can be seen that the branch point from the negative pressure to the positive pressure changes depending on the supply amount Q of molten steel in the nozzle (the black mark is 5.0 tons / min and the ◯ mark is 4.0 tons / min).

そのため、浸漬ノズルのノズル孔内に不活性ガスを吹き込んだ場合には、ノズル内に挿入する多孔質耐火物の長さを長くしても、ノズル孔内壁上部の負圧域では不活性ガスが吹き出し易い一方で、最も付着の多いノズル孔内壁下部では、高い流体圧力のために不活性ガスの吹き出しが難しいことが推定された。   Therefore, when an inert gas is blown into the nozzle hole of the immersion nozzle, even if the length of the porous refractory inserted into the nozzle is increased, the inert gas is not generated in the negative pressure region above the inner wall of the nozzle hole. While it was easy to blow out, it was estimated that it was difficult to blow out the inert gas at the lower part of the inner wall of the nozzle hole where adhesion was most due to high fluid pressure.

この知見を基に、発明者は、最も効果的にノズル詰まりを抑制できる方法を、ガス吹込み用の多孔質耐火物の長さ及び設置位置に着目し構築した。
図2(a)は本発明の浸漬ノズル11を示す縦断面図である。ここで、浸漬ノズル11の吐出孔11aの直上50mm以下の位置にその下端を位置させた多孔質耐火物7の長さをL、浸漬ノズル11の取り付け上端から吐出孔11aの上端までの溶鋼流下方向長さをL0と定義した場合に、本発明では、浸漬ノズル11のガス吹き出し部である多孔質耐火物7の長さを、浸漬ノズル11内の溶鋼供給量に応じて上記式で定義する長さの範囲に設定するのである。
Based on this knowledge, the inventor constructed a method that can most effectively suppress nozzle clogging by paying attention to the length and installation position of a porous refractory for gas blowing.
Fig.2 (a) is a longitudinal cross-sectional view which shows the immersion nozzle 11 of this invention. Here, the length of the porous refractory 7 having its lower end positioned 50 mm or less directly above the discharge hole 11a of the immersion nozzle 11 is L, and the molten steel flows down from the upper end of the attachment of the immersion nozzle 11 to the upper end of the discharge hole 11a. When the directional length is defined as L0, in the present invention, the length of the porous refractory 7 which is the gas blowing portion of the immersion nozzle 11 is defined by the above formula according to the molten steel supply amount in the immersion nozzle 11. Set the length range.

以下、本発明において多孔質耐火物の設置位置及び上記式を得ることになった実験例について説明する。
成分系が〔C〕=0.04質量%の低炭素鋼の溶鋼を、外径が150mm、内径が80mmで、吐出孔の幅が80mm、高さが90mmのガス吹込み型浸漬ノズル(多孔質耐火物の下端と吐出孔の上端との距離L1は37mm)を介して、幅が1250mm、厚みが230mmの内寸を有する鋳型に、溶鋼供給量Qが3.0トン/分となるようにして鋳込んだ。
Hereinafter, the installation position of the porous refractory and the experimental example that resulted in the above formula in the present invention will be described.
A low carbon steel molten steel with a component system of [C] = 0.04 mass% is a gas blown immersion nozzle (porous) having an outer diameter of 150 mm, an inner diameter of 80 mm, a discharge hole width of 80 mm, and a height of 90 mm. The distance L1 between the lower end of the refractory material and the upper end of the discharge hole is 37 mm), so that the molten steel supply rate Q is 3.0 tons / min in a mold having an internal dimension of 1250 mm in width and 230 mm in thickness. And cast.

そして、その鋳造時において、ガス吹込み用多孔質耐火物の長さを変化させた場合のノズル内壁へのアルミナ付着厚みを調査した。その結果を下記表1に示す。また下記表1中の発明例Cと比較例Gにおける浸漬ノズルの各位置におけるノズル詰まり速度を、図3に示す。   Then, during the casting, the thickness of the alumina adhered to the inner wall of the nozzle when the length of the gas blasting porous refractory was changed was investigated. The results are shown in Table 1 below. Moreover, the nozzle clogging speed | velocity | rate in each position of the immersion nozzle in invention example C and comparative example G in following Table 1 is shown in FIG.

