JP2005333922A - Method for retaining freshness of fish and shellfish - Google Patents

Method for retaining freshness of fish and shellfish Download PDF

Info

Publication number
JP2005333922A
JP2005333922A JP2004159508A JP2004159508A JP2005333922A JP 2005333922 A JP2005333922 A JP 2005333922A JP 2004159508 A JP2004159508 A JP 2004159508A JP 2004159508 A JP2004159508 A JP 2004159508A JP 2005333922 A JP2005333922 A JP 2005333922A
Authority
JP
Japan
Prior art keywords
ice
electrolyzed water
water
acidic electrolyzed
ice making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004159508A
Other languages
Japanese (ja)
Other versions
JP4240481B2 (en
Inventor
Kazuo Oda
和男 織田
Masahiro Kono
雅弘 河野
Hideo Morita
日出男 森田
Satoshi Akazawa
智 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OWASHI ICHI
SCIENCE TECHNOLOGY INTERACT KK
Original Assignee
OWASHI ICHI
SCIENCE TECHNOLOGY INTERACT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OWASHI ICHI, SCIENCE TECHNOLOGY INTERACT KK filed Critical OWASHI ICHI
Priority to JP2004159508A priority Critical patent/JP4240481B2/en
Publication of JP2005333922A publication Critical patent/JP2005333922A/en
Application granted granted Critical
Publication of JP4240481B2 publication Critical patent/JP4240481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for retaining freshness of fish and shellfish for a long time through keeping acid electrolytic water ice for a long time at the time of cold-storing fish and shellfish in acid electrolytic water ice. <P>SOLUTION: This method for retaining freshness of fish and shellfish comprises making ice while connecting one end of the secondary terminal of a high electric field generator 8 to a freezing tank 1 and giving high voltage electric field to acid electrolytic water when making ice with a brine freezing device from the acid electrolytic water obtained by electroanalyzing deep ocean water. Furthermore, the method comprises preserving fish and shellfish in the acid electrolytic water ice thus obtained, and retaining freshness of fish and shellfish for a long time owing to bacteria avoiding effect and sterilization effect which the acid electrolytic water ice has. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、食塩水の酸性電解水を製氷して得られる氷を用いて魚介類等を保存する方法に関し、特に酸性電解水に高電圧電場を付与して製氷した酸性電解水氷を用いて魚介類等を保存する方法に関する。   The present invention relates to a method for preserving seafood and the like using ice obtained by making acidic electrolyzed water of salt water, and in particular, using acidic electrolyzed water ice made by applying a high voltage electric field to acidic electrolyzed water. The present invention relates to a method for preserving seafood and the like.

魚介類や野菜等の生鮮食品および生鮮食材(以下、生鮮食品とする)は、消費者に届くまでの流通過程で、表面に付着している細菌が増殖したり、人手が直接に触れるために細菌が新たに付着することにより汚染される。このような細菌の増殖や新たな細菌による汚染を防ぐため、生鮮食品の輸送時、保存時並びに陳列時に氷で保冷して鮮度と品質の保持がなされている。例えば、特許文献1には食塩水を電気分解することによって生成される電解水を製氷して得られる氷で生鮮食品を保冷し、生鮮食品表面の付着菌の減少と外からの細菌やウイルスなどによる二次汚染の防止とを図ることにより生鮮食品の劣化を防ぐことが記載されている。   Fresh food such as seafood and vegetables and fresh ingredients (hereinafter referred to as “fresh food”) are used for the growth of bacteria attached to the surface and direct contact with human hands during the distribution process until they reach the consumer. It is contaminated by newly attached bacteria. In order to prevent such bacterial growth and contamination by new bacteria, the freshness and quality of the food are kept by cooling with ice during transport, storage and display of fresh food. For example, in Patent Document 1, fresh food is kept cold with ice obtained by making electrolytic water generated by electrolyzing saline, reducing the number of bacteria attached to the surface of fresh food, bacteria and viruses from the outside, etc. It is described that the deterioration of fresh foods is prevented by preventing secondary contamination due to.

特許文献2には、海水、特に海洋深層水の電解水(酸性水、アルカリ水およびこれらの混合水)を製氷した氷で生鮮食品を保存することにより、生鮮食品の殺菌や鮮度保持が得られることが記載されている。さらに、特許文献3には、ナトリウムイオン濃度200ppm以下、PH4.5〜6.8、塩化水素濃度0.01〜21%の電解水を−40℃以下の冷却条件下で凍結させた電解水氷で生鮮食品等を保存すると、殺菌力の効果が長時間持続することが記載されている。   In Patent Document 2, sterilization and maintenance of freshness of fresh food can be obtained by storing fresh food with ice made from seawater, especially deep seawater electrolyzed water (acidic water, alkaline water and mixed water thereof). It is described. Furthermore, Patent Document 3 discloses electrolyzed water ice in which electrolyzed water having a sodium ion concentration of 200 ppm or less, a pH of 4.5 to 6.8, and a hydrogen chloride concentration of 0.01 to 21% is frozen under cooling conditions of −40 ° C. or less. It is described that the effect of bactericidal power lasts for a long time when perishable foods are stored.

これら特許文献1乃至3から食塩水の電解水氷が生鮮食品等の保存に適していることは公知である。特に、その酸性水氷は保冷で細菌の増殖を抑えると同時に解凍により生じる酸性水の殺菌作用により表面に付着している細菌や二次汚染による細菌の殺菌が得られるため、細菌が付着しやすい魚介類等の保存用氷として最も適している。そして、各種の製氷装置が実用化されている。前記電解水氷を大量に生産する場合には、例えば塩化カルシウムやアルコール溶液等の冷媒で冷却して製氷するブライン冷凍法または冷気で冷却して製氷するエアブラスト冷凍法が適している。   From these Patent Documents 1 to 3, it is known that electrolyzed water ice of saline is suitable for preservation of fresh food and the like. In particular, the acidic water ice keeps the bacteria from growing by refrigeration, and at the same time, the bacteria attached to the surface and the bacteria due to secondary contamination can be sterilized by the sterilizing action of the acidic water generated by thawing, so that bacteria are easily attached. Most suitable as storage ice for seafood. Various ice making apparatuses have been put into practical use. When producing the electrolyzed water ice in large quantities, for example, a brine refrigeration method in which ice is made by cooling with a refrigerant such as calcium chloride or an alcohol solution, or an air blast refrigeration method in which ice is made by cooling with cold air are suitable.

特許文献4には、不凍液中に被冷凍食品を浸漬して冷凍するブライン冷凍方法において、被冷凍食品の最大氷結晶生成帯(−1〜−5℃)を通過する時間を短くすることによって、冷凍時に食品の組織内の水が氷晶となり成長して組織破壊を起こすのを防ぐために、前記不凍液に高電圧電場を付与する方法が記載されている。   In Patent Literature 4, in the brine freezing method in which the frozen food is immersed and frozen in the antifreeze liquid, by shortening the time to pass through the maximum ice crystal formation zone (−1 to −5 ° C.) of the frozen food, In order to prevent water in the food tissue from growing into ice crystals and causing tissue destruction during freezing, a method of applying a high voltage electric field to the antifreeze is described.

特開平11−101536号公報JP-A-11-101536 特開2002−277118号公報JP 2002-277118 A 特開2002−350016号公報JP 2002-350016 A 特開2001−292753号公報JP 2001-292553 A

上記のように魚介類等を酸性電解水氷で保存する場合に、この酸性電解水氷は魚介類等を長時間にわたって安全に保存するためには、できるだけ溶けにくいことが好ましい。しかしながら、従来のブライン冷凍法、エアブラスト冷凍法で製氷した酸性電解水氷は、ブライン温度または冷凍室内温度が−15〜−25℃であるために氷結構造が弱く破壊しやすい性質を持っており比較的早く解凍してしまう。そのため、魚介類等を遠方に運搬するときなどのように長い輸送時間を必要とするとき、あるいは消費者に売れるまでの陳列時間が長いときなどには、保冷が不充分となり殺菌力の低下を招き、安全な保存が得られなくなるおそれがあった。   When storing seafood and the like with acidic electrolyzed water ice as described above, it is preferable that the acidic electrolyzed water ice is as difficult to melt as possible in order to safely store the seafood and the like over a long period of time. However, the acidic electrolyzed water ice made by the conventional brine refrigeration method and air blast refrigeration method has a characteristic that the ice structure is weak and easily broken because the brine temperature or the freezing room temperature is -15 to -25 ° C. Thaws relatively quickly. For this reason, when a long transport time is required, such as when transporting seafood, etc. to a long distance, or when the display time until the product is sold to consumers is long, cold storage is insufficient and the sterilizing power is reduced. There was a risk that safe storage could not be obtained.

また、酸性電解水を凍結して酸性電解水氷を得る場合、一般的に氷の形成は溶液中の純水から凍りはじめ、不純物は後から凍るために、酸性電解水が多くのミネラル成分を含んでいると、完全に氷結するのに長時間が必要となる。従来のブライン冷凍法、エアブラスト冷凍法による酸性電解水の製氷でも、ミネラル成分の影響や水の過冷却現象などにより製氷効率が低下するため製氷時間が長くなるという問題があった。そのため、大量の氷を製造するには設備の拡充や大型化が必要であった。   In addition, when acid electrolyzed water is frozen to obtain acid electrolyzed water ice, generally, ice formation begins to freeze from pure water in the solution, and impurities are frozen later. If included, it will take a long time to freeze completely. Even in ice making of acidic electrolyzed water by the conventional brine refrigeration method or air blast refrigeration method, there is a problem that ice making efficiency is lowered due to the influence of mineral components, water supercooling phenomenon, and the like, resulting in a longer ice making time. For this reason, it was necessary to expand and enlarge the size of equipment to produce a large amount of ice.

特許文献4には、前記したように被冷凍食品の組織内の水分の氷結を遅らせて組織破壊を防ぐために、被冷凍食品を冷凍するときブライン液に高電圧電場を付与して最大氷結晶生成帯(−1〜−5℃)を通過する時間の短縮化を図ることが記載されている。しかしながら、酸性電解水の製氷の際に高電圧電場を付与すると、魚介類等の保存に好適する溶けにくく長持ちする酸性電解水氷が短時間で得られることについては記載されておらず、高電圧電場を付与する点は共通していてもその目的は全く異なっている。   In Patent Document 4, as described above, in order to delay the freezing of moisture in the tissue of the frozen food and prevent tissue destruction, when the frozen food is frozen, a high voltage electric field is applied to the brine solution to generate maximum ice crystals. It is described that the time for passing the belt (-1 to -5 ° C) is shortened. However, it is not described that when a high-voltage electric field is applied during ice making of acidic electrolyzed water, acidic electrolyzed water ice that is suitable for storage of fish and shellfish and the like and that can be obtained in a short time can be obtained. Although the electric field is applied, the purpose is completely different.

本発明は、上記課題を鑑みてなされたものであり、解凍しにくく長持ちする酸性電解水氷を効率よく製造し、この酸性電解水氷により魚介類等を保存する方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to efficiently produce acidic electrolyzed water ice that is difficult to thaw and lasts long, and to provide a method for preserving seafood and the like with this acidic electrolyzed water ice. To do.

本発明者等は、上記課題を解決するために、解凍しにくく長持ちする酸性電解水氷の製氷について検討した結果、食塩水を電解して得られる酸性電解水に高電圧電場を付与して製氷すると氷結構造が強固な酸性電解水氷が得られること、該酸性電解水氷は強度が大きく解凍しにくくて長持ちすること、およびこのように酸性電解水に高電圧電場を付与することにより迅速に製氷できることを見出し、本発明を完成するに至ったものである。すなわち、本発明は次の魚介類等の鮮度保持方法を提供する。
(1)海洋深層水、海水または食塩の水溶液を電気分解して得られる酸性電解水に高電圧電場を付与して製氷した酸性電解水氷を用いて魚介類等を保存することを特徴とする魚介類等の鮮度保持方法。
(2)前記酸性電解水が海洋深層水を電気分解して得られる酸性水である上記(1)の魚介類等の鮮度保持方法。
(3)前記酸性電解水のpHが2.5〜6.5である上記(1)または(2)の魚介類等の鮮度保持方法。
(4)前記酸性電解水に5〜100kvの高電圧電場を付与する上記(1)、(2)または(3)の魚介類等の鮮度保持方法。
(5)前記酸性電解水の塩素濃度が20〜200ppmである上記(1)〜(4)のいずれかの魚介類等の鮮度保持方法。
In order to solve the above-mentioned problems, the present inventors have studied about ice making of acidic electrolyzed water ice that is difficult to thaw and lasts long. As a result, a high voltage electric field is applied to the acid electrolyzed water obtained by electrolyzing the salt water to produce ice. As a result, acidic electrolyzed water ice with a strong freezing structure is obtained, the acidic electrolyzed water ice is strong and difficult to thaw and lasts long, and thus by applying a high voltage electric field to the acidic electrolyzed water, The present inventors have found that ice can be made and have completed the present invention. That is, the present invention provides the following method for maintaining freshness of fish and shellfish.
(1) It is characterized by preserving seafood and the like using acidic electrolyzed water ice produced by applying a high-voltage electric field to acidic electrolyzed water obtained by electrolyzing an aqueous solution of deep ocean water, seawater or salt. A method for maintaining the freshness of seafood.
(2) The method for maintaining freshness of fish and shellfishes according to (1) above, wherein the acidic electrolyzed water is acidic water obtained by electrolyzing deep ocean water.
(3) The method for maintaining freshness of fish and shellfishes according to (1) or (2) above, wherein the pH of the acidic electrolyzed water is 2.5 to 6.5.
(4) The method for maintaining freshness of seafood or the like according to (1), (2) or (3), wherein a high voltage electric field of 5 to 100 kv is applied to the acidic electrolyzed water.
(5) The method for maintaining freshness of fish and shellfishes according to any one of (1) to (4), wherein the chlorine concentration of the acidic electrolyzed water is 20 to 200 ppm.

本発明によれば、食塩水を電解して得られる酸性電解水に高電圧電場を付与して製氷することにより、氷結構造が強固な解凍しにくい酸性電解水氷を短時間で製造することができるので、魚介類等をこの酸性電解水氷で保存すると、氷が長持ちするため、魚介類等を長時間にわたって保冷しその鮮度を保持することができる。   According to the present invention, it is possible to produce acidic electrolyzed water ice with a strong freezing structure in a short time by applying a high-voltage electric field to acidic electrolyzed water obtained by electrolyzing a saline solution to produce ice. Therefore, when seafood and the like are stored in this acidic electrolyzed water ice, the ice lasts long, so that the seafood and the like can be kept cold for a long time and the freshness thereof can be maintained.

また、食塩水として海洋深層水を使用すると、細菌等を含まない清浄な食塩水であるので、電解用の原水としてそのまま使用することができ、さらにこの原水から得られた酸性電解水は、含まれる塩素濃度が高く、殺菌力の高い酸性電解水氷を得ることができるので、該酸性電解水氷は魚介類等の保存に適しており、特に海洋で魚介類等を保存する場合に有効である。   In addition, when deep sea water is used as saline, it is clean saline that does not contain bacteria, so it can be used as it is as raw water for electrolysis, and acidic electrolyzed water obtained from this raw water Acidic electrolyzed water ice with a high chlorine concentration and high bactericidal power can be obtained, so that the acidic electrolyzed water ice is suitable for preservation of seafood and the like, and particularly effective for preservation of seafood and the like in the ocean. is there.

本発明では、酸性電解水に高電圧電場を付与して製氷した酸性電解水氷を用いて魚介類等を保存する。この酸性電解水氷は、電解用水を電気分解(以下、「電解」と略称することもある)することにより得られる酸性電解水を製氷して得ることができる。電解用水の電解は、工業的に実施されている従来の食塩電解と実質的に同一であるので詳述は省略する。   In the present invention, seafood and the like are stored using acidic electrolyzed water ice that has been made by applying a high-voltage electric field to acidic electrolyzed water. This acidic electrolyzed water ice can be obtained by making acidic electrolyzed water obtained by electrolyzing water for electrolysis (hereinafter also abbreviated as “electrolysis”). The electrolysis of the electrolyzing water is substantially the same as the conventional salt electrolysis practiced in the industry, and therefore detailed description thereof is omitted.

本発明に用いる電解用水としては、海洋深層水、海水または食塩を溶解した水溶液を適宜用いることができるが、塩化ナトリウム以外のミネラル成分を多く含んでいる海洋深層水または海水が好ましい。特に、例えば200m以深の深海から採取される海洋深層水は、1)ミネラル成分が多い上に細菌等が少ないので、殺菌処理を行わなくてもそのまま電解できる、2)高濃度の電解質(NaCl)を含んでいるので、比較的短時間で電解処理できる、3)電解質濃度が高いことから有効塩素を比較的高い濃度で溶存している、などの理由から、他の食塩水より好ましい。通常の海水は採取は容易であるが、一般に細菌等が存在する可能性が大きいので、殺菌処理を行ってからの電解が求められる。また、海洋深層水や海水の場合、塩分濃度が高すぎるときには、例えば電気透析法を用いて減塩処理を行ってから、または水道水で希釈してから電解することもできる。さらに、酸性電解水は通常そのまま製氷するが、必要に応じアルカリ電解水もしくは水道水等により調整したり、例えば香料などの機能成分を配合して製氷してもよい。   As water for electrolysis used in the present invention, deep sea water, seawater or an aqueous solution in which salt is dissolved can be used as appropriate, but deep sea water or seawater containing a large amount of mineral components other than sodium chloride is preferable. In particular, for example, deep sea water collected from deep seas of 200m or deeper, for example, 1) Since there are many mineral components and there are few bacteria etc., it can be electrolyzed without sterilization treatment. 2) High concentration electrolyte (NaCl) Therefore, it can be electrolyzed in a relatively short period of time. 3) Since the concentration of the electrolyte is high, effective chlorine is dissolved at a relatively high concentration. Ordinary seawater is easy to collect, but generally there is a high possibility that bacteria and the like exist, so electrolysis after sterilization is required. In the case of deep ocean water or seawater, when the salinity is too high, for example, electrolysis can be performed after performing a salt reduction treatment using an electrodialysis method or after diluting with tap water. Furthermore, although the acidic electrolyzed water is usually made as it is, it may be adjusted with alkaline electrolyzed water or tap water if necessary, or may be made by adding a functional component such as a fragrance.

本発明において、電解用水を電解して得られる酸性電解水はpH2.5〜6.5の範囲が好ましく、pH4.5〜5.5の範囲であればより好ましい。pHが上記範囲であれば、製氷して魚介類等を保冷したとき所望の殺菌力が得られ、かつ魚介類等を冒さないで済む。すなわち、pHが6.5以上であると、殺菌力が低下するために、魚介類等に付着している細菌の殺菌が充分に得られなくなるおそれがある。一方pHが2.5未満になると、殺菌力は増大するものの氷が溶けて魚介類等の表面に接したとき、魚介類等が強い酸性液によって傷められるおそれが生じるので好ましくない。   In the present invention, acidic electrolyzed water obtained by electrolyzing water for electrolysis is preferably in the range of pH 2.5 to 6.5, more preferably in the range of pH 4.5 to 5.5. If pH is the said range, when ice-making and fish and shellfish etc. are kept cold, desired bactericidal power will be acquired and it will not be necessary to attack fish and shellfish. That is, when the pH is 6.5 or more, the sterilizing power is reduced, and there is a possibility that the sterilization of the bacteria adhering to the seafood and the like cannot be sufficiently obtained. On the other hand, when the pH is less than 2.5, the sterilizing power is increased, but when the ice melts and comes into contact with the surface of fish and shellfish, the fish and shellfish may be damaged by a strong acidic solution, which is not preferable.