下記表1中のノズル詰まり評価とは、浸漬ノズル内に前記溶鋼(〔C〕=0.04質量%の低炭素鋼)を1300トン(鋳造時間:約8時間)通過させて鋳造を終了した後に、ノズル内部を観察してノズル内壁へのアルミナ付着厚みを測定し、単位時間当たりのノズル詰まり速度(mm/分)を求めて評価したものである。   Nozzle clogging evaluation in Table 1 below means that 1300 tons (casting time: about 8 hours) of the molten steel ([C] = 0.04 mass% low carbon steel) was passed through the immersion nozzle to finish casting. Later, the inside of the nozzle was observed to measure the thickness of alumina adhered to the inner wall of the nozzle, and the nozzle clogging rate (mm / min) per unit time was determined and evaluated.

この1300トンの鋳造試験では、ノズル詰まり原因の鋳造阻害が無く、安定に鋳造するために必要なノズル詰まり速度は、0.04mm/分以下であった。従って、下記表1の評価では、ノズル詰まり速度が0.04mm/分以下の場合は○、ノズル詰まり速度が4mm/分を超えた場合は×と分類した。   In this 1300-ton casting test, there was no hindrance to casting due to nozzle clogging, and the nozzle clogging speed required for stable casting was 0.04 mm / min or less. Therefore, in the evaluation of the following Table 1, the nozzle clogging speed was classified as “◯” when the nozzle clogging speed was 0.04 mm / min or less, and “x” when the nozzle clogging speed exceeded 4 mm / min.

Figure 2005334948
Figure 2005334948

発明例A〜Dは、請求項1及び請求項2を満たすものであり、多孔質耐火物の下端と前記吐出孔の上端との距離が50mm以下で、かつ、多孔質耐火物の長さがL/L0が、溶鋼供給量Qに対し、0.05×Qと0.20×Qの間に収まる、すなわち多孔質耐火物の長さが所定の長さ範囲であるため、ノズル詰まりが発生し易い吐出孔近傍の位置において、効果的にArガスの吹き込みが実施され、ノズル詰まりによる操業阻害が無かった。   Invention Examples A to D satisfy Claims 1 and 2, the distance between the lower end of the porous refractory and the upper end of the discharge hole is 50 mm or less, and the length of the porous refractory is L / L0 is within 0.05 × Q and 0.20 × Q with respect to the molten steel supply amount Q, that is, the length of the porous refractory is within the predetermined length range, so nozzle clogging occurs. Ar gas was effectively blown at a position near the discharge hole where it was easy to perform, and there was no operation hindrance due to nozzle clogging.

これらに対し、比較例E〜Gは、L/L0が0.20×Qを超え、また、比較例Hは、L/L0が0.05×Qより小さいため、いずれも、ノズル詰まり抑制を担うArガスの吹き込みが不適切となり、ノズル詰まりによる操業阻害が発生した。   On the other hand, in Comparative Examples E to G, L / L0 exceeds 0.20 × Q, and in Comparative Example H, L / L0 is smaller than 0.05 × Q. The blowing of Ar gas to be carried became inadequate, and the operation was hindered due to nozzle clogging.

なお、本発明は上記した例に限らないことは勿論であり、上記した例以外であっても、上記した例に付加した或いは削減した構成の作用効果が付加されたり、削減されたりするだけであることは言うまでもない。   Of course, the present invention is not limited to the above-described example, and even if it is other than the above-described example, only the effects of the configuration added to or reduced from the above-described example are added or reduced. Needless to say.

以上の本発明は、浸漬ノズルを使用する連続鋳造であれば、湾曲型、垂直型など、どのような方式の連続鋳造であっても適用できる。   The present invention described above can be applied to any type of continuous casting such as a curved type and a vertical type as long as it is a continuous casting using an immersion nozzle.

(a)は水モデル実験による浸漬ノズル内の圧力分布測定結果を示す図、(b)は(a)の測定位置を説明する図である。(A) is a figure which shows the pressure distribution measurement result in the immersion nozzle by water model experiment, (b) is a figure explaining the measurement position of (a). (a)は本発明のガス吹込み型浸漬ノズルを説明する縦断面図、(b)は(a)図の吐出孔部分を側面から見た図である。(A) is the longitudinal cross-sectional view explaining the gas blowing type immersion nozzle of this invention, (b) is the figure which looked at the discharge hole part of (a) figure from the side surface. 本発明のガス吹き込み型浸漬ノズルを用いたノズル詰まり抑制効果を示す図である。It is a figure which shows the nozzle clogging suppression effect using the gas blowing type immersion nozzle of this invention. 連続鋳造方法を説明する図である。It is a figure explaining the continuous casting method. 連続鋳造方法に使用するガス吹込み型浸漬ノズルの概略説明図である。It is a schematic explanatory drawing of the gas blowing type immersion nozzle used for a continuous casting method.