また、酸性電解水の有効塩素濃度(DCl)としては、20〜200ppmの範囲が好ましく、40〜100ppmの範囲がより好ましい。塩素には殺菌作用があるので、鮮魚等の保存に有用な効果を示す可能性が高いが、同時に酸化作用によって魚の鮮度を劣化させる可能性も残されている。DClが20ppm未満であると、充分な殺菌作用が得られなくなり、200ppmを超えると、酸化作用が強くなるために魚の鮮度が劣悪となるおそれが生じる。   Moreover, as an effective chlorine concentration (DCl) of acidic electrolyzed water, the range of 20-200 ppm is preferable, and the range of 40-100 ppm is more preferable. Chlorine has a bactericidal action, so it has a high possibility of showing a useful effect for preservation of fresh fish and the like, but at the same time, there is a possibility that the freshness of the fish is deteriorated by an oxidizing action. If DCl is less than 20 ppm, sufficient bactericidal action cannot be obtained, and if it exceeds 200 ppm, the oxidative action becomes stronger and the freshness of the fish may be deteriorated.

本発明おいて製氷の基本技術は氷の大量生産に一般的に用いられている製氷技術を用いることができる。具体的には、冷凍槽に入れた凍結温度が低い冷媒(ブライン液)中に、酸性電解水を収容した容器を浸漬して凍結するブライン冷凍法と、例えば容器に入れた酸性電解水を冷凍庫内において空気で急冷して凍結するエアブラスト冷凍法を例示できる。ブライン冷凍法とエアブラスト冷凍法とを比較した場合、ブライン液の熱伝導率は空気より大きいため、前者の方が後者より凍結速度を早くできる利点がある。これらの方法において、ブライン液や空気は、冷凍機等により所定の温度に冷却される。冷媒温度によって製氷温度(製氷速度)が実質決まるので、冷媒温度は製氷速度等を考えて選定する。この冷媒温度としては、通常−10〜−60℃の範囲が好ましく、設備装置コストおよび製氷効率などを考えると−25〜−38℃の範囲がより好ましい。   In the present invention, ice making technology generally used for mass production of ice can be used as basic ice making technology. Specifically, a brine freezing method in which a container containing acidic electrolyzed water is immersed in a refrigerant (brine liquid) having a low freezing temperature in a freezing tank and frozen, and for example, the acidic electrolyzed water stored in the container is stored in a freezer. An air blast freezing method in which the inside is rapidly cooled with air and frozen can be exemplified. When the brine refrigeration method and the air blast refrigeration method are compared, the thermal conductivity of the brine liquid is larger than that of air, and therefore the former has the advantage that the freezing rate can be faster than the latter. In these methods, the brine solution or air is cooled to a predetermined temperature by a refrigerator or the like. Since the ice making temperature (ice making speed) is substantially determined by the refrigerant temperature, the refrigerant temperature is selected in consideration of the ice making speed and the like. As the refrigerant temperature, a range of −10 to −60 ° C. is usually preferable, and a range of −25 to −38 ° C. is more preferable in view of equipment cost and ice making efficiency.

本発明は、上記冷凍法で酸性電解水を製氷する場合、該酸性電解水に高電圧電場を付与することを特徴とする。高電圧電場の発生手段としては、例えば高周波電位発生装置(特公昭38−6106号)のような高電場発生器が好適している。製氷する酸性電解水に高電場を付与するには、該高電場発生器の変圧器の二次側端子の一方を絶縁し、他方を前記冷凍槽または冷凍庫内の酸性電解水に高電圧電場を付与できるように製氷装置側に接続する。印加する電圧の強さは、製氷する酸性電解水量等により変わり特定されないが、通常5〜100kvの範囲が好ましく、10〜45kvの範囲がより好ましい。この範囲の電圧であれば、酸性電解水を強固な氷結構造にしかも早く凍結できる。   The present invention is characterized in that a high voltage electric field is applied to the acidic electrolyzed water when ice is produced by the above refrigerating method. As a means for generating a high voltage electric field, for example, a high electric field generator such as a high-frequency potential generator (Japanese Patent Publication No. 38-6106) is suitable. In order to apply a high electric field to the acidic electrolyzed water to be iced, one of the secondary terminals of the transformer of the high electric field generator is insulated and the other is supplied with a high voltage electric field in the acidic electrolyzed water in the freezer or freezer. Connect to the ice making machine so that it can be applied. The strength of the voltage to be applied varies depending on the amount of acidic electrolyzed water to be iced and is not specified, but is usually preferably in the range of 5 to 100 kv, more preferably in the range of 10 to 45 kv. If it is the voltage of this range, acidic electrolyzed water can be frozen into a strong freezing structure quickly.

次に、ブライン冷凍法およびエアブラスト冷凍法による製氷装置について図面に基づき概説する。図1はブライン冷凍法の好ましい実施形態に係わる製氷装置の正面概略図で一部を断面で示している。本製氷装置は、冷凍槽1と冷凍機7と高電場発生器8とを備えている。冷凍槽1は例えばステンレス製(SUS304、以下同じ)の箱体で断熱構造になっており、内部にブライン液が収容されている。冷凍槽1の上部は開口しており、製氷する酸性電解水を入れた複数個の製氷管3を搭載もしくは支持した製氷枠2を下降させて該開口部から冷凍槽1に装入することにより、製氷管3をブライン液中に浸漬できるようになっている。製氷枠2は取付台4に支持されており、該取付台4を例えば駆動モータ(不図示)で冷凍槽1の両側に設けた2本のガイド10に沿って昇降させることにより、製氷管3を搭載または支持した製氷枠2を冷凍槽1に出し入れすることができる。この構造は、通常のブライン冷凍装置と実質同じで、汎用されている製氷装置が使用できる。   Next, an outline of an ice making device using a brine refrigeration method and an air blast refrigeration method will be described with reference to the drawings. FIG. 1 is a schematic front view of an ice making device according to a preferred embodiment of the brine refrigeration method, partly in cross section. The ice making apparatus includes a freezer tank 1, a refrigerator 7, and a high electric field generator 8. The freezer tank 1 is a heat insulating structure made of, for example, stainless steel (SUS304, the same applies hereinafter), and contains a brine solution therein. The upper part of the freezing tank 1 is open, and the ice making frame 2 carrying or supporting a plurality of ice making tubes 3 containing the acid electrolyzed water to be iced is lowered and inserted into the freezing tank 1 through the opening. The ice making tube 3 can be immersed in the brine solution. The ice making frame 2 is supported by a mounting base 4. The ice making pipe 3 is moved up and down along the two guides 10 provided on both sides of the freezing tank 1 by, for example, a drive motor (not shown). The ice making frame 2 carrying or supporting can be taken in and out of the freezing tank 1. This structure is substantially the same as a normal brine refrigerating apparatus, and a widely used ice making apparatus can be used.

本製氷装置において前記製氷管3は製氷する酸性電解水を入れる容器で、上部が開口しておりこの開口部から製氷する酸性電解水を注入し、また製氷された酸性電解水氷を取り出す。一方、製氷枠2は該製氷管3を凍結槽1のブライン液中に浸漬するとき支持するための枠体で、製氷管を上部において引っ掛けてまたは底部に載置して支持できる構造になっており、冷凍槽1に入れたとき製氷管3の外面にブライン液がむらなく接触して製氷管3を均一に冷却できるよう全体的に網目状または格子状になっている。図示しないが、この製氷枠2には必要に応じ蓋を設けることができる。   In the present ice making apparatus, the ice making tube 3 is a container for containing acidic electrolyzed water to be iced. The upper part is open, the acidic electrolyzed water to be iced is injected from the opening, and the produced acidic electrolyzed water ice is taken out. On the other hand, the ice making frame 2 is a frame for supporting the ice making tube 3 when immersed in the brine solution of the freezing tank 1, and has a structure that can be supported by hooking the ice making tube at the top or placing it on the bottom. In addition, when placed in the freezer tank 1, the brine solution uniformly contacts the outer surface of the ice making tube 3 so that the ice making tube 3 can be uniformly cooled so that the entire ice making tube 3 has a mesh shape or a lattice shape. Although not shown, the ice making frame 2 can be provided with a lid as required.

上記製氷管3と製氷枠2の材質としては、所望の強度を有し、耐酸性と防錆性に優れているステンレスが好ましい。しかし、これに限定されない。例えば製氷管3は耐低温性と耐酸性を有する例えば高密度ポリエチレンなどのプラスチックで形成することもできる。酸性電解水は製氷管3の中で製氷されるので、製氷される氷の形体(形状と大きさ)は製氷管3の形状によって決まる。したがって、使用する製氷管3の形状は製造する氷の形状に合わせて適宜決めればよい。通常は上部が開口している直方形の製氷管を用いて板状または方形の氷を作ることが多いが、円柱状氷のときは有底の円筒管を使用する。さらに、製氷管の形状、製氷方法や製氷条件などを変えることによって、角型、プレート状、フレイク状またはシャーベット状の氷にすることが可能である。   As a material of the ice making tube 3 and the ice making frame 2, stainless steel having a desired strength and excellent in acid resistance and rust prevention is preferable. However, it is not limited to this. For example, the ice making tube 3 can be formed of a plastic such as high-density polyethylene having low temperature resistance and acid resistance. Since the acidic electrolyzed water is made in the ice making tube 3, the shape (shape and size) of the ice to be made is determined by the shape of the ice making tube 3. Therefore, the shape of the ice making tube 3 to be used may be appropriately determined according to the shape of the ice to be produced. Normally, plate-shaped or square-shaped ice is often made using a rectangular ice-making tube with an open top, but a cylindrical tube with a bottom is used for columnar ice. Furthermore, by changing the shape of the ice-making tube, the ice-making method, the ice-making conditions, etc., it is possible to obtain ice in a square shape, a plate shape, a flake shape or a sherbet shape.

製氷管3の高さは製氷管を製氷枠2の上部に引っ掛けて支持するときは、製氷枠2の高さと同じか、それより小さくし、製氷管3を製氷枠2の底部に載置して支持するときは、製氷枠2の高さと同じか、それより僅かに大きくするのが好ましい。製氷管3を製氷枠2に支持するときは、製氷管と製氷管の間をブライン液が自由に流動できるようにするため、好ましくは隣り合う製氷管の間に所定の間隔を設けて並列する。また、製氷管を割り型タイプにしたり、底部に向かって先細にすると、製氷された氷を製氷管から取り出しやすくすることができる。   The height of the ice making tube 3 is the same as or smaller than the height of the ice making frame 2 when the ice making tube is supported on the top of the ice making frame 2, and the ice making tube 3 is placed on the bottom of the ice making frame 2. It is preferable that the height of the ice making frame 2 is the same as or slightly larger than that of the ice making frame 2. When the ice making tube 3 is supported by the ice making frame 2, it is preferably arranged in parallel with a predetermined interval between adjacent ice making tubes so that the brine solution can freely flow between the ice making tubes. . Further, when the ice making tube is made into a split type or tapered toward the bottom, it is possible to easily take out the ice made from the ice making tube.

上記冷凍槽1には冷凍槽内のブライン液を攪拌もしくは循環させるための攪拌手段5が一般的に設けられている。この撹拌手段で冷凍槽内のブライン液を攪拌し、ブライン液の温度の均一化を図ることにより、酸性電解水の入った製氷管をブライン液で均一に効率よく冷却できる。また、同時にブライン液は冷凍機7の熱交換部6とも良好に接触するため、ブライン液を冷凍機7で効率的に冷却することができる。   The freezing tank 1 is generally provided with stirring means 5 for stirring or circulating the brine solution in the freezing tank. By stirring the brine solution in the freezing tank with this stirring means and making the temperature of the brine solution uniform, the ice making tube containing the acidic electrolyzed water can be uniformly and efficiently cooled with the brine solution. At the same time, the brine solution also makes good contact with the heat exchange unit 6 of the refrigerator 7, so that the brine solution can be efficiently cooled by the refrigerator 7.

なお、ブライン液としては凍結温度が製氷水の製氷温度より低い、塩化カルシウム水溶液、プロピレングリコールやアルコール溶液などが使用でき、これらを混合して使用することもできる。これらの中で、とりわけアルコール溶液は低温が得られやすく廉価であるなどの点で好ましい。   As the brine solution, an aqueous calcium chloride solution, propylene glycol, alcohol solution, or the like having a freezing temperature lower than the ice making temperature can be used, and these can also be used in combination. Among these, an alcohol solution is particularly preferable in that it is easy to obtain a low temperature and is inexpensive.

本製氷装置では、冷凍槽1において製氷する酸性電解水に高電場発生器8から高電圧電場を付与するようになっている。高電場発生器8の二次側端子の一方は絶縁し、他方の出力端を導線9に接続して冷凍槽1に接触させている。本例では高電場発生器8の絶縁しない側の端子をこのように冷凍槽1に接続しているが、該端子は製氷枠もしくは製氷管等に接続することもでき、さらにブライン液に直に接続してもよい。冷凍槽1、製氷枠2および製氷管3がステンレス製あれば、これらはブライン液を通してまたは相互に導通して最終的に製氷管内の酸性電解水に高電圧電場を付与することができる。本装置のように冷凍槽1に印加された高電圧電場は、導通により直接または製氷枠を介して製氷管に伝わって製氷管内の酸性電解水に付与される。また、製氷枠に高電圧電場を印加した場合には、製氷枠から製氷管に伝わって同様に酸性電解水に高電圧電場を付与できる。この場合、高電圧電場を印加する位置が酸性電解水に近いほど酸性電解水に対する高電圧電場の効果が大きい。なお、酸性電解水に電流を流さずに電位のみ印加されるように、冷凍槽1は床11に電気絶縁材12を介在して設置し、絶縁されている。   In this ice making device, a high voltage electric field is applied from the high electric field generator 8 to the acidic electrolyzed water that is made in the freezing tank 1. One of the secondary terminals of the high electric field generator 8 is insulated, and the other output end is connected to the conductor 9 so as to be in contact with the freezing tank 1. In this example, the terminal on the non-insulating side of the high electric field generator 8 is connected to the freezing tank 1 in this way. However, the terminal can be connected to an ice making frame or an ice making tube or the like. You may connect. If the freezer 1, the ice making frame 2 and the ice making tube 3 are made of stainless steel, these can be conducted through a brine solution or to each other to finally apply a high voltage electric field to the acidic electrolyzed water in the ice making tube. The high voltage electric field applied to the freezing tank 1 as in this apparatus is transmitted to the ice making pipe directly or via an ice making frame by conduction, and is given to the acidic electrolyzed water in the ice making pipe. In addition, when a high voltage electric field is applied to the ice making frame, the high voltage electric field can be applied to the acidic electrolyzed water similarly from the ice making frame to the ice making tube. In this case, the closer the position to which the high voltage electric field is applied is to the acidic electrolyzed water, the greater the effect of the high voltage electric field on the acidic electrolyzed water. In addition, the freezing tank 1 is installed and insulated with the electric insulating material 12 interposed in the floor 11 so that only an electric potential may be applied without passing an electric current through acidic electrolyzed water.

酸性電解水は上記製氷装置を用いて次の方法により高電圧電場を付与して製氷できる。製氷枠2を上昇させた状態で製氷管3に酸性電解水を入れ、該製氷管3を製氷枠2に支持する。これとは別に、冷凍槽内のブライン液を攪拌手段5で攪拌しながら冷凍機7であらかじめ所定の温度に冷却するとともに、高電場発生器8のスイッチを入れて冷凍槽1に高電圧電場を印加する。ついで、製氷枠2を下降させて上部開口部から凍結槽内に装入し、酸性電解水の入った製氷管3を前記ブライン液中に浸漬させる。この状態で製氷管内の酸性電解水を一定時間ブライン液によって冷却することにより、該酸性電解水を高電圧電場を付与しながら凍結させ酸性電解水氷を得ることができる。製氷された酸性電解水氷は、製氷枠を上昇させて製氷管から取りだし適宜蓄氷して使用に供する。   The acidic electrolyzed water can be made by applying a high voltage electric field by the following method using the ice making apparatus. In a state where the ice making frame 2 is raised, acidic electrolyzed water is poured into the ice making tube 3, and the ice making tube 3 is supported by the ice making frame 2. Separately, the brine solution in the freezer is cooled to a predetermined temperature by the refrigerator 7 while being stirred by the stirring means 5, and a high voltage electric field is applied to the freezer 1 by turning on the high electric field generator 8. Apply. Next, the ice making frame 2 is lowered and charged into the freezing tank through the upper opening, and the ice making tube 3 containing the acidic electrolyzed water is immersed in the brine solution. In this state, by cooling the acidic electrolyzed water in the ice making tube with a brine solution for a certain period of time, the acidic electrolyzed water can be frozen while applying a high voltage electric field to obtain acidic electrolyzed water ice. The iced acidic electrolyzed water ice is taken out from the ice making tube by raising the ice making frame, and is stored in an appropriate manner for use.

次に、エアブラスト冷凍法による製氷について説明する。エアブラスト冷凍法の場合も酸性電解水に高電圧電場を付与しながら冷凍する点を除き従来の方法と製氷原理は実質同じである。したがって、これに関する図示と説明を省略し、酸性電解水に高電圧電場を付与する点について図面を参照して概説する。図2は、酸性電解水を入れた製氷管を支持して冷凍庫内に収容するための製氷棚13(図1の製氷枠に相当する)に、高電場発生器8の一つの端子を導線15で接続した状態を示す。本例の製氷棚13は図示のようにステンレス製の網棚を3段有し、酸性電解水を入れた例えばステンレス製の製氷管を網棚上に並列できるように構成されている。しかし、この製氷棚は前記したブライン冷凍法の製氷枠と同じように製氷管を懸持または底部に載置して支持する構造のものであってもよい。   Next, ice making by the air blast freezing method will be described. In the case of the air blast freezing method, the ice making principle is substantially the same as that of the conventional method except that the acidic electrolyzed water is frozen while applying a high voltage electric field. Therefore, the illustration and description regarding this will be omitted, and the point of applying a high-voltage electric field to the acidic electrolyzed water will be outlined with reference to the drawings. FIG. 2 shows an ice making shelf 13 (corresponding to the ice making frame in FIG. 1) for supporting an ice making tube containing acidic electrolyzed water and accommodating it in a freezer. Shows the connected state. As shown in the figure, the ice making shelf 13 in this example has three stages of stainless steel net shelves, and is configured such that, for example, stainless steel ice making tubes containing acidic electrolyzed water can be arranged in parallel on the net shelf. However, the ice making shelf may have a structure in which an ice making tube is suspended or placed on the bottom and supported in the same manner as the ice making frame of the brine refrigerating method.

該製氷枠の底部には電気絶縁材12が設けられており、製氷棚13を冷凍庫内に絶縁した状態で設置できるようになっている。そして、冷凍庫内で冷凍する酸性電解水に高電圧電場を印加するために、高電場発生器8の二次側端子の一方が前記したように導線15により該製氷棚13の一部に接続されている。冷凍棚13に印加された高電圧電場は、製氷管中の酸性電解水に電場を付与する。   An electrical insulating material 12 is provided at the bottom of the ice making frame so that the ice making shelf 13 can be installed in a freezer. And in order to apply a high voltage electric field to the acidic electrolyzed water frozen in the freezer, one of the secondary side terminals of the high electric field generator 8 is connected to a part of the ice making shelf 13 by the conducting wire 15 as described above. ing. The high voltage electric field applied to the freezer shelf 13 gives an electric field to the acidic electrolyzed water in the ice making tube.