符号の説明Explanation of symbols

7 多孔質耐火物
11 浸漬ノズル
11a 吐出孔
7 Porous refractories 11 Immersion nozzle 11a Discharge hole

Claims (2)

対向する2つの吐出孔を底部に有し、ノズル内への溶鋼供給量Qが10トン/分以下の場合に使用するガス吹込み型の連続鋳造用浸漬ノズルであって、
ガス吹込み部にあたる多孔質耐火物の溶鋼流下方向長さを次式で定義する長さとなすと共に、
この多孔質耐火物を、多孔質耐火物の下端と前記吐出孔の上端との距離が50mm以下となる位置に配置したことを特徴とする連続鋳造用浸漬ノズル。
0.05×Q≦L/L0≦0.20×Q
L:多孔質耐火物の溶鋼流下方向の長さ(mm)
L0:浸漬ノズルの取り付け上端から吐出孔の上端までの溶鋼流下方向の長さ(mm)
A gas-blowing type continuous casting immersion nozzle to be used when two opposing discharge holes are provided at the bottom and the molten steel supply amount Q into the nozzle is 10 tons / min or less,
The length of the molten steel flow direction of the porous refractory that corresponds to the gas blowing part is defined as the length defined by the following equation,
An immersion nozzle for continuous casting, wherein the porous refractory is disposed at a position where the distance between the lower end of the porous refractory and the upper end of the discharge hole is 50 mm or less.
0.05 × Q ≦ L / L0 ≦ 0.20 × Q
L: Length of porous refractory in the molten steel flow direction (mm)
L0: Length of molten steel flowing from the upper end of the immersion nozzle to the upper end of the discharge hole (mm)
請求項1に記載の連続鋳造用浸漬ノズルを用いて鋳型に溶鋼を鋳込むことを特徴とする鋼の連続鋳造方法。
A continuous casting method for steel, wherein molten steel is cast into a mold using the immersion nozzle for continuous casting according to claim 1.
JP2004157993A 2004-05-27 2004-05-27 Immersion nozzle for continuous casting and continuous casting method for steel Pending JP2005334948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157993A JP2005334948A (en) 2004-05-27 2004-05-27 Immersion nozzle for continuous casting and continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157993A JP2005334948A (en) 2004-05-27 2004-05-27 Immersion nozzle for continuous casting and continuous casting method for steel

Publications (1)

Publication Number Publication Date
JP2005334948A true JP2005334948A (en) 2005-12-08

Family

ID=35489060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157993A Pending JP2005334948A (en) 2004-05-27 2004-05-27 Immersion nozzle for continuous casting and continuous casting method for steel

Country Status (1)

Country Link
JP (1) JP2005334948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301609A (en) * 2006-05-12 2007-11-22 Jfe Steel Kk Continuous casting method for steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301609A (en) * 2006-05-12 2007-11-22 Jfe Steel Kk Continuous casting method for steel

Similar Documents

Publication Publication Date Title
KR101087318B1 (en) Method for manufacture of ultra-low carbon steel slab
US5885473A (en) Long nozzle for continuous casting
JP2011143449A (en) Method for removing inclusion in tundish for continuous casting
JPS5924902B2 (en) Continuous casting nozzle
JP2009066603A (en) Continuous casting method for steel, and upper nozzle of continuous casting tundish
JP2005334948A (en) Immersion nozzle for continuous casting and continuous casting method for steel
JP4815821B2 (en) Continuous casting method of aluminum killed steel
JP7121299B2 (en) immersion nozzle
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JPH09295109A (en) Method for continuously casting clean molten metal
CN207547622U (en) The special-shaped double-side-hole submersed nozzle of slab
JPH05154628A (en) Nozzle inner hole body for continuous casting
JP3984476B2 (en) Continuous casting method of cast slab with few bubble defects and manufactured slab
JP2991881B2 (en) Immersion nozzle for continuous casting
JP2005224852A (en) Continuous casting method of high-titanium-contained steel
JPH08117939A (en) Method for blowing air bubbles into molten steel
Szekeres Review of strand casting factors affecting steel product cleanliness
JP2005305489A (en) Method for continuously casting steel
KR101062953B1 (en) Immersion nozzle
JP2011110561A (en) Method for continuously casting steel
JPS58151948A (en) Continuous casting method
JP2010069515A (en) Continuous casting method for steel
JP4421136B2 (en) Continuous casting method
JP3294940B2 (en) Continuous casting method
JPH0230122Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060601

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512