本発明の方法により酸性電解水に高電圧電場を付与すると、解凍しにくく長持ちする粘り強い強度を有する酸性電解水氷を短時間で得ることができる。その理由は明らかでないが、製氷中の酸性電解水に高電圧電場が印加されることによって、水の解離の影響およびHとOHの移動によって凝固核が発生し、ミネラル分を含む酸性電解水が凍結しやすくなり、かつ凍結された酸性電解水氷の結晶構造が強化されるものと推測される。また、高電圧電場の付加は、酸性電解水に過冷却水の凝固に影響を及ぼして製氷時間を短縮するので、ミネラル分を含み氷結しにくい、例えば海洋深層水の酸性電解水であっても比較的早く凍結せしめ、酸性電解水氷を短時間で製造できる。 When a high voltage electric field is applied to acidic electrolyzed water by the method of the present invention, acidic electrolyzed water ice having a tenacious strength that is difficult to thaw and lasts long can be obtained in a short time. Although the reason is not clear, when a high voltage electric field is applied to the acidic electrolyzed water during ice making, solidification nuclei are generated due to the influence of water dissociation and the movement of H + and OH , and the acidic electrolysis containing minerals It is presumed that water is easily frozen and the crystal structure of the frozen acidic electrolyzed water ice is strengthened. Moreover, the addition of a high voltage electric field affects the solidification of the supercooled water to the acidic electrolyzed water, thereby shortening the ice making time. It is possible to freeze acid electrolytic water ice in a short time by freezing relatively quickly.

本発明において保存対象となる魚介類等は、魚、貝、甲殻類などの水産物や海産物のほか、氷で保存が可能な肉などの畜産物、およびこれらの加工品などを含んでいる。とりわけ、魚に代表される水産物は氷保存に向いており、さらに酸性電解水氷の保冷による殺菌の増殖防止効果と氷が溶けたときの酸性電解水による殺菌効果を利用しやすいなどの点で好適する。   The seafood and the like to be preserved in the present invention include marine products such as fish, shellfish and crustaceans, marine products, livestock products such as meat that can be preserved with ice, and processed products thereof. In particular, marine products represented by fish are suitable for ice storage, and further, it is easy to use the effect of preventing the proliferation of sterilization by keeping the acidic electrolyzed water ice cold and the sterilizing effect of the acidic electrolyzed water when the ice melts. Preferred.

本発明は、製氷された酸性電解水氷で魚介類等をこれまでの氷保存と同様な方法で冷却保存できる。この場合、酸性電解水氷を適当な大きさに破砕して、また必要あれば水道水氷などを混ぜて使用できる。   In the present invention, seafood and the like can be cooled and stored in the same manner as ice storage so far using iced acidic electrolyzed water ice. In this case, the acidic electrolyzed water ice can be crushed to an appropriate size and mixed with tap water ice if necessary.

(実施例1)
海洋深層水(以下、深層水とする)を電気分解して得られる酸性電解水が魚の鮮度保持に有効利用できるか否かを、以下の方法により次の2項目について検証した。
(1)魚の鮮度保持を図る指標として、過酸化物の濃度と細菌の増殖数を調べることにより、電気化学的に処理した深層水が細胞に与える影響を検証する。
(2)酸性電解水を氷に加工し、魚の鮮度保持に利用できるか検証する。
1.使用水
実験に供した使用水は次の通りである。
深層水原水:電解処理を施さない無処理の深層水
酸性電解水:深層水を2槽式溜め置き型の電解水生成装置(アルテック社製)を用い、定電流電解(0.8A)、電解時間10分で電解した時に陽極側に得られる強い酸性水
水道水 :電解処理を施さない無処理の水道水
2.試料魚
近海で漁獲される鰯(体長:約25cm)を実験対象とした。魚は市販されているものを購入し、冷蔵保存しておいたものから試料調整し実験に供した。
3.使用水の物理・化学特性の測定
各使用水の物理的および化学的特性を次のような装置と方法で測定した。
pHは堀場製作所社製のpHメーター(F22)、導電率(EC)は堀場製作所社製のカスタニーACT導電率メーター、溶存酸素量(DO)はYSI社製の5100型溶存酸素計、酸化還元電位(ORP)は堀場製作所社製の酸化還元電位計(93001−10D)、有効塩素濃度(DCl)の分析は日産化学工業社製の日産アクアチェックFW(商品名)、ミネラルの分析はリーマン ラブス社製(LEEMAN LABS,INC)のプラズマ発光分光装置をそれぞれ用いて測定した。その結果は表1の通りである。
(Example 1)
The following two methods were used to verify whether acidic electrolyzed water obtained by electrolyzing deep sea water (hereinafter referred to as deep water) can be effectively used for maintaining the freshness of fish.
(1) As an index for maintaining the freshness of fish, the effects of electrochemically treated deep water on cells are examined by examining the concentration of peroxide and the number of bacterial growth.
(2) Process acid electrolyzed water into ice and verify whether it can be used to maintain the freshness of fish.
1. Water used The water used for the experiment is as follows.
Raw deep-sea water: untreated deep-water acidic electrolyzed water without electrolytic treatment: constant-current electrolysis (0.8A), electrolysis using a two-tank reservoir type electrolyzed water generator (Altech) 1. Strong acidic water tap water obtained on the anode side when electrolyzed for 10 minutes: Untreated tap water not subjected to electrolytic treatment Sample fish A salmon (length: about 25 cm) caught in the sea was used as an experiment target. The fish was purchased commercially, and samples were prepared from those that had been refrigerated and stored for experiments.
3. Measurement of physical and chemical properties of water used The physical and chemical properties of each water used were measured using the following equipment and methods.
The pH is a pH meter (F22) manufactured by HORIBA, Ltd., the conductivity (EC) is a Castany ACT conductivity meter manufactured by HORIBA, and the dissolved oxygen amount (DO) is a 5100 type dissolved oxygen meter manufactured by YSI, redox potential. (ORP) is an oxidation-reduction potentiometer (93001-10D) manufactured by Horiba, Ltd., the analysis of effective chlorine concentration (DCl) is Nissan Aqua Check FW (trade name) manufactured by Nissan Chemical Industries, and the analysis of minerals is Lehman Labs Measurements were made using plasma emission spectrometers manufactured by LEEMAN LABS, INC. The results are shown in Table 1.

Figure 2005333922
深層水は高濃度の電解質(NaCl)を含んでいるので、比較的短時間で電解処理ができた。酸性電解水の場合、表1から明らかのように有効塩素を比較的高濃度で溶存しており、塩素には殺菌作用があるので、鮮魚の保存に有効である可能性が高い。しかし、この塩素の酸化作用によって魚の鮮度を劣化させる可能性も残されている。
4.過酸化物の測定
強酸性の酸性電解水が魚の酸化劣化を増強する可能性があるため、魚の過酸化物(POV)値をTBA法で測定することによって、酸化劣化に及ぼす影響を調べた。ここで、TBA法は魚のすり身にリン酸緩衝液を入れて更に細かくし、これに酢酸緩衝液、抗酸化物質、界面活性剤等を加えて加熱し、冷却後に酢酸エチルを加え、遠心分離した後に吸光度測定(532nm)するもので、TBA値はその測定値である。また、酸性電解水を持続的に作用させる目的で氷を作成し、魚を氷冷して保存し、酸化劣化がどのように進むかを調べた。
実験方法は、酸性電解水等の使用水を製氷庫で製氷し、図3に示すように発泡スチロール箱15に1匹の鰯16を入れその上から氷17を被せるように敷き詰めし、24時間後に取りだしてその酸化劣化をTBA法にて測定し、使用水(氷)による酸化劣化を比較した。使用した氷の種類は、表1の使用水を凍結して得られる酸性電解水氷、水道水氷および深層水原水氷の3種類である。図4は3種類の氷で氷冷した魚のTBA値を示したものである。図4から明らかのように、水道水氷および深層水原水氷による魚のTBA値は2倍以上に上昇しているのに対し、酸性電解水氷では酸化が50%程度抑制されている。このことから、酸性電解水氷の方が他の氷より魚の酸化劣化を抑制できることが分かる。
5.酸性電解水氷による抗菌作用
図5のような装置を用いて、酸性電解水の抗菌作用を調べた。菌の増殖を確認する方法として、魚の表面の細菌数と魚から溶け出してくる水溶液中の細菌数を測定した。いずれの実験も魚に直接氷が接触しないように、図5に示す如く発泡スチロール容器18にスノコ19を敷き、その上に鰯(5匹)16を入れて上からポリエチレンシート20を被せ、シートの上に次の3種類の裂氷を被せて蓋をする。規定時間経過ごとに魚の体表面の細菌数と保存中に溶け出して容器底部21に溜まる水中の細菌数とを測定した。図6は酸性電解水氷と深層水氷で冷却した場合における、魚の表面における細菌数の経時変化を示し、図7は酸性電解水氷、深層水氷、純水氷で冷却した場合における、魚から溶け出した水中の細菌数の経時変化を示す。
(使用した氷の種類)
(a)酸性電解水氷:20mMのNaCl水溶液を電解して得られる酸性電解水の氷
(b)深層水氷:無処理の深層水原水(表1参照)の氷
(c)純水氷 :精製水氷
なお、細菌の測定は、拭き取り検査法キット(川本産業株式会社製の滅菌綿棒(電子線滅菌済み))を使って細菌の培養をおこない、細菌の増殖率を指標として抗菌作用の評価を行った。その拭き取り検査法の手順は次の通りである。
1)滅菌した綿棒を10mlの滅菌水に浸し、圧搾後、検体魚体表面の拭き取りを行う。2)魚体表面の拭き取り後、滅菌水に綿棒を戻し、綿棒についた検体を溶解させる。
3)寒天培地のシャーレに検体を含む溶液(1ml)を分け、インキュベータ(35℃)で培養する。
4)培養は検体希釈10倍および100倍で行う。
5)培養後、光学顕微鏡下でコロニーの数を調べる。
Figure 2005333922
Deep water contains a high concentration of electrolyte (NaCl). In the case of acidic electrolyzed water, as shown in Table 1, effective chlorine is dissolved at a relatively high concentration, and since chlorine has a bactericidal action, there is a high possibility that it is effective for preservation of fresh fish. However, there is still a possibility that the freshness of fish is deteriorated by the oxidizing action of chlorine.
4). Measurement of Peroxide Since strongly acidic acidic electrolyzed water may enhance the oxidative degradation of fish, the influence on oxidative degradation was investigated by measuring the peroxide (POV) value of fish by the TBA method. Here, the TBA method is further refined by adding a phosphate buffer to fish surimi, adding acetate buffer, antioxidant, surfactant, etc. to this, heating, cooling, adding ethyl acetate, and centrifuging. The absorbance is measured later (532 nm), and the TBA value is the measured value. In addition, ice was prepared for the purpose of sustaining acidic electrolyzed water, and the fish was stored in an ice-cooled state to investigate how oxidative degradation progressed.
In the experiment method, water used such as acidic electrolyzed water is made in an ice maker, and as shown in FIG. 3, one bottle 16 is placed in a foamed polystyrene box 15 and covered with ice 17 from above, and 24 hours later. The oxidative deterioration was measured by the TBA method, and the oxidative deterioration due to water used (ice) was compared. There are three types of ice used: acidic electrolyzed water ice obtained by freezing the water used in Table 1, tap water ice, and deep water source water ice. FIG. 4 shows the TBA values of fish cooled with three types of ice. As is clear from FIG. 4, the TBA value of fish by tap water ice and deep water source water ice has increased more than twice, whereas in acid electrolyzed water ice, oxidation is suppressed by about 50%. This shows that acidic electrolyzed water ice can suppress oxidative degradation of fish more than other ice.
5). Antibacterial Action by Acid Electrolyzed Water Ice The antibacterial action of acidic electrolyzed water was examined using an apparatus as shown in FIG. As a method for confirming the growth of the bacteria, the number of bacteria on the surface of the fish and the number of bacteria in the aqueous solution dissolved from the fish were measured. In both experiments, in order to prevent the ice from coming into direct contact with the fish, a slat 19 was laid on the polystyrene foam container 18 as shown in FIG. 5, and a cocoon (5 animals) 16 was placed on it, and a polyethylene sheet 20 was covered from above. Cover with the following three types of icy ice. The number of bacteria on the surface of the fish body and the number of bacteria in the water that dissolved during storage and accumulated in the container bottom 21 were measured at each specified time. FIG. 6 shows changes over time in the number of bacteria on the surface of fish when cooled with acidic electrolyzed water ice and deep water ice, and FIG. 7 shows fish when cooled with acidic electrolyzed water ice, deep water ice, and pure water ice. Shows the time course of the number of bacteria dissolved in water.
(Type of ice used)
(A) Acid electrolyzed water ice: Acid electrolyzed water ice obtained by electrolyzing a 20 mM NaCl aqueous solution (b) Deep water ice: Untreated deep water raw water (see Table 1) (c) Pure water ice: Purified water ice Bacteria are measured using a wiping test kit (sterilized cotton swab (sterilized by electron beam) manufactured by Kawamoto Sangyo Co., Ltd.), and the antibacterial activity is evaluated using the bacterial growth rate as an index. Went. The procedure of the wiping inspection method is as follows.
1) Immerse the sterilized cotton swab in 10 ml of sterilized water, and after squeezing, wipe the surface of the specimen fish body. 2) After wiping the fish surface, return the swab to sterilized water and dissolve the sample on the swab.
3) Divide the solution (1 ml) containing the specimen into a petri dish of agar medium and culture in an incubator (35 ° C.).
4) Culture is performed at 10 and 100 times sample dilution.
5) After culture, examine the number of colonies under an optical microscope.

図6から明らかのように魚の体表面の細菌の増殖が、酸性電解水氷では初期値の3000個から500個程度に減少し、特に3時間以降において深層水氷より殺菌効果が大きい。また、図7から酸性電解水氷が、溶解して魚から溶け出してくる溶液と接触することにより細菌の増殖が抑制されることが分かる。酸性電解水氷が溶解した酸性電解水は、細菌の増殖を100%抑制し、その抑制効果が他の氷に比べて優れている。   As apparent from FIG. 6, the growth of bacteria on the surface of the fish body decreased from the initial value of 3000 to about 500 in the acidic electrolyzed water ice, and in particular, after 3 hours, the bactericidal effect is greater than in the deep water ice. Further, it can be seen from FIG. 7 that the growth of bacteria is suppressed when the acidic electrolyzed water ice comes into contact with the solution dissolved and dissolved from the fish. The acid electrolyzed water in which the acid electrolyzed ice is dissolved suppresses the growth of bacteria by 100%, and the inhibitory effect is superior to other ice.

これは、酸性電解水中には殺菌力を示す有効塩素が多く溶解していて、酸性電解水氷が溶解する過程で気化し、そのガス成分が間接的に魚の体表面の細菌を除菌するものと考えられる。さらに、冷凍保存中に溶解した強酸性の電解水は強力な殺菌力を示すことから、酸性電解水氷は細菌が発生しやすい魚介類等の保存に好適する。   This is because there is a lot of effective chlorine that shows bactericidal power in acidic electrolyzed water, and it vaporizes in the process of dissolving acidic electrolyzed water ice, and its gas component indirectly sterilizes bacteria on the fish body surface. it is conceivable that. Furthermore, since strongly acidic electrolyzed water dissolved during frozen storage exhibits a strong sterilizing power, acidic electrolyzed water ice is suitable for storing fish and shellfish that are prone to bacteria.

(実施例2)
海洋深層水を電解して得られた酸性電解水と純水(milliQ)について、ブライン冷凍法とエアブラスト冷凍法により、酸性電解水には製氷時に高電圧電場を付与する場合と付与しない場合に分けて製氷し、それぞれの製氷時間を測定すると共に、製氷された各氷の破断強度を次の方法で測定した。
(Example 2)
When acidic electrolyzed water and pure water (milliQ) obtained by electrolyzing deep seawater are subjected to a brine refrigeration method and an air blast refrigeration method, with or without a high-voltage electric field applied to the acidic electrolyzed water during ice making Ice making was performed separately, and each ice making time was measured, and the breaking strength of each ice piece was measured by the following method.

(1)製氷水
製氷に使用する純水は超純水製造装置(日本ミリポア社製)、酸性電解水はポータブル超酸化水生成器(アルテック社製)をそれぞれ使用して表2の特性の純水と酸性電解水を作製した。
(1) Ice making water The pure water used for ice making is pure water with ultrapure water production equipment (Nihon Millipore), and the acidic electrolyzed water is pure water with the characteristics shown in Table 2 using a portable superoxide water generator (Altech). Water and acidic electrolyzed water were prepared.

Figure 2005333922
Figure 2005333922

(2)製氷装置
A.ブライン冷凍ユニット:リ・ジョイス クイックフリージングシステムRQF−10
(アルファシステム社製)
ブライン液 :アルコール(初期濃度67.9%、運転時濃度55%)
ブライン容量 :180リットル
冷凍機 :日立スクロール22(KX-3A2)
圧縮機出力 :2.2kW
冷媒ガス :R−22
ブライン温度 :−35℃
付加電圧 :アルファシステム社製高電場電位発生器(18kV付加、無付加切替え式)
B.エアブラスト冷凍庫:前室式プレハブ冷凍庫
冷凍機 :サンヨー LCU−N100P
圧縮機出力 :7.5kW
冷媒ガス :R−22
冷凍庫温度 :−35℃
付加電圧 :アルファシステム社製高電場電位発生器(18kV付加、無付加切替え式)
(2) Ice making apparatus A. Brine refrigeration unit: Re-Joyce Quick Freezing System RQF-10
(Alpha system)
Brine solution: Alcohol (initial concentration 67.9%, operating concentration 55%)
Brine capacity: 180 liters Refrigerator: Hitachi Scroll 22 (KX-3A2)
Compressor output: 2.2kW
Refrigerant gas: R-22
Brine temperature: -35 ° C
Additional voltage: Alpha electric field high potential generator (additional 18kV, non-additional switching type)
B. Air blast freezer: Pre-chamber freezer Freezer: Sanyo LCU-N100P
Compressor output: 7.5kW
Refrigerant gas: R-22
Freezer temperature: -35 ° C
Additional voltage: Alpha electric field high potential generator (additional 18kV, non-additional switching type)

(3)製氷方法
ステンレス製の製氷管(W62×D15×H150mm)の内部にポリエチレン製袋を挿入し、この袋に110ccの製氷水を入れて、次の方法によって製氷した。ポリエチレン袋に入った製氷水は、製氷管の形状で凍結される。
A.ブライン冷凍
1)上記製氷管を製氷枠にセットする。
2)電圧付加の場合は、高電場電位発生器のスイッチをONにし、電圧無付加の場合は
OFFにする。
3)冷凍ユニットの冷凍槽の蓋を開け、上記製氷枠を冷却槽のブライン液中に浸漬して
セットする。
4)冷凍槽の蓋を閉じ冷凍する。
B.エアブラスト冷凍
1)電場電位発生器のスイッチをONにする。
2)電圧付加の場合は、冷凍庫内の金属製の製氷枠に上記製氷管を立てて置き、電圧無
付加の場合は、冷凍庫内に木製のスノコを敷き、その上に上記製氷管を立てる。
3)冷凍庫の扉を閉じて冷凍する。
(3) Ice making method A polyethylene bag was inserted into a stainless steel ice making tube (W62 × D15 × H150 mm), and 110 cc of ice making water was put into this bag to make ice by the following method. The ice making water in the polyethylene bag is frozen in the shape of an ice making tube.
A. Brine refrigeration 1) Set the ice making tube on the ice making frame.
2) Turn on the high-field potential generator switch when voltage is applied, and turn it off when no voltage is applied.
3) Open the lid of the freezing tank of the refrigeration unit and immerse the ice making frame in the brine solution in the cooling tank.
4) Close the freezer tank lid and freeze.
B. Air blast refrigeration 1) Switch on the electric field potential generator.
2) In the case of voltage application, place the ice-making tube in a metal ice-making frame in the freezer, and in the case of no voltage application, lay wooden slats in the freezer and place the ice-making tube on it.
3) Close the freezer door and freeze.

(4)氷の破断強度試験
冷凍方法および製氷条件を変えて製氷した各氷の破断強度を、テクスチャーアナライザTA-Hdi(英弘精機社製)を使用して測定した。この測定方法は、図8に示すように測定器22の測定台23に所定寸法の試料氷25をセットし、該試料氷の中央部分を規定の押し刃24で上方から押圧して氷が完全に割れるまで可動し、氷が割れるときの押圧力と押し刃24が氷に接触してから割れるまでの間に可動する距離(押圧距離)とを測定するものである。試料氷は幅62mm、長さ150mm,厚さ15mmの直方体をなしており、押し刃24は厚さ2mm、幅69.5mmの金属板からなり、その下先端は70度の刃先を有している。図9はその測定部を示す。測定台23には長さ90mm、高さ30mmの一対の固定ガイド26が62mmの間隔をあけて設けられており、該一対の固定ガイド26には長さ方向の中間位置に押し刃ガイド27が対向して形成されている。固定ガイド26の間に前記試料氷25をセットし、固定ガイド26の前記押し刃ガイド27に押し刃24を嵌挿し押し刃ガイドに沿って下降させる。
(4) Ice breaking strength test The breaking strength of each ice piece made by changing the freezing method and ice making conditions was measured using a texture analyzer TA-Hdi (manufactured by Eiko Seiki Co., Ltd.). In this measuring method, as shown in FIG. 8, a sample ice 25 of a predetermined size is set on a measuring table 23 of a measuring instrument 22, and the central part of the sample ice is pressed from above with a specified push blade 24 so that the ice is completely formed. It measures the pressing force when the ice breaks and the distance (pressing distance) that it moves from when the pressing blade 24 contacts the ice until it breaks. The sample ice is a rectangular parallelepiped having a width of 62 mm, a length of 150 mm, and a thickness of 15 mm. The push blade 24 is made of a metal plate having a thickness of 2 mm and a width of 69.5 mm, and its lower tip has a cutting edge of 70 degrees. Yes. FIG. 9 shows the measurement unit. The measuring table 23 is provided with a pair of fixed guides 26 having a length of 90 mm and a height of 30 mm with an interval of 62 mm. The pair of fixed guides 26 has a pressing blade guide 27 at an intermediate position in the length direction. They are formed to face each other. The sample ice 25 is set between the fixed guides 26, the pressing blades 24 are inserted into the pressing blade guides 27 of the fixed guides 26, and lowered along the pressing blade guides.

測定は各種類の氷について4回行い、氷が割れるときの押圧力の平均値を単純強度として求めた。表3はこの単純強度の測定結果である。また表4は各氷の単純強度と押圧距離との相関を示し、単純強度が同一でも押圧距離が短いほど各氷における水分子の配列性が高いと判断できる。なお、表4において押圧距離は4回の測定値の平均である。   The measurement was performed four times for each type of ice, and the average value of the pressing force when the ice broke was determined as the simple strength. Table 3 shows the measurement results of this simple strength. Table 4 shows the correlation between the simple strength of each ice and the pressing distance, and it can be judged that the arrangement of water molecules in each ice is higher as the pressing distance is shorter even if the simple strength is the same. In Table 4, the pressing distance is an average of four measurement values.

Figure 2005333922
Figure 2005333922

Figure 2005333922
表3および表4から明らかのように高電圧電場を付与して製氷した酸性電解水氷は、電場を付与しないで製氷した酸性電解水氷に比べて固い粘りのある氷となる。エアブラスト冷凍法では、3種類の水の容器を同時に冷凍室内に設置し、170分で−31〜−33℃の酸性電解水氷を作った。この場合−31℃に到達する時間が、純水155分、電場なし酸性電解水165分、電場有り酸性電解水105分であり、電場有り酸性電解水はその後65分間で−33℃まで氷温度が低下した。その結果、電場有り酸性電解水氷の平均押圧力は電場なし酸性電解水氷とほぼ同等の強度であるが、押圧距離が3種類の氷の中で一番短くなり、すなわちF/D値が一番大きくなり、固い氷であるといえる。
Figure 2005333922
As is apparent from Tables 3 and 4, acidic electrolyzed water ice made by applying a high-voltage electric field becomes harder and more viscous ice than acidic electrolyzed water ice made without applying an electric field. In the air blast freezing method, three types of water containers were installed in the freezing chamber at the same time, and acid electrolyzed water ice of −31 to −33 ° C. was produced in 170 minutes. In this case, the time to reach −31 ° C. is 155 minutes of pure water, 165 minutes of acidic electrolyzed water without electric field, and 105 minutes of acidic electrolyzed water with electric field. Decreased. As a result, the average pressing force of acidic electrolyzed water ice with an electric field is almost the same as that of acidic electrolyzed water ice without an electric field, but the pressing distance is the shortest of the three types of ice, that is, the F / D value is The largest and hardest ice.

他方、ブライン冷凍法の場合、電場なし純水と酸性電解水は同時にブライン冷凍槽に浸け、13分後に取り出した。また電場有り酸性電解水は10分浸けて−32.8℃になったため取り出した。この場合、3種類の水の温度が−31℃に到達する時間が、純水13分、電場なし酸性電解水10分、電場有り酸性電解水8分となった。平均押圧力は、電場なしと有りの酸性電解水氷を比較しても差はないが、冷却に供する時間は、電場有り酸性電解水氷の方が3分短くなっている。その差が押圧距離に出ており、固さは同程度にも拘わらず粘りある氷ができた。つまり、電場有り酸性電解水氷を他の氷と同様に13分間ブライン冷凍槽に浸けると、固さが増すために押圧距離は短くなりF/D値が大きくなると予想される。   On the other hand, in the case of the brine refrigeration method, pure water without an electric field and acidic electrolyzed water were simultaneously immersed in a brine refrigeration tank and taken out after 13 minutes. Further, the acidic electrolyzed water with an electric field was taken out because it reached −32.8 ° C. after being soaked for 10 minutes. In this case, the time for the temperature of the three types of water to reach −31 ° C. was 13 minutes for pure water, 10 minutes for acidic electrolyzed water without an electric field, and 8 minutes for acidic electrolyzed water with an electric field. There is no difference in the average pressing force between acidic electrolyzed water ice with and without an electric field, but the time for cooling is 3 minutes shorter for acidic electrolyzed water ice with an electric field. The difference is in the pressing distance, and sticky ice was made despite the same hardness. In other words, if acidic electrolyzed water ice with an electric field is immersed in a brine freezing tank for 13 minutes in the same manner as other ices, it is expected that the pressing distance will be shortened and the F / D value will be increased due to increased hardness.

(5)製氷時間
図10は、エアブラスト冷凍法による製氷において、純水と酸性電解水が冷凍庫内温度(−35℃)にほぼ均衡するまでの温度変化、図11は、ブライン冷凍法による製氷において、純水と酸性電解水がブライン温度(−35℃)にほぼ均衡するまでの温度変化をそれぞれ示す。図10から明らかのように、電場を付与しない酸性電解水は純水より冷却しにくく、約−5℃以下の温度域では酸性電解水の方が同じ温度になるのに10分〜20分遅れている。これに対し、高電圧電場を付与した酸性電解水は、前記温度域において電場を付与しないときに比べ約60分早く同一温度に冷却される。このことから、冷却しにくい酸性電解水に高電圧電場を付与することによって迅速な冷却が可能となり、短時間で製氷できることが分かる。
(5) Ice making time FIG. 10 shows the temperature change until pure water and acidic electrolyzed water are approximately balanced with the freezer temperature (−35 ° C.) in ice making by the air blast freezing method, and FIG. 11 shows ice making by the brine freezing method. , Each shows a temperature change until pure water and acidic electrolyzed water substantially equilibrate to the brine temperature (−35 ° C.). As is clear from FIG. 10, acidic electrolyzed water that does not give an electric field is more difficult to cool than pure water, and in the temperature range of about −5 ° C. or less, the acidic electrolyzed water becomes 10 minutes to 20 minutes later at the same temperature. ing. On the other hand, acidic electrolyzed water to which a high voltage electric field is applied is cooled to the same temperature about 60 minutes earlier than when no electric field is applied in the temperature range. From this, it can be seen that by applying a high-voltage electric field to acidic electrolyzed water that is difficult to cool, rapid cooling becomes possible and ice can be made in a short time.

ブライン冷凍法は前記のエアブラスト冷凍法ほど顕著でないが、酸性電解水に高電圧電場を付与すると、時間の経過と共に冷却が促進され電場を付与しない場合に比べて2〜3分程度早く製氷できる。このような結果から、酸性電解水に高電圧電場を付与することによって、冷却が著しく促進され、製氷時間を短縮できることが分かった。   The brine refrigeration method is not as prominent as the air blast refrigeration method described above, but when a high-voltage electric field is applied to the acidic electrolyzed water, the cooling is accelerated with the passage of time, and ice can be made about 2 to 3 minutes faster than when no electric field is applied. . From these results, it was found that by applying a high voltage electric field to the acidic electrolyzed water, the cooling was significantly accelerated and the ice making time could be shortened.

本発明によれば、高電圧電場を付与して製氷した酸性電解水氷で魚介類等を保存することによって、魚介類等は殺菌力が大きく長持ちする氷で保冷されるので、その鮮度を長く保持できる。特に海洋深層水を電解して得られる酸性電解水は有効塩素の濃度が高いため、殺菌力が一段と優れており、この酸性電解水を製氷して得られる酸性電解水氷は、海洋での魚介類等の冷蔵保存において実用効果が大である。   According to the present invention, seafood and the like are preserved with ice having a high bactericidal power by storing the seafood and the like with acidic electrolyzed water ice that has been made by applying a high voltage electric field, so that the freshness of the seafood is prolonged. Can hold. In particular, acidic electrolyzed water obtained by electrolyzing deep ocean water has a higher concentration of effective chlorine, so it has even better sterilizing power.Acid electrolyzed water ice obtained by making this acidic electrolyzed water is used for seafood in the ocean. It has a great practical effect in refrigerated storage of foods.

本発明の好ましい実施形態であるブライン冷凍装置の一部を断面で示した正面図である。It is the front view which showed a part of brine refrigerating device which is preferable embodiment of this invention in the cross section. 本発明の他の実施形態であるエアブラスト冷凍装置の製氷棚枠と高電位発生器の斜視図である。It is a perspective view of the ice making shelf frame and high potential generator of the air blast freezing device which are other embodiments of the present invention. 魚の実験用氷保冷箱の斜視図である。It is a perspective view of the ice cold storage box for experiment of fish. 魚のTBA値を示す棒グラフである。It is a bar graph which shows the TBA value of a fish. 魚の実験用氷保存箱の断面図である。It is sectional drawing of the ice storage box for experimental fish. 氷の種類別の魚体表面上の経時殺菌状況を示すグラフである。It is a graph which shows the time-sterilization condition on the fish body surface according to the kind of ice. 氷の種類別の溶解水中の経時殺菌状況を示すグラフである。It is a graph which shows the time sterilization condition in melt | dissolution water according to the kind of ice. テクスチャーアナライザの正面図である。It is a front view of a texture analyzer. 図8の試料氷固定部の斜視図である。It is a perspective view of the sample ice fixing | fixed part of FIG. エアブラスト冷凍法における製氷水別の製氷温度変化を示すグラフである。It is a graph which shows the ice making temperature change according to ice making water in the air blast freezing method. ブライン冷凍法における製氷水別の製氷温度変化を示すグラフである。It is a graph which shows the ice making temperature change according to ice making water in a brine refrigerating method.

符号の説明Explanation of symbols

1:冷凍槽
2:製氷枠
3:製氷管
4:取付台
5:撹拌手段
6:熱交換部
7:冷凍機
8:高電場発生器
9:導線
11:床
12:電気絶縁材
13:製氷棚枠
1: Freezing tank 2: Ice making frame 3: Ice making tube 4: Mounting base 5: Stirring means 6: Heat exchanging unit 7: Refrigerator 8: High electric field generator 9: Conductor 11: Floor 12: Electrical insulating material 13: Ice making shelf frame

Claims (5)

海洋深層水、海水または食塩の水溶液を電気分解して得られる酸性電解水に高電圧電場を付与して製氷した酸性電解水氷を用いて魚介類等を保存することを特徴とする魚介類等の鮮度保持方法。   Fish and shellfish characterized by preserving seafood using acid electrolyzed water ice made by applying high-voltage electric field to acid electrolyzed water obtained by electrolyzing deep seawater, seawater or salt water How to keep freshness. 前記酸性電解水が海洋深層水を電気分解して得られる酸性水である請求項1に記載の魚介類等の鮮度保持方法。   The method for maintaining freshness of seafood and the like according to claim 1, wherein the acidic electrolyzed water is acidic water obtained by electrolyzing deep ocean water. 前記酸性電解水のpHが2.5〜6.5である請求項1または2に記載の魚介類等の鮮度保持方法。   The method for maintaining freshness of seafood or the like according to claim 1 or 2, wherein the acidic electrolyzed water has a pH of 2.5 to 6.5. 前記酸性電解水に5〜100kvの高電圧電場を付与する請求項1、2または3に記載の魚介類等の鮮度保持方法。   The method for maintaining freshness of seafood or the like according to claim 1, 2 or 3, wherein a high voltage electric field of 5 to 100 kv is applied to the acidic electrolyzed water. 前記酸性電解水の塩素濃度が20〜200ppmである請求項1〜4のいずれかに記載の魚介類等の鮮度保持方法。
The method for maintaining freshness of fish and shellfishes according to any one of claims 1 to 4, wherein the acidic electrolyzed water has a chlorine concentration of 20 to 200 ppm.
JP2004159508A 2004-05-28 2004-05-28 How to keep freshness of seafood Expired - Fee Related JP4240481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159508A JP4240481B2 (en) 2004-05-28 2004-05-28 How to keep freshness of seafood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159508A JP4240481B2 (en) 2004-05-28 2004-05-28 How to keep freshness of seafood

Publications (2)

Publication Number Publication Date
JP2005333922A true JP2005333922A (en) 2005-12-08
JP4240481B2 JP4240481B2 (en) 2009-03-18

Family

ID=35488151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159508A Expired - Fee Related JP4240481B2 (en) 2004-05-28 2004-05-28 How to keep freshness of seafood

Country Status (1)

Country Link
JP (1) JP4240481B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422869A (en) * 2011-11-09 2012-04-25 上海海洋大学 Fresh-keeping method for globefish
JP5238899B1 (en) * 2012-07-13 2013-07-17 稔 菅野 Disinfecting water generating apparatus and disinfecting cleaning method
WO2017017773A1 (en) * 2015-07-27 2017-02-02 マルキ平川水産株式会社 Refrigerated raw sea urchin product and method for producing same
JP2018031539A (en) * 2016-08-25 2018-03-01 大陽日酸株式会社 Slurry ice making method
JP2019120480A (en) * 2018-01-05 2019-07-22 優章 荒井 Ice making device
CN113349244A (en) * 2021-06-24 2021-09-07 上海海洋大学 Method for preserving chilled mackerel based on subacid electrolyzed water fluidized ice
CN114659316A (en) * 2022-02-23 2022-06-24 江南大学 Static magnetic field assisted liquefaction of CO2Pulse spraying quick-freezing device and pressurizing efficient freezing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103005616B (en) * 2012-12-31 2014-01-29 杨公明 Method for sterilizing, quick-freezing and fresh-keeping prawns by acidic oxidizing electrolyzed water
CN107912521B (en) * 2017-11-14 2021-07-06 徐州工程学院 Preservation method for marine products after capture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422869A (en) * 2011-11-09 2012-04-25 上海海洋大学 Fresh-keeping method for globefish
JP5238899B1 (en) * 2012-07-13 2013-07-17 稔 菅野 Disinfecting water generating apparatus and disinfecting cleaning method
WO2017017773A1 (en) * 2015-07-27 2017-02-02 マルキ平川水産株式会社 Refrigerated raw sea urchin product and method for producing same
JP2018031539A (en) * 2016-08-25 2018-03-01 大陽日酸株式会社 Slurry ice making method
JP2019120480A (en) * 2018-01-05 2019-07-22 優章 荒井 Ice making device
CN113349244A (en) * 2021-06-24 2021-09-07 上海海洋大学 Method for preserving chilled mackerel based on subacid electrolyzed water fluidized ice
CN114659316A (en) * 2022-02-23 2022-06-24 江南大学 Static magnetic field assisted liquefaction of CO2Pulse spraying quick-freezing device and pressurizing efficient freezing method

Also Published As

Publication number Publication date
JP4240481B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
EA009630B1 (en) Food preserving method and its device
JP4240481B2 (en) How to keep freshness of seafood
JP4988617B2 (en) Brine composition for frozen food and method for producing frozen food
Chan et al. A comparative study of Atlantic salmon chilled in refrigerated seawater versus on ice: From whole fish to cold-smoked fillets
JP2013533908A (en) Ultra-small ice, its use, and manufacturing equipment
CN110671876A (en) Supercooling freezing method, refrigerator and refrigerator control method
US20240099318A1 (en) Apparatus and method for low-temperature aging using slurry ice
JP3681107B2 (en) Freshness maintenance method of fresh food and freshness maintenance system of fresh food
Keys et al. Conditions for the effective chilling of fish using a nano‐sized ice slurry
KR101687448B1 (en) instant immersion freezing liquid and manucturing method thereof
NO161595B (en) PROCEDURE FOR PRESERVING FRESH FISH.
Palma et al. Fresh produce treated by power ultrasound
WO2010076886A1 (en) Multifunctional apparatus for cold processing of organic materials
JP2012016313A (en) System and method for maintaining freshness
KR101490291B1 (en) Ice having a disinfect function and a producing method thereof
Wang et al. Study on the thawing characteristics of beef in ultrasound combined with plasma-activated water
Orlowska et al. 27 Electrofreezing
JP3773841B2 (en) Pretreatment method for frozen storage of fresh food, apparatus therefor, and frozen storage method
JPS59151834A (en) Method for freezing green vegetable, meat, fish, shellfish and algae
JP2011021866A (en) Disinfectant water ice production method
JP5100998B2 (en) Cryopreservation method of tooth extraction body
JPH10313839A (en) Sterilization and washing of perishable food
JP2010233560A (en) Sterilizing sherbet-like ice or crushed ice
JP2005065690A (en) Frozen food thawing device and electrode
JP2012057919A (en) Salt-containing ice forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